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A combined, general treatment of intrinsic and extrinsic conduction in a liquid or solid is presented.
Positive and negative species of mobile charge of arbitary valences and mobilities are assumed present,
together with homogeneous immobile charge in the extrinsic case. The general equations are specialized to
a one-dimensional situation and then to that where both position-dependent static and much smaller
sinusoidally time-varying components of charge, field, and current are simultaneously present. Sufficiently
general boundary conditions are used that any condition from complete blocking to free discharge of
positive and negative mabile carriers separately can occur at the electrodes. For the flat-band condition
(zero static field; in the binary electrolyte case, coincidence of the zero charge potential and the
equilibrium potential) exact equivalent circuits and an exact expression for the small-signal impedance are
obtained. Relatively simple, closed-form expressions for the zero-frequency limiting values, C,;, and R;y, of
the two frequency-dependent elements which appear in the equivalent circuit, C; and R;, are derived even
in general cases. The dependence of the normalized quantitities C;yy and Ry, on detailed boundary
conditions, mobility ratio, valence ratio, temperature, and impurity doping level is examined in detail,
reserving examination of frequency and temperature dependence of C,y and R,y themselves for later
publication. Even for complete blocking of charges of both sign, C;, and R, are not both intensive
(interface) quantitites unless the electrode separation contains many Debye lengths and the mobility and
valence ratios are equal. When charges of one sign are completely blocked and those of the other partially
or completely free to discharge, neither C;, nor R;, is generally intensive, and C,, may be many orders of
magnitude larger than the completely blocking, diffuse-double-layer value. The dependence of Ciy, and
R,y on all the above parameters is quite different in the extrinsic conduction case depending upon
whether the discharging species involves majority or minority carriers.

I. INTRODUCTION

The early ac space-charge polarization theories of
Macdonald! and Friauf? have been applied to a wide
variety of experimental situations.?™ In many of these
instances, however, the actual experimental conditions
have not corresponded well with some of the under-
lying theoretical assumptions. Here, therefore, a more
general theory will be developed which will apply to a
wider class of materials of interest.

The theory of Ref. 1 assumed the presence of only
a single species of positive charge carriers, concentra-
tion p, and a single species of negative charge carriers,
concentration #. Arbitrary mobilities were assumed,
together with an arbitrary amount of dissociation of
n and p from a neutral center uniformly distributed in
the material under equilibrium conditions. The treat-
ment was one dimensional and involved plane-parallel
electrodes separated by a distance I. The electrodes were
taken completely blocking to the mobile charge carriers.
Friauf’s slightly later theory? made the same assump-
tions except that partial blocking? was included as well
as complete blocking. Such partial blocking employed
the Chang-Jaffé* boundary conditions and can account
for discharge of mobile carriers at the electrodes,? often
involving electrode reactions,!%.% a Faradaic process.?

It was explicitly stated in Ref. 1 that it applied only
to intrinsic and to complete impurity types of situa-
tions. For such conditions only two species of carriers
are present. In the intrinsic case (e.g., dissociation of

a solute in a strong liquid electrolyte, ionization of an
F center, intrinsic conduction in a semiconductor, etc.),
it is assumed that both the charged center after dis-
sociation and the charged dissociated species may be
mobile. When the dissociated center is taken immobile,
one has the usual complete-impurity situation. In such
a case, which is the limit of extrinsic conduction when
the extrinsic concentration divided by the intrinsic
concentration approaches infinity, the minority carrier
has a vanishingly small concentration.

Many authors who have applied the above theories
to their data have found less than satisfactory agree-
ment between theory and experiment. Frequently,
however, they have applied either the two-mobile
intrinsic results or the one-mobile complete impurity
results to a general extrinsic conduction situation. As I
shall show, such a misapplication can indeed lead to
unsatisfactory results.

Let Np and N4 denote the concentrations of uni-
formly distributed neutral donors and acceptors in a
material. Then Np* and N4~ represent the concentra-
tion of charged centers after some dissociation has
occurred. (See Sec. II for a symbol glossary.) Note
especially that Np and N4 can not only represent the
concentrations of Group III and V atoms in a Group IV
semiconductor, for example, but they can also represent
the concentrations of neutral species which dissociate to
multiply valent charged species. For example, consider
the uniform addition of CaBr; to a XBr single crystal.’®
One obtains Ca®* ions in substitutional K+ positions. In
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thermal equilibrium, both positive and negative ion
vacancies will be present, with the negativeion vacancies
the minority species. Taking the smearing of ionic charge
in an ionic crystal into account, one may regard the
doped material as containing uniformly distributed,
essentially immobile, univalent positive charges (from
Ca?*) and possibly mobile, univalent positive and
negative species, the vacancies.

In the general extrinsic case where both donors and
acceptors are simultaneously present, there will be at
least four distinct charged species present. In most
cases of practical interest, however, the concentration
of either donors or acceptors strongly dominates that
of the other. It will be sufficient to define N.=Np*t—
N4~ as the net concentration of charged donor-
acceptors. We shall assume these centers, charged or
uncharged, are immobile compared to other charged
species present. Note that full dissociation of impurity
dopants is not assumed here since N, represents just
the charged part of the dissociated concentration,
partial or full.

Those authors who have neglected the minority
carriers in a strongly extrinsic situation have not always
made a bad approximation when the electrodes are
completely blocking. On the other hand, for the more
probable experimental situation of partial blocking,
neglect of minority carriers (the use of the complete-
impurity-case theory instead of a general extrinsic
theory) can indeed be a poor approximation. This is
particularly the case when the minority carriers (even
when present in very low concentration) are the only
ones that can discharge and the majority carriers are
completely blocked 2%

It is surprising that no general extrinsic theory has
been given until now. Apparently, the need for it has
been largely unrecognized because it was implicitly or
intuitively felt that low-concentration minority carriers
could have no important effect, even in a partial-
blocking discharge situation. Ninomiya and Sonoike?
have presented the elements of a partial-blocking,
complete-impurity-case theory but give insufficient
details of their calculation to allow its results to be
adequately assessed. Beaumont and Jacobs” have pub-
lished a more complete treatment of such a theory and
have found it insufficient to explain their general
extrinsic situation. Baker and Buckle!? generalized the
theory of Ref. 1 to include arbitrary valences (especially
appropriate in liquid electrolytes and fused salts), but
their treatment has been severely criticized.?® Consider-
able further analysis and extension of the completely
and partially blocked intrinsic theories’? (for equal
mobilities) has been recently published 2% and papers
discussing the detailed frequency-response results of
the present general theory for intrinsic® and extrinsic®®
conditions will be published separately.

All the ac theories discussed herein thus far assume
a flat-band condition at equilibrium. No static external
potential is applied; no direct current flows; and the
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static components of charge are assumed to maintain
their bulk thermal equilibrium values right up to the
electrodes. Although the general ac theory is quite
complicated even with these simplifying approxima-
tioms, it is orders of magnitude more complicated when
they are relaxed. Later I hope to publish results applying
when these approximations are removed; for the
present they will be omitted from the general equations
developed but included in the final ac solution as usual.

All these theories are formally limited to apply only
for a low-voltage region defined by Vi*=eV,/kT <1,
where V, is the amplitude of the applied sinusoidal
voltage; e is the proton charge; £ is Boltzmann’s con-
stant; and T is the absolute temperature. Theory sug-
gests that considerably different results should be
obtained for V1*>>1, but experimental results frequently
show little sensitivity to the value of Vi* over a con-
siderable range of Vy*>1. Many authors have tried
to explain this puzzling result by positing either
insulating or exhaustion-depletion regions in the
material next to the electrodes or poor contacts, leading
to actual air gaps.®115:1931-33 Tt seems safe to assert,
however, that thus far the full reasons for the above
behavior have not been unambiguously determined and
they may, in fact, differ from case to case. In the
present work, this same restriction will be applicable,
although the theory may possibly apply reasonably
adequately to some experimental results for which
Vi¥>1.

