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e/4nl; geometric capacitance/unit area (#F cm- 2) 
Total low-frequency limiting capacitance/unit area (#F cm-2) 
Diffusion coefficient when Dp = O. = D (cm 2 s- 1) 
Diffusion coefficient for negative charge carriers (cm 2 s-1) 
Diffusion coefficient for positive charge carriers (cm 2 s-1) 
The faraday (C mol-1) 
[~kT/4ne 2 (z~ no + ZZp po)] -~ ; binary electrolyte Debye length (cm) 
I/2LD ; number of Debye lengths in a half cell length 
Gas constant (V C K-  1 tool- 1) 
M -  * R o~ (f~ cm 2) 
//e (z n n o #n qt_ Zppo #p) ; bulk resistance-unit area (¢) cm 2) 
Absolute temperature (K) 
(i)- + tanh (Ms); normalized impedance 
(f2) + ZIM/4; normalized impedance 
"Interface" impedance-unit area (f~ cm 2) 
Total system impedance-unit area (f~ cm 2) 
Equilibrium homogeneous bulk concentration of positive and negative 
charge carriers when zp = Zn (cm-3) 
Protonic charge (C) 
( -1 )  ¢ 
Boltzmann's constant (V C K-1) 
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Diffusion length ; for Zp = z.-= 1 and Dp = D n -  D equal to (D/@ ½ (cm) 
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Equilibrium homogeneous bulk concentration of positive charge carriers 
(cm -a) 
(ia) + 
Valence number for negative charge carriers (z. > 0) 
Valence number for positive charge carriers (zp > 0) 
l/2ld; number of diffusion lengths in a half cell length; for Zp=Zn = - 1 and 
Dp = D. -= D equal to Mlsl = [MZf2] + = (1/2)(¢o/D) + 
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covo; basic normalized frequency variable 
Dielectric constant of solvent plus solute 
Mobility when/~v = #n =/a (cm 2 V- 1 s - 1) 
Mobility of the negative charge carrier (cm 2 V- 1 s- 1) 
Mobility of the positive charge carrier (cm 2 V-1 s- 1) 
CgR~ ; dielectric relaxation time (s) 
Phase angle of an impedance 
Phase angle of Zo 
Phase angle of ZF 
Radial frequency (s- 1) 

Subscript M Designates normalization with Ro 
Subscript N Designates normalization with Ro~ 
Subscript 0 Designation of C0,0) binary electrolyte case 
Subscript 1 Designation of (0,~) binary electrolyte case 
Subscript 2 Designation of Sluyters' supported electrolyte case 

INTRODUCTION 

Some time ago, Sluyters 1 treated the subject of the title theoretically and experi- 
mentally. In his analysis he implicitly assumed the presence of an excess of unstirred 
indifferent electrolyte and thus separately solved Fick's second law of diffusion for 
each component of a redox couple, present in low concentration. This approach, 
while adequate for the experimental situation he investigated, does not result in the 
exact satisfaction of Poisson's equation in the cell, and ignores electromigration 2, the 
geometrical capacitance of the cell, Cg, and the high-frequency-limiting bulk resistance, 
Roo (arising from the redox components). Soon after Sluyters' work, Drossbach and 
Schulz 3 independently treated much the same problem with the same approximations. 

Sluyters was particularly concerned with the dependence of the total (small- 
signal) cell impedance, ZT, arising from the redox process, upon electrode separation 
distance, l (denoted a by Sluyters), of his parallel electrodes. He thus considered only 
fixed-frequency conditions. For sufficiently close spacing, the magnitude of the impe- 
dance and the magnitude of its phase angle, 0, both increased linearly with increasing 
spacing, as might be-expected. This extensive behavior disappeared as l further 
increased, with both I ZTI and 101 reaching maximum values, then decreasing slightly 
to final, constant, intensive Cindependent of/) values in the Warburg impedance region. 
Here, of course, the limiting phase angle was the usual Warburg q~ = - 4 5  °. 

