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A new iterative method is described for the solution of the generalised nonlinear least squares 
problem: where the model may be nonlinear in its parameters and in the independent variable(s) 
and all variables are subject to error. The method is described for the case of two arbitrarily 
related variables; does not require the analytic calculation of derivatives; leads to exceptionally 
close satisfaction of the least squares conditions; and exhibits especially rapid convergence arising 
from the use of somewhat unconventional numerical approximations for partial derivatives. 
Examples are given which compare the results of the method of those of other existing techniques. 
(Received October 1970, Revised October 1971) 

It is frequently the object of an experiment to find , prove, and/ 
or document some causal relation between experimental 
variables. Such a relationship may be called a model for the 
phenomenon investigated. Since a model generally establishes 
only a small and finite number of connections between several 
variables and a limited number of parameters, it is always an 
idealisation of even an isolated part of nature. Once a model has 
been selected as 'best' by some (preferably) objective criterion 
from the finite set of ones thought possible for the situation 
involved, the problem arises of finding the most appropriate 
values, or estimates, for the parameters involved in the model. 
Both model selection and parameter determination are often 
carried out using the method of least squares. 

In ordinary least squares analysis it is customary to consider 
one 'dependent' variable y and I 'independent' variables, Xj' 

where j = 1,2, ... , I. The model is then generally written as 
y = f(x, IX); the components of the vector IX are the tY.k para­
meters; and k = 1,2, ... , m. Conventionally, dependent and 
independent variables are more often distinguished not strictly 
by dependence and independence but by the assumption of no, 
or negligible, errors in experimental values of the Xj' denoted 
Xji' and the expected presence of such errors in experimental 
values of y, denoted Y ;. Here i = 1, 2, .. ., 11, and 11 is the 
number of (Yi> Xji) experimentally determined (l + I)-tuple 
values. Both because it is still the most common case and for 
simplicity, the rest of this paper will deal only with two vari­
ables, y and x, thus taking I = 1. Our results may be readily 
generalised for arbitrary I, however, by well-known methods 
(Deming, 1943; Wolberg, 1967). 
Although there are experimental situations where errors in X 

are negligible compared to those in Y, only when a variable is 
intrinsically discrete (because ofquantum-mechanical or whole­
number reasons) is there a possibility of obtaining exact values 
of it from experiment. Further, there are many measurement 
areas where not only are unavoidable random errors present in 
both Y and X, but those in X are too large to neglect in the 
usual way. Ordinary least squares, even with weighting of the Y 
observations, is then inadequate and can lead to bias in esti­
mated parameter and variance values (Macdonald, 1969; 
Macdonald and Powell, 1971). 
Clearly then, a least squares procedure which takes proper 

account of errors in both variables is frequently needed. Note 
that such a procedure will be useful whether or not one variable, 
say X, is 'controlled' (by being set as closely as possible to a 
given value) or not (Macdonald, 1969). Deming (1943) long 
ago gave an approximate solution of the problem which has 
been too little known and used . It has, however, been employed 
by Wentworth (1965) and, more recently, has been described 

••0 

and extensively applied (Wolberg, 1967; Macdonald, 1969). 
Southwell (1969) has recently stated, 'There has thus far been 
no satisfactory solution to the general case of fitting data with 
errors in both co-ordinates to nonlinear functions .' He then 
goes on to present what he believes to be such a solution. By 
'nonlinear functions ' Southwell means functions which are not 
linear in one or more of the tY.k' s. 

Now Deming's solution does apply to functions nonlinear in 
the parameters involved and has been used for them 
(Wentworth, 1965; Wolberg, 1967; Macdonald, 1969). 
Unfortunately, Southwell gives no comparison with Deming's 
work on either a theoretical or computational basis. Further, 
Southwell claims to find exact expressions for the variances of 
the parameter value estimates, ak == ak• But Draper and Smith 
(1966), among others, have pointed out that least squares 
solutions applied to models involving parameters nonlinearly 
(hereinafter to be termed 'nonlinear models') lead to bias in the 
usual statistical estimates (see also Macdonald, 1969; Mac­
donald and Powell, 1971). Finally, perhaps a minor point, 
but one beloved of the statisticians: Southwell generally ignores 
the distinction between estimated and exact values and claims 
to give (nonasymptotic) formulae for exact parameters as well 
as exact variances. Evidently, Southwell has not tried out his 
iterative solution on many nonlinear models (he presents 
quantitative results only for straight line fitting); had he done so, 
he would have found that even with exceptionally good 
initial estimates of the parameter values his procedure would 
not have converged to the least squares solution and often 
would not have converged at all. 

The situation appears to us to be as follows. Notwithstanding 
Southwell's work and claims, up to the present there seems to 
be available no least squares procedure which will converge to 
a true least squares solution when applied to a general non­
linear model involving weighting of both Y and X. Further, 
there has been no complete assessment made yet of the ade­
quacy of Deming's solution for such a problem. In the present 
work, we present a solution to the above general problem which 
exhibits exceptional convergence characteristics. While we do 
not claim invariable convergence for any conceivable model, we 
do claim, and demonstrate, a least squares solution when con-I 
vergence is achieved. Although the problem of bias in estimates I 

obtained from arbitrary nonlinear least squares solutions is. 
difficult and has not been totally resolved, Box (1971) has 
recently made an important contribution to the area. 

Finally, it is important to emphasise that all models (except 
y = at + tY.2x) are nonlinear in their parameters when the 
values are not taken exact but are weighted. Even though the 
model itself is formally linear in all its parameters, the x­
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weighting creates model nonlinearity (Macdonald, 1969). Thus, 

1'all polynomials, Y = L 
m 

ak Xk- , of degree higher than one 
k=1 

(m > 2) become nonlinear in the parameters with x-weighting.
 
