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Discrimination Between Equations of State*
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(June 16, 1971)

Eight isothermal equations of state are analyzed to yield quantitative measures of the degrees to
which equation pairs can be discriminated for real data, data of limited span and precision, Calculated
curves allow one to assess the span and precision necessary in P-V data to allow unambiguous dis-
crimination of various pairs. Some discussion is presented of bias and systematic error which may
arise in least squares fitting. Using exact synthetic data, we also illustrate for seven equation pairs the
very large relative systematic errors in parameter and standard deviation estimates which arise from
such fitting of data of limited span with an incorrect but ‘“‘close” equation model. General conclusions
following from these results are discussed. Although the present work is principally concerned with
discrimination between equations of state, its results are pertinent to the more general problem of
choosing a “best” analytical model (linear or nonlinear) to represent experimental results.
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1. Introduction

Virtually all physical science is concerned at some
stage with comparing experimental data with theo-
retical predictions. Although no theories are ever fully
verifiable, one nearly always wants to find that theo-
retical model, from the limited set of possible models
under consideration, which best represents the data,
which allows the underlying phenomena to be better
understood, and, if possible, which allows prediction
outside the range of the original measurements. In the
relatively early stages of investigation of a given
domain, one usually does not know which of several
theoretical or empirical models is likely to be most
appropriate. This state of affairs is particularly likely
to occur when the physical situation being studied is
too complex to allow a tractable theoretical idealization,
which is still sufficiently close to the experimental
situation, to be accurate. Many-body interaction prob-
lems, such as that of determining the exact equation of
state of a solid or liquid, fall in this category.

The problem of model discrimination is made dif-
ficult by the presence of random and systematic errors
in the data. In the present paper, it is assumed that
systematic error in the data is absent or at least neg-
ligible compared with other error. Systematic error can
still be generated, of course, by the choice of an in-
appropriate model [1],} and a question of considerable
importance is: Under what conditions is it possible to
discriminate adequately between several more-or-less-
appropriate models, or equations? In the present paper,
we shall be concerned with typical synthetic equation-
of-state data generated without significant error of any
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! Figures in brackets indicate the literature references at the end of this paper.

kind, reserving a detailed discussion of the effect of
random errors to a later paper. It will be shown that
by using such exact “data” we can investigale \yllal
sort of discrimination is possible hetween vanous
equations of state in practical cases where measure-
ments are of limited precision.

In real life, experimental data have only limited
accuracy and precision and always extend only over a
limited range of the variables involved. This state of
affairs suggests intuitively that one will be unable to
discriminate adequately between two or more analyti-
cal models which are sufficiently close together in their
predictions for the range considered. We are here con-
cerned with ways of making this intuition quantitative
at least for the specific equations considered here.
Since better discrimination may sometimes appear
possible than is actually the case, just because of the
presence of more or less random errors which hap'pun
to fall in a particular way, it is important to consider
exact data before data with random errors.

Although all that is often required of an equation of
state, or more generally, a mathematical model of
experimental results, is that it serve adequately as an
interpolation and smoothing device for the data. the
problem of model discrimination is usually still pre<ent
even in this case. Unless the first model fitted passes
all tests of adequacy, more than one model mu<t be
examined and a choice of available models made. The
present paper discusses some general methods of
model discrimination with specific illustrations taken
from the equation of state field. Here we are concerned
additionally with the task of estimating physically
significant parameters of the material which led 10 the
data in question.

Two somewhat different situations frequently arise
in the equation of state area. Often one starts with no,
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or only crude, knowledge of the underlying parameters
of the material under investigation. These parameters
are then determined by fitting various equations of
state to P-V data, usually by least squares techniques
[1]. The most appropriate, or “best fit” equation will
usually be that which leads to minimum estimated
standard deviations of the fitted data points and of the
parameters. The values of the parameters obtained
from this fit are taken to be the best available estimates
of the unknown material parameters. In general, how-
ever, such values will not usually be good estimates
unless the choice of model is appropriate for the data
and leads to randomly distributed, essentially sto-
chastically independent residuals, and the fitting
procedure itself leads 1o negligibly biased parameter
estimates.

Sometimes one is able to obtain estimates of the
parameters by other means than from fitting of direct
P-V measurements. Now becoming popular for this
purpose is the method of ultrasonic velocity measure-
ments under pressure [2, 3|, pioneered by Lazarus
[4]. Once having parameter estimates available for a
certain material, one can, given the appropriate equa-
tion of state, calculate volume values {or a range of
pressure. Of course, with a limited number of param-
eters available, as is always the case, calculated
volumes can generally only be expected to remain
reasonably accurate over a limited range of pressure.
The nub of the problem here is usually in knowing
what equation of state to use (and how far to trust it).
Sometimes the determination of the best equation
may be made by comparing ultrasonically derived
parameters with those obtained from a least squares fit
of direct -V data for the same material.

In either approach, one eventually obtains a set of
parameters believed to be appropriate for the material
under investigation. Although in actual practice these
parameters will always be uncertain to some degree,
it is nevertheless useful to ask, as a limiting case, how
well one can distinguish between various equations of
state when the parameters are actually exact (or are so
considered) but when available P-V data are of limited
precision. Some answers to this question are discussed
later for eight different equations of state of some
current interest.

One of the important purposes of the present work is
to point out that uniqueness is a limit seldom achieved
in practice. Frequently an experimenter chooses a
model to represent data of given range with the impli-
cation or statement that the chosen model is “best” or
“most applicable” without realizing or investigating
sufficiently to find that other different models are
equally applicable for the given data.