Since Warburg behavior has recently been identified in two-electrode situa- 
tions where no supporting electrolyte is present even for ideally polarized electrodes ~, 
it seems of interest to compare total impedance results for this case with those of 
Sluyters and Drossbach. Two situations have been investigated for equal bulk-region 
equilibrium concentrations of univalent positive and negative ions having equal dif- 
fusion coefficients 4 (these restrictions are partly removed later in the paper). In the 
first situation, designated by (0, 0), both electrodes were taken as ideally polarizable in 
the region of operation. In the second, the C 0, oo) case, positive charges were assumed, 
as before, to remain completely blocked at both electrodes while negative charges 
were taken as free to pass into and out of both electrodes without impediment 
(infinitely fast, first-order electrode reaction). 
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These two treatments involved solving the full transport equations and Pois- 
son's equations exactly, and thus did not neglect electromigration, geometrical 
capacitance, and cell resistance. Further, for simplicity the charge distributions were 
taken uniform in the absence of the small applied sinusoidal potential, and inner- 
layer complications were ignored. The results thus apply most closely at the equili- 
brium potential when it is coincident with the potential of zero charge ; approximate 
applicability when these restrictions are relaxed has also been discussed 4. No applied 
static potential was thus included in the theoretical analysis--the situation also in- 
vestigated theoretically and experimentally by Sluyters 1. 

On the other hand, Levart and Schuhmann 5 have recently treated nearly the 
(0,~) case (for a single electrode) in an approximate manner which allows considera- 
tion of appreciable overpotentials. Their system includes only electroactive ions of 
one species and associated counter-ions. Unfortunately, among their approximations 
is the neglect of mutual interaction of the ions (neglect of Poisson's equation), an 
important factor when no supporting electrolyte is present. Levart and Schuhmann 
point out that there has been a renaissance of interest in investigations of electrolysis 
in the absence of a supporting electrolyte, and they give many relevant references. An 
example of a situation where the present (0,~) boundary condition might be quite 
applicable in an electrolytic situation with no supporting electrolyte is electrorefining, 
as in the cell Cu I Cu(NO3)z(aq)l Cu, where the anionic species is blocked. 

Finally, it is worth mentioning that a theoretical treatment of the impedance 
in the absence of a supporting electrolyte (for a two-electrode, blocking situation), 
calculated from appropriate transport equations and involving exact satisfaction of 
Poisson's equation, dates back to 1953 at least 6. This treatment, like almost all that 
have followed it, does, however, make the approximation of ignoring any change of 
transport properties, such as diffusion coefficients, with position and concentrations 
in the electrolyte. 

ANALYSIS RESULTS 

The total impedance results for the various cases can be expressed and compar- 
ed most economically and generally in normalized form. First, define the normalized 
frequency f2 -  ~o'cD, where co is the radial frequency of the applied sinusoidal signal, 
and rD, the dielectric relaxation time, is CgRoo. We shall express all impedances and 
their components for unit electrode area. In the present uni-univalent, equal-diffusion- 
coefficient case (D, = Dp = D), then R~ = l/(2el~co), where Co is the common equilibrium 
bulk concentration of positive and negative ions (redox components), and # =  
(e/kT)D~ (F/RT)D. Here e is the protonic charge. 

Next define the important ratio M = (I/2)/Lo, the number of Debye lengths 
contained in a half cell length. In the present case, Lo = (ekT/8rce2Co) ½, where e is the 
dielectric constant of the bulk material (solvent plus solute, but usually dominated by 
solvent). Note that the geometrical capacitance per unit area is just ~/4~1, where the 
unit-area designation will be ignored from now on for simplicity. Another most im- 
portant ratio is A =_ (l/2)/la, the number of diffusion lengths contained in (•/2). Since ld 
is defined 4 as (D/co) ~, it follows that A=_(I/2)(~o/D)~=_[M2f2] ½, a frequency and 
separation-length dependent quantity. 