The present treatment and those discussed above are,
of course, all idealizations which apply only under
limited conditions. Some of the restrictions have been
discussed, e.g., in Refs. 1, 22, 23  and 31. Here it is
worthwhile to mention restriction to nondegenerate
conditions, omission of charge carrier size effects, and
omission of compact double layer effects, including
specific adsorption, when the treatment is applied to
electrolytes. The theoretical equations, which are
developed herein primarily for the case of an arbitrary
static applied potential difference together with a much
smaller sinusoidal P.D., are more general than earlier
ones because (a) any intrinsic-extrinsic condition is
included; (b) static space-charge regions present near
the electrodes even in the absence of any applied P.D.
are accounted for; (c) mobile-charge mobilities and
valences are taken arbitrary; and (d) arbitrary values
of boundary-condition parameters are employed. The
final ac-only solution of these equations presented
herein retains the generality of (a), (c), and (d) but
drops (b), since only in the resulting flat-band case
can explicit, closed-form results be obtained.

II. LIST OF SYMBOLS
A. Major Subscripts

Denotes thermal equilibrium

[\

f  Denotes field-free conditions and thus a position-

independent quantity
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Designates an intrinsic or “interface” quantity;
also used as index with i=# or p

Designates quantity associated with negative,
mobile charged species

Designates quantity associated with positive,
mobile charged species

Value of a quantity at the reference temperature 7',
Designates the value of a quantity evaluated at
the electrode, where Y=M and x=1

Designates the value of a quantity evaluated at
the Y= —M electrode

Normalization of impedances and resistances with
R,, of admittances and conductances with G,=
R, and of capacitances with C,

A parallel quantity

A series quantity

Stands for ““total”

Designates either a static quantity or the zero-
frequency limit of a frequency-dependent quantity
Designates the amplitude of a sinusoidally varying
quantity '
The value of a quantity in the limit of high
frequencies (i.e., >1)

B. Major Superscripts

Indicates differentiation with respect to 7
Indicates differentiation with respect to X or ¥
Normalization of potentials with 27 /e, fields with
kT/eLp, and concentrations with n; or p;

A negatively charged quantity

A positively charged quantity

C. Major Symbols in Text

A number in parentheses indicates the equation where
the symbol is first used or defined.

G
C;

Cp

D;

Geometric capacitance/unit area; ¢/4xl; (30)
“Interface” capacitance/unit area; the series
capacitance associated with Z;; (89)

Total parallel capacitance/unit area; associated
with Yr; (87) Note: CPOECOECio‘l'Cg

Diffusion coefficient; for positive carriers 1=,
for negative i=n; (8)

Electric field; (3)

Frequency-independent parallel = discharge con-
ductance/unit area; (85); see also Fig. 1
(Go—Gp)=Rgz; see Fig. 1

(Ga=Gy); (11)

Total parallel conductance/unit area; associated
with Yr; (86). Note: Gpy=Gp, Gp=GC,

Bulk conductance/unit area; (12)

Total current/unit area; (7), (37)

Intrinsic Debye length; (13)

General Debye length; (22)

(1/2Lp); (38)

(¢/2L)

N
AN
Na

Ry NSO Q

&

=X
3

Tp

(n/zamer) 5 (29)

(N—N.);(43)

Concentration of uniformly distributed immobhile
neutral acceptors

Concentration of uniformly distributed immobile
neutral donors

(Npt—N47); concentration of net, charged, dis-
sociated impurities
(B/2pper) 5 (28)
(P—P.); (41)

Gp!
Frequency-independent
area; Gg!

“Interface” series resistance-unit area; associated
with Z;; (88)

(Re+Ry)

G,

Absolute temperature

Applied voltage

Diffusion potential

Normalized length; x/Lp; (25)

(X—M); (39)

A

Total admittance/unit area of the system; (83)
(Yr—Go—iwC,); (84)

“Interface” impedance-unit area; (88), (A49)
Y,

(8%/ep) + (8/€n) ; (A4)

(8:/€) — (8,/€p) 5 (A6)

Protonic charge

Enthalpy; (106), (108)

Boltzmann’s constant

Distance of separation of plane, parallel electrodes
Concentration of mobile negative charges
Concentration of positive mobile charges
M[coth(M)]

Designation of common value of 7, and 7, when
they are equal

Dimensionless discharge parameter for negative
charges; (43)

Dimensionless discharge parameter for positive
charges; (41)

Time

Distance measured from left electrode

Valence number for negative mobile charges; (6)
Valence number for positive mobile charges; (5)

series  resistance-unit

Normalized radial frequency; wrp
(1477 (21)

(14-m,)7"; (20)

Dielectric constant of the bulk material
G./Ge; (18)

Gy/Gw; (17)

Mobility; i=# or p; (3), (4)

N/ (anncf"l"zpzpe!); (24)

(1+x1)"2; (72)

T (n*/p*); (16)
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my  w(n*/p*); (19)

mm Mobility ratio; ps/up; (16)

Valence number ratio; z./%,; (19)

Normalized time; wt; (27)

Dielectric relaxation time; C,R,; (31)
No/22.m:=N./22,p:; (15)

Potential; taken zero at left electrode

Radial frequency of the applied sinusoidal voltage

8'&)(5“!:]

D. Case Designation
(4, B; C, D; E, F)=(ry, 7} Tm, 75 X, M). When
x=0, M=M, When x#0 and a specific value of M
(e.g., F=10%) is underlined, then the value is of M;
rather than M.

III. GENERAL EQUATIONS

Consider a homogeneous material held at constant,
spatially uniform temperature between two plane-
parallel electrodes separated by a distance /. All the
subsequent analysis will deal with unit area of this
system. Now assume that the uniformly distributed,
charged, net doping concentration, N.=Npt—N,~,
represents immobile charge and is time independent.
Finally, assume that the mobile charge concentrations
always have their steady state or thermal equilibrium
values in both intrinsic and extrinsic cases. This assump-
tion of zero recombination time usefully simplifies the
results. In the intrinsic situation, nonzero recombina-
tion time has been shown to have only a minor effect!
when dissociation is incomplete and none, of course, for
complete dissociation. The present treatment applies
for any nonzero degree of dissociation.

The usual, nondegenerate-material, transport equa-
tions are

3p/dt=—V"j,, (1)
/= —V+ja, (2)
j»= (I‘pPE_DpvP) ’ 3)
jn=— (ﬂn”E+Dnvn) ’ (4)
Li=ezj,, ()
InE - eznjn, (6)
and
I=L,+1,+ (¢/4w) (OE/8). (7

Here E is the electric field and I, and I, are the
positive and negative charge carrier current densities.
In order that the present analysis apply to both a
general intrinsic as well as extrinsic situation, the
valence numbers z, and z, (>0) for the positive and
negative charge carriers have been introduced here.
For the usual extrinsic situation in solids, z,=z,=1.
The 2,543, situation is, however, a common one for
strong electrolytes, with situations of interest satisfying
0.2<2,/2,<35.

In addition to the above equations, we shall need the
general Einstein relation®

D¢= (kT/eZi)p,.', (8)
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where 1=n or p, and the Poisson equation
V-E= (4ne/e) (3pp—2.n+N,). (9)

In these equations, D; and u; are diffusion coefficients
and mobilities (taken independent of concentration
as usual) and e is the dielectric constant of the basic
material (including no mobile-charge effects).

For simplification of subsequent work, it will be
convenient to introduce many normalized quantities.
Consider first the zero-current equilibrium condition
and denote the negative mobile-charge concentration
by 7. and the positive by p.. In general, un, and p, are
position dependent. In the field-free flat-band situation,
these static quantities, which are then the unperturbed
bulk values, will be designated by #, and ¢,;. We may

now write
Gy= (e/1) (2pmppes), (10)
G.=(e/l) (Znitatter) (11)
Go=R, =G, +G,, (12)

where R, is the high-frequency-limiting resistance-unit
area of the unperturbed two-electrode system.