Although the present analysis is concerned with
discrimination between eight specific equations of
state and thus involves quantitative results only for
these equations, we expect that the results will also
apply at least qualitatively to other not-too-different

equations. More importantly, perhaps, the present
discrimination methods and general approach can and
?l“’.“ld_ be applied to any experimental situation where
1t 1s important to establish one or more adequate

mathematical representations of the data or, better,
of the underlying process which led to the predictable
part of the data.

2. Equations of State Considered

The material parameters with which we shall be
concerned, all for isothermal conditions, are the
specific volume, Vo, at a given reference pressure Py;
the bulk modulus at P=P,, Ko=—V,(oP/oV)|p-p,
and various pressure derivatives of the bulk modulus,
K, also evaluated at P=P,. For simplicity, let p =P—P,;
then V=V, at p=0. Now K)=mn= (0K/0P)| -0,
and Kg = (92K/dP2)|,-0. The symbol n has been
introduced to simplify subsequent equations; it is
dimensionless. It is also useful to introduce the further
dimensionless quantity ¢ = K(Kg. Finally, define the
dimensionless pressure variable z=p/K, and the
dimensionless density variable x = p/po = V/V.

Barsch and Chang [3] have recently given values for
the parameters of Csl at 25 °C, plus temperature
derivatives of these parameters. The quantity ¥, may
be calculated from x-ray measurements of the lattice
constant. Other parameters such as Ky, Kj, and K§
were obtained from ultrasonic measurements. Using
the Barsch and Chang results, we have calculated the
values of ¥y, Ko, m and ¢ which then apply to Csl
at 150 °C, an arbitrary choice of temperature. These
values, as used in our computer studies, have 14 figure
accuracy and may be considered the accurate values of
some hypothetical material close to CsI at 150 °C.
Of course as applied to Csl itself, only a few places
in each parameter value are significant. To five
figures, the parameter values are: V,=1.0184,
Ky =1.0503 X 102 kbar, 1 =6.0382, and ¢ =—6.9897.
Here we have taken Py=0 and Vy at 25 °C as unity.
Thus, all volumes used here are reduced specific
volumes and are dimensionless. The original Barsch
and Chang 25 °C values are Vo=1, Ky=118.9%0.6
kbar, n=5.86+0.11 and Ky=—0.052+0.002 kbar-'.
These results lead to ¥ = —6.2 at 25 °C.

We shall be interested here in comparisons of, or
discrimination between, eight different equations fre-
quently employed in equation of state studies [1, 3|.
We have adopted the approach of Barsch and Chang
of designating the ordinary Murnaghan equation as the
first-order Murnaghan equation (ME,), and the equa-
tion previously [1] termed the second-order equation
(SOE) as the second-order Murnaghan equation (ME.).
There are several forms of this latter equation, depend-
ing upon the values of 12 and W; here only one of these
forms is pertinent. All eight of the equations are given
in the form z=f(x) in table 1, which also lists acronyms
for each equation. Some, but not all of them, may be
expressed in inverse form, with x as an explicit function
of z. Note that three of the equations are “first-order”
in the sense of Barsch and Chang [3]. They involve
n=3 parameters: ¥, Ko, and 7. The other five “second-
order’” equations involve ¥ in addition. Finally,
table 1 includes values of K, = (6K/oP) ., ..

442




[ &

TABLE 1. Equations of state of interest written in the dimensionless foArnizﬂz>z fix)

B S
] A Form \ K
i cronym o
Equation 2= plKo=f(x) f(x) x=plpo=tofl
Usual Tait UTE (m+1)"{exp {{(n+1)(1=x"1}-1] 3 -
First-order ME, nxr—1] 3 n
Murnaghan
1 —x
- ME . ‘ 1
Seffl?r?l;;ﬁi; (nzzzzq,) z(x(n-—mm"-_.1)/[(7’:_“,)\-:(xm SE R B
— -1y
. KE , ;
Keane (=n2<P<0) | [ (n2+ ) [x o= 1) —[fing? + )] Inx 4 m* ¥y
First-order BE, (312) 27— 331 {1+ (3/8) (- (x2*—1)] 3 3
Birch
Second-order BE, (312) (7~ x33] [ 1+ (3/4) (n—4) (x*4—1) 4 13
Birch +(1/24) {14349 (n—T) +90} (x? = 1))
Third-degree 35E Q=x )+ (2 m+ D d—x 1y (/6 n ! -3
Slater +3n+2+¢) (1—x 1)
Third-degree 3DGE (x—=1)+ (12) (=1 {x—1)2 4 3
Davis-Gordon + (1/6) (n*—3n+ 2+ ) (x— 1)

The Keane equation only applies when — N < ¥ <,
conditions satisfied for the present parameter values.
Although all of the equations must become poor
models for sufficiently high z, failure is particularly
evident for the UTE and ME.. The volume predicted
by the UTE goes through zero at the finite z value of
(n+1)-1{exp (n+1) —1]. For the present form of the
ME., K'= (0K/aP)=0 at z=—n/V and V=0 at
2=2/[(n*—2¥)12—n]. The 3SE also suffers from the
disadvantage that it predicts zero volume at finite
pressure. All the other equations require infinite z to
produce zero volume.