We shall begin by normalizing all impedances with R® [2R~ was used for the 
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(0,oe) case in earlier work4]. Let the subscript "N" indicate such normalization. Also 
let s 2 -  if2 and p2= 1 + s 2, and note that Ms = i½A = (A/2~)(1 + i). Then, for the com- 
pletely-blocking C 0, 0) case, earlier results 4'6"7 lead to 

ZTN =-- ZT/Ro~ = ZTNO = [tanh (Mp) + Mps2]/(Mp 3 s 2) 

= [Ms2p 3 coth(Mp)] - l+  [p2]-,  (1) 

The corresponding result for the (0, ~ )  case, following from previous work 4, may be 
put in the similar instructive form 

ZTN = ZTN 1 ~ {Usp3[.p coth (Ms)+ s coth (Mp)]}-x+ [p2] -1  (2) 

Finally, it turns out that Sluyters' impedance can be expressed in a considerably 
simpler form than he gave. For the present equal-diffusion-coefficient, uni-univalent 
case with equal bulk concentrations of redox couple components, we find 

ZTN = ZTN2 ~ [4 tanh (Ms)]~(Ms) (3) 

Drossback and S c h u l z  3 obtained almost the same result Cwhen normalization is 
carried out) but with the factor of four replaced by unity. They considered, however, 
only a region from x = 0 to x = I/2 Ctermed d by these authors) and only a single active 
ionic component. A tanh term of somewhat similar complex argument (but involving a 
Nernst diffusion layer instead of electrode separation) appears in the results of Levart 
and Schuhmann 5. 

COMPARISON OF FREQUENCY-DEPENDENCE RESULTS 

(0, 0) and (0, oo) Impedances 
Elsewhere 4, the normalized impedances ZTNO and ZTm (or their equivalents) 

have been analyzed into individual circuit elements having minimum frequency 
response, and the equivalent circuits applying in various normalized frequency regions 
have been examined in detail. Here these circuits may be subsumed as in Fig. 1. The 

Cg 
cg 

2Roo 
o 

o o 

(a) (b) 
Fig. 1. Equivalent circuits for : (a) (0, 0) blocking case, (b) (0, oo) discharge case; no indifferent electrolyte 
present in either case. 

two different (0, 0) and (0, oo) Zi impedances 4 generally consist, in their simplest form, 
of a frequency-dependent capacitance and a frequency-dependent resistance in series. 
I Zil approaches infinity as f2 ---* 0 and zero as f2 ~ oe. In intermediate ranges for the 
C0, oo) case, zi involves both usual and unusual Warburg response 4. 
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Fig. 2. Complex impedance plane representation of tile (0, 0) and (0, oo) total normalized impedances for 
M = 10 a, with the parametric frequency variables ~ and A. 

In Fig. 2, the (0, 0) and (0, ~ )  quantities ZTNO and ZxNt are plotted in the 
complex impedance plane [with - lm(ZTN) taken in the conventional way for the posi- 
tive ordinate scale] with the parametric variables A and f2. The t2 values are shown 
outside, and the A values inside, the bonding lines. The results of Fig. 2 have been 
calculated for M =  103, and the rest of the discussion will apply primarily to the 
M > 100 situation, for which there is no separate dependence of Zr~l and ZTN2 on M, 
only dependence on the A - ]Ms] =- M f2 + and f2 variables. For most electrolytic cells 
and solute concentrations of interest, M > 100. 