Now denote the bulk values of intrinsic charge carrier
concentrations by #; and p;. They are connected by the
intrinsic electroneutrality condition, z,m,=z,p,. For a
completely intrinsic material #,=#; and p,=p;. The
intrinsic Debye length is

Li=[ekT/4ne(z.2n:42,2p;) 2. (13)

Next, the following normalized quantities will prove
useful:

g n¥= (nef/ni)y P*E (Pef/Pl')y (14)
an
x=[(2.+2,) /ZJENG/ (zani+257p5) ]
=[N/ (zanitz,p:) ] (15)

When x=0, the material is completely intrinsic and
p*=n*=1. Note that when z,=z,=1, n;=p; and
x=N g/ 2'}1.'.

We shall also need '

Tm= (ktn/1tp), Me=Tm (”*/P*) ’ (16)
&= (Gp/Go) = (14+m,)7, (17)
€= (Gn/Gno) = (1+1r,_1) -, (18)
= (zn/zﬁ); 7"!:_:7"!(”*/?*)7 (19)
8,=[2,0*/ (zpp*+2m*) J= (14-7,) 7, (20)
and
do=[2an*/ (zp*+2.0*) J= (142,171 (21)

Note that e,+e,=8,+08,=1. Since the general Debye
length Lp is given by ’

Lp=[ekT/4xé* (z:nest+ 2, pes) J2, (22)
one readily finds that
(Li/Lp)=[(p*+7n*)/(14w.) T2 (23)
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Also let
y= [Ne/ (Zn2ne/+ szpef) :]

=[2x/(2a+2,) 1(Lp/L:)*. (24)

Now let us specialize to a one-dimensional situation
with x measured from the left electrode and 0<x<I.
Let

X=(x/Lp), (25)
E*=(eLp/kT)E, (26)
TEwt, (27)
P= (P/zppe!) ’ (28)
N=(n/z.n¢), (29)
and
Q=wC,R,. (30)

Here C,=e/4xl is the geometric capacitance per unit
area and w is the radial frequency of a sinusoidal excita-
tion. The dielectric relaxation time,

ro=¢/[4me(zapatter+2Zpppper) 1, (31)

is just CyR,; thus @=wrp. Most measurable space-
charge and discharge effects of interest occur in the
range 0<Q<1,

We are now finally in a position to rewrite the equa-
tions in normalized form. To do so, first combine Egs.
(1) and (3), (2) and (4), and use (8) and (9). Denote
partial differentiation with respect to r by a dot over
the quantity being differentiated and that with respect
to X by a superscript prime. We obtain

P"=03,6,7 P+ 2, E*P'+ (8,P~8,N+v) P], (32)

N""=Qbea” "N —2,[ E*N'+ (8,P—58,N+»)N], (33)

E*=§,P—8,N+», (34)

I,= (2kT/e)G .e,M (3,PE*—P"), (35)

I,= (2kT/e)GuenM (zNE*+N'), (36)

and I=I+I,+ (2kT/e) (G.QM)E*, (37)
where the important quantity M is

M= (l/2Lp) (38)

the number of general Debye lengths contained in (1/2).
The corresponding intrinsic quantity is M;=1/2L;. The
general neutrality condition in normalized form follows
from Eq. (34) with E*(X)=0 for all X.

If we now define
Y=X—-M, (39)

we may write for the normalized potential, y*=ey/kT,
taken to be zero at V=—M,

Y
v (Y)=— /_ E*(Y)dY. (40)

ROSS MACDONALD

Let us now employ M and M subscripts to denote
quantities evaluated at ¥'=—M and M, respectively.
Thus, ¢*(M) =y»*. The normalized applied potential
is therefore just V*=yp*—y*=yu*, and V* may be
a function of time. We shall first be interested in the
steady-state response of the system to a V* of the form
V¥*=V*+V,*sinr. Here Vo* and Vi* are time inde-
pendent. In the general case, | Vo* | and V1* may be
>>1, and V1* need not be smaller than | V*|.

In order to obtain the total current I as an explicit
function of the applied potential, boundary conditions
are required. Although their parameters may possibly
be frequency dependent and may vary with time in
general, only time- and frequency-independent param-
eters will be considered here. Further, the boundary
condition parameters, if not even the form of the
conditions themselves, will generally depend on static
levels,% such as the value of V¢* and the parameter
values may sometimes even need to be different at the
two electrodes.®

Even if the two electrodes are identical, the equilib-
rium condition does not generally correspond to zero
charge on the surfaces. Because of the difference
between electrode material and the material between
them, and because of a possible difference in the free
energy of formation of positive and negative mobile
carriers3 there will usually be present a contact or
diffusion potential Vp which perturbs the concentra-
tions of mobile charges in the neighborhood of the
electrodes even under zero-current conditions. Then
ne#=nes and p.#~p.;. Thus, an important part of a
complete solution of the present equations should be
the specification of the equilibrium perturbation, as
part of the initial and boundary conditions of the
problem. Such perturbations have been considered in
certain space-charge situations®”-® but have not usually
been taken into account when there are two species of
mobile carriers present. Although they have been
included to some extent in a recent V*, V1*5<0 theory,®
its many approximations and assumptions raise doubts
of its adequacy and usefulness.®® A more complete

‘theory requires adding to the equations considered

herein relations which specify the dependence of posi-
tive and negative surface charge (when it is distinct
from electrode charge) on applied potential difference.

Since the present equations are nonlinear, their solu-
tion for a general applied potential and for electrodes
which may be different must be carried out numeri-
cally. It should be noted that diffusion-potential per-
turbation and, when appropriate, concentration-de-
pendent diffusion coefficients may be much more readily
incorporated into such a solution than into a com-
pletely analytic one.

Finding boundary conditions which will yield I(V)
curves in good agreement with specific data at different
temperatures, even for the static case of V="V, is a
difficult task, certainly one not yet fully accomplished
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for most materials. Until experimental dc response over
an appreciable potential range for at least a single
temperature can be derived quite closely theoretically,
one cannot hope to achieve an adequately general ac
theory. Nevertheless, using simple boundary conditions,
small-signal ac response for the linear regime around
equilibrium is still of interest for comparison with
experiment and, since it can be obtained analytically
in closed form, is also valuable as a check solution for
comparison with later, more complicated numerical
solutions of the problem.

Thus, the Chang-Jaffé boundary conditions®”* will
be used herein, as in most comparable earlier work.
These conditions involve the time-independent param-
eters 7, and 7,; relate conduction currents and con-
centrations; and may be written at the boundaries,
Y=+M,as

Iig= —rp(ezpr/l) (pi— Peit)

= —1,(kT/e) (Guep) APjt, (41)
Iou=ry(ezDp/1) (pr— pent)
=1,(kT/e) (Guep) AP, (42)
L= r.(e2.Du/1) (nig—nest)
= rn(kT/e) (Guoen) AN)‘?) (43)
and
InM= _rn(eann/l) ("M_neM)
=—1 (kT/G) (Gunen) ANM' (44)

In these equations, APi#=_Pjii— P.jz, ANy=Ny—Neu,
etc., and r, and r, are dimensionless discharge param-
eters which can be related to a symmetrical free energy
barrier at the electrodes? and to specific electrode reac-
tion rate constants.” They thus may be expected to
increase with increasing temperature. When 7, and r,
are zero, the electrodes are completely blocking (ideally
polarized in electrochemical parlance). Alternatively,
when 7, and r, are infinite, the electrode reactions have
infinite rates; there is no blocking at all; and APg=
APy=ANj=ANy=0.

These boundary conditions, while not completely
general, nevertheless span the entire range from com-
plete blocking to no blocking for each species of charge

carrier in a simple and natural way. They may be .

applied whether the mobile charges are electrons and
holes, ions, vacancies, or interstitials. In the electrolyte
case, they are particularly appropriate for first-order
redox reactions, where one or more electrons may
participate in the reaction, depending on the valence
of the reacting ion. Note that r,=r,=0 corresponds to
an infinite potential barrier to mobile charges at the
electrodes. The values r,=7,= « are actually not con-
sistent with the potential barrier picture, a reasonable
result since reaction rates are never actually infinite.
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Since there is no practical difference in response between
finite, physically possible values of 10° or more for 7,
or 7, and infinite values, however, the latter will
frequently be used as convenient limiting conditions.