Besides the common case of weighting of both variables,
 
x-weighting alone is frequently important for models nonlinear
 

.in their variables. Suppose that the Y/s are known so precisely
 
(that they may be approximated as exact but that there is
 
uncertainty present in the X/so Further, suppose that
 

~ Y = f(x, (I) is sufficiently nonlinear in x that it cannot be
 
solved directly for x (either because such an explicit solution is
 

(mathematically impossible or because it is too complex to be
 
! practical). Then ordinary least squares cannot be properly 
', applied to this Y = f(x, (I) situation. Instead, at best one can 
:only weight the Y/s (actually almost exact) in an effort to 
compensate for the uncertainty in the X/s (which must be 

. taken exact). Such improper weighting will, at the least, 
introduce bias in the parameter standard deviation estimates. 
The present generalised least squares solution allows one to 

I apply weighting properly in this case and to obtain results for 
parameter estimates and standard deviation estimates identical 

d, 1969). ~ to those which would have been obtained had x been solved for 
far been directly. 
lata with' 
He then , 2. Theory 

~ion. B~ An important contribution to the present problem appeared in 
are no . early 1969, about the time Southwell's work was submitted for 

1
. · I publication: O'Neill, Sinclair, and Smith (1969) gave a rapidly 

umear In 1 f h 1 blem wi h bi0th convergent so ution 0 t e east squares pro em WIt ar itrary 
or 196~m. weighting of both X and Y, which, however, applies only to 
' . ~. polynomials in X. As we have seen, this is not in general a linear 
Demlng s ~ d 1 T d . 0 d ·0 0F th mo e situation, 0 re uce computing time an Increase 
o ur err' accuracy, O'Neill et ale make use of expansions off(x, (I) in sets 
'lances 0 < •d S ith of orthogonal polynomials, Many authors (for example, Hall 
n nn . and Canfield, 1967) have used orthonormal polynomials in 

0: squares di 1 1 Th 1 ·h·0li 1 or mary east squares ana YSIS. ese specia tee ruques are 
l~ I~eatrhY ( inapplicable for a general model, which may be overtly non­

0 

0 0'"9 M 1 h its narameters and e 
); .ac- : in our present solution for such a model. 
Dr. point, O'Neill et ale point out two approximations in Deming's 
Ydlg?~res· solution and show how both may be avoided in their own 
1 c alIl~~ \ approach. Further, they apply their method to data involving 
~ as t~. both straight-line and cubic (in x) models. They compare their 

ou ~s ( numerical results for the cubic, with unity weights of both Yi 
done s s ~ and Xi' to results given by Deming's method. Since no para­

uas In e mear In bot ItS parameters an varIables, an d are not need d 

, one so d d d d J:' h0 0 0 011 d meter stan ar eviation estimates are presente lor eit er 
y gOOld ( solution, however, the significance of the differences between 

re wou h diffi 10nd oft n t e two IS I cu! to assesso . . . 0 

. e (, Although O'Neill et al. give a much Improved iterative 
t dO solution to the double-weighting problem for polynomials, they 

lS an l~g < find it to be computationally impractical and go on to derive 
seems t o 

I and use a simple approximation to this solution. We shall 
eral nr 0 follow them in using much the same procedure but will further 

0~ra non- d h h d 1k h .0 0F th emonstrate t at t e approximation ma e, un let ose InI 

tl~Ir :r, Deming's method, can lead to exceptionally close satisfaction 
e a e- of the least squares conditions and thus, when convergence is 

~ pre~n~ , obtained, to the true least squares solution. Further, to vastly 
m1 w ~ expand the generality and applicability of our solution, which 

. odel. 0, must be useful for models nonlinear in both parameters and 
'he e, we variables, we shall not use derivatives which must be analytic­
ret? iates , ally calculated anew for each specific model, but shall obtain all 

Oes ima es d d derivati b 1 . F 110 0 •ti · nee e erivatives y numenca approximation, Ina y, we 
~ ~ons IS shall demonstrate that our iterative method converges much 

7 ) has faster, because of the unconventional nature of the approximate 
numerical derivatives we use, than other procedures which use 

s (except exact partial derivatives! 
en the X Let us define the least squares residuals RYi == Y i - Yi and 
ough the R

X i 
== Xi - Xi. Here Yi and Xi are values ofY and x calculated 

s, the x­
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as part of the least squares solution. The sum of squares to be 
minimised is then 

n 

S == L (wYiR~ + wxiR;) , (1) 
i= 1 

where the weights w == U~2, == U~2, and the u's are the. 
Y i 

W X i 

standard deviations (or their estimates) of Yi and Xi' assumed 
known or measured. Minimisation of S thus minimises the­
sum of the weighted perpendicular distances between the: 
experimental points (Yi, Xi) and the calculated curve 
Yi = f(Xi' a). Clearly, to obtain best parameter-estimate values 
one should ideally minimise the sum of the perpendicular 
distances between the true (Y, x) points and the curve. Since 
such points are always unknown in real (as opposed to syn­
thetic) situations, the present procedure seems next best. 
The actual minimisation conditions are 

as = 0 (2)
aak ' 

as = O. (3)
aXi 

There are thus (m + n) simultaneous (typically nonlinear) 
equations to be solved to yield the least squares Yi and Xi and 
corresponding parameter estimates and their estimated 
standard deviations. 
To solve (2) and (3) iteratively, we now define 

bak = ak - akO, (4) 