Figure 2 shows that the p-  2 term in (1) and (2) leads to simple Debye dispersion 
involving the normalized frequency variable f2, for both the (0, 0) and (0, oo) cases 
in the region 0.1 < f2 < ~ .  For the large-M case considered here, the results in this 
region are completely independent of M and arise solely from the parallel combination 
of Cg and Ro~. In the more usual case of a supporting electrolyte of high concentration, 
the cell resistance is so low that the frequency corresponding to t'2-,~ 1 (i.e. o9,,, % -  1) 
is far above the practical measurement region, and this p-2 dispersion is never seen. 
In the present case of no indifferent electrolyte, however, R~o may be so large that t2,-~ 1 
occurs in a readily measurable frequency region. When f2 = 1, the diffusion and Debye 
lengths are equal and also the magnitude of the capacitative reactance of Cg is equal 
to R®. 

Note that as O decreases much below 0.1, the total normalized impedance in the 
ideal polarized electrodes case, ZTNO, approaches 1 + ( iMO)- 1. It thus depends on the 
variable M Q - A  O+ in this range, rather than on A or t2 separately. For Q < 1, we 
earlier found 4'6' 7 that, to good approximation, ZiN ~ [ (2M)- 1 + {iQ(C ° -  C g ) / C g }  - 1], 

with (Co - Cg)/Cg = {m coth (M)-  1}. For large M, Zi thus approaches just the inten- 
sive low-frequency limiting capacitance MCg =- e/8rcL o for 0 < f2 < 1. Note that the 
usual diffuse-double-layer capacitance associated with a single blocking electrode is 
just e/4rcL D. Here Co is, of course, the full low-frequency limiting capacitance of the 
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complete two-electrode system. The circuit of Fig. la, with Zi replaced by the series 
double-layer capacitance MCg, is thus useable over a wide frequency range. Buck 8 
has given a similar but less general and less applicable equivalent circuit for this 
same blocking-electrodes situation. 

For the (0, do) case when t2 ~ 1, ZTNt depends essentially only on A, being 
approximately 1 + (Ms)- ~ tanh (ms) for m > 100. For A > 3, ZTN x -- 1 ~ (Ms)- ~ = 
(i ~ A)- ~ = (iM2(/)-½, approximating Davidson-Cole dispersion 9 (with the Davidson- 
Cole parameter fl = 0.5), which is of the form [1 + iM 2 t?] - ~ for the frequency variable 
M2t? = A 2. By plotting ZTN2/4 = (Ms)- ~ tanh (ms) in the complex plane, Drossbach 
and Schulz found that the imaginary part of this impedance reaches a negative 
maximum at A ~ 1.59, in close agreement with the present results for ZTN~. 

Independently, in a study of high resistance systems Buck ~° found the maxi- 
mum to be at coz = 5.069, in agreement with A ~- 1.59 when Buck's incorrect r is cor- 
rected to 12/2D. Note that A2=_M20=to(12/4D). Buck assumed electroneutrality 
everywhere in his glass-electrode surface films, even though he treated a binary 
electrolyte situation. Thus, his results correspond more to the Sluyters' situation x'a 
than they do to the present analysis where no indifferent electrolyte is present. 

(0, do) and Sluyters' results 
As Fig. 2 indicates, in the frequency region determined by the conditions 

A > 10 and t2 < 0.1, the (0, do) total impedance, ZT1, is essentially R~. This region 
may extend over a wide range of O, allowing a good high-frequency-extrapolation 
determination of Rod. For example, if M =  10 s, then Za-~ ~Roo for 1 0 - 6 ~  Q ~  0.1. 

The Sluyters' case leads to quite a different behavior in the above frequency 
range. Za-2 depends only on A and, for large A, goes as 4RJi½A. There is thus no 
limiting high frequency Rod (since the equations solved involve no conduction terms), 
and ZT2---~0 as f2 and A increase. Of course, Zvl---*0 also as O---*oe, but for a quite 
different reason : the dispersion produced by Cg and R~ in parallel. 