Next, Egs. (35) and (36), evaluated at Y==+M,
may be used with (41)—(44) to obtain explicit boundary
relations. Further, since I(Y) is independent of ¥ in a
one-dimensional situation, I’=0 and thus Ig=Iy.
This equality leads to

(7tn/2M) (AN 3+ AN 7) — (7365/2M ) (APy+AP37)
=Q(Ex*—Ei*). (45)

Both sides of this equation are identically zero in
equilibrium. For the V*=V¢* static condition with o
zero or nonzero, (45) becomes

(7nén) (ANos+ANoiz) — (r565) (APorr~+APosz) =0.  (46)

When AN and AP are antisymmetric functions centered
about Y=0, Iig=1Im, Inz=1I.n, and Eg*=Eux*.
Further, when the electrodes are identical, it is neces-
sary that E.iz*= — Eoxr*.

IV. STATIC AND PERTURBATIVE EQUATIONS

Let us assume that V*= V¥4 Vy*e” and that V,*<1.
Then other quantities such as P and N may be split
into static and time-varying parts also. Because of the
above condition on Vy*, it will be a good approximation
to neglect all harmonics in P, I, etc., and in all products,
thus linearizing all time-varying terms in the equations.!
The response induced by V1*¢" represents a small per-
turbation on the state of the system associated with a
given value of V¢*. Under such conditions, an ordinary
impedance may be defined which will be a function
of V¢*. For use in future work, the pertinent equations
of the problem will be separated into static (¥o*) and
perturbative (V1*) parts, although the present solution
is for Vo*=Vp*=0 only.

The static equations, which apply independently of
the size of V¥, are

Py'= [ E*Py+ (8,Po—8.No+v) Pr],  (47)
No''= —2,[E*Ny'+ (8,P— 8. No+v) Ny, (48)
Eg*'=8,Py—8.No+», (49)

L= (2kT/e)GuepM (3,PoEs*—Py'), (50)
Io= (2kT /)G enM (2.NoEg*+4-N¢'), (51)
Iy= T+ 1o, (52)
2pPoiz Eoit* — Poig’= — (r5/2M) APojz, (53)
2pPorcEoy™*— Poy’ = (rp/2M ) APy, (54)

2. Noit Eosr*+Noit'= (ra/2M) ANoiz, (55)

2 NosEou*+ Noss'= — (72/2M) AN oy, (56)
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and

M
Vor=— f E#(Y)dY. (57)
~M
When V*=V*=0, I,=0, and the static solution
reduces to the equilibrium condition independently of
rp and 7, values. Note, however, that for complete
blocking where 7,=r,=0, Iy=Iyg=In=0 for any
applied V¢*; thus the final equilibrium state reached
in this case after all transients have disappeared will
not correspond to the original one unless Vy*=0. When
| Vé*|>0 and 7, and/or 7, are/is nonzero, the final
condition is the static steady state but is not a condi-
tion of equilibrium.
The linearized perturbative equations are

P1,’= iﬂ&,,e,,“Pl-i- ZPEEQ*P1’+E1*P0'

+ (8,P1—8.N1) Po+ (8,Po—8.No+») 1],  (58)

Ny’ = 1986, N1— 2,[ E*Ny'+ Ey* Ny’
+ (8,P1—8,N1) No+ (8,Po— 8. No+v) N1,  (59)
Ey*'=8,P,—3,Ny, (60)
L= (2kT/€) G nexM[2,(PoEr*+PLE*) — Py], (61)
L= (2kT/€)G wenM[2.(NoEs*+ N1E*) +Ny'],  (62)
Li= I+ Ia+ (2kT/e) (GLiQM) Ey*,  (63)
2o (PostEvig*+ P Eoit®) — Puz'= — (r5/2M) Priz,  (64)
2p(PostEs* -+ PyscEor™) — Py’ = (rp/2M) Pry,  (65)
%2 (NoizEvir*+ NuzEoit*) + Nut'= (r./2M) Nuz, (66)
% (NoseEra*+ NiseEore®) +Nae'= — (ra/2M) N1, (67)

and finally,
Vb= — /M E(Y)dY. (68)
—u

Clearly, to solve Eqgs. (47)—(68) one should first solve
for the spatial dependence of the static quantities using
(47)-(57) and the equilibrium solution, then use the
results in (58)-(68). In general, such solutions can
only be carried out numerically.

It will be convenient to indicate values of the six
main parameters of the present problem in the following
way: (fp, #a} Tm, 723 X, M:). Here M, may either be M
or M; as appropriate. For the situation (0, O; mm, 7.;
0, M), the zero-frequency limiting capacitance of the
linearized system may be calculated either from V*=
Ve*=0 or from V*=Vi*sinr with V,*<1 and 7—0.
Of course, for Vo* 21, the static solution yields a dif-
ferential capacitance dependent on the value of V.
Several special-case solutions of the basic equations
have been obtained for the flat-band equilibrium condi-
tion, that of zero charge on the electrodes in equilib-

J. ROSS MACDONALD

rium. For V *=0, some ac solutions have been ob-
tained for the (0, 0; mm, 1; 0, M,) casel222.28 for
(0, ; 1, 1; 0, M;),»% and a partial solution? for
(7p) Tn; ™my 1; 0, M ;). Static solutions have been given®
(a) for (0, 0; mm, m,; 0, M) with V¢*—0 and complete
dissociation, and for Vy*21 for the cases (b) (0, 0;
mm, 1; 0, M;) with complete dissociation® and (c)
(0, 0; 0, 1; 0, M;) with arbitrary dissociation.22 No
static solutions for V*=V*>0and (r,,7.; 7m, 7.5 x, M)
with x>0 and r, and r, arbitrary or equal to (0, »)
or (e, 0) have been obtained thus far to my knowledge,
even when Vp=0.

In the electrolyte case, Vp=V,=0 corresponds to
the equilibrium, zero-electrode-charge case. When Vp
is not intrinsically zero, the usual situation, that poten-
tial (measured with respect to a reference electrode)
which yields I,=0 corresponds to the present V,=0,
the equilibrium condition. Thus, the present V, is the
electrolyte overpotential. When discreteness-of-charge
effects are considered, V, is known as the macropoten-
tial.** Here, such effects are neglected except insofar as
they implicitly affect*® the value of Vp.

When the electrodes are completely blocking (ideally
polarized) and Vp#0, the determination of that poten-
tial which corresponds to the present Vo=0 is more
difficult since I,=0 independently of V. If one is con-
cerned with effects at a single working electrode, then
Vo=0 corresponds to the condition of zero electrode
charge. Of course the value of Vp is affected by elec-
trode, solvent, and solute materials and by the presence
or absence of specifically adsorbed charge.®* Note
that even for complete blocking, where the electrodes
themselves should have minimum effect on the equilib-
rium charge distributions near them, Vp is not usually
zero because of specific ionic adsorption, charge in
surface states, excess surface charge arising from pos-
sible differences in the free energies of formation of
positive and negative charge carriers, etc.

V. SPECIFIC SOLUTION

To make an analytic solution possible in the general
Vo*=0 (rp, 7n; Tm, 72; X, M) case, I shall now assume
that Vp*=E*(YV)=E*(Y)=0 for all ¥. The static
situation is then that for flat-band equilibrium. It
follows that Py"’=N,'=Py'=Ny=I;=0 for all ¥ as
well. Under these conditions, py—p.r, Pr—Pes=2zp"",
#o—n,y, and No—Ngs=3z," . The general equilibrium
neutrality condition which applies when E¢*'=0 may
now be written alternatively as

zp?ef'" znne/+Ne= 0,
6pPef—anNe/+v= 07
5ppi—6nni+ [ (Znni+2pP.‘) /2]V= 0’

or

pr—nr42x=0, (69)
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where the final form follows on using

(sz*+zn”*) [ (Zeer+35 o) = [2/ (an+2pj7.') ]

When the usual mass-action law appropriate for
2p=2,=1, Nespes=ns, or n¥*p*=1, is combined with
(69) one obtains

pr=Et—x (70)
and
n*=§+x, (711)
where
g= (14+xH)"2 (72)

Here, one should remember that — e <x< e and that
for z,=2,=1, x=N./2n;. For the intrinsic case, of
course, x=0 and n*= p¥*=1 for any z, and 2, values.
The flat-band condition leads to considerable sim-
plification in Eqgs. (58)—(67). We first obtain

Py’ = a3y P1+ 412N, (73)
Ni'= anPr+an, (74)
where
amn= 51,(1-'-1:96['1) , (75)
ap= —'81" an= —31'7 (76)
and
@n=08,(1+1Qe,71). (71

These results will be used in the Appendix, Sec. I.
Some of the other equations may now be rewritten as

L= (2kT/€) GoepM (E*~Py'). (78)
In= (ZkT/e) GeenM (E1*+N1I) ) (79)
Ew*—PlM'= (fp/ZM)Pm{, (80)

and
Eu*+Nwy'= — (1:/2M) N1u, (81)

where the other two boundary conditions are super-
fluous since Py and N, are antisymmetric around V=0
for the present conditions.