Sx, = Xi - XiO, (5) 

where akO and XiO are starting estimates. We assume bak and 
bXi to be small and, following O'Neill et al., expand (2) and (3) 
using Taylor's series to first order, obtaining 

(6) 

(7) 

Here the zero subscript denotes derivative evaluation at 
(x iO' akO). This truncation is the first approximation introduced. 
Provided convergence is obtained, it does not cause the least 
squares character of the solution to be lost. We now have 
(m + n) nonlinear equations to solve for bak and bx i. Using 
the development and notation of O'Neill, et al., we define 

gk(1) -= (as) ,gi(2) -= (as) ,
aak 0 aXi 0 

2s 
a2s ) ( a ) (8)Ask == ( -aa ' Bji == -a,a, ,as ak 0 XJ x, 0 

a2s )c., = C;k == ( O(Xk OXj 0' 

with 1 < k, s :::; m and 1 :::; i, j :::; n. 
We can write (6) and (7) in the form of a partitioned matrix, 

g(l)] 
[ (9)- g(2) 

The solution is then given by 

[;:] = -G-
1 [::~~] , (10) 

where G is the partitioned matrix involving A, B, and C. 
It is theoretically possible to calculate all the derivatives in (8), 

invert the matrix G, calculate the solution vector from (10), 
adjust the guesses, and repeat the procedure until convergence. 
There are several drawbacks in this approach, however. For 
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one thing, the model might be such that obtaining explicit 
formulae for the derivatives in (8) would be quite difficult. As a 
matter of fact, the model would not have to be too complex 
before writing out the second partials without at least one error 
would be unlikely. Even if the derivatives were obtained 
numerically, we would not have avoided the second, and usu­
ally more serious, objection to the procedure: the inversion of 
a matrix of order (m + n). As O'Neill et al. point out, it is not 
unusual to have hundreds of data points. 
To approach these computational problems, we first note that 

B i j = °if i =/= j,	 (11) 

so that B is a diagonal matrix. Now, if the model were always 
a linear (in IX) combination of orthogonal functions, as in the 
orthogonal polynomial case, then 

Ask = °if k =/= s,	 (12) 

and A would also be a diagonal matrix. In our general case, 
however, no such simplification is possible . 
We do follow O'Neill et al. in making the assumption that the 

elements of the matrix C, involving mixed partial derivatives 
with respect to Xi and IXk, have negligible effects. This assump­
tion allows us to solve (10) and obtain 

oa = -A -1g(1 )	 (13) 
ox = _B- 1g ( 2) 

Using the expression for S, we find, after some algebra, that 

~ _ wy/Ji - Yio) Y;o + wx/Xi - xio) 
uXi - , 2 ( ) " , (14)

wy/Y io) - wy, Ji - Yio Y io + wx, 

where Yio = I(xio ' a) , Y;o = !,(Xio' a), Y;~ = r(xio' a), and the 
primes denote differentiation with respect to x . This result is 
formally the same as that given by O'Neill et al., but our actual 
use of it is different from theirs, as will be seen. 

3. The algorithm 

In designing an algorithm, several important factors must be 
considered and balanced against one another. It seems to us 
that ease of use is very often as important as conservation of 
machine time. This was the principal guideline for the develop­
ment of our algorithm. Two fundamental requirements seem 
called for under such a guideline. First, the allowable models 
should be completely general instead of polynomials. Second, 
the derivatives should be numerically estimated using uniquely 
appropriate difference formulae. Further, the computer 
program and its execution should involve enough accuracy that 
all except the most extremely pathological cases will converge 
to the least squares solution without significant round-off or 
truncation errors. 
It would be fairly straightforward to generalise the O'Neill et 

al . method and replace all derivatives by simple difference 
formulae, but such an approach does not exploit an oppor­
tunity to accelerate convergence dramatically. After some 
numerical experimentation, we found that one can compensate 
for the omission of the mixed partials Ck j in G to a significant 
degree by unconventional substitutions for the derivatives in 
g(1) and A. By using analytical derivatives, O'Neill et al. fail to 
gain this advantage. In our later examples, we will demonstrate 
that our general iterative method converges rapidly even with 
five parameters to be determined. 
Our procedure needs both first and second partials to obtain 

the elements of s'" and A, and to evaluate (14). We use the 
following conventional formulae each time (14) is employed in 
the iteration described below : 

Y;o = 2~ [j(Xio + hlo' a) - j(Xio - hlo' a)J + O(hl~) • (15) 
10 

1
and	 (16) 1 
HI]Yio = h~ [I(Xio + hiD' a) - 2j(xlo' a) + j(Xio - hiD' a)J 

'0 

+	 O(h i~) ' 1 

where hiD == L1 x Xio' and L1 x is a suitably small input constant,] 
usually in the range of 10-4 to 10-6• For utmost accuracy, we 
generally pick a final value of L1 x (and the similar L1 a defined 
below) in the middle of a region of L1 values which all yield x 
essentially the same intermediate and final iterative results. As 
is well known (Kopal, 1955), increments used in numerical 
differentiation must be neither too large nor too small in order 
to balance optimally the effects of truncation and round-off 
errors. 

Now, to complete one step in the iteration, i.e. to obtain the 
desired increments oa and ox from (13), we do the following : 

1. Using the current X o and ao vectors, apply formula (14) to 
get a change in Xo (call it ox~;). Using Y and x = X +o 
oxt, calculate S from formula (1) and call it S(O, 0). 