The equations of table 1 are discussed in greater
detail elsewhere [1, 3]. Although most of them have
some macroscopic or phenomenological theoretical
justification, here they may simply be regarded as

empirical equations likely to be of some value in the
P-V area.

3. Model Differences and AV Discrimination

In order to examine differences in the predictions of
the various models, we have, for a given set of porz
values, calculated corresponding dimensionless ¥
values, using in each equation the same 14-figure
parameter values already mentioned. The ¥ values
were calculated using 14 figures, by iteration when
necessary, with a resulting 13-figure or better accuracy.
Finally, differences between J’ values of each possible
pair of equations were calculated for each z value. The
differences obtained for p=11 kbar, or z = 0.1047, are
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listed in table 2, all multiplied by 10* for convenience.
The AV’s shown are formed by taking the ¥ of ane of
the equations listed in the left column and subtracting
from it the V calculated using one of the equations in
the top row. Since the ME, —3SE AV value is largest
of all, the ME, yields the largest and the 3SE the
smallest J' value for this value of z. Similarly. we sce
that the BE. and KE volume predictions are closest
together here.

In addition, in figures 1 to 5 we have plotted AV
versus z for a variety of equation pairs. The hoxed
equation name is the equation from whase I values
those of the equations named on the curves are sth-
tracted. These five figures contain Al curves for most,
but not quite all, of the possible pairs of equations,
Curves have not been duplicated. Thus e, = Vi )
appears in figure 3 for BE, but not its negative in figure
5 for BE,. Negative values are indicated by using
dashed lines.

TABLE 2. Scaled volume differences, [01AN | for cqua-
=N INI3

.
Equations

aSE I

BE, 2110 ; ! j :
UTE 37016 J080 | ! i
3DGE 39 018 [ L1 j027 0

BE. 42021 113 09022 0

KE 4£3 122 {13 062003 Togy fg

ME, BY 1 6B 160 [52 149 147 4,
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Although few actual experiments resulting in P-V
values of appreciable accuracy extend past z ~ 0.5, the
present exact, synthetic data curves are calculated up
to p=210 kbar, where z=2.000. At this z value,
VIVo=x-1is of the order of 0.5 for these equations,
being ~0.64 for the 3DGE, for example. For
Zmax = 2.000, N=158 p or z values. distributed roughly
logarithmically, were used. For present purposes,
larger z values were unnecessary.

Clearly, AV curves for all pairs not involving the
UTE. 3SE. or ME, will eventually reach a maximum.
with AV.« <1, as z increases, then decrease toward
zero since both }”s become arbitrarily small as z— =,
As the figures show, the situation is different for the
ME. even within the present range. Since the param-
eter values used here lead to V' <0 for z > 1.85. AV
values which involve ME. volumes become arbitrarily
large in magnitude as z increases beyond this point.
Clearly, the ME. cannot be a useful model all the way
to the point where it predicts zero or negative volumes.
Nevertheless. it may be useful for a range ending
sufficiently far below this point.

Of what value are the results shown in figures 1 to 57
They are of considerable value because they show
how well the various equations of state considered
here may be discriminated under the best possible
conditions. Suppose. for example, that we wish to
discriminate between the KE and other equations and
are able to measure volume only up to z=0.1. Further.
suppose that errors in p are negligible compared to

those in V. Figure 2 then shows that to distinguish the
3SE from the KE in the range 0 <z <O.1. experi-
mentally determined } values must be known to about
one part in 104, or to four decimal places, near z ~ 0.1.
Even less uncertainty would be required for a smaller
range. The BE., and KE cannot be reliably distin-
guished without a precision of about three parts jn 108
near z=0.1 and higher precision for smaller z. Clearly,
if the above precision has not been achieved, there
would be no point in attempting to discriminate be-
tween the equation pairs discussed for the data in
question. Barsch and Chang 3] have discriminated
between the BE. and KE for a situation where
AVIVy =3 X 10-% or more and have concluded that the
BE. was much better for their purposes than the KE.
The present figure 2 results indicate that such dis-
crimination is actually not significant with such pre.
cision in AV, for the present set of parameter values,
over a pressure range from zero up to at least 200 kbar,

There are two reasons why we consider that the
present curves represent the hest possible diserimina.
tion. First, there are always some random errors in the
determination of pressure values. To first order, we
may take the expected or “controlled™ pressure values
as exact and consider that the aetual pressure errors
are incorporated as additional random errors in the
volume values. It is then this total volume error which
must be used in determining whether the curves allow
equation discrimination within & centain range of =
When parameter values are available, as from ultra-
sonic measurements, they may be used in several
equations of state to calculate exact volumes over a
given z range. These volumes may then be directly
compared with a set obtained by direct measurement.
Clearly. if the total errors in the latter set are not
appreciably smaller (over most or all of the 2 range) than
the Al7s obtained with various equation pairs. no valid
discrimination is possible, Even <o, one of the several
equations among which dicerimination is impossible
for the given z range may he far superior to the others
for extrapolation beyond this range. Although all eight
equations of fizures 1 10 5 are indistingnishable for
Al data of no better than 10-* precision in the range
0=<:= 0.1 clearly there are important differences be-
tween the predictions of the various cquations for this
same precision level at say 7= 1.5,

When an independently meacured <ot of parameter
values is unavailable, parameter value e«imates must
be obtained by fiting a model to the available data by
some such procedure ac least squares, Each different
model fitted will then vield a different <et of estimated
parameter values. If A" values are obtained for a pair
of models. using in each model the <pecifie parameter
values determined from a least <quares fit of the data
for the given model and range tease A, then the adjust
ment of the parameter valuee associated with the least
squares procedure will generally lead taan appreciably
different set of Al values than would have been ol
tained had the same parameter value «ct heen used in
each equation (case By I the fite of the two equations
for case A are sufficiently good, the correspending 317
values may nearly all he much smaller than thaee
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obtained in case B with any single reasonable param-
eter value set. But only one, at most, of the two sets of
parameter values can be correct. Thus, one must
proceed with extreme caution, and the small degree of
discrimination possible from the case A fits and AV’s
is usually misleading. Further, any use of case A results
outside of their fitting ranges is extremely dangerous.

