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After a review of the idealizations usually made in theories of space-charge polarization in liquids 
and solids, published theoretical and experimental work dealing with the a.c. response of two-electrode 
systems is discussed and various corrections pointed out. A calculation of the equilibrium space- 
charge capacitance of two blocking electrodes separated by material containing mobile positive and 
negative charges of arbitrary valences is presented for the limit of vanishingly small applied static 
potential. The result of this calculation may be used to obtain the frequency dependence of diffuse 
layer parallel capacitance and conductance in the Debye dispersion frequency range, where the mo- 
tion or charges in space charge regions leads to an admittance involving only a single time constant. 
Expressions given previously by Baker and Buckle for this time constant and for the low-frequency 
limiting capacitance are corrected, along with their conditions for the extent of the Debye dispersion 
range. 

The relaxation time constant is G,(r- 1)7~ /Go ,  where Go and G, are the low- and high-frequency 
limiting values of the series conductance, ZD is the dielectric relaxation time of the material containing 
mobile charges, r = M cotanh M, and M is the ratio of the separation between electrodes to twice 
the Debye length. Finally, deviations from Debye dispersion behaviour for various 1 : 1 valence 
theories are calculated and compared ; for the two-blocking-electrodes situation, Debye behaviour 
and a simple equivalent circuit of frequency-independent elements extend up to nearly OTD-~. 
Beyond this range, the parallel space-charge capacitance shows a-3 limiting behaviour, similar to 
that previously found only with partly blocking electrodes, and the equivalent series space-charge 
capacitance eventually decreases as a-t. 

The frequency response behaviour of the impedance or admittance of the space 
charge region near an electrode which is not entirely ohmic can yield useful information 
about the properties of the electrode and the material next to it. Non-ohmic behav- 
iour can arise when an electrochemical reaction occurs at the electrode (the faradaic 
admittance I), or when some or all of the species of mobile charge carriers present are 
partly or completely blocked at the electrode. When complete blocking occurs at an 
inert electrode, only displacement current passes from the material next to the electrode 
into it. In the electrolyte area, a completely blocking electrode is termed ideally 
polarized.2* Experimental admittance results, interpreted by means of a suitable 
theory, allow one to decide whether a given electrode is well approximated as com- 
pletely blocking or not, and can, under ideal conditions, yield information about 
charge carrier concentrations and mobilities and about material homngeneity for 
solids. 

The present work is primarily concerned with inert, completely blocking electrodes. 
Although the main discussion will be in terms of aqueous electrolytes, the idealized 
situation and theories considered also apply to solids with intrinsic electronic or 
vacancy conductivity or with ionic cond~ctivity,~ and perhaps to ionic melts under 
some conditions. We first discuss the idealizations of the actual situation which are 
usually made and briefly mention principal theoretical treatments of the area. 
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One idealization virtually always made in theoretical treatments of the present 
situation is reduction to one dimensionality. Only variations of charge density, 
potential, field, etc. in a direction perpendicular to an electrode are assumed present. 
Sometimes only a single electrode is considered, but usually in steady-state a.c. 
theories two electrodes are present. For the one-dimensional approximation to 
apply, it is then necessary that the current density of the two electrodes be uniform and 
their currents equal. These conditions require that the electrodes be symmetrically 
disposed,l and it is usual to consider two planar identical electrodes separated by a 
distance I containing the medium whose properties are of interest. Finally, uniform 
current density requires that the smallest linear dimension of planar electrodes be 
large compared to I. It is conventional to apply the treatment to unit cross-section 
of the electrodes. 

Another restriction imposed by all authors in the present field, either explicitly or 
implicitly, is that of taking the applied a.c. potentiaf sufficiently small that the non- 
linear transport equations to be solved may be linearized to good approximation. 
Then, when a voltage of single frequency is applied across the electrodes, harmonics 
in the current above the fundamental frequency are small enough to be neglected. 
The analytic solution of the linearized equations leads to complex results ; omission 
of linearization would certainly require computer analysis in order to obtain results 
of practical value. 

In addition to taking the magnitude of the ax. potential small compared to kT/e, 
where k is Boltzmann’s constant, T the absolute temperature, and e the protonic 
charge, a.c. treatments have invariably assumed that in the absence of an a.c. signal 
the positive and negative charge carriers are uniformly distributed in the material 
between the electrodes and no static space-charge distribution is present. For the 
electrolyte case, this restriction means that the resulting theory should only be com- 
pared with experimental (admittance, frequency) results obtained at, or very near, the 
point of zero electrode charge. Although the two-electrode, diffuse-layer, space- 
charge problem has been solved 5-8 for applied static potentials much greater in 
magnitude than kT/e, the difficult combination of this solution and the steady-state 
a.c. problem has not been carried through thus far. The restriction to very small 
a.c. potentials automatically ensures that power-dissipation heating of the material 
between the electrodes is negligible and leads to negligible change in material prop- 
erties. 

All a.c. relaxation treatments published thus far deal primarily with the diffuse 
part of the double-layer of space charge associated with one or two blocking or partly 
blocking electrodes. The diffuse layer is a space-charge region where the competing 
effects of electric field and diffusion lead to a local charge excess of one sign. 
Frequently when the material between the electrodes is a solid, it is a good approx- 
imation to assume that the diffuse layer begins immediately at the electrode-solid 

This may also be an adequate approximation for pure fused salts with 
careful electrode selection and preparation. It is, however, usually not an adequate 
approximation in aqueous and other liquid electrolytes.2* l 2 9  For such materials, 
there seems invariably to be present an inner, or Helmholtz, layer between the diffuse 
layer and the electrode. In the absence of specific adsorption, this compact layer is 
charge free and is composed of a monolayer or so of solvent molecules. It acts 
electrically like a pure capacitance in series with the diffuse layer and bulk material 
admittance. Since the Helmholtz layer is so thin, it has a high capacitancelwnit 
area. When the electrolyte solute concentration is very low, the inner layer capacit- 
ance may be considerably larger than that of the diffuse layer near the point of elect- 
rode zero static charge. Under such conditions, the diffuse layer capacitance domin- 
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ates the combination, but for most concentrations of practical interest the inner layer 
capacitance is smaller and dominates. This situation may make interpretation of 
experimental relaxation measurements uncertain, and unequivocal separation of 
diffuse layer and bulk admittance from the total admittance difficult. 