Since there is no Cg included in the Sluyters' treatment, the comparison of its 
results with those of the (0, do) analysis can be expected to yield comparable results 
only in the t2 ~ 1 region, where the only significant frequency variable is A. The 
contribution of Cg to Za-1 is then negligible and the equivalent circuit of Fig. lb 
becomes that at the left of Fig. 3a. Under these conditions, p2 ~ 1, and the resulting 
ZTN 1 ~--- [1 + (ZiN/2)]/[1 + (ZiN/4)] ~ 1 + (Ms) -1 tanh (Ms). Further, the complicated 
expression for Zi given in ref. 4 simplifies in this case to 

ZiN ~ Zi/R~ ~- 4~{(Ms) coth (Ms)-  1} (4) 

It may be readily established that the two equivalent circuits of Fig. 3a have 
exactly the same ZTN~ when Zi is the same quantity in both. There are thus two distinct 
ways that Zi may be obtained from measurements of Z~a. The conventional method 
in electrolyte work is first to subtract the Rod found from high frequency extrapolation. 
The right-hand side of Fig. 3a shows, however, that in the present case of no supporting 
electrolyte, one must then peel off the Rod in parallel with Zi/4 to finally obtain the 
latter. Alternatively 4, one must remove a parallel 2R® from ZTX, then a series 2R~o 
from the result to get Zi. 

When the diffusion coefficients and valences of the positive and negative charge 
carriers are unequal, the structure of the circuits of Fig. 3a remains unchanged but the 
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Fig. 3. Equivalent circuits for: (a) (0, ~)  discharge situation when f2,~ 1, (b) situation of a redox couple in a 
high concn, indifferent electrolyte. 

element values are altered. Let l/p and l/n and Zp and zn (Zp, z n > 0) be the mobilities 
and valence numbers of positive and negative carriers, respectively. Then, in the 
general case of arbitrary l/p, p., zp, and zn, first Zi itself is no longer given by (4) even for 
f2 ~ 1. The parallel 2Ro~ and the series 2R~o of the left-hand circuit of Fig. 3a become, 
for the present (0, oo) case, 1/z.enol/. a n d  l/zpepol/p, respectively. Here Po and no are the 
equilibrium bulk concentrations of the positive and negative charge carriers. Further, 
in the present situation of electroneutrality at equilibrium 7, Zppo=z.no. When 
Zp = zn, Po = n o -  Co. For the equivalent right-hand circuit, the series R® remains but 
is given by the general form I/e (Z n n o l/n -[- Zp PO t/p) • The parallel R~ becomes (l/p/l/,,)R~, 
and Zi/4 changes to El/p/(l/n~-l/p)]2Zi, where Zi is the same Zi which occurs in the 
left-hand circuit. Its exact calculation in this general case is quite complicated but has 
been carried out recently and will be presented in a later paper. From an experimental 
determination ofZ x over a frequency range for which Cg may be neglected, it is straight- 
forward to obtain the corresponding Zi. Normalizing with the general R~o, the 
circuits of Fig. 3a and the above generalizations lead to 

= Fl/P q- l/n~q 2 I-1 __ ZTN - 1  
ZiN L ~ - p  J (l/n/l/p) (ZTN -- 1) -1 (5) 

for the (0, ~ )  case. Thus, the transformation from ZTN to ZiN does not involve the va- 
lences directly at all. 

Although the two circuits of Fig. 3a are equivalent as far as total impedance is 
concerned, they do not seem to me to yield equivalent insight into the processes oc- 
curring, especially when l / , ¢  l/p. In the (0, oo) case, negative charge carriers are not 
blocked and lead, for the left-hand circuit, to the parallel resistance l/znenol/,. This 
frequency-independent element depends only on the free, or electroactive, negative 
carriers. Correspondingly, we see that the "interface" impedance Zi is only charged 
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through the I/zpepo#p resistance, which, in turn, depends only on the blocked carriers. 
Here we put "interface" in quotes since Zi is not intensive for all frequencies and is 
thus not associated only with the region near the electrodes at low frequencies 4. 