The most meaningful discrimination will be obtained
from calculating AJ”s by the case B procedure, using
the same most reasonable choice of parameter values
in both equations, If the two equations under considera-
tion seem to fit about equally well and no other param-
eter value information is available, reasonable values
to use in the case B discrimination are the averages of
the two sets of values found from the least squares
fittings. Because of the wide use of least squares
procedures, these matters will be further discussed
in the next section,

The present case B results are closely related to
some obtained by Barsch and Chang [3]. These authors
compared, however, p-value predictions obtained from
a certain lattice equation of state tailored for Csl
with p values obtained from several other phenom-
enological equations of state. They found, for example,
that using the same parameter values the BE, ap-
proximated the lattice equation an order of magnitude
better (in Ap) than did the KE. Although Barsch and
Chang present ¥/I'y versus p curves for several of the
equations of state considered herein, they do not give
Al” curves and are not primarily concerned with
establishing what accuracy in V is needed, for a given
p or z range to allow equation discrimination.

Even though Barsch and Chang assert the superiority
of the BE: over the other phenomenological equations
they considered, as already mentioned the BE; curve
of the present figure 2 suggests that exceptionally ac-
curate data or a very wide range will usually be re-
quired to allow meaningful discrimination to be made
between the BE. and the KE. Although Barsch and
Chang's calculated |Ap | values for the BE. and lattice
equation were an order of magnitude smaller than those
for the KE and lattice equation, the latter values them-
selves were still considerably smaller for the range
0 < p <200 kbar than either the errors in |Ap| calcu-
lated from the BE: with experimental uncertainties in
the parameters or those expected experimentally
[3]. Thus. the actual discrimination between the BE,
and KE appears nugatory for this range. It seems
doubtful that sufficiently accurate wide-range data yet
exist to make adequate BE»-KE discrimination possible
unless the situation is very different for appreciably
different parameter values than those used here and
those used by Barsch and Chang, an unlikely possibility.

The curves of figures 1 to 5 are somewhat more
general than they appear at first sight. First, since the
normalized pressure variable z is used, the results are
independent of the value of K. Second, since the V)
value used is quite close to unity, little specialization is
introduced by the specific ¥, value used. When ¥
differs appreciably from unity, the present curves may
sul;l })e used with the AF values reinterpreted as

AV [V values. For the UTE, ME,, and BE,, only the

additional parameter n enters. This quantity is usually
found to be within the range 3 <7 <8; thus, the
present value, near 6, is fairly typical. Further, changes
in 7 may be expected to change AV itself less than the
s entering AV. On the other hand, the V¥ value used,
near —7, is quite special since little is known thus far
about the likely range of W for a variety of materials,
and it probably can be positive as well as negative
[1, 5). Nevertheless, we suggest that the present curves
may be used, at a zero to first order level, for an initial
estimate of discrimination possibilities between various
equations for other materials besides CsI at 150 °C. Of
course, the next order of assessment would employ an
estimated parameter set (Vy, K,, K;. and Kj values)
for the material in question. This set could then be
used, as herein, to generate AV curves for comparison
with the estimated total errors of the experiment, all
incorporated into the } values.

As examples of such zero-order assessment, we may
consider the data of Monfort and Swenson {6], Kell and
Whalley [7], and Vedam and Holton [8]. Monfort and
Swenson studied potassium metal up to z ~ 0.4. Their
volume data were given to four places, and they found
a scatter of about 5 units in the last place. Although
they primarily considered the BE,, the ME, was also
introduced. The ME,; curve of figure 5 shows a maxi-
mum |AV | for these equations of about 7X 10-3. When
the Monfort-Swenson data is normalized to a ¥, near
unity, allowing comparison of V' errors with present
AV’s, one may estimate that the data are accurate to
perhaps 3 X 10-3 in normalized volume. Comparison
suggests that one might then just be able to distinguish
between the BE, and ME, for this range and accuracy.
One of the present authors [1] has considered dis-
crimination between the 3DGE and 3SE for the 0 °C
water data of Kell and Whalley (zpax ~ 0.05) and be-
tween the 3DGE and ME; for the 50 °C water data of
Vedam and Holton (zynax ~ 0.44). Similar zero-order
comparison of probable errors in V' with the present
AV curves suggests that the 3DGE—3SE discrimination
was near the borderline of possibility and was probably
not very meaningful, while the 3DGE-ME. discrimina-
tion was somewhat more possible and certain.

Finally, to the degree that the present AV curves are
reasonably general, it is worth mentioning that the
sign changes for the Vgg,—Vure, Vee,— Vag,. and
Ve, —Vase curves shown in figure 5 indicate that the
BE, remains a closer approximation to the other three
equations over a wider range than if such changes of
sign were absent. This result is perhaps one reason why
the BE,; has been found to be of relatively general
applicability in the past.