An analogue to the inner region apparently occurs for some solid-electrode 
combinations. Experimentally, evidence of high-resistivity layers 14-1 or even air 
gaps l8 next to the electrodes has been found for a variety of experiments. The 
problem of a potential-independent, charge-free-layer capacitor in series with a space- 
charge layer has been treated 7* l9 theoretically for static applied potentials (equi- 
librium conditions), as has that of a potential-dependent inner layer in the electrolyte 
case.12* l3 

For two-electrode a.c. space-charge polarization theories per se, all but one have 
dealt with the 1 : 1 or uni-univalent case. Although Jaffe’s 5 *  2o original theory was 
later extended by Chang and Jaff6,2 both theories were unnecessarily approximate 
even in the small-signal limit c~ns ide red .~~  A theory without Chang and Jaffe’s 
approximations was published by the author in 1953 and was followed soon there- 
after by the similar but independent analysis of Friauf.22 This work has been ex- 
tended by Beaumont and Jacobs.l* Although Grahame 23 published a theory of the 
diffuse layer under equilibrium conditions for unsymmetrical valence types in 1953, it 
was not until 1968 that Baker and Buckle 24 independently extended the Macdonald- 
Friauf a.c. theory to the arbitrary valence situation. Ferry 2 5  has been alone in 
presenting a transient response and a.c. steady-state theory for a single blocking 
electrode. In all these theories, no explicit account of finite ion size was taken, an 
adequate approximation for the situations to which the theories have usually been 
applied. 

I shall compare some of the above theories, pointing out deficiencies in them 
where appropriate; show how some of the earlier 1 : 1 and arbitrary valence results 
can be corrected and obtained in a simpler way than heretofore; present the first 
two-blocking-electrode equilibrium theory of the diffuse double layer with arbitrary 
valences; and extend the earlier 1 : 1 space-charge theory to show both the extent of 
the single-time-constant Debye dispersion region and deviations from such simple 
behaviour . 

Here LD is the Debye 
length for the unperturbed bulk material; it is defined later in terms of material 
parameters. For ordinary values of I and concentrations used in most electrolyte 
experiments, M is very large compared to unity. Since this will not necessarily be 
the case for highly resistive solids and liquids and for very weak electrolytes, the var- 
ious new treatments herein are not restricted to the usual condition 1 but allow 
extrapolation to M = 0 ; for M <  1, no space-charge can occur. 

An arbitrary value of the ratio M = 1/2L, is assumed. 

I N I T I A L  C O N S I D E R A T I O N  OF T H E  A R B I T R A R Y  VALENCE S I T U A T I O N  

Only Baker and Buckle 24 (denoted B & B hereafter) have given an analysis of the 
two-blocking-electrode a.c. space-charge polarization situation for arbitrary valences. 
They applied their treatment to aqueous electrolytes and ionic melts. Since this is 
also the latest contribution, I provide a few missing comparisons between their work 
and that of others, and show how some of their results may be improved. Therefore, 
I shall discuss : (a) the unnecessary complication of B & B’s approach and a much 
simpler method of obtaining a more general version of their final results; (b) the 
contrast between a specialization and a generalization involved in the ref. (24) situation 
over those situations previously considered by others ; (c) an implicit simplification 
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in one of B & B’s final results which makes it applicable only when the two blocking 
electrodes considered are many Debye lengths apart, leading to essentially independent 
conditions at these electrodes ; (4 an unnecessary lower limit condition and an over- 
simplified and unnecessarily stringent upper limit condition for the frequency range 
over which B & B expect their simplified final results to apply; (e) a misleading ex- 
pression given in ref. (24) for the Nernst-Einstein relation, inappropriate in the ar- 
bitrary valence case considered there ; and (f) the specific dependence of some of the 
results on normalized frequency, and the dependence of the basic time constant 
involved in simple Debye frequency response behaviour upon the valence numbers of 
the positive and negative charge carriers, zp and z,, respectively. 

Baker and Buckle’s aim was to supply a more general treatment of space charge 
polarization in fully dissociated liquid electrolytes than previous theories for solids and 
aqueous electrolytes. However, the previous theories which they cite for solids 4* 2 o p 2 2  

are also applicable for electrolytes (and vice versa), since the mathematics for the 
idealized situation usually considered is the same for liquids and solids. In addition, 
although B & B mention that their treatment avoids the use of restrictive relations 
between phenomenological constants appearing in the earlier work, 4 9  20* 22 the 
actual restrictive relations meant are not stated. In fact, the earlier work cited applies 
for any degree of ionization of the charge carriers; B & B’s is restricted to full dis- 
sociation. Their approach is indeed more general than previous work on the two- 
electrode situation in generalizing from 1 : 1 or z : z valent electrolytes to the arbitrary 
z, : z, situation. Here zp and z, (denoted ,u and v, respectively, by B & B) are positive 
integers. The B & B analysis is rendered considerably more complex than necessary 
by their repeating nearly 30 complicated equations essentially taken from earlier 
small-signal a.c. analyses 4* 2 2  with minor modifications incorporated to account for 
arbitrary valences. 

The motivation of B & B’s work was apparently to generalize earlier two-electrode 
calculations to the arbitrary valence situation ; yet they make no comparison of their 
results with those obtained earlier by Grahame 23 for one-electrode, arbitrary valence 
situations or with earlier two-electrode calculations for the 1 : 1 valence ~ond i t ion .~  
B & B’s discussion includes graphs plotted from their analytical results for special 
values of the parameters involved. The values selected implicitly require that z, = zp. 
There is no discussion of any features of the results dependent on zp and z, being 
unequal. 