An explicit numerical solution of some of these (or
equivalent) equations, with Vy*=0, has been obtained
in the (0, 0; 0, 1; 0, M) case by Stern and Weaver®
for V1* possibly appreciably greater than unity. Un-
fortunately, diffusion effects were completely neglected,
as were higher harmonics in current, concentration, etc.
Thus, these results must be considered far from defini-
tive. Because of the neglect of diffusion, they should
not even reduce to the exact results for the above case
found! for V,* <1.

To obtain explicit expressions for the alternating
current and impedance most simply, one may make
use of the one-dimensional character of the present
problem. Although the individual components of the
current are functions of #, the total current amplitude

4989

I, cannot be. Thus, averaging Iy yields

g [ [0+ 1)+ (B o Jav
=(2)6. [ Ctati—opy)
+ (epteatiQ) EX (V) JAY.  (82)

For the presently chosen sign relation between V;* and
the integral of Ei*, Eq. (68), the total admittance ¥z
is given by Yr=1I/(—V1). Let the subscript N denote
normalization which involves dividing by G, for
admittances, by R, for impedances, and by C, for
separately considered capacitances. Note that C; and
G, are the components of the total system admittance
in the high-frequency limit: ¥re=Ge+iwC, We may
now write for the normalized admittance on evaluating
(82)
Voy=(—el//kTG,V1*)
= 14104 (2/V1*) (ePiu—eaN1nr),  (83)

where the right hand side follows from (82) and (68)
and the antisymmetry of Py and Ni. Since Yryo=
14149, the last part of the expression for Yry must go
to zero as Q—,

For further work it is convenient to consider the
admittance

YzNE YTN"‘ (1+‘LQ) = (Z/Vl*) (epr—ean) . (84)

In Sec. II of the Appendix a complicated expression for
Y.y is derived from Eq. (84) in terms of functions of
the basic input parameters (r,, #n; Tm, 7.; X, M) and Q.
The Q—0 limit of V,x derived from this result is non-
zero when r, and 7, are not both zero. Let a subscript
zero denote quantities evaluated when 2—0. Then one
readily finds, from Eq. (A43) and Vynvo= Yowot1,
et pt€ntnt (rp7a/2)

2[1+ (rp/D 1+ (ra/2) T’
entirely independent of w,! Note that the discharge
conductance Gp is zero for complete blocking (rp,=
r,=0) and equal to G, when r,=r,= . For (15, 1) =
(=,0), Gpy=c¢,, and for (0, =) it reduces to e, In
the latter case, for example, Gp=e,G, =G, just the
conductance associated with the freely discharging
charge carrier.

There is no zero subscript on Gp or Gpy because these
quantities are frequency independent. Since Yrwo=
Gopxy<1 and Re(¥Yrn,)=1, it is clear that there is a
direct, frequency-independent conducting discharge
path between electrodes for all frequencies when 7,
and r, are not both zero. It turns out that the equiva-
lent circuit of the whole system, when structured to
involve a maximum number of frequency-independent
elements, 22 is as shown in Fig. 1(a). Here Gg=
G.—Gp. Thus, Gexn=1—Gpy. The only frequency
dependence appears in the “interface” admittance Y.

Yrno=Gpy= (85)
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Fic. 1. Exact equivalent circuits involving the frequency-depen-
dent admittance ¥;. The two circuits are electrically equivalent.

Its inverse Z; may be separated into a frequency-
dependent resistance R; in series with a frequency-
dependent capacitance C;. As I shall show shortly,
however, only for M>>1, r,=r,, and wn=mu, are the
zero-frequency limits Ry and Cy both truly intensive
interface quantities®® in the sense that only then are

YVivo=®, Re(¥rne,)=GCGoy+Gen=1.

and

CbN

ROSS MACDONALD

illustrates an alternate way of structuring the circuit,
one with exactly the same over-all admittance at all
frequencies. The sort of modification in these circuits
necessary to take recombination of the charge carriers
into account has been given previously! for (0, 0;
Tmy 1, 0, M ,) .

In order to make direct contact with experiment,
define the parallel components of the normalized total
impedance as Gpy=Gp/G, and Cpy=Cp/C,. Then
since YTNEGPN-I-‘iQCPN,

GPN= RC(YTN) (86)
and

Cpy=0Q71 Im(YTN) (87)

Note that these definitions of Gp and Cp differ some-
what from those used previously.? It is here convenient
to use the present definitions since Gp and Cp may be
measured directly using an impedance bridge. Next
note from the equivalent circuit that Cpyo=14-Cine.
Generally, Cixo>>1 in cases of interest.

From the equivalent circuit and Eq. (84), one can
readily derive the following relation between Z;y and
YzNI

Zin=Rin+ (1QC;x) 1= — Yon/[Gen (Gen+Yox) ].
(88)

Since Re(¥ano) = — Gy, this equation involves a small
difference between two large quantities when 2—0, and
it is thus a poor choice for computation. Explicit equa-
tions for Z;y [Eqgs. (A48) and (A49) ] which avoid this
difficulty are derived in Sec. III of the Appendix.

As shown in the Appendix, one can, after very con-
siderable labor, derive exact expressions for Ciye=
—[Q Im(Z:x) I3%, and Riyo=Re(Zix)ao. The gen-
eral formula for Ciyo, Eq. (A80), may be written in the
form

they both essentially independent of /. Note that since Cino=Con+Con, (89)
Figure 1(b) where
CaN"*=-'6n¢$p]‘{[2 (711_7n)2/12{[1+ (rp/z) ][1+ (rﬂ/z)]}z (90)
_ (=1 (4 (r/2) 1+ (ra/2) T+ [(ra—15) /22{82[ 14 (r4/2) =821+ (r/2) ]}) 1)
- {[1+(r,/2) 101+ (ra/2) 1} '
Here r=M{[coth (M) ], essentially equal to M for M 23. and
Cino= (8:0,M?/3) +82(r—1). (94)

For many situations of interest Con>>Cox.
When 7,=r,=r., Ciyo reduces to just

Cino= (r—1)/[14-(r/2) i3 (92)

while for (0, 0; 7, 7.5 x, M) and (0, @ ; 7w, 75 x, M)
it becomes, respectively,

Cinvo= (8:0,M%/3)+8,2(r—1) (93)

These results agree with those found previously in the
mm=m.=1, x=0 cases.'®%2 Since C;yo does not in-
volve ¢, or ¢, it is independent of mobilities and .,
as it should be.

Now Ciyo={r—1) is the r,=0 completely blocking
result previously found. Note that Cpyo then equals 7

Downloaded 11 Aug 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



POLARIZATION AND ELECTRODE-DISCHARGE EFFECTS

and, for M >3, Cp=te/8rLp, a completely intensive
result arising from the usual double-layer interface
capacitance (per unit area) of e¢/4wLp localized near
each electrode.2® Equation (92) shows that Ciyo may
remain much greater than unity even when charges of
both signs discharge identically and appreciably! Ci
is essentially intensive as long as r>>1.