4. Least-Squares Comparisons

Least squares procedures are frequently applied to
noisy data for which the true underlying model is un-
known and possibly nonlinear in some of the param-
eters. Here we shall investigate the results of least
squares fitting of exact data, especially with incorrect
models. Such analyses, when the correct model and
parameter values which generated the data are known.
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can yield valuable information about the systematic
errors arising from the use of the wrong model. Further,
the use of exact data allows the usually mixed effects
of random and systematic errors of this type to be
entirely separated. Since figures 1 to 3 and 5 show that
the 3DGE is, in some sense, close in its predictions to
several of the other equations, it has been chosen here
as the “correct” model for illustrative purposes. The
exact data employed was thus generated by using in
the 3DGE the 150 °C Csl parameter values already
discussed.

Table 3 shows the results of applying the least
squares method in a few different situations of interest.
Here and hereafter “linear’” and “nonlinear” generally
refer to linearity, or its absence, of the parameters
entering the model. Thus, by a “linear” equation we
will mean one linear in its parameters. The “linear”
situation cited is actually rendered nonlinear in the
parameters by the weighting used [1]. Even though the
model is originally linear in the parameters, weighting
of the independent variable will lead to nonlinear
parameter dependence except in the special simple
case (not considered here) of a linear relation between
independent and dependent variables. In a succeeding
paper, we hope to investigate in some detail the im-
portance of and degree of bias frequently arising in the
A case of table 3 when random error is present. Here
we continue to restrict attention to the exact data
situation.

The 3DGE is written in table 1 in a form involving
the parameters nonlinearly. This form was required by
the constraint of using Ko, 1, and V as the basic param-
eters in each equation listed in the table. On the other
hand, the 3DGE may also be written in the linear form

3
p=3 Ai(x—1)i )

i=0

where 4y=0 when the V, entering x = Vo/V is taken
fixed and has its correct value (the procedure we
shall use when A, is a free parameter); 4, = Kq:
As={n—1)Ko/2: and A3 = (1/6)(n?—3n+2+V)K..
Clearly. direct linear least squares determination of the
A; parameter estimates will allow corresponding V.

TaBLE 3. Possible errors in least squares estimates

Parameter Parameter
Situation estimates variance
estimates
A. Correct model. random
errors in data
Linear: correct weighting Unbiased, efficient Unbiased
Linear: wrong weighting Unbiased. not Biased
efficient
“Linear™: weighting of in- Biased Biased
dependent variable
Nonlinear Biased Biased
B. Correct model. systematic Biased Biased
errors in data
C. Incorrect model Systematic Systematic
error errar

Ko, m, and W estimates to be caleulated for comparison
with their true values. Further, comparison of cor-
responding nonlinear and linear least square parameter
estimates will allow bias arising from nonlinear least
squares to be indentified and quantified.

The following definitions are useful in comparing
least-squares parameter values with exact values, Let
# be a specific parameter of the model: then denote the
true value of 0 (here known) by 6y and the least-squares
estimate as . The relative error of the estimate is then
8= (0—60y) /0. When no random errars are present,
&; will measure the systematic error in the ith param-
eter value. It is also of interest to compare the param-
eter error (8—0,) with the standard deviation (sq)s
obtained for a given least squares estimate of 0. To do
so, we define A= [ (0= 00)/(sa)a| = |08/ (s4)ul. This
measure will indicate possible systematie error in
(511)0-

We have been discussing least squares results in the
above as though they were exact solutions of the least
squares equations. It is not widely appreciated that
all the usual least squares computer routines may yield
very inaccurate parameter values becanse of round-off
errors (9], For example, if Gaussian elimination with
pivoting is used to solve the least squares equations,
the number of accurate decimal digits in a0, 4, i«
A~ (C—n+1=1). where Cis the number of (equiva
lent) decimal digits carried in the computer calealation
and n is the number of free parameters, Clearhyof
n > C. results of little value are likely to be obtained.
Expression for A of this type were originally derived
for linear least squares fitting of polynomials, but they
seem to apply at least uppmximulvly to nonlinear equa-
tions as well. Recently, Wampler [10] has made a more
detailed study of the matter for polynomials and di«
cussed more complex routines which can vield very
substantially higher solution accuracy.

The effects of roundoff are illustrated by the reenlts
of table 4. Elimination with pivoting was need to carny
out least squares fitting of the 14-figure 3DGE data using
the 3DGE equation in both its linear and nonlinear
forms. Since c=14 and n=4, A~ 11=1. In Table 4.
the & are calculated using ="V, #,=K.. 0,=7,
and f,=W. The quantity sy is the standard deviation
for the fit itself. The results show values of A hetween
about 14 and slightly less than 11, in rough agreement

TAaBLE 4. Least squares results in the alsence of
systematic error: exact 3DGE data fitted hy the

3DGE model

Linear equation
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with the formula. There appears to be no significant
tendency for the linear results to be better than the
nonlinear ones, and one can scarcely conclude that
much of the bias of table 3 is showing up here. In fact,
bias is only important when random errors are present;
in the A cases of table 3, bias approaches zero as the
random error goes to zero. Incidentally, since 8, is
zero in the linear case when Vi, is taken fixed at its
exact value, Ay is given in its place; since the true
value of Ay is zero, this is an absolute, not relative error.