After introducing several approximations into their general results, B & B finally 
obtain simplified expressions for the low-frequency limiting ax.  capacitancelunit 
area of their system, C,, and the high-frequency limiting conductance/unit area, G,, 
which applies e.g., at frequencies too high for space charge to build up appreciably at 
the electrodes. The quantities Co and G, may be combined to define the single time 
constant z = Co/G,. Since from B & B’s treatment, as in the corresponding 1 : 1 
valence case, only a single time constant appears at frequencies for which CUT < B, the 
frequency response exhibited in this frequency range by the parallel capacitance and 
conductance is of the simple Debye type. Here the quantity B (discussed later) is 
usually much greater than unity.4* 24 Although B & B ascribe the first appearance 
of such a time constant and Debye behaviour for a system of the present type to the 
paper of Friauf,22 both results were discussed in earlier 26 and one26 
specifically points out such Debye behaviour in its title. Since Debye dispersion 
is defined by a single time constant, only that time constant, or here C, and G,, is 
needed to specify fully the frequency response of the normalized capacitance and 
conductance of the system in the Debye dispersion range. 
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APPROXIMATE C A L C U L A T I O N  OF Co 
Grahame 23 has treated the electrolyte diffuse layer for a z,  : z, electrolyte in the 

static (equilibrium) one-electrode situation. His solution for charge and capacitance 
applies for a constant potential Il/o applied across the diffuse layer-from the outer 
Helmholtz plane to the bulk of the solution. Let us normalize all potentials with 
kT/e. Then, we may write Yo E e$,/kT; Grahame’s solution is not restricted to 
I Y o  I < 1. Now linearized a.c. treatments ’* 4 9  20-22*  24p 2 5  are restricted to peak a.c. 
applied voltages appreciably less than kT/e in magnitude. For the idealized cases 
usually treated the differential (or integral) capacitance calculated for an equilibrium 
situation in the limit Y+O must equal the total ax. capacitance Co in the zero- 
frequency limit for vanishingly small a.c. signals. Independent a . ~ . ~  and static 6* ’ 
treatments yield such agreement for the 1 : 1 valent, two-eIectrode situation. Baker 
and Buckle, however, set a lower limit condition of o% on the radial frequency o 
of their simplified final results ; this condition is unnecessary and is even inconsistent 
with B & B’s own identification of Co as the low-frequency limiting capacitance. 

Our problem is to obtain adequate expressions for Co and G ,  for the z, : zn, two- 
electrode, fully-dissociated, unit-area situation in the low-voltage limit. Rather than 
having to re-solve the complicated a.c. problem as did B & B, we need only use the 
result of a much simpler YO+O static solution. It might be expected that this ap- 
proach would not be valid because the space charge capacitances localized near the 
left and right electrodes might be unequal for a z, : Zn electrolyte when z, # z,. 
Fortunately, Grahame 2 3  found that in the “ 4 0  limit his one-electrode capacitances 
were the same for electrolytes of the z, : z,, type and those with zn for the positive charge 
valence number, z, for the negative charge number. 

Let p o  and no be the (homogeneous) equilibrium charge concentrations in the 
electrolyte in the absence of any static electric field. Overall charge neutrality, 
dictated by the blocking electrodes, then requires that zppo  = z,no. The quantity 
G, is unaffected by space charge and is given by the ohmic expression, G, = 
(e/Z)[pnznno +ppzppO]. Here p, and ,up are the mobilities of the negative and positive 
charge carriers. This result was obtained by B & B, It may be written in the 
equivalent symmetrical form G, = (e/22)(znno + zppo)(pn + p,). 

A good first approximation for Co may be obtained from Grahame’s general 
z, : z, differential capacitance result. We write Co = C1/2, where C1 is the one- 
electrode differential capacitance obtained from the Grahame static solution when 
Y +O. Since the two electrodes each have a capacitance approximately equal to C1 
localized near it, the series combination Co is C1/2. We define the average valence 
number Z as (z, + zn)/2. Then denoting the Co determined from Grahame’s results as 
COG, we find 

where E is the dielectric constant of the electrolyte. 
Baker and Buckle give an expression for Co, COB, which involves p p / D p  and 

,un/ D, and thus does not employ the general Nernst-Einstein relation connecting pi and 
Di (i = n or P).~’ Here D1 is the diffusion coefficient for the ith type of charge 
carrier. The general relation will be used here since for all situations where it is 
likely to fail for ions the simple transport equations used in the rest of the theory will 
fail as well. The only version of the Nernst-Einstein relation appearing in B & B’s 
paper, p / D  = e/kT, which followed their expression for Co, is pertinent only for the 
1 : 1 valence case ; it was used by B & B, without specification of the valence situation 
considered, to show agreement of their expression for Co with the expression for the 
low-potential limit of the Gouy capacitance. 

COG = [e2G(znno + ~ ~ p o ) / l 6 n k T ] a ,  (1) 
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The location in the text of the B & B expression for p / D  and the fact that their only 
literature citation to the ICTernst-Einstein relation does not give the general zp : zn 
valence relation explicitly may give the impression that their relation is that appro- 
priate in general to reduce their expression for Co to the usual form, which involves 
neither ,ui nor Di ; it is not. For arbitrary valences the correct expression is ,ui/Di = 
zie/kT. When this relation is employed in B & B’s Co expression, 

one obtains COG on using the neutrality condition. Unfortunately, reduction to a 
form like that of COG is not carried out by B & B, and the impression may be given 
that both valence numbers are not involved symmetrically in the expression for Co. 
The agreement of COB, using the proper Nernst-Einstein relation, with COG shows 
the essential independent-electrode character of the B & B result. 

COB = [(ezp~o&/l6n) { ( ~ p / D p )  + (C(n/Dn>>I, (2) 

IMPROVED CALCULATION OF Co 
A more general expression for Co than COG or COB may be obtained as follows. 

The COB result implicitly takes the space-charge capacitances near the two electrodes 
as independent and uncoupled. This is a good approximation when the normalized 
length L E Z/L,X5 or 6, where LD is the Debye length, defined below. It is not a 
good approximation when there are only two or three or less Debye lengths between 
the electrodes. To obtain Co for arbitrary L, we may either generalize Grahame’s 
treatment to two electrodes or our previous 1 : 1, two-electrode, static treatments 6* 
to the z,  : z, situation. Although the expression could be written down directly by 
combining previous results, we derive it, both because no such general derivation has 
been given previously and as further direct proof that an equilibrium calculation of 
Co must yield agreement with the low-frequency limiting result of an a.c. treatment. 