2. For a given pair of subscripts pand y, where 1 :S p, Y :S m, 
let hp = apoL1 a and h; = a yoL1 a, with L1 a again a suitably 
small input constant usually taken equal to L1 •x 

3. Let ap = apo + hp, a y = a yO' and keep all other parameters 
unchanged. Apply formula (14) as in (1) and get S. Call it 
S(1,O). 

4. Let	 ap = apo - hp, a y = a yO' apply formula (14), and get 
S( -1,0), similar to (1) and (3). 

5. Let ap = apo + hp, a y = a yO + hy, and using the technique 
of (1) get S(I, 1). 

6. Similarly, let ap = apo - hp, a y = a yO - hy• and then 
get S(-l, -1). 

7. Let ap = apo' a y = a yO + hy, and get S(O, 1). 
8. Let ap = apo' a y = a yO - hy, and get S(O, -1). 
9. With the notation simplified by defining, e.g. (as/alX)apo as 

as/aapo' then we may write 
n 

S(I,O) - S( -1,0) = 2hp (a::J + I (a~:J 
j = 1 

[l>xt/l) - oxt/ -1)] + O(hJ), 

where the increments in x are denoted by the earlier con­
vention. 

We now embed the x-variation in the differences by the follow­
ing approximations: 

as 1 
~ ~ -2h [S(1, 0) - S(-1 ,0)],
uapo p 

as 1 
:::;-- ~ -h [S(O, 1) - S(O, -1)], 
uayO 2 y 

a2 s 1
fiT ~ h2 [S(1 , 0) - 2S(0, 0) + S(-1 ,0)], (17) 

apo p 

a2s 1
FT ~ h2 [S(O, 1) - 2S(0, 0) + S(O, -1)], 
ayO r 

a2s -1 
~	 -~- ~ 2h h [S(1, 0) + S(-1,0) + S(O, 1) + S(O, -1)
uapo uayO P y 

-2S(0, 0) -S(1, 1) -S(-I, -1)]. 

The above partial derivative expressions are all overtly 
standard (see Davis and Polonsky, 1964) except for the last 
one, which is a simple generalisation for unequal increments 
of the usual seven-point mixed partial formula. It may be 
readily verified by Taylor series expansion. Nevertheless, these 
expressions are used unconventionally in a most important 
respect. They have been written as partials for convenience ; 
actually, however, the above description of our procedure: 
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(16)	 shows that the Xi are not held constant during the calculation berg, 1967), since our procedure for calculating A includes the 
of such quantities as S(1 , 0), S( -1 ,0), S(1, 1), etc. Instead the effects of variances in the x estimates. 
XI are changed as described whenever a parameter value is We define the estimated variance of the least squares fit as 
incremented. Thus, the three S's appearing in (o2S/oai o)' for 

s~ =	 S - (d)2 n (21)I~)'	 example, are all evaluated not only at different points in IX 
(n -	 m)space but, implicitly, all at different points in x space as well. ant, t 

,The new x is, of course, more compatible with the altered para­.we where <d) is the mean value of the composite weighted resi­
ned meter value and is thus superior to the usual unaltered x . The duals (Macdonald 1969). The numerator (not S alone) is dis­
ield I above expressions are truly partials with respect to other para- tributed according X2 with (n - m) degrees of freedom . 
As meters but not with respect to x . It is this crucial approximation 

ical ~ which, we shall show, leads to vastly accelerated convergence. 4. Starting guesses 
'der ' In the actual programming of the a lgorithm, we found it to be We	 decided to use Deming's iterative method to produce-off	 more accurate to store each Seq, r) in terms of its two com­ starting parameter gues ses for the general procedure. There are ,	 : ponents from (1), namely 

several good rea son s for this choice. First, Deming's method is 
the Siq, r) == L wy,R;, ' easy to program and to use. Second, as will be seen later, 
ng: 1= I Deming's method generally seems to produce parameter
) to ;and estimates close to the least squares result. Finally, in cases 
) + , 

n 
where wx , ~ wy " Deming's method yields the same result as Siq , r) == L wx,R;, ' (18) 

1= [ the general method. Note that as wx , --. OC! the problem
!where reduces to one of ordinary least squares with uncertainty only 

ibly Seq , r) == Siq, r) + Sx(q, r). in the Y/s. For convenience, we use the same relative incre­
I ments in the Deming procedure as are later used in the general 

m, 

Then in the calculations of (17), we re-write all the formulas, 
method.ters . grouping all the Sx's together and all the Sy's together. For 

11 it examp le, 
5. Examples and comparison of methods 

. as 1get	 We have used the general iterative method on a variety of real' -~	 = 2-h {[Si l ,O)-Sy(-l,O)J + [Sil ,O) - Si-1,O)J}. 
I uafio P problems , many of which involve quite strongly nonlinear 

que iand (19) models. Also, in order to test the power of the method, we have 
tried a number of the same cases considered by O'Neill et al. ' a2s 1

hen	 'ifT h2 {[SiO, 1) - 2Sy(0, 0) + SiO, -l)J + One of these cases was also used as an example by Southwell. 
a yO y In all the examples, the results of Deming's method were used 

\ [Si O, 1) - 2Sx(0, 0) + SiO, -l)J}. as input parameter estimates (iteration 0). We employed'This grouping tends to minimise errors resulting from taking A == Ax = Aa = 10- 4 or 10- 5 and stopped the iteration when 
~ as	 ldifferences between large numbers for one sum and then losing the relative change in each parameter was less than 10- 7 and 

; the significance of the other sum. We repeat the above pro­
ak oS I< 10- 7 for 1 :::; k :::; m. 