The results of table 4 were calculated with N=37
points, covering the range 0 < z < 0.476. Let the maxi-
mum value of z be denoted z,. In earlier work [1],
weighting of both the dependent and independent
variable data values was discussed. The related stand-
ard deviations were denoted o for the ¥ variable and
o, for the p variable. The p-weighting of table 4 takes
o,=1 and oy=0 (weighting of dependent variable
only), while the V-weighting uses =0, oy =1. In the
linear equation case, the V-weighting chosen leads to
somewhat different weighting of the actual independent
variable x used [1]. Table 4 indicates slightly improved
results for the V-weighting over the p-weighting, and
no bias arising from V-weighting in the nonlinear situa-
tion is apparent. The differences between the sy’s for
p and V weighting arise because the p-weighting s, is
a measure of the least-square fit residuals when they
are all in pressure and is here in kilobars, while for
F-weighting the residuals are all forced to be in re-
duced volume and sq is then dimensionless. The ratio
between the sq’s is roughly K,.

Although we shall use the usual inaccurate Gaussian-
elimination-with-pivoting solution of the least squares
equations in the following, all inaccuracies introduced
thereby are four or more orders of magnitude smaller
than the systematic errors we consider. Such syste-
matic errors in parameters and standard deviations are
illustrated in table 5, where the 3DGE data are fitted
with p-weighting using the incorrect BE» model. Re-
sults for 8; and A; are first given for two different ranges
of z, from zero to ~ 0.048 and ~ 0.48. Note the strong
increases in these error measures both with range and
with the index i. Also included in the table are fitting
results obtained for the complement range, all points
contained in the second range but not in the first. As
might be expected, the parameter estimates are
somewhat worse for this coverage than for the largest
span shown, even though s itself is somewhat better.

TABLE 5. Least squares results showing systematic
errors: exact 3DGE data fitted by the BE: model

Range| 0<:<0.0476 0<:<0.476 0.0572 <z <0476
N=19 N=37 N=18

NEE A 5 A, 5 A;

0 L7x10+* | 24 |} 11x10-3} 381 12x10-4] 9.7

1 i=1l1x10- | 58 -1.7x103]11.0 |~4.8x 10-* |14.0

2 45%10- 112.0 1.2x10°% | 21.0 1.9X 102 {24.0

3 | 49x102 {290 | 27x10'{43.0 | 34x10-' [45.0
sa | L31x10- 1.02 X103 4.62 %X 10~

All nonlinear least squares fitting in the present
paper has been carried our using the Deming itera-
tive method of solution [1, 11]. Although this is an
approximate method [12], the resulting errors in the
estimated parameter values are generally negligible.
O’Neill et al. [12] have presented a more accurate
iterative solution of the least squares problem with
weighting of both dependent and independent variable,
applicable only for polynomial equations. We have
recently generalized and improved this solution so
that it applies to equations of any form and converges
much more rapidly [13]. This method, applied to the
situations of table 5, yields essentially the same J;
values as those in the table but As some 25 to 40
percent larger than the tabular values. These increases
thus mainly arise from smaller (s4)¢’s produced by the
new least squares solution. Although the new method
leads to an essentially exact (in the sense of iterative
convergence) least squares solution when round-off
errors are negligible, the results cited above and those
in the table show the presence of large systematic
errors in 8; and A; arising from wrong model choice.
The rest of the present paper is primarily concerned
with 8;s and p-weighting, where the differences
between the Deming and improved estimates are
negligible.

Although table 5 gives one some idea of syste-
matic error effects, much more is provided by the least-
squares results of figures 6 to 12. The same exact
3DGE data were fitted with the various other equations
for four different ranges, all including z=0. The
four values of z, used were ~ 0.048, 0.143, 0.476,
and 2.00, and the corresponding number of z values
were, respectively, 19, 29, 37, and 58. All points used
in a given fitting were included in the ones with larger
Zp

T TTTHIT LT T

BE, _

o
A

\\90 ,S”\
\. [ ]
\\\
\
\
o) -\
\
\
1 nnml\m.'

N
\

=3
T T T T Ty T ey llﬂﬂq

) =
L

Lol
1.0 2.0

=
n
5

~N
—

FIGURE 6. Parameter relative errors, 8;, and standard deviation of
fit, sq, versus fitting range (0 < z< z,) for least squares fitting of
exact 3DGE data with the BE,.
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FiGURE 1. Parameter relative errors. 8, and standard deviation of
fit. sq. versus fiting range (O < 2< 2)) for least squares fitting of
exact 3DGE data with the KE.

Figures 6 to 12 show how the systematic errors,
represented by the §;'s and by sq. change as the fitting
range is extended. As usual, dashed lines indicate
negative values. All §; results shown were obtained
with p-weighting: or=0, o,=1. Results obtained
with VP-weighting were closely similar. Unlike the 8;'s,
which are relative, the s4's are absolute and, with
p-weighting, measure the overall goodness of fit in
pressure units, as already mentioned. Thus, for
example, figure 6 indicates that s, for the BE, fitting
over the range 0<z=<2 is nearly 0.1 kbar. All s,
curves were obtained with p-weighting except the one
marked (sg)i on ficure 9. Here we compare the s;'s
obtained from p and ¥ weighting. The (sq)r values are
somewhat more than K, times smaller than (s},
values here. Note that. as expected, (sq) and 8.
the relative error in Vo, are quite close together over
much of the range.