The net charge density in the electrolyte is p = e(z,p -znn). Let $d be the value 
of $ for which p = 0. For the present situation, with II/ = t+b0 applied at the left 
electrode and $ zero at the right, $d = +,/2. Now we define 4 E II/-$d. At 
equilibrium, n = no exp (z@) and p = po exp (-zp@), where = e4/kT. We next 
normalize the electric field Q : E = eLDB/kT. Finally, we define the value of E at 
Y = Y d  as Ed. Since charge neutrality is maintained globally but not locally be- 
tween the electrodes when t Yo I >O, integration of Poisson’s equation over the space 
between the electrodes shows that EL = ER, where EL and ER are the fields at the left 
and right electrodes. The Poisson-Boltzmann equation in the present one-dimension- 
a1 approximation may now be written in the normalized form 

= (4xe2L~/skT)[z,n,eznQ- z ,p ,  e-‘pQ], (3) 
where X = x/LD, E = -d@/dX, and neither ,un nor pp is assumed identically zero. 
Here x is the distance measured from the left electrode. Integration from @ = 0 to 

yields 
E2 = E: +(8rce2L&kT)[n,(ezn@- 1)+p0(e-”pQ- l)], (4) 

E 2  E: + (4ne2L~/skT)(z~no + zEpo)CD2. ( 5 )  

Next, we need to calculate Ed. This we do only for I $,, I < 1 ; expansion to 
second order of the exponentials in (4) then yields 

This equation and all those below which iiivolve Co, Yo, and/or @ hold only for 
I Yo I 4 I. Now (zin, +z,’po) = 2zpp0[(z, +zp)/2] = 2zz,p0 = Z(zppo +z,no). 
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Further, integration of E = -(d@/dX) for X = 0 to X = L and = 
Y0/2 yields 

d@ Y0/2 

- Yo12 [Ed2 + (4ne2L~Z/akT)(z,p, + z,n&D2]** 
We now take 

a choice we show below to be consistent, Eqn (6) then leads to 

It follows that 

Lg = [&kT/4ne2Z(z,po + z,no)], 

L E 2 sinh-’ (Y0/2Ed) .  

Ed = (Y0/2) cosech (L/2), 
equivalent to an earlier 1 :1 valence result 6 *  except for the more general expression 
for LD here in L. Now when L/2< 1, eqn (9) leads to I,?~/Z, a correct and neces- 
sary result in this extreme where d must be independent of x. Next we define M d / 2 ,  
formally in agreement with the definition used earlier.4* 6 *  Now eqn (5) may be 
written 

Since @ = Y0/2 at the Ieft electrode, we finally obtain 

Alternatively, the substitution of eqn (7) in eqn (3) leads, for I <I, I < 1, to d2<I,/dX2 S D .  
For the present situation, the solution of this equation is @ z Ed sinh ( M -  X ) ,  showing 
that the choice of LD yields the proper dependence of @ on X = x/LD. It follows 
that Er Ed cosh (M-  X ) ,  in agreement with (9) and (10) for X = 0 and L. 

It remains to calculate the differential capacitance per unit area, Co E (e/4n) 
(dB,/d$,) = ( & / 4 ~ ~ ~ ) ( d & / d ~ ~ ) .  The result is 

where Cg = ~/4nZ, the geometrical capacitance of the two unit-area electrodes sep- 
arated by a material of dielectric constant E,  and 

As eqn (11) shows, Cg is the limiting value of Co when Z6LD, as it must be. The 
space-charge component of C, is Co - Ce. These results are in agreement with earlier 
ones 4* 6* ’ for which zp = z, = 1. For comparison with COG and COB, Co may be 
written as 

(1 3) 
Thus, (Co/CoG) r cotanh .M and when M 2 3 ,  Co COG = COB. The present 
result for Co is more general than the original COB of eqn (2) because of the cotanh M 
factor ; it also explicitly exhibits necessary symmetry in z, and 2,. 

The Grahame and B & B results for Co include only the decoupled space-charge 
contributions, which do not involve I or L, while eqn (1 3) gives the proper total limiting 
capacitance between electrodes of unit area. The independence of I exhibited by the 
single-electrode Grahame Co result is proper ; on the other hand, when Co represents 
the low-frequency limiting capacitance between two electrodes separated by a distance 
l, Co must depend on 1. Incidentally, since the author’s original 1 : 1 valence treat- 
ment yielded an expression for C,-C, (termed C, there) equal to the present 
C,(M cotanh M -  1) when the pertinent LD is used in M, one would expect that B & B’s 
treatment, depending directly as it does on the earlier work, should also yield this 
result. No comparison of this type was made by B & B. The difference in results 

E2 r (Y0/2)2 cosech2 M+m2. 

EL = ER Y (Y0/2) cotanh M. 

( 5 ’ )  

(10) 

co = (&/87dD) cotanh M = C,k? cotanh M = rc,, (1 1) 

r E (2/2&)) cotanh (2/2&) = M cotanh M. (12) 

C, = [e2&sz’(znno +zppo) cotanh 2M/16nkT]k 
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arises because of simplifying approximations introduced by them. Although the 
condition Z%LD is implicit in their simplifications, it is not mentioned by them, and 
they do not specifically identify a Debye length. 

In their simplifications B & B replaced hyperbolic functions of their a * eigenvalues 
(denoted p* in the earlier work 4, by 3 exp (Za*/2). Their justification was first that 
mod (a+)% 1, although this is not the case for all possible values of the parameters 
entering the expression for a+. Now a- is proportional to Jcl) for sufficiently small w,  
provided pp is not zero. In order to justify the replacement of cosh (Za-/2) and 
sinh (Za-/2) by 3 exp (Za-/2), B & B had to specify the conditions w + (1/2) 2 1 cm, 
and Dp< cm2/s. These specific conditions are unnecessary in general and are 
a result of their particular simplification. They apparently did not recognize that in 
the w+O limit when a-+O all terms in the admittance involving a- disappear. Thus, 
there is no problem in taking the co-0 limit to obtain such a quantity as Co. Further, 
the above condition on a+ is the place in B & B’s work where the requirement Z$LD 
actually implicitly enters. In previous this restriction was not introduced in 
obtaining relatively simple exact expressions for parallel capacitance and conductance 
and for Co. It is not required for such simplification of B & B’s exact results either. 
Finally, in related work of Beaumont and Jacobs lo the condition Z+LD was explicitly 
introduced before the limit 0-0, yet no difficulty in passing to this limit was en- 
countered. 

When the condition I Yo I < 1 is not imposed, the calculation of Co is difficult and 
can generally only be carried out numerically. In this case, Y, # Y0/2. Further, it 
is most unlikely that the capacitances localized near the electrodes are equal in this 
situation as they are here. 