Equations (93) and (94) indicate that Cixe may be
very much larger than the 7,= 0 result when charge of
one sign is completely blocked and charge of the other
sign is completely free to discharge. For example, for
(0, 0;mm, 1;0, 105), Co.x=2(101°/12) and Con==(105/4).
Thus, Cine=2(10/12) is here nearly 10° times larger
than the completely blocking result. Note especially
that the dominant C, part of Cy is far from intensive. 2%
For the (,0) case, for example, C,= (/1927 Lp?),
directly extensive. This possibly very large capacitance
contribution, which increases directly with electrode
separation and appears only when 7,77, is thus specific
to a differential discharge situation. It then arises when
the diffusion length associated with the conduction
process? becomes comparable to [. This accounts for
its unusual proportionality to I. Such proportionality

8.2{ (a—2¢b,) (r—1)+ (a/2) (M? csch®M —7) + (6,8, M2/3) [ (M?/15) +2¢8,. |}
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only appears, of course, in the low-frequency-limiting
saturation region, and the larger / and hence C,, the
lower in frequency one must go to reach this region.

Although the general expression for Ry, derived in
the Appendix, which, like that for Cine, holds exactly
for 0<M < =, is too unwieldy to write out explicitly,
it reduces to manageable form in special cases. For
example, for r,=r,=7, we find

Rivo=[1+(r./2) J((a—1) +a(r—1)7[1+(r./2) ]

X{1+[(M? csch®?M—1) /2(r—1)1}), (95)
where g is a quantity involving x, o, and =, and is
given by (8,2/¢,) + (8.2/€,) . It is unity for any x when
Tm=m. For the usual M>>1 case, R;y; approaches
g (a—1)4(ag./2M)7], where g.=[1+(r./2)]. Since
R,/M is an intensive quantity, R is only fully inten-
sive in the present case when a= 1. It has not been clear
until now that Z;xo is only intensive in even the com-
pletely blocking case when a=1, since only mp=m.=1
results have been available previously.!2 2.2
For the (o, 0; mm, 7.; x, M) situation, one finds

-RiN0=

where ¢= (8,/€.) — (85/€,). The corresponding result
for (0, ©; mm, 7,; X, M) is obtained on making the
transformations §,—8,, 6,—%,, €;,—¢,, and e,—,.

Several special cases are of interest. Take M >3 and
consider the cases (a) x<<—100, (b) x=0, and (c)
x>100 for 0<my,, w,< 0. For Case (a), («, 0; mm, 7;
x, M) yields

RiNO_')(sanap) —lg (452/5‘"'2)E (4X2/57|'z) y (97)
provided x*/w, and x? are both much greater than unity.

On the other hand, for (0, « ; mm, 7,; x, M), Case (a)
leads to

Rine—(r—2)/2(r—1)2—(2M) ™, (98)

when the (r—1) terms in (96) are dominant (i.e.,
M3K100x?/x.). Thus (97) shows, as expected, that
when the minority carrier is completely blocked, R;xo
becomes very large. When the majority carrier is
blocked, however, R;yo—0 as M— o,

The expression for R;xo only simplifies appreciably in
Case (b) when 7,,=w,=1. Then, both («,0;1, 1;0, M)
and (0, ©; 1, 1;0, M) lead to

LOL/45)+(M/2)—1] 4
[(M—1)/41+ (M2/12)}2 5’

where again the last form follows for M>>1. The (4/5)
result is the same as that found previously, but the

Riye= Py (99)

[ox(r—1) + (8,6.M2/3) I ’

(96)

(M/2) term in the numerator differs slightly from the
earlier result? because of the present inclusion of all
higher-order contributions to Ryo.

Now Case (c), where the majority carriers are nega-
tive, yields, for (e, 0; mm, .; x, M),

Rine—(r—2)/2(r—1)>>(2M), (100)

when M3&K100x?r,. The corresponding result for
(0, @ ; mm, 725 x, M) is

Rivo—>(58n3p) 12 (481,/5)= (4x*./5),  (101)

provided x?mr, and x* are both much greater than unity.

Now Cix and R;y remain very nearly equal to Cixo
and R;xo for (0, 0; 1, 1; 0, M;) up to 2 <0.1.2 For
most other cases, however, Ciy and R;y remain equal
to their low-frequency-limiting values only for con-
siderably smaller Q. In the constant range, of course,
the low-frequency-limiting forms of the equivalent
circuits of Fig. 1 are sufficient to describe all the fre-
quency response of the system of interest. Thus, for
0, 0; 1, 1; 0, M,), virtually everything interesting
happens in this C;n=2C;no, Rixn=2Rino range. For this
situation, Rp= o, Rg=R,, Cio=(r—1)C,, and, for
M>1, Ry<R,, leading to a very simple equivalent
circuit!®® involving single-time-constant,® simple
Debye dispersion.

Although there are far too many different types of
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TaBLE I. Limiting forms of frequency-independent resistive elements.

Gown Gen Rpxy Ren
(rp, )
situation el we=ms w1 Tl we=we w1 re&l  we=m, w1 1Kl we=ms w1
(,0) ~ g~ ~N e~ ~1 14w, o~ ~o 14wl o~
0,0) 0 1 © 1
(0, =) ~) € ~1 ~1 & ~0 ~o  14rt ~ ~1 14w, ~®

frequency response possible in the general (7p, #n; Tm, 72}
X, M) case to list here, it is worthwhile mentioning that
the (r,, ©;1,1;0, M;) and (e, 7,; 1, 1; 0, M;) cases
lead, for M>>10, to appreciable regions of approximate
w™* response for C,. Here k=1.5 for r, or r, equal to
zero, and it decreases smoothly toward zero as 7, or r,
approaches infinity. Such response also appears under
certain other (r,, 7,) conditions when ., and/or =, are
not unity and/or x is not necessarily zero.

VI. DISCUSSION OF RESULTS

It is clear from symmetry that as far as the impedance
of the present system is concerned certain specific
situations are fully equivalent to others. If

(rp, Tny Tmy W23 X M)= (A,B,C, D)E; F);

where A is an arbitrary specific value of 7, B of 7., etc.,
then the situation described by (B, 4;C™, D™, —E, F)
has the same impedance at all frequencies as does
(4, B;C,D; E,F). It also turns out that the usual
normalized impedance of the (0,0;C, C; E, F) case is
entirely independent of the values of mn=w,=C and
x=E. There is thus no difference between extrinsic
and intrinsic normalized response for this particular
completely blocking situation, although positive and
negative charge carrier concentrations depend strongly
on the value of x. In addition, the important quantity a
is independent of the sign of x for the (ry, #a; mm, 1;x, M)
case.

Since the normalized impedances Zry and Z;» and
some of their elements depend on seven parameters in
the general case, and several of these parameters may
depend strongly on temperature as well, it is impractical
to investigate the effects of full variation of all param-
eters independently, even taking symmetry into
account. Thus, frequency dependence for the intrinsic
(79 Tn} Tm, 725 0, M;) case with variation of some of the
input parameters will be explicitly considered from a
binary electrolyte point of view in a subsequent paper,*
and the frequency dependence of the intrinsic-extrinsic
(79 7n; ®my 1;x, M) case investigated in a further
paper® emphasizing solid-state situations. As’ back-
ground for this subsequent work, the remainder of the
present paper will principally illustrate the dependence
of the 2—0 quantities Ci;x; and R;yo on some of the

input parameters of the problem for the above two
cases of main physical interest. Thus, situations in-
volving w,#1 and x#0 concomitantly will not be
further considered since they seem of little physical
importance and are not covered by the present mass-
action law,

First, Table I shows how the frequency-independent
resistive elements of the equivalent circuit of Fig. 1(a)
depend on various conditions. Clearly, when the dis-
charging carrier is also the majority carrier, Gpy and
Rpy may be essentially unity and Rgy~. But since
me=mm(n*/p*) depends on both the mobility ratio and
on the normalized concentration ratio, it is actually

O T T T T T

71 {©,0;1,1; X, M)

Cino

F16. 2. The normalized quantities Cixo and Rino versus M
for several x values for the (», 0; 1, 1; x, M) partially blocking
situation. The line with short dashes applies to the (0, 0; 1, 1;
x, M) completely blocking situation.
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Fi6. 3. Log-log plots of Cine and Riwo
versus x for fixed M; values in the (, 0;
1,1; x, M) situation. Values for x=0 are
shown by points in the center.
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the ratio of p.n* to u,p*, not just which type of carrier
is in the majority, which counts. Thus, for Rp=<R,,
it is necessary that p,p*>>u.n* when the positive charges
discharge, and p.#*>>p,p* when negative ones do so.
Note that when x>>1, (n*/p*)=2(2x)2>1 and when
xK—1, (n*/p*)=2(2x) 2.