The situation is somewhat more mixed up for the right-hand circuit, even 
though this circuit is more directly in keeping with the usual process of direct subtrac- 
tion of the high-frequency cell resistance, R~. The parallel resistance (]Ap//~n)Roo 
clearly depends on carriers of both sign, and only in the limit of zero frequency 
(Zi--~oo) does a simple current path involving only the electroactive species appear 
[since (#p/pn)R~o + Roo -- I/zneno#n]. Yet it seems plausible to expect that the physical 
process present involves such a path at all frequencies (within the approximation of 
assuming infinitely rapid electrode reactions). 

Note that when the boundary conditions for positive and negative carriers are 
interchanged, so that negative carriers are blocked and positive ones are free to pass 
in and out of the electrodes [the (0% 0) case], the above #p and/~n mobilities and Zp 
and z, valence numbers need only be interchanged appropriately. Finally, it is clear 
that adding back Cg in parallel to the circuits of Fig. 3a allows them to apply for anyO, 
although Zi is then, of course, more complicated than it is when O ~ 1. For the re- 
mainder of the paper, I again assume/~p = #n and Zp = zn = 1. 

For Sluyters' situation with equal mobilities ZTN2 = 4(Ms)- 1 tanh (Ms), equal 
to ZiN/[1 + (ZiN/4)] when the (0, ~ )  expression ofeqn. (4)is used. We see that although 
Sluyters' ZT2 plays somewhat the role of the (0, ~ )  "interface" impedance Zi, the two 
quantities are only essentially equal when IZiNI ~ 4, i.e. A >> 1. Figure 3b shows directly 
how ZT2 involves the Zi of eqn. (4). Note that since IZil---~ as A--~0, the zero- 
frequency limiting values of ZT1 and ZT2 are 2Roo and 4R~, respectively. Further, 
since the Z~ of (4) approaches zero as A ~ oo, in this limit (taken consistent, however, 
with t2~ 1) ZT1---~R® and ZT2---~0. 

For 0 < A < 3 ,  we found 4 that ZIN---~{(4/5)+ [iQ(Co-C,)/Cg]-I}, with 
(Co-Cg)/Cg ~-M2/12 for M > 100. A somewhat more complicated expression for 
(Co-Cg)/Cg, holding for any M, is also available 4. Note that (Co-Cg) is here an 
extensive, not an intensive quantity. In this low frequency range, the Zi of the Fig. 3 
circuits may be directly replaced by the capacitance M2Cg/12 and the resistance 
4Roo/5 in series. Of course, ZJ4  involves a quarter of the resistance and a four-times 
larger capacitance. Note that the reactive and resistive components of Z~ are equal in 
magnitude at A -  ~ (15) ~. Below this A, the capacitative reactance dominates. 

The present (0, oo) (Co-Cg) is M/12 times larger than that appearing in the 
(0, 0) blocking case. It is proportional to l and may thus be extremely large when M is 
large. For example, if M =  105,/--0.1 cm, and e=81, then Cg~ 71.7 x 10 -6 #F cm -2, 
and C o ~ 6 x 104 pF cm-2. 

The present results show that one must be careful in deriving an appropriate 
Warburg impedance from measured results. Consider the usual Warburg region 
(A >> 1, f2 ~ 1). Then ZT2 ~ 4Ro~/Ms, and Zi also approaches this value. Incidentally, 
it may be written in more conventional notation as 2 ~ RT(1 - i)/FEco(coD) ~. On the 
other hand, in the (0, oo) situation, (ZT1-Roo) ~- Roo/Ms, in agreement with the Zi/4 
of the right-hand circuit of Fig. 3a. Thus, if one obtains a Warburg impedance in the 
conventional way, by subtracting R~ from the total impedance, one finds a different 
value (four times smaller in the case of equal diffusion coefficients) than that obtained 
from the interface Z i impedance which, in this range, is truly intensive. Finally, note 
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that the impedance associated with a single electrode in this intensive range is just 
half of the values above. 