For V' weighting. sq is an overall measure of the
residuals in F. Its absolute value in figure 9 at z=0.143
of about 3 X 10°7 (the maximum magnitude of a volume
residual was ~ 6.5 X 1077} is about two orders of magni-
tude smaller than the AV = Vi, — Vi of ~5X 1073
shown in figure 3 for the same z. But this last figure is
that applying when the correct parameter values are
used in both equations. As expected, the least squares
parameter adjustment in the BE. fitting of the exact
3IDGE data makes it difficult to conclude (without in-
dependent knowledge of parameter values) that the

BE: is the wrong model, as it is here. With some ran-
dom errors in the 3DCE model data, least squares
fitting using the BE, and KE, for example, would again
senerally lead to results which wouldn’t allow one to

o PP T SN A e B B0 A AW A T WA S g S i Ao

identify either the BE, or KE as an incorrect model,
even though they both would be.

The results of figures 6 to 12 show that when the
range is extended, relative errors in all the parameters
increase when wrong models are used. Further, the
higher-order parameters are more inaccurate than the
lower-order ones for all the ranges shown. Not much
added accuracy in the higher-order parameters can
be obtained by reducing the range and. in practical
cases where random error is present, generally no
added accuracy will be achieved by such reduction.

Figure 10 stops with a z, of 0.476 because the volume
predicted by the ME, is negative for z = 1.85, preclud-
ing a meaningful fit with z, = 2.00. Note that 8; for the
KE and 3SE is so large that its values must be divided
by 10 and 100, respectively, to allow plotting on the
present scale. For the 3SE, even 8. must be divided by
10 as well. These results illustrate an important gen-
eral point. The figures show that the BE, and KE are
the best least-squares simulators of the 3DGE model
as far as sy is concerned. Yet even for the relatively
low z value of 0.143 (p =15 kbar), |¥] is about 10 per-
cent high for the BE, and W is of even the wrong sign
for the KE. The average residuals arising from syste-
matic error would, when all in volume, be mostly less
than 107% in magnitude here. Even for the best data
currently available such small residuals would be ob-
scured by random error. Thus we see that it is possible
that two different equations, both wrong (as here) or
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FIGURE 12. Parameter relative errors, 8;, and standard deviation of
fit, s4, versus fitting range (0 < z< z,) for least squares fitting of
exact 3DGE data with the 3SE.
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one wrong and one correct, may not be distinguishable
by goodness of fit criteria. yet one may predict far
better parameter values than the other. In the absence
of other information, such as hirm knowledge of the
correct model or independent determinations of some
of the parameter values, one will evidently always
stand an appreciable chance of picking a “best” model
which yields some quite poor parameter estimates.
The better the accuracy of the data and the wider its
range, the better the higher-order parameter estimates
will be since the final model chosen will be forced to
be closer to the correct model to achieve an adequate
fit.

The monotonic increase of 8§; and s4 with fitting range
illustrated in figures 6 to 12 is, of course, indicative of
the use of an incorrect and inadequate model and is
by no means limited to the equation of state area. In
most if not all cases of practical interest, we may expect
to find this sort of behavior: the wider the range used
in least-squares fitting of a possible, “close,” but still
incorrect model, the greater will be 54 and the param-
eter error magnitudes. It should, however, be remarked
that this conclusion only applies in the usual case
where the model is not asymptotically correct as the
range is extended indefinitely. The wider the range
used, generally the more difficult it will be for an
incorrect model to simulate the correct one.

This increase of errors with range may frequently be
used in practical cases as a powerful means of dis-
criminating against incorrect models. When random
errors in the data are sufficiently small that the sys-
tematic errors arising from an incorrect model choice
dominate sq. it will generally increase with the fitting
range, as illustrated here. Such an increase thus clearly
gignals an incorrect model choice for the range of data
fitted. Since most models only apply adequately in any
case over a limited range of a variable such as pressure
or temperature, extension of the fitting range beyond
the region of applicability of the best available model
will always eventually result in an increase in sq4. Thus,
in any least squares fitting where the range of applica-
bility of the model used in unknown, extrapolation
outside the fitted range of data should be approached
with the utmost caution and avoided if possible.

The present paper deals with exact data and actual
relative errors of parameters, but true parameter errors
will not be available in a usual experimental situation.
Nevertheless. when sq increases because of the wrong
model choice, the estimated parameter standard de-
viations will generally increase for the same reason.
Thus, these quantities, ordinary results of a least
squares fitting, may also be used along with sq to help
discriminate against an inadequate model.

There are some interesting general aspects to the
present results obtained with least-squares fitting of
the wrong model. The residuals (here given by observed
values minus calculated values) show the following
behavior: The number of runs (number of sign changes
plus one), u, for the ME,. BE,, and UTE, for which
n=3, is 4, while «=>5 for the remaining equations for
which n=4. The general result, u= (n+1), is not very
surprising but bears emphasizing. Further. the sign of
the first residual run (which, together with knowledge

of u determines the signs and order of all the runs) is
specific to the equation considered. IFor the present
fitting of 3DGE data, this sign is+, —, —. 4+, —, —, +for
the ME,, BE,, UTE, ME,, KE, BE.. and 35E. respec-
tively. The number of runs and their sign distributions
were invariant in the present situation to the following:
(a) p or ¥ weighting, (b) the range of the data and its
placement (all low p, all high p. alt in the middle, cte.),
and (c¢) the sign of ¥. Even though not all extremes were
investigated, this high degree of pattern invariance is
likely to be quite general and may itsell be of con-
siderable usefulness in helping to distinguish models.