DEBYE DISPERSION REGION 

The complete admittance/unit area Yp of the present system may be written in the form 
Yp = Gp + iw(Cg + Cp), where G, and Cp arise from the ionic charge carriers and Cg is 
associated with the polarization of the ~o lven t .~  This expression shows that Gt, and 
(Cs + Cp) = CpT are in parallel electrically. Cp and Cg will generally show different 
frequency behaviour: Cg should be independent of frequency up to quite high fre- 
quencies while Cp depends on ionic mobility and thus will begin to decrease with 
increasing frequency at much lower frequencies than does Cg. 

In the frequency range, if any, for which single-time-constant simple Debye dis- 
persion is a good approximation, Gp and Cp may usually be written as Gp/G, z (wT , )~ /  

[1+ (oT,)~] and Cp/(Co - Cp) s [1+ (coz,)2]-1. The time constant z,, not necessarily 
equal to the z s Co/Ga already defined, is the single time constant which governs the 
dispersion. It may be found approximately as follows. We convert the frequency- 
dependent, parallel quantities GD and Cp to the related series quantities G, and C, by 
means of the relations C, = [ 1 + (c(>T,)~] and G, = [ 1 + (o~,,,)-~]G,. These expressions 
for Gp and C, then lead to the frequency-independent results G, = G ,  and C, = 
(Co - Cg). These two quantities in series define the time constant 4 9  26 T, = C,/Gs = 
(Co - C,)/G, ; it is only equal to z when Cg is negligible compared to Co. Clearly, 
the appropriate equivalent circuit in the Debye dispersion range is Cg in parallel 
with the series combination of the frequency-independent elements (Co - Cg) and G ,  . 
A slight modification of these results, important for A45 100, is discussed in the next 
section. 

Also, CJG, = ~/4na, = zD, the dielectric relaxation time for the material. 
Here am = ZG, is the ohmic conductivity corresponding to G,. The dielectric 
relaxation time zD is the proper time constant of the material when there is essentially 
no space charge between the electrodes (L-0 or Z+LD), or at such high frequencies 
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that space charge cannot appear. Since the present Co+Cg when L-0, z+zD as it 
should under this condition. Further, since as shown later, the accurate Cp decreases 
slower than for sufficiently high u), the exact susceptance of C,, calculated from 
Gp(w) and Cp(u)), will continually increase with increasing u), finally leaving G ,  alone 
in parallel with Cg. Thus, the limiting high-frequency time constant will again be 
zD = CO/Ga. Formally, z = z,+zD. The time constant z, = ( r -  l)zD may also be 
considered the motional relaxation time.4* 26 

For simplicity, we 
consider only the expression for z rather than that for z, = [(r-  l)/r)z. The present 
results lead to 

Next, we show how the time constants depend on z, and z,. 

a result which depends symmetrically on z, and z,, not on one or the other only as 
does B & B’s corresponding expression. The latter involves only z, explicitly and, 
as written, appears to remain unchanged for z, = 0. The dependence on z of z, and z, 
is of interest since only when z, # z, does the present result differ significantly from that 
of previous work when M$l. There is likely to be some dependence on valence 
in the p, and ,up of eqn (14). Simple theories of mobility yield for a univalent charge 
carrier pi = ezci/mi, where mi is the mass of the particle and zcf is the mean time 
between collisions. Provided Tcf is independent of the magnitude of the particle 
charge, frequently a reasonable approximation, the corresponding expression for a 
charge carrier of arbitrary valence number, q, is pi E ziezci/mi = aizi. If we define 
il = z,/zp and introduce this expression for p i  in eqn (14), then, e.g. 

where A .  = (d2 cotanh 2M)/16nkTpo. There is thus a substantial dependence of z 
on the valence numbers and their ratios. There is also further dependence on these 
quantities through the appearance of M in eqn (14) and in A,. Since cotanh A4 will 
be essentially unity for most electrolyte cases of practical interest, this dependence is 
usually unimportant. 

Baker and Buckle 24 have explicitly neglected the geometrical capacitance Cg and 
have presented expressions for Gp and Cp which involve COB in place of (C, - Cg) and z 
in place of z,. Their results, when symmetrized, are adequate when I$=&,, since then 
Co B Ce and z,&>zD. 

The Debye frequency range over which G, and C, may be well approximated by 
the frequency-independent quantities G ,  and (C, - Cg) is of importance. In the 
general case of arbitrary mobilities and arbitrary valence, it has not been precisely 
defined. B & B’s restriction co% is inapplicable, and we may write as before 
O<oz<B. Now B & B set the upper limit condition o<coo E 4nep,po/&. This 
result cannot be correct in general since it does not depend on p,, no, zp, and z,, 
Clearly, space charge effects of the present type could still occur when pp<pn or when 
pp+O, provided p, remained non-zero. In such cases, u), would become very small 
or approach zero and there would be little or no Debye dispersion region at all 
according to the B & B criterion. Since the criterion is insufficiently general, let us 
symmetrize it and write coo+coo, = 4ne(pnz,n,+p,,z,pO)/~ = G,/C,. Thus the 
condition o<oos becomes o<G,/Cg = zD1, or mz,< 1, a reasonable result, Now 
since T/Z, = Co/C, = r, the new condition may be written O,(oz<r;  thus, B = r. 
When L-0, r+ 1 and T+z,. Although as stringent a condition as oz < r, or equival- 
ently, oz,< 1, was not explicitly given in the earlier the normalized frequency 
y = wzD was itself considered, and 1 is an approximate minimum upper bound 
in the situation there treated. 
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D E V I A T I O N S  FROM SIMPLE D E B Y E  D I S P E R S I O N  BEHAVIOUR 

Although the inequality y <  1 is a sufficient condition for C, to remain essentially 
frequency independent in this frequency range, one may ask whether the Debye 
dispersion range is so limited, The earlier 1 : 1 valence results suggest that the above 
inequality is too ~tringent.~ For the 1 : 1 case, by starting with the exact, but com- 
plex, expressions for C,(cu) and Gp(w), these results may be written, for pn = p p  
and full dissociation, as 

C,/(CO - Cg) = [Re") - 11/(r - 11,  (16) 

G,/G, = -yIm(N), (17) 

z [Mhy + Mg - l]/[M- 1][M2my2 - 2Mhy + 11, 

E {M[Mm -sly2 - Mhy)/[MZmy2 - 2Mhy+ 11, 
where 

y = c0zD, and M E Z/2LD with LD as given in eqn (7) for z, = Zn = 1. Thus, here 
M = Z[2ze2no/~kT]*. Further, G, = 2epnn,/Zin the present situation wherePo = no. 
The approximate relations given above, following the separation of N into real and 
imaginary parts, only hold well for tanh M s 1 ,  say, M z  3,  so that Y z M. In these 
relations, m E (1 +y2)*, g = [(m + 1)/2]* and h = [(m - 1)/2]3. Although separation 
can be readily carried out for M <  3, the general results obtained are complicated ; 
much simpler replacements for them will be given later. Eqn (16) and (17) lead, for 
M 2 3 ,  to Cp/(Co-Cg)--+l and Gp/G,+M(M-1.5)y2--+0 for y+O, and to Cp/(Co- 
Cg)+[ ,/%4'(M- l)y*]-'+O and Gp/Gm+l for y+m. 