It is of interest to point out that the Warburg region in Fig. 2, the straight-line 
part of the right-hand curve, would extend upward at a 45-degree slope indefinitely 
as the frequency was decreased were not a finite electrode separation I assumed. Most 
treatments implicitly or explicitly take I infinite and obtain such behavior. Levart and 
Schuhmann ~ give a complex impedance plot of much this form, for example. Here, 
it is the spreading of a diffusion length through the entire region between electrodes 
which causes the departure from a 45-degree line shown in Fig. 2 and eventually 
results in finite values of capacitance and resistance in the low-frequency limit. 

To summarize the present frequency response comparisons, one can say that 
the results of the calculation for a high-concentration supporting electrolyte show 
both important similarities and differences from those of the (0, oo) case, where no 
indifferent electrolyte is assumed. The differences are important at low relative fre- 
quencies (t-2~ 1, A ~< 1) and at high relative frequencies 4 (f2 >0.1), and the results for 
the "interface" impedance (ZT2 and Zi) are essentially the same in the intermediate 
Warburg range (f2 ~ 1, A >> 1). 

TABLE 1 

DEPENDENCES OF IMPORTANT CAPACITANCES/UNIT AREA AND TIME CONSTANTS ON VARIOUS QUANTITIES 

The Table shows the powers of the quantities entering the appropriate expressions for Cg, MC, ,  etc. 

[1] [Co] [e] [T]  [#]  

Cg - 1 0 1 0 0 
Mc, o ½ ½ -½ o 
M2Cg 1 1 0 - 1 0 

"c D 0 - 1  1 0 - 1  
M z  o 1 - ½  21 - ½  " 1 
ME'CD 2 0 0 -- 1 -- 1 

Three capacitances: Cg, MCg, and M2Cg/12, have entered naturally in the 
(0, 0) and (0, o0) analyses. In addition, associated with these capacitances are the time 
constants 4 ZD, MZD and M2ZD . It is finally of interest to show how these quantities 
depend directly on such parameters of the material and situation as 1, Co, e, T, and/z. 
Such dependence is summarized in Table 1, where only the powers of quantities are 
indicated. Thus, for example, Cg is proportional to 1-1 coOel T0/to. Of course, implicit 
dependences, such as those ofe and # on T, are not indicated. 

COMPARISON OF LENGTH-DEPENDENCE RESULTS 

(0, ~ )  and Sluyters' results 
For frequency dependence comparisons, it was convenient to normalize 

impedances with Roo, a frequency-independent quantity. On the other hand, R~ 
depends directly on 1 and is thus inappropriate when length dependence is investigated. 
A suitable quantity to use, however, is the intensive "Debye" resistance, RD = M -  1Ro~ 
= LD/kteCo. Let us denote normalization with RD by the subscript "M". Thus, Z~M ------ 
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Z T / R D  = MZTN. Further, let us consider here only a fixed frequency in the region 
f 2 ~ l .  

With the above definitions, one has 

ZTm -- S-1 [Ms + tanh (Ms)] (6) 

ZTM2 = 4S-1 tanh (Ms) (7) 

It is clear that because of the presence of the series Roo term in ZT1, it and ZTM1 will 
contain a term linear in 1 which will eventually dominate ZTM1 for large A - [Ms[. 
Thus, in the (0, oo) discharge case, ZT1 always contains an extensive term and is 
never intensive in behavior. 

In order to compare (0, oo) and Sluyters length dependence (using A now as an 
electrode separation variable), it is therefore reasonable to compare (t2) ~ (ZT~ -- R ®)/RD 
= A ( Z T m -  1)and (O)IZTM2/4, two quantities equal to (/)-~ tanh (Ms). There is 
thus no difference between the two results, and we need investigate only the A depen- 
dence of ZD m (i)- i tanh (Ms) = (i)- ~ tanh (iiA). Sluyters has already plotted [ZDi and 
its phase angle ~--~D against 2 i A. Therefore, it is here only worthwhile to show 
computer calculated results for these quantities in the neighborhood of their maxima. 