The situation where Rpy=1 and Rgxy~  is a limiting
case of little interest, however. Then the equivalent
circuit degenerates at all frequencies to the usual high-
frequency limiting form of C, in parallel with R,.
Thus, such situations as (0, «;1,1;>>10, M) and
(=, 0; 1, 1; <—10, M) need no further consideration,
although a few curves pertaining to such cases will be
presented. Likewise, such situations as (0, ©; «, 1;
x, M) and (=, 0;0, 1;x, M) where the blocked carrier
has zero mobility, are also of no particular interest.

As already mentioned, symmetry may be used to
eliminate many duplicate cases from consideration. The
transformation from (r,, r,,) = (0, « ) to («, 0) reverses
the values of Ggxy and Gpy, but only for the cases
(0, ©; 7m, 1; 0, M;) and (o, 0; mn, 1; 0, M;) do the
corresponding values of R;xo and Ciyo turn out to be
the same. For (0, B; C, 1;0, F) and (B, 0;C, 1; 0, F)
the C;xo values are the same but R.yo, Rpxy, and Rey
are all different.

Now let us first consider constant temperature condi-
tions. Figure 2 shows how Cixo and Rixo depend on M
for various fixed x values for the («,0;1,1;x, M)
situation. In the (0,0; 1, 1;x, M) case (which is inde-
pendent of the value of x), the short-dashed curve
shows how Cxq differs from that for (=, 0;1,1; 100, M)
at large M. Similarly, the (0,0; 1, 1;x, M) Rino curve
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is also essentially the same as that shown for x=100
up to about M = 10, then it follows (2M)~! dependence
for larger M.

Although the x= =100C;xno and R;xocurves approach
each other for M >10%, Gpy and Ggy are reversed for
these cases. For (,0;1,1;100, M), the ratio Rpx/
Rino approaches S for M 2108 and is >>10 for M <104
Since Rgx==21 in this case, Rsyo=Rgny+Rixo will be
appreciably smaller than Rpy for all M. Thus, the
parallel branch of the equivalent circuit containing Z;x
will be important for all M values.

On the other hand, for (=, 0;1,1; —100, M), Rpy=2
1, Regn==24X10% and R;y¢>=8X1(%. In this situation,
the parallel Rp resistive branch greatly dominates the
branch containing Z;», and it will usually be impossible
to measure C;yo until x has increased to a value con-
siderably closer to zero. At x=0, for example, Rpy=
Rpy=2, and Rpnx/Rino is about 5.1 at M=1 and
approaches 2.5 for large M. Thus, the Z;y branch is
again important. Finally, note that at constant M,
different | x | values are associated with different values
of M i

It is frequently of interest to hold M, constant and
vary x. Such variation will then arise from changes in
N, alone. Figure 3 shows the results for (e,0;1,1;
x, M) for several values of M. Until now, the intrinsic—
extrinsic case has been denoted as (rp, 7,; 7w, 72; x, M),
implying constant M. In those cases, such as the present
one, where M is to be held constant, however, it or its
value will be underlined in the case designation. Thus,
a specific value shown in the M, M, position will be of
M when not underlined and of M; when underlined.
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Fic. 4. Dependence of Ciyo and Rino
on r,/ra for (rp, 1; 1, 1; x, 104) and x=
0, 102,

0= (r, 151,05 x,10%) Vi -

Vi
N I N AN N T |
10 3 -2 — 1 2 3
10 10 10 { 10 10 10
rp/rn

Figure 3 is a log-log plot except that the values of 4 T I T '
Cinoand Ry, at x=0 are shown as points in the center. 01— I ! I Ft
The curves with x <— 10 are shown more for complete- - |
ness than for possible experimental interest. Even at - (i 1,1, 0,90%) |
x=—10, Rpy=1, Rpx=2400, and R;x==81. As shown,
there is very little dependence of R;no on M; for x<0.
The minima in the Cyy, curves come from the competing
effects of the M? term in Eq. (93), important for | x |
small and M large, and the (r—1) term important
under opposite conditions. Since Rgxy=21 here for x>>1,
the Rix<K1 condition apparent for sufficiently large x
implies that R;yo may be entirely neglected to good
approximation. Then

15x50=Ts0/7p= RaneCine=2RenCine=2Cinq.

Thus under these conditions the time constant for
charging C,yo is generally very much longer than the
dielectric relaxation time 7p.

Next, the dependence of R;xo and Cing on /7, is of
interest. In Fig. 4 a fixed value of r,=1 has been
employed, but the curves would not have been much
different had a smaller value been used. For x=0, the
Rino and Cin¢ curves are symmetric around 7,=r,. At
this point, R0 reaches a minimum value of about 1074,
but it is clearly much larger unless 7, and r, are very

nearly equal. 1 I N TN NSO (N E N B
When x=10%, R;no again is about 10~ at r,=7,, but 0 2 4 6 8 10
it increases rapidly as r,/7, becomes less than unity and A

the minority carrier is more and more strongly blocked.

The final limiting value approached is. that _for Fic. 5. The normalized quantity Rgyoe=2R;no-+Rgn versus 7,
(0,1;1,1; 103, 10%). Clearly, most of the interesting for (r, #a; 1, 1; 0, 10*) and several fized values of 7. The points
variation of R;yo and Cyyo occurs in the range 1072 < indicate values of Rgxo when 7,=1y.
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F1c. 6. Dependence of Rino on y for
(0, 0; 7, 72; x, 10¢) and several values
of | x| and =..

Rino !

S\ AL LA L B SR B
(0,0; T T;; X,10%)

8 7
10 10

75/72 $10% In the actual computer calculations, infinite
values for r, or r, have been approximated by 10%.
When x>>1, the results shown in Fig. 4 indicate that the
situation where the minority carrier dominates in dis-
charging [here (7,/r,)>>1] is again of much more
physical interest (larger Cino, smaller Rino) than the
opposite case.

In the intrinsic electrolyte case, a ‘‘discharge” resist-
ance taken in series with a Warburg impedance is
frequently of interest, especially in the case where an
indifferent electrolyte is present.?2:%:35 When the elec-
trode reaction is taken to have an infinite rate, this
discharge resistance is supposed to be zero, while it is
greater than zero for finite rates. The present results
indicate that the situation is somewhat different in the
unsupported binary electrolyte situation since the pres-
ent exact equivalent circuit doesn’t lend itself entirely
to such a conventional discharge-resistance interpreta-
tion. Here we have a true discharge resistance Rp as a
separate parallel current path, not in series with any
Warburg elements. Since Rg is, however, in series with
Z;, which shows Warburg frequency dependence in part
of the frequency range, Rg might perhaps be considered
as somewhat related to the conventional electrolyte
discharge resistance. It is found, however, to increase
as r, increases at fixed r.. For 7, fixed at zero, Rg=1
at 7,=0 and increases smoothly with increasing 7,
reaching 1.6 at r,= 6 and 2 at r,= =, On the other hand,
the conventional discharge resistance would be expected
to be zero for r,= o and to increase as r, decreases at
fixed r,.. Here this role is largely taken over by the true

6 -5 -4 -3 -2 -1
10 10 10 10 10 10 | 10 102 103

discharge resistance Rp. For r,=0 it increases from 2
atr,= to 3 at r,=4, reaches a much larger maximum
near 7,=0, then falls abruptly to zero at r,=r,=0.