The above expressions for Cp/Cg and Cp/C, also apply, with a slight reinterpreta- 
tion, when pp = 0, pn # 0 (or p, = 0, pp # 0) as well. It is only necessary to replace 
the M in eqn (18) by M/ J2, and note that G, = epnno/Z (or epppo/Z) in this case. 
Thus, e.g., results obtained for A4 = 10 for p p  = p,, are equally applicable for ,up = 0, 
pn # 0 with A4 = 10J2. 

To assess the applicability of the Debye-dispersion condition y < 1 and examine the 
adequacy of the single-time-constant Debye relaxation approximation, we can convert 
the exact Cp/(Co - Cg) and G,/Gm expressions of eqn (1 6) and (1 7) to their correspond- 
ing series representations and examine the departures of the resulting Cs/(Co - Cg) and 
G,/Gao from unity for various M and y values. The exact relations applicable when 
C, and Gp are frequency dependent are C, = [ 1 + (mCp/G,)-2]Cp and G, = [ 1 + (oC,/ 
G,)2]Gp. I have used these relations and eqn (18) to obtain accurate values for 
C,/(C, - Cg), Cs/(Co - Ce), G,/Gm and GJG, for comparison with the explicit relations 
given herein and to assess the adequacy for these quantities of the Debye approxima- 
tions which involve only wz, =, (Y- 1)y. Again, for M 2 3 ,  one obtains 

C,/(Co-Cg) [M2m-2Mg+ l]/[M-l][Mhy+Mg- 11, (19) 
G,/Gm E [M(Mm--2g)y+y]/[M(Mm -g)y-Mh]. (20) 

Go/G, = [Y- 1l2/[(3y/2)(r- 1)-(M2/2)]. 

For y+O, C,/(Co-Cg)-+l and G,/G,-,G,/G,, where Go<G,. 
this ratio is given by 

It goes to 5/6 as M+O, reaches 0.953 by M = 10, and rapidly approaches unity as M 
further  increase^.^ In the opposite extreme of y (for M&33), as y+oo, Gs/G,-+l 

For arbitrary M 

(21) 

- 
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and Cs/(Co- Cg)+ J ~ M / ( M -  1) Jy. Thus, for usual M values, G, E G, over the 
entire range of y .  

Some of the results of the accurate calculations are shown in fig. 1. The curves of 
the figure show that the condition y Q  1 for C, to remain constant is considerably too 
~tringent.~ In fact, for Ma10, Cs is constant within 1 % to about y 21 0.3 and to 
within 10 % up to y 21 1. For M <  10, the range of frequency independence is even 
greater. 

The computer results show that for 0 <y 5 0.3 the following simple approximations 
are highly accurate for any M : 

GJGa = (GO/GaJY 
where the quality factor 2 is 

Z COCJG, Z (Go/Gm)/(r-l)y. (26) 
These results differ from those discussed in the last section only by the presence of 
(Go/Gm). The appropriate time constant is thus (Ga/Go)(r- 1 ) ~ ~ .  The equivalent 
circuit applicable in the range OGyG0.3 is Cg in parallel with the series combination 
of (Co-Cg) and Go. Go to G, z G, occurs almost 
entirely in the range y>0.3. 

The present results show that for the 1 : 1 valence case the y Q  1 condition, which 
should apply for any valence number ratio, is considerably too stringent. Although 
detailed calculations would be required to show the precise frequency limits for 
applicability of the Debye dispersion approximation in the situation of unequal 
valence numbers, the present results make it highly probable that even in this case the 
y Q 1 condition will still be unnecessarily restrictive. 

The transition from G, 

1.0 

0.8 

0.6 

I 

0.1 I 1 I I I I l l 1  I I I I I Id I I I I I l l  
0- I I 10 I00 

Y 
FIG. 1.-Dependence for 2, = zp = 1 and pn = pp of normalized series space charge capacitance on 

normalized frequency, y = om, for several values of M E 1/2LD. 

Eqn (22) and (26) show that C, begins to decrease when y N (Go/Gm)/[1O(r-- l)] 
Beyond this range, it eventually 

But since Cp must 
and then shows simple Debye dispersion until y 5 0.3. 
decreases as u-3. At y = 1, Cp/Cg-(r- 1)-l -M-l  for M %  1. 
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be determined from the difference C, = CPT-Cg, where CpT is the experimentally 
measured total parallel capacitance, one will then obtain Cp as the small difference 
between two much larger numbers. If Cp can only be accurately determined, e.g., 
when C,>,O.Ol Cg, then the decrease in Cp cannot be followed much past y = 1 if 
M = 100. The m-3 limiting behaviour would scarcely be apparent under such 
conditions. For N = 1, however, where some space charge effects still exist, C,,/Cg 
does not reach 0.01 until y = 17. Fig. 1 shows that C,/(C,-C,) has begun to ap- 
proximate w-4 behaviour by y = 17 ; thus, C,, shows (0-3 dependence in this range. 
Nevertheless, very accurate measurements of CpT will be needed to make it possible to 
observe crl-3 behaviour for Cp, or m-3 behaviour for C,. Exact l4 or approxi- 
mate 11* 2 2 ,  28 w-3 behaviour has sometimes been observed in solids with blocking 
or partly blocking electrodes. Nevertheless, the above considerations indicate that 
present theory probably cannot explain the observed results. 