cedure for all p and y, where 1 :::; p, y :::; m, In the computer l oak 
program we are careful not to compute the same quantity more The first example employs a straight-line model, y = (X[ + 
than once even though the formal description of the procedure (X2X , As data, we use the set given by Pearson (1901) and listed 

; allows some unnecessary calculation. (For example, S(O, 0) in Table 1. The weights used are due to York (1966) and are 
/), , need be eva luated only once.) presented in Table 2. We show in Table 3 the results (to four or 

We now have all the elements of s'" and A in (8). Hence, five significant figures) of the curve fit using the general iter­on- inversion of A and multiplication by - g(1) will produce the ative method for both single precision and double precision 
desired oa. The corresponding ox is found as a by-product of calculation". It is clear from the initial logarithmic partial)W­
the calculation of S(O, 0) above. (It is ox* for q = r = 0.)
 
The method described above for numerically calculating the
 Table 1 Pearson's data 

'partial ' derivatives is far superior to using either exact deriv­

atives or to a st raightforward derivative approximation pro­


X I Yi	 Xi YIcedure because it results in local exploration of (x, IX) space
 
each time an Seq, r) is found. It takes far more iterations for
 1 0·0 5·9 6 4·4 3'7 an analytic derivative method to converge in a typical problem. 2 0,9 5·4 7 5·2 2·8 
(See,	 e.g. Section 5, Table 4.) In addition , a straightforward 3 1·8 4·4 8 6·1 2·8
numerical derivative approximation procedure will converge 17) 4 2·6 4·6 9 6.5 2·4
only about as rapidly as the analytic method . 

5 3·3 3·5 10 7·4 1·5 
After adjusting the parameters and the 'independent' variable
 

byoa and ox, we check to see if there is no significant change in
 

the parameters and if the relative derivatives la 0 SI are suit-
k	 Table 2 York's weightsoak - 1) ably small. If tests are failed, we perform another step in the 

iteration. If tes ts are successful, we consider the least squares wx , wy , Wx , wY i 

solution to be found. 
1Jy For estimates of the parameter variances we use 1 1,000 1·0 6 80 20 
ast 2 1,000 1·8 7 60 70 
nts 2 _	 ( S ) _[ 3 500 4·0 8 20 70 

sak - --- Akk , (20)'be n -	 m 4 800 8·0 9 1·8 100 
~se 5 200 20·0 10 1·0 500

which differs implicitly from the usual Jinearised form, Wol­mt ' 

Il N'>,; ;, ,OO ~' ·We carried out our calculations on a CDC 6400computer with a maximum of 14 significant digits in single precision and a maximum of 29 
r- ­ significant digits in double precision. 
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Table 3	 Results of general method using Pearson's data with York's weights ITable 5 
(y = a 1	 + a 2x) ] 

(I) Single Precision (A = 10- 4
)	 I (I ) Singl 

Iteration	 as oS J Iteration 
a 1 a2	 °1- a2 ­Number	 S 

oa 1 ] Number0°2 

o 5·3961 -0,46345 11·9564 4·2 x 10- 5 1·1 X 101 1 0 
1 5·3982 -0,46388 11 ·9520 9·3 x 10- 4 1·0 X 101 1 
2 5·4775 -0,47998 11·8665 1·0 x 10- 1 8'3 X 10- 1 2 
3 5·4799 -0,48053 11·8664 1·8 x 10- 4 1·4 X 10- 3 3 
4 5·4799 -0,48053 11·8664 1·3 x 10- 9 4·4 X 10- 10 

(2) Doul 
(2) Double Precision (A = 10- 4 

) 

- Number 

Iteration 
Number °1 a2 S 

oS 
a l -

oa1 

oS 
a2 -

oa2 

Ite ration 

o 
o 
1 

5'3961 
5·4774 

-0,46345 
-0,47995 

11 ·9564 
11 ·8665 

4·2 x 
1·1 x 

10- 5 

10- 1 
1·1 X 

8'8 X 

101 

10- 1 

1 
2 

2 5·4799 -0,48053 11·8664 2·0 x 10- 4 1·5 X 10- 3 

3 5'4799 -0,48053 11·8664 5·0 x 10- 10 4·7 X 10- 9 (3) Estirr 

Deming(3) Estimates of the standard deviations 
General ] 

derivative values of S given in the table that the least squares 
minimisation conditions are poorly satisfied by the Deming 
results. Note the ",,40 % decrease in Sak in going from Deming's 
parameter standard deviation estimates to our present estimates. 

Table 4 indicates the number of 'iterations' used by various 
procedures to achieve the least squares solution. We place the 
word 'iteration' in quotes as a caution in the examination of 
Table 4, since each separate method uses a different iteration 
scheme. The table gives only a subjective comparison of con­
vergence speeds. Southwell's iterative method does not con­
verge at all in this case because his formula for [)x was derived 
without the use of the necessary second partials. He does obtain 
the correct solution in his own work, however, when he 

eliminates X i from (I) by solving 00 S = 0 exactly. This can be 
Xi 

done only when one has a model which is linear in the indepen-

Table 4	 'Iterations' required to achieve minimum sum of 
squares, S, for Pearson's data with York's weights 
(y = a 1 + a 2 x) 

METHOD	 NO. 'ITERATIONS' 

Southwell Did not converge 
O'Neill 148 
O'Neill (Aitken) 13 
General Method with Exact Derivatives 

(Single Precision) 148 
General Method (Single Precision) 4 
General Method (Double Precision) 3 