Although we have not done it, one could readily
establish a matrix of first signs obtained using data
calculated from one of the present eight specific equa-
tions and fitted with another one of the eight. Then,
in practical situations where it was believed that the
correct model was one of the eight. many possibilities
could be quickly eliminated by comparison with the
sign of the first residual run obtained on fitting the
actual data. This would only work. of course. provided
random errors were considerably smaller than sys-
tematic ones and hence didn’t appreciably perturh the
residual pattern. With many data points. considerable
perturbation of this kind could be tolerated. however,
since decisions could be made on the basis of a
smoothed residual pattern rather than the actual noisy
pattern.

A partial comparison of the above type has been
made earlier for the ME, and UTE [14]. There, ¥y
was taken fixed, so n=2. As expected, 1 was found to
be three for both UTE fitting of exact ME, data and for
ME,; fitting of UTE data. The initial run signs were
+, —, respectively. for the above two fittings,

5. Summary

This paper has been primarily concerned with dis-
cussing methods of discriminating between specifie
equations of state and has demonstrated considerable
limitations on the poscibility of adequate diserimina-
tion between “close™ equations. We have found the
somewhat surprising result that equations which can-
not be adequately discriminated on the basis of leact
squares goodness of fit over even a wide pressure range
may yet lead to estimates of higher-order parameter
relative errors differing in sign and by an order of
magnitude in absolute vialue for even a narrow preseure
range, much less a wide one. The present methaods.
results, and conclusions can be generalized 1o a cone
siderable degree to apply to madel discerimination ont-
side the equation of state area and are pertinent far
linear models and for those nonlinear in their param-
eters. independent variahle. or hoth, Thos, the follow-
ing general conclusions, based on the present <pecifie
results. are likely to apply widely 1o the general data
analysis field.

More than one mathematical model <hould n<nally
be tested against the data in order to select i possible.
that model which fits best by objective eriteria, As the
range of data is progressively increased for which least
squares fittings are carried oul. the initial or eventual
appearance of increases in sq and (sg). indicates the
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ANALYSIS OF EXPERIMENTAL RESULTS

OPTIMIZE MINIMIZE SYSTEMATIC ERRORS

EXPERIMENTAL | EXPERIMENTS
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METHOD NEGLIGIBLE
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SYSTEMATIC ERRORS
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SYSTEMATIC ERRORS NEGLIGIBLE

FiGURE 13. General block diagram for data analysis.

presence of systematic fitting error arising from an
inadequate model choice. Such error will also usually
show up in highly correlated residuals exhibiting, at
least approximately. a number of sign-changes equal
to the number of htted parameters. The range of a
causal experimental variable such as pressure, voltage,
temperature, etc. should be increased to the maximum
degree possible in order to allow the testing of a model
for adequacy over the widest practical data range.

When two or more models have been found that
represent the data over a given range with approxi-
mately the same goodness of fit and without signs of
systematic errors from wrong model choice, it is still
possible that one or more models may yield much
better or much worse least-squares parameter esti-
mates than the others. Additional independent infor-
mation about likely parameter value ranges will usually
then be necessary to allow a selection of the most
appropriate equation for parameter estimation. Extrap-
olation of a given model-parameter value set beyond
the range of data on which it is based is always
dangerous.

When data smoothing or interpolation is the object,
the possibility of discrimination between two models
which yield equally good least squares fits to the data
should be examined by the case B procedure of section
3. If the differences in dependent variables calculated
with the same reasonable set of parameter values in
each model are comparable to or smaller than the
estimated random errors in the data, discrimination is
impractical for that data set.

Figure 13 shows, in very diagrammatic form, ap-
propriate steps in data analysis aimed at establishing
a “best” model (including specific parameter value
estimates). Some of the actually interrelated steps
involved in this figure are presented differently in the
flow chart of figure 14. This diagram is included for the
benefit of those readers who may wish to apply the
pm_cedures discussed in this paper to other discrimi-

nation and parameter estimation problems.

For figure 14 we have assumed that a data set over

a range, Rp,y, has been taken, and that we wish to test
potential models over the maximum range if possible.

The flow chart orders the tests as (1) case B, (2) runs,
and (3) case A. If no models appear appropriate after
the first series of tests, provision is made for decreas-
ing the range of the data used in the tests in order to
determine the acceptable maximum range for param-
eter estimation.

In the flow chart, we have abbreviated the test for
case B by the notation |Ay;;| <oy. Here we mean that
all or nearly all of the deviations should be less than
the expected errors in the data. Note that “nearly all”
is appropriate because of the possible presence of
random outliers. For the same reason, the test z>n+2
should also be considered approximate and applied
judiciously. Note also that o, may vary with x (het-
eroscedastic case); the test should be so applied when
appropriate. Other symbols introduced here are ¢,
defined to be the acceptable level for standard devia-
tion of the least squares fitting, and €4, defined as the
level below which standard deviations of two separate
fits are indistinguishable.

Good data are usually expensive, yet too little
adequate data analysis is the general rule. It is better
to do too much such analysis than too little.
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PARAMETER
ESTIMATES
2

YES

DATA RANGE * Rpoy

CALCULATE y's FOR
EACH MODEL USING
ESTIMATED
PARAMETERS

CALCULATE Ay;; FOR

EACH PAIR OF
MODELS i AND
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FIGURE 14. Flow diagram for discrimination and parameter estima-
tion tests.
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