In what frequency range should we expect the above effects to occur for electro- 
lytes ? If we measure 6, in mho/cm, then for an aqueous electrolyte near 25"C, 
zD ZI 7 x 10-12/a, S. For 
y = 1, the corresponding frequency, fm 5 (2mD)-', will be -2.3 x lo8 Hz, a very 
high value. Although other effects would probably obscure at such a high frequency 
the effect we here consider and prevent the w-2 dependence from being observable, the 
situation is different for the Debye range. For the present concentration, LD- 
cm. If I = 0.2 cm, then r E M -  lo6. Thus the beginning of the Debye decrease at 
y-[lO(r- 1)I-l would correspond to a frequency fo of about 23 Hz. Much of the 
Debye region would therefore occur in a readily measurable range. 

For low concentrations, say M KCl, om N mho/cm, and z,-7 x s. 
The corresponding fm is only 2.3 x lo4 Hz, still within a readily measurable range ; here 
I,,, N cm, and for I = 0.2 cm, r E M -  lo4. Here the frequency fo is only about 
0.23 Hz. The low conductivity present at a M concentration would make accur- 
ate measurements difficult, however. 

The literature on double-layer relaxation in electrolytes is relatively sparse ; it has 
recently been reviewed by Delahay 29 and de Le~ie.~O For solid electrodes, appre- 
ciable dispersion often appears, perhaps arising from roughness and porosity of the 
electrode. Typical results are those of Jaffi and Rider 31 which show considerable 
variability and lack of reproducibility. Surface roughness and porosity are minimized 
or absent for the dropping mercury electrode, and most workers usually see no 
dispersion up to relatively high frequencies, 105-106 Hz or higher. 

Why is not Debyedispersionusually apparent in aqueous electrolytes, e.g., 0.1 M KCl 
with liquid mercury electrodes ? The foregoing discussion indicates that the beginning 
of dispersion might be expected for f 2 2 3  Hz with I = 0.2 cm. A larger 2, as is 
frequently used experimentally, would decrease the Debye dispersion frequency range 
by increasing M ,  and one might thus expect to see strong dispersion at the usual 
measurement frequency of lo3 Hz. As suggested by D e l a h a ~ , ~ ~  the compact, or 
inner, part of the double layer is probably complicating the situation. The relatively 
potential-independent inner layer capacitance may be considered to be approximately 
in series with the parallel combination of C, and G, and this combination itself in 
parallel with Cg. Except very near the point of zero surface charge and at very low 
ionic concentrations, we expect the inner layer capacitance to dominate the combina- 
tion in most practical situations. Evidently, for most experimental measurements 
thus far, any dispersion of C, and Gp has negligible effect on the impedance of the 
overall combination. 

On the other hand, appreciable dispersion does appear in fused salts using solid 
e l e c t r o d e ~ . ~ ~  Since the inner region of the double layer may be absent or less dom- 

For 0.1 M KCl, ao3 - lo-' mho/cm, and zD-7 x lo-'' s. 
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inant in such situations than in aqueous electrolytes, the present diffuse layer effects 
should be readily apparent if they can be adequately separated from porosity and 
roughness dispersion. However, it is usually difficult to obtain completely blocking 
electrodes for fused salts. In addition, the presence of ion pairing in fused salts 
indicates that dissociation is incomplete, forcing one to use the more general incomplete 
dissociation theory for most situations of interest. Finally, lattice-like and layering 

which may be present in fused salts, would reduce the applicability of the 
present results to such materials. 

Finally, we discuss the relation of the present frequency response theory to those of 
Ferry 2 5  and Friauf.22 Both are concerned only with the diffuse part of the double 
layer, as is the present treatment. In addition, both involve only the 1 : 1 valence 
situation. Ferry analyzes the relaxation of the ionic atmosphere at a plane surface. 
Although not explicitly stated, his boundary condition at this surface must be one of 
complete blocking of both types of charge carriers. Further, his treatment is an en- 
tirely linear one, restricting potentials which disturb equilibrium conditions to 
appreciably less than I kT/e 1. Thus, his analysis, like the present one, can only apply 
in the immediate neighbourhood of the point of zero electrode charge. Finally, the 
method of analysis is applicable only for ions of equal mobility. Ferry’s result for Cp 
may be written in the form 

- CP= -i+[ 1 ( l+y2)++l  1. * 
co 1+y 2(1+y2) 

This result follows since Ferry’s 8 and the present y are the same quantity. Although 
Ferry gave no expression for Gp, this quantity may be readily derived from his work. 
We find 

3 = M [ L + y {  (1+y2)*-1 } ] 
G W  l + y 2  2(1-t-y2) 

The Co which appears in eqn (27) is .5/4nL, =- 2MCg, i.e., twice that found in the 
present treatment for b L , .  The reason is that Ferry considers only a single electrode, 
The Co of the present two-electrode treatment is made up (for M 9  1) of capacitances/ 
unit area of &/4nLD at each electrode. The series combination of the two is Co = 
MC,. Also, Gp does not depend on I ,  since no such quantity is introduced in Ferry’s 
treatment. We have expressed eqn (28) in terms of the usual G ,  for easy comparison 
with the earlier results, but MG, only involves LD, not I. Finally, since G,, is evi- 
dently proportional to d y  for sufficiently large y ,  no true finite G ,  (lim y-+m of GP) 
is obtainable from Ferry’s analysis and comparison with the present results is most 
appropriate at the parallel equivalent circuit level. 

Ferry’s work leads to quite different GJGW behaviour for y 9  1 than does the pres- 
ent analysis. Appreciable differences also appear in the capacitance comparison. 
For A49 1, so that Cs may be neglected compared to Coy the present treatment leads 
for ~ $ 1  to Cp/Co-)( ,/2M2)-’y-* dependence while eqn (27) leads to Cp/Co-+( J2)-‘ 
y-* dependence. The situation is little different for y <  1. Although Baker and 
Buckle 24 have stated that Ferry’s expression for Cp/Co resembles theirs at low fre- 
quencies, this conclusion is based on a superficial comparison. For large M,  and 
y s  1, the present work leads to Cp/Co [l + (My)’]-l, very different from the depend- 
ence of eqn (27). The most important difference is that Ferry’s time constant is 
essentially zD, while the pertinent one in the present two-electrode situation is Mz, g Z, 
usually a much larger quantity than zD. Thus, Ferry found that his dispersion oc- 
curred at a much higher frequency than he expected on the basis of experimental 
results. 
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The difference between the two treatments arises primarily because the two- 
electrode treatment involves a finite distance 1 between electrodes and also involves 
overall electroneutrality ; in contradistinction, Ferry’s model does not require electro- 
neutrality and draws in ions from “ infinity ” when the electrode potential is changed. 
Now the present one-dimensional treatment of the two-electrode model only well 
approximates the experimental situation when the latter involves electrodes whose 
smallest linear dimension is much greater than 1. In Ferry’s 
case, conductance as well as capacitance is involved, and we should thus not restrict 
attention to a region within a few Debye lengths of the planar electrode. The con- 
ductance for a region of infinite length must be zero. It therefore appears that 
Ferry’s non-zero result is incorrect. The apparent absence of conductance associated 
with the bulk of the solution is the reason why Ferry’s effective time constant is 
essentially zD, not Mq, as it should be for y 5  1 and finite length. Even though the 
bulk conductance would be zero for I = co, its series combination with any conduct- 
ance localized near the blocking electrode would yield zero conductance for the 
combination. An a.c. treatment of two electrodes, one neutral (ohmic), and one 
blocking, separated a finite distance I (small compared to electrode size), could be 
carried out along the lines of the analysis of ref. (4). Although Delahay 29 has stated 
that Ferry’s treatment is satisfactory, this does not seem to be so for most situations of 
practical interest. * 