Minimum S = 11·866353 
a 1 = 5·4799 
a2 = - 0·48053 

Deming Sa, = 0'361 Sa, = 0'0707 Sd = 1·222
 
General Method Sa, = 0·252 Sa, = 0·0496 Sd = 1·218
 

dent variable (the case Southwell considered). 
In order to compare our method directly with that of O'Ne 

et al., we programmed their algorithm (with the omission 
their orthogonal polynomial expansion) for the CDC 6400. F 
the present straight-line model, the O'Neill algorithm run 
the 6400 gave the same parameter estimates and sum of squa 
as those quoted by O'Neill et al. (for the ICT 1905 comput 
at 125 iterations and also at 148, where convergence w 
reached. Thus, it appears likely that the orthogonal po 
nomial modification actually used by O'Neill et al., makes 
difference in the number of iterations required for convergen 
and it seems clear that there were no important errors in eith 
the original numerical work of O'Neill et al. or in our realis 
tion of their method for the CDC 6400. Using Aitken 
accelerative process, O'Neill et al. get convergence with 
iterations. In our tests of the O'Neill et al. method, we fou 
that the use of the Epsilon Algorithm (Macdonald, 1964) af 
every five steps produced convergence with only 10 iteration 
Our present method does not need accelerative techniques sin 
convergence typically occurs very rapidly. 
Table 4 shows not only that the present general algorithm 

exhibits exceptionally rapid convergence but also that when 
is used with exact analytical derivatives rather than with t 
special approximations of equations (17), it requires exac 
the same large number of iterations as does the O'Neill et 
method. Further, even when conventional approxima 
derivatives (without the x incrementation implicit in our use 
equations (17)) are used in the general method, one finds tb 
for a judicious choice of Ax = Aa, again 148 iterations are 
required for convergence. These results make it clear tb 
indeed the gain in convergence speed in the general method 
arises completely from our unconventional derivative approxi 
mations. A full theoretical analysis and justification 
our approach has recently been carried out (Jones), whi 
completely supports our present claims. As already stated, the 
exploration of (x, oc) space in the present method compared, 
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Table S	 Results of general method using Pearson's data with unity weights on both X and Y 

(y == at + ClzX + Cl 3X
Z + Cl4X

3) 

(1) Single Precision (J == 10- S) 

Iteration 
at az a3 a 4	 SNumber 

~O 5·9988 -1·0050 0·15706 -0·01372 0·48677 
1 6·0304 -1·0049 0·15255 -0·01319 0·48539 

~2 6·0152 -1·0000 0·15258 -0·01325 0·48515 
3 6·0153 -0·9998 0·15247 -0·01324 0·48515 

! (2) Double Precision (J == 10- S) 

: Number 
at az a 3 a4	 SIteration 

(0 5·9988 -1·0050 0·15706 -0·01372 0·48677 
1 6·0151 -0·9997 0·15242 -0·01324 0·48515 

'2 6·0153 -0·9998 0·15247 -0·01324 0·48515 

(3) Estimates of the standard deviations 

Deming Sal == 0·361 Sa2 == 0·404 S03 == 0·128 Sa4 == 0·0113 Sd == 0·2848 
· General Method Sal == 0·265 Sa2 == 0·298 S03 == 0·0918 S a4 == 0·0080 Sd == 0·2844 

'1 

~ Table 6 Results of general method using Pearson's data with unity weights on both X and Y 

(y == at	 + ClzX + Cl 3X
Z + Cl4X3 + Cl sX

4 + Cl6X
S) 

t Iteration 
Neill Number al az a 3 a 4 as a 6 S	 III 

" .n of '	 ;:'1 t 

",II. For	 
~II 

0 5·924 -0·7407 0·02688 -3·324 x 10- 3 2·692 X 10- 3 -3·208 x 10-~ 0·45300 ...., 
non 1 5·911 -0·5813 -0·1014 0·03377 -1·925 x 10- 3 -1·102 X 10- 4 0·45035 
lares 10- s 10- 4 

I 

,.~ 

''''~2 5·916 -0·6168 -0·06605 0·02114 -5·272 x -2·083 X 0·45034 
uter) 

( 
I"oj 

3 5·916 -0·6116 -0·07134 0·02302 -3·298 x 10- 4 -1·939 X 10- 4 0·45033 I~ ,1II1II 

I, ~ 

was	 ,I""4 5·915 -0·6019 -0·08157 0·02677 -8·950 x 10- 4 -1·640 x 10-4 0·45033 ;:~ 

~oly- 5 5·915 -0·6038 -0·07962 0·02607 -7·899 x 10- 4 -1·695 X 10- 4 0·45033 
~s no 1 6 . 5·915 -0·6034 -0·08011 0·02624 -8·163 x 10-4 -1·681 X 10- 4 0·45033 
~nce, I 7 5·915 -0·6035 -0·08001 0·02621 -8·110 x 10- 4 -1·684 x 10- 4 0·45033 
ither ' 8 5·915 -0·6034 -0·08003 0·02622 -8·121 x 10- 4" -1·683 X 10- 4 0·45033 
ilisa­

~ 9 5·915 -0·6034 -0·08002 0·02621 -8·118 x 10- 4 -1·683 X 10- 4 0·45033 
(en's 10 5·915 -0·6034 -0·08003 0·02622 -8·119 x 10- 4 -1·683 X 10-4 0·45033 n 13
 
nmd Estimates of standard deviations:
 
after \
 Sat Sa2 Sa3 Sa4 «; Sa6 Sd 

Ions. 
• 1
;Ince Den1ing 0·416 1·38 1·30 0·465 0·0714 0·0038 0·3366 

I General 
ithm Method 0·288 1·20 1·17 0·417 0·0623 0·0033 0·3355 
en it ' 
l the 
ictly only ~ space in all other approaches, leads to a compensation 
,t ale of most of the error (which is not actually negligible, in general, Table 7 P-V data