Figure 4 shows calculated results for [ZD] and the negative of its phase angle, 
- tkD. IZD[ reaches a maximum of about 1.143 at A ~ 1.67 and shows a small under- 
shoot below its final limiting value of unity. Likewise, - ~D shows both an overshoot 
and undershoot about its final value of 45 °. For A = 5, [ZD[ and ~JD have both be- 
come very close to their final intensive values. Sluyters' experimental results (with a 
relatively high concentration of indifferent electrolyte) are in good qualitative agree- 
ment with his results for [ZD[, although the small undershoot of Fig. 4 is not evident 
in either his theoretical or experimental results. 

For simplicity, we have thus far compared the length dependence of total 
impedance quantities, but Fig. 3b shows that Sluyters' ZT2 is actually somewhat 

zo, 

\ 
,o Fi / 

I 2 3 4 5 

A 
Fig. 4. Dependence of l Zol and - ~k on A, showing how the magnitude of normalized cell impedance and its 
phase angle depend on electrode separation at fixed frequency with f2 ~ 1. 
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TABLE 2 

COMPARISON OF THE A-DEPENDENCE OF THE NORMALIZED QUANTITIES [ZD[ AND [ZFI AND THEIR PHASE ANGLES 

A IZol [Zvl -~o -~0v 
(degrees) (degrees) 

0.1 0.010 30.000 0.19 89.96 
0.5 0.498 6.002 4.76 89.05 
1.0 0.931 3.012 17.96 86.20 
2.0 1.119 1.593 42.91 75.75 
3.0 1.013 1.258 46.47 64.16 
4.0 0.994 1.179 45.23 57.31 
6.0 1.000 1.124 44.98 52.59 

10.0 1.000 1.073 45.00 49.35 

more comparable to Z i than to ZT1. If we calculate a Z i from the Zx of either Fig. 3a 
or 3b, then it is of some interest to investigate how this quantity depends on electrode 
separation. On normalizing as above, one obtains (f2)~Zi~4---- ZF--= A/[(Ms) coth (Ms) 

- 1], a quantity which approaches ZD for large A. Rather than plot the dependence 
of ZF on A, we show for comparison in Table 2 a few values of [Zo[, [ZFI, and their 
phase angles, ffD and ~JV" Table 2 indicates the great difference between ZD and ZF 
for small A. One of these quantities is resistive in the A ~ 0  limit, the other capaci- 
tative. Although corresponding quantities approach equal values as A increases, 
even at A--25, ~F is still about -46.7 °. 
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SUMMARY 

A comparison is made, for frequency and electrode-separation dependence of 
total cell impedance and "interface" impedance, between electrolyte situations with 
and without a supporting indifferent electrolyte. When no indifferent electrolyte is 
present, a binary electrolyte situation, two boundary conditions are considered : that 
of ideally polarized electrodes (complete blocking), and that where charges of one 
sign are blocked at the electrodes and those of opposite sign are able to pass freely in 
and out of the electrodes. Further, electroneutrality is not assumed. The usual solution 
when an indifferent electrolyte is present assumes the presence of reactions of charges 
of both signs at the electrodes and electroneutrality everywhere. All electrode reac- 
tions are taken to be infinitely fast and no specific adsorption is present. Further, no 
applied static overpotential is assumed, so the results apply most closely at the equili- 
brium potential. Comparison of the results for the various cases indicates both impor- 
tant similarities and differences. It is shown that when there is no indifferent electrolyte, 
particular care must be taken in analyzing the total impedance to obtain an appro- 
priate "interface" impedance. Finally, equivalent circuits pertinent for the various 
situations are considered in detail, and an important equality between structurally 
different circuits is pointed out. 
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