Friauf considers a one-dimensional, 1 : 1 valence, two-electrode situation equiva- 
lent to that treated by the present author when the electrodes are completely blocking. 
In addition, however, Friauf has given a result for two electrodes both blocking for 
ions of one sign and both non-blocking for those of the opposite sign. This is a case 
of particular interest and yields, according to Friauf, C,ccu-* and GpccG, - O(o-4). 
These dependencies were obtained after some approximations which, however, do 
not seem to restrict the analysis to high relative frequencies. The above results are 
similar, nevertheless to a first approximation, to those for y S 1 of eqn (1 6) and (17) for 
the two-completely-blocking electrodes situation. In fact, Friauf’s result for CD for 
p,, = pp, may be written as CJCo = ( J2M2)-ly-%, i.e., identical to the limiting form 
of eqn (17) when M %  1.  There is thus no difference from the completely blocking 
result for y% 1 and 1. Here Co is taken as MC, for easy comparison, although 

* Note added in proof: Buck (J. Electroanal. Chern., 1969,23,219) has recently provided, for two 
blocking electrodes (plane or spherical), a corrected version of Ferry’s analysis. Besides yielding 
system transient response, the paper includes frequency response results which may be compared to 
those herein. Although Buck suggests that the impedance associated with the present problem has 
not been obtained previous to his work, its inverse, the admittance, has been given in closed form 
for the plane-electrodes situation. Further, Buck‘s impedance equations apply only for complete 
dissociation, equal mobilities, and, for plane electrodes, for A49 1. The last condition was not stated 
explicitly. These restrictions were not made in the earlier analy~is.~ Buck states that his “ treatment 
includes higher harmonics within the limits of linear theory”, as contrasted with earlier work involving 
only the fundamental frequency. In fact, his treatment is, as usual, implicitly limited to applied 
potentials small in magnitude compared to kT/e and involves only the fundamental frequency. 
Although Buck treats the zp = z, = z case, he follows Baker and BucMe in quoting the Nernst- 
Einstein relation appropriate for z = 1. Finally, Buck has defined parallel and series resistances and 
capacitances by setting the impedances of such combinations equal to his overall system impedance. 
This procedure mixes the effect of the essentially frequency-independent C, with the frequency- 
dependent space-charge elements. It apparently leads Buck to obtain an equivalent series resistance 
which decreases strongly with frequency for y z  1, unlike the series resistance following from the 
present work which remains, for Buck‘s M% 1 case, frequency independent over the entire range of y. 
Further, Buck’s equivalent series capacitance is only frequency independent up to y;S[lOM]-l 
compared to the present series capacitance which is essentially frequency independent to ~ 5 0 . 3  or 
more. Besides thus dealing with series elements frequency independent over a much narrower range 
than found herein, Buck combines the zero-frequency values of these elements into an equivalent 
circuit differing from, and much less appropriate than, that discussed herein and earlier.4 

Here 1 is taken infinite. 



J. ROSS M A C D O N A L D  957 

the actual Co is different in the present case. These results suggest that the presence 
of co-3 frequency response for CD should not be used to allow one to conclude that the 
electrodes involved are not completely blocking. 

One would not expect m-3 behaviour for Cp to persist down to the zero frequency 
limit. Although Friauf does not give an equation for Cp for the transition region down 
to this limit, he does present a low-frequency limiting value for Cp of CgM2/12. For 
M% 1, this result is M/12 times larger than the present two-blocking-electrodes Co 
value of MC,. For comparison with experiment, it would be valuable if Friauf’s 
results for his partly blocking case were simplified, without limiting approximations, 
in such a way that the entire range of C,/(C, - Cg) were given from ~r)z = 0 up to 
such an CUT that C,/(Co-Cg) became much smaller than unity. Debye dispersion 
will probably occur, as in the completely blocking case, at relative frequencies suffi- 
ciently below those where y-4 behaviour appears. 

Friauf’s treatment allows arbitrary values for pn and p,,. The 1 : 1 valence case 
with p, = 0, pn # 0 has been extended by Beaumont and Jacobs,1° who dealt with a 
solid material and assumed partial blocking, or discharge, of the mobile charges at 
both electrodes. They found simple Debye dispersion for C,, and G, at low normal- 
ized frequencies, with discharge merely changing the effective time constant, equal to 
the present z in the completely blocking case. 

Although these analyses are likely to be applicable to solids in many instances, the 
discharge boundary conditions assumed by Friauf and by Beaumont and Jacobs are 
not usually appropriate for the liquid electrolyte situation. Grahame has given a 
treatment of the faradaic admittance in electrolytes which deals with electrochemical 
reactions at the electrodes and involves w-3 dependence of both Cs and Gs (the 
Warburg impedance). Although Grahame assumed that faradaic and displacement 
current contributions to the total current through a partly blocking electrode were 
independent and that the two processes could thus be treated separately, with the 
results combined at the end of the calculation, Delahay 33 has shown that this assump- 
tion is invalid in general. He and his co-workers 33-37 have calculated the (small- 
amplitude) impedance of a single electrode in an electrolyte without ab initio separation 
of faradaic and double-layer charging processes. In addition, de Levie and Popisil 38 
have summarized the results for electrode admittance in the presence of specific 
adsorption. 

The present work has benefited greatly from many discussions with C. A. Barlow, 
Jr. 
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