I 

nate as originally assumed) arising from the omission of the matrix
 
se of ': C from the basic partitioned matrix G. This conclusion is made Xi Y i Xi Y i
 
.hat, particularly plausible by the character of C, which itself directly
 
are involves (x, ~) space and is the only object in the analysis to do 1 1·0 26·38 8 8·0 23·50
 

that so except our unconventional derivatives. Crudely, what we 2 2·0 25·79 9 9·0 23·24
 
hod omit when we ignore C we restore when we use generalised 3 3·0 25·29 10 10·0 23·00
 
'oxi- (x, ~) derivatives. 4 4·0 24·86 11 11·0 22·78
 
l of Table 5 presents the results of applying our method to a cubic 5 5·0 24·46 12 12·0 22·58
 
hich..l model using Pearson's data with unit ,,:eights of both the .Xi 6 6·0 24·10 13 13·0 22·39
 
,. the 1 and Y i. For the same problem, O'Neill et ale needed rune 7 7·0 23·78 14 14·0 22·22
 
dto iterations for approximate convergence using their mixed
 

rnal Volume 15 Number 2	 153 



,

1

l

,

mental cTable 8 Results of general method using P-V data and M £1 model (Macdonald, 1969; Macdonald and Powell, 1971) 
guesses j

(y = at(l + C(2C(3X ) - t / CX3) with syn 

Iteration 
Number at 

I. w = 1'0, WX I = 0 (Ordinary least squares) 
Y i 

0 27·1125 

2. w = 1'0, WX i = 1'0, Single Preci sion, A = 10- 4 
Y I 

0 27'1167 
1 27·1167 

3. w
Y 1 

= 0'02, W X i = 1'0, Single Preci sion , A = 10- 4 

0 27·1544 
1 27'1549 
2 27·1549 
3 27·1549 

4. wy, = = 1'0, Single Precision, A = 10- 40, W X 1 

0 27·1546 
1 27·1555 
2 27·1555 

5. Estimates of standard deviations 
sa, 

wY i = 1'0, W X i = 0 Deming 0·0178 
*GM 0·0125 

w
Y 1 

= 1'0, WX l = 1·0 Deming 0·0193 
*GM 0·0136 

w
Y l 

= 0'02, W X i = 1·0 Deming 0·0296 
*G M 0·0223 

W = 0, wx , = 1·0 Deming 0·0297 
*GM 0·0214 

Y
, 

·General Method 

method (direct plu s Aitken). The present method with exact or 
conventional approximate derivat ives required 142 iterations 
instead of the two or three required with unconventional 
deri vati ve approximations. Table 5 again shows a decrease of 
35 to 40 % in the sak'S in going from Deming's estim ate s 
to our present estimates. In this example and in most cases we 
ha ve examined, however, the actual param eter change, Aak 

== I(ak) I - (ak) Genera l Meth od has been found to be less than 
(SCk) General Metho d . Thus, although our procedures assure us 
of a least squares solution, the results obtained are generally 
not very significantly different from Deming-method results if 
linearised s-; value s can be trusted. With thi s last proviso, 
we may also conclude that a cubi c is a poor model for 
Pearson's data. For k = 3 and 4, ISajakl > 0,6, showing that 
a3 and a4 are ill-defined and not very significant. 
Table 6, a quintic model, indicates that although the sum of 

square s, S, may stabilise quickly, occasionally it takes several 
more iterations to produce stability in the parameters. For this 
model , however, ISa,/a21 ~ 2 and similar ratios for k > 2 are 
even much higher. Thus, here only one parameter is significant, 
and a quintic model is an extremely poor choice. The increase 
in Sa from 0·284 for the cubic model to 0·336 for the present 
quintic is further confirmation of this conclusion. Although a 
quintic would not be an acceptable model for the data used , 
the results are included to demonstrate convergence. 
Table 7 gives some actual pressure-volume data. This is a 

preliminary, heretofore unpublished data set on Kr obtained by 

a2 a3 S 

33·7661 6·60017 0·0012872 

33·6446 6·62096 0·0011444 
33·6427 6·62122 0·0011444 

33·5720 6·80419 0'012639 
32'5607 6·80542 0·012616 
32·5620 6·80524 0·012615 
32·5618 6·80526 0·012615 

32·5663 6·80517 0·012708 
32·5478 6'80732 0·012685 
32'5481 6·80729 0 '012684 

So, So, Sd 

0'511 0·0949 0·0108 
0·359 0·0666 0·0108 

0·535 0·0966 0·01020 
0·377 0·0680 0·01020 

0·667 0·0997 0·03390 
0·503 0·0747 0·03387 

0·667 0·0997 0·03399 
0·483 0·0720 0·03396 

C. A. Swenson and M . Anderson (private communication) 
In Table 8, we present the results of assuming a three-para­
meter nonl inear model and using the data of Table 7 with four 
different weightings. Here all three parameter estimates appear 
to be highl y significant. We have presented them to consider­
ably more figure s than the Sak'S warrant to show how the iter­
ations proceed. Again the Aak's are insignificant, but we see that 
different weighting can result in very significant changes in 
parameter estimate s. 

6. Summary and conclusions 
Curve fitt ing using data with errors in several measured 
variables frequently must be performed, often with strongly 
nonlinear models. We have presented a computer-oriented 
general iterative method designed to find least squares solutions 
without the necessity of user-supplied derivatives. In practice, 
we find extremely rapid convergence whenever ordinary non­
linear least squares (using, for example, the Marquardt 
algorithm) converges. As always in nonlinear situations, it is 
necessary sometimes to use starting guesses for parameters 
which are so far removed from the least-squares results that 
either convergence is not observed or it goes to a local minimum 
of the response surface. We recommend that in difficult cases 
the problem first be solved by ordinary nonlinear least squares 
(with W X 1 == 0 and w)'l arbitrary or unity), then the resulting 
estimated parameter values be used as starting guesses in tho 
Deming algorithm (with Wx , and wn specified from the experi­
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mental data), and finally the Deming results be used as starting sum of squares, guaranteed to be at least a relative rrum­
,guesses for the present algorithm, Further, in some experiments mum when our convergence criteria are satisfied. Even though 
with synthetic, highly accurate data, we found that the values the bias of nonlinear equation estimates may not always 

.of Ax and zl, in the calculation of derivatives had to be chosen be negligible, we still feel that such reduction is useful. Whether 
extremely small (e.g. ~ 10- 1°) to obtain convergence. Using or not an experimenter wishes more precision than Deming's 
real data, however, we have not encountered such problems. method provides will depend upon his unique situation. 

lOur method is somewhat heuristic because of the great Perhaps most important, he cannot be assured of a least squares 
difficulty in performing numerically what 'exact' theory would solution with Deming's method, and there may be situations 
demand. Comparison with previously reported general least where significant differences arise in parameter estimates 

~ squares procedures leads us to believe that the present method obtained by the two methods. 
is more than competitive. We concur with O'Neill et ale in their 

~ conclusion that Deming's method will often provide adequate Acknowledgement 
results without further calculation. Our iterative scheme, We wish to thank Dr. Eric L. Jones for his most valuable sug­

~ however, almost always produces a reduction of 10 to 40% or gestions and discussions of this work. We much appreciate 
I more in parameter standard deviation estimates when com­ permission to use the preliminary Kr data of C. A. Swenson and 
pared with ordinary linearized estimates, along with a lower M. Anderson. 
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(Book review 
i Numerical Initial Value Problems in Ordinary Differential Equations, 

by C. William Gear, 1971; 253 pages. (Prentice-Hall, £6·50) 
< This text has 12 chapters on: 1, Introduction (and Euler Method);
 

2, Higher order one-step methods; 3, Systems of equations and
 
~ equations of order greater than one; 4, Convergence, error bounds,
 

and error estimates for one-step methods; 5, The choice of step size 
( and order; 6, Extrapolation methods (of Bulirsch and Stoer, etc.); 
. 7~ Multivalue or Multistep methods-introduction; 8, General 
\ multistep methods, order and stability; 9, Multivalue methods; 10, 
I Existence, convergence, and error estimates for multivalue methods ; 
, 11, Special methods for special problems (mainly stiff equations); 
~ 12, Choosing a method. 

The treatment is in general good especially in the more practical 
< Chapters 5, 6, 11 and 12. Complete FORTRAN routines are 

described and given for fourth order Runge Kutta with automatic 
~ step-length control, and for a variable order, variable step-length 
multivalue method with optional provision for stiff equations. A 

I FORTRAN version of Bulirsch and Steer's ALGOL procedure is 
also given. These large programs are photographically reproduced 
from computer printout. Smaller programs are type-set and much 
easier to read. 
The discussion of one-step methods is shorter than that of Henrici 

(1962), but all the essential theoretical points are covered. 
Multistep methods are treated from the less familiar multi value 

point of view (Gear, 1967), although this is scarcely used in Chapters 
6 and 7. These lllultivalue methods are exemplified by the finite 
difference and Nordsieck forms which are equivalent to the Adams­

1 Bashforth-Moulton method. The stored quantities at each step are 
\ linear combinations of the usual Yr andj(j», t r) but the same approxi­

mating polynomial is used for all equivalent methods. Possible 
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advantages are economy of arithmetic, especially when changing 
step length, and that the method may depend on a smaller number of 
previous steps, since the k stored values may approximate Yr and 
Jt», tr ) for 0 ~ r ~ ((k - 1)/2). Methods investigated include 
those using a fixed number of corrector iterations, as well as iter­
ation to convergence. The only particular multistep or multivalue 
methods discussed are those of Milne and Adams-Bashforth­
Moulton. 
Chapter 10 includes a host of theorems relating the root condition, 

stability, consistency, convergence and asymptotic error form. The 
Dahlquist theory on the maximal order of stable multistep methods is 
also given. I did not find this theory easy to understand, partly 
because the author treats systems of pth order equations involving 
(p - q) other derivatives, necessitating norms involving these two 
suffices, and partly because he does not always make clear exactly 
how the steps in the proof follow from the given hypotheses. 

Rather than the usual one used by Gear, I prefer the (to me) more 
obvious definition of consistency of order r, for a pth order equation: 

}} cu z(tn-i)/hP - }; {3i f(z(ln-i) In-i) 
= Z(p) (Tn) - !(Z(ln ) , tn) + O(h r

) . 

The requirement that .E{3i = 1 and the index of the order h term are 
then automatic, 

Very many stability concepts-asymptotic stability, absolute and 
relative stability regions, stiff A stability, and several others-are 
introduced and clearly explained. Figures 11.2 and 11.3 illustrate the 
difficulty of solving stiff equations, and the advantage of the back­
ward Euler method very well. 

I noticed rather more than the usual number of misprints; and in 

Continued on page 169 
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