Since Rs=Rg+R; is the resistance through which
C;is charged, Rgyy itself is of some interest even though
it is evidently not closely related to an electrolyte dis-
charge resistance. Figure 5 shows how Rgwyo depends on
7, for various fixed values of 7, in the (r,,7,; 1,1; 0, 10%)
situation. Here much of the dependence shown is
dominated by that of R.yo. A salient feature is the drop-
off to a much lower value when 7,=r,. The specific
values of Rgyy for r,=7,=1, 3, and 10 are shown as
points on the graph. When r,>>r,, Rixo continuously
decreases. Note that values of Rgno of 10° or 104 greatly
prolong the charge-discharge time of C; and push the
frequency response range of interest (Cix>>1) to very
low relative frequencies.

Figure 6 shows how R, depends on w, for the
(0, 0; mm, 725 X, 10¢) situation. Cinvo=9999 for all the
curves shown. For x=0, curves with several values of
m, are plotted. As shown, they are symmetric around
lines defined by m.=.. In this figure M rather than
M has been held constant as x varies in order to
demonstrate that Rino goes to the same value, ~5X
1075, for any x when m,=w,. Clearly, the curves are
much broadened when |x [>>1, and there is then a
larger region where R;no<<1 and is thus unimportant.

Figure 7 shows corresponding curves for (e, 0; 7w, 1;
x, 10%). Here C.yq is not the same for all curves but
goes from about 8.3X10% at x=—10 to 8.4X10* at
x=0 to 1.1X10* at x=10. These results show directly
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Fic. 7. Dependence of R;yo on , for
(@, 0; mm, 1; x, 10%) and x=—10, 0, 10.
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that it is m., not just m., which affects the shape and
placement of the curves.

Finally, it is of interest to consider temperature
dependence of R;no and Ciy, for a typical solid-state
situation. Let us consider® a KBr single crystal doped
with 1.3XX10~% mole fraction of CaBr.. Using the results
of Chandra and Rolfe,* one can calculate that for e=
4.88, ,=1, 1=0.16 cm, and (10¢3/7)=1.59 K1, M=~
3919, x==517.7, and w.=¢165.4. The corresponding
value of M is about 8.92X10% For these conditions,
7*=21.035X10? and $*=29.658X10~%. The much more
mobile negative carriers are positive ion vacancies and
the positive carriers are negative ion vacancies. Any
electronic conduction present will be ignored. Because
the experimental results show ™32 behavior,® the
(7p, 2) = (0, 0) boundary conditions seem more appro-
priate here than, say, (0, 0). In general, both 7, and 7,
are temperature dependent, and dependence of the
form exp(—W/kT) has been suggested.?” No depend-
ence should appear, however, for the present illustrative
(0, 0) limiting values.

Since the temperature dependence of such quantities
as n;, mm, and x will generally depend on the specific
types of charge carriers present, I shall first consider
some general relations, then specialize to the present
ionic crystal case. Let temperature-dependent quan-
tities evaluated at a given reference temperature T,
such as that defined by (103/T,)=1.59 K1, be desig-
nated by the added subscript . Further, take N, w,
zp, and 2, temperature independent, and make the
simplifying assumption that ¢ is also independent of
temperature.

On using z,p;= z.n;, one immediately finds that

(ni/nir) = (xe/) - (102)

It also follows that

(Mi/M )= (Liw/ L) =[(T+/T) (ni/m;y) J2
and
(M/My)= (Mi/ M) [(p*+72¥) [ (p*+7.m*) P2

(104)
For | x [>1 and w,~1, the quotient inside the square
root approaches (x/xr). Thus (M/M,) then goes to
approximately (7,/T)¥?, much less temperature de-
pendence than is usually found when |x |~0 and
(M/M,)~(M:/M).

For future use it will be valuable to derive that
temperature variation of @ which is required to main-
tain constant w (not necessarily zero) while T varies.
Such @ variation arises only from that of R, when ¢ is
temperature independent. Thus one finds

(Q/Qr) = (Rm/Ruor)
= (zpﬂprpefr'l’zn}lnrnefr) / (Zp#pﬁef-l-znp.nnef)

= (Bir/n:) (Fpr/i‘p) E(Pr*+7rmr”r*) / (P*+7rmn*) :]
(105)

Note that when x<<X—1 and p*>>m.n*, (Q/Q;) is approx-
imately equal to (up/up), while for x>>1 and p*<rn.n*,
(2/Q,) approaches just (er/ua). Although I shall here
be concerned only with the temperature dependence of
Civo and Ry, that of R, the more directly measured
quantity, may be obtained using Eq. (105) and the
value of R,;.
Now one may write

(ni/nir)=(T/T,)™ exp[ (he/2k) (T, —T71) ], (106)

where %, is the activation enthalpy for intrinsic carrier
pair formation, and the value of m depends on the

(103)
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nature of the intrinsic charge carriers. In the present
KBr case, m is zero and %, is the enthalpy associated
with the formation of a pair of Schottky defects.
Chandra and Rolfe give #,=2.53 eV for KBr, the
value I shall use here for illustrative purposes. Asso-
ciation into neutral complexes, such as positive and
negative vacancy pairs, will be neglected but may be
readily accounted for by reinterpreting #..

For Schottky vacancies in ionic crystals the usual
expression for mobility? yields

(wir/ws) = (T/T.) exp[(Aki/k) (T=T,71) ], (107)

where i=p or n. Let sn=Ak,—Ah,. I shall use the
values® Ak,=1.22 eV and Ak,=0.65 eV. For this type
of mobility temperature dependence it follows that

(Tm/Tme) = eXP[(hm/k) (=1, J (108)

We now have sufficient relations to allow the tempera-
ture dependence of R;xo and Cino to be obtained for
temperature-independent N,. The assumption of con-
stant N, implies full dissociation of the dopant material
at all temperatures of interest. Partial dissociation
would add another source of temperature variation to x.

Figure 8 shows how R,y and Cixo vary over a
significant range of temperature for the case (e, 0;
165.4, 1; x,, 3919) at (10%3/T,)=1.59 K, using the
KBr parameter values discussed above. In addition to

9
OWrTT T T T T T T T T T T T 1T
(00,0;165.4,1; x,,3919) /Xy =517.7 -
10® ot (10%/T;)=1.59 K™ —
pJ— T
7 iNO
10—
F / ————Rino -
105_ / ............... ni/nir
/ _"_"*nu/"mc_)J
5 Xy =2500 = L
10— s !
,/ // \/ 2~ \‘ 7 ’
— / ~ S ~
V. N \> .
I / /, \,/\\ X, =100 { _%
/ N
[~/ / / /\ AN \\ ]
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F16. 8. Temperature dependence of Ciyo and R:no using
parameters roughly pertaining to KBr which contains divalent
cationic impurities. Positive mobile charges discharge, negative
mobile charges in the majority.

109ﬁﬁvjr]ﬁfl{lll|l
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107
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F1c. 9. Temperature dependence of C;xo and Rixo for the
same parameters as in Fig. 8 except doping with divalent anionic
impurities. Positive mobile charges discharge, positive mobile
charges also in the majority.

curves with x,=517.7, I have included ones having x,
about a factor of 5 larger and smaller.

The material is virtually intrinsic at (103/T)=
1.2 K. The three x’s are about 1.1, 2.0, and 8.2 at
this high end of the temperature range. On the other
hand, at 2.0 K™ the material is strongly extrinsic with
x values of about 4X10%, 2X10%, and 10°, The quantity
7 varies from about 12.5 at the high temperature end
to 2.5X10° at the low end. For the situation with x,=
517.7, Rpy=2168 at (103/T)=1.2 K and has reached
about 7X10¢ by 1.5 K~ Thus Rgy remains essentially
unity over the whole range shown. Note that curves
for (#:/n;) and (Rpy/Rine) are also shown on this
graph. For x,=517.7, M and C;y, are, respectively,
about 1.1X10° and 2.7X10% at (103/T)=1.2 K~! and
thus Coex>>Chy. On the other hand, at 2.0 K1, M=~
Cive==28X10* and Con>>Cony. The slow (T,/T)Y? de-
pendence of Cuyo for (10%/T) 1.7 K is scarcely
apparent on the present scale.

For the conditions of Fig. 8 the majority carriers are
blocked. For comparison, in Fig. 9 I have shown the
opposite case, all x’s negative. Although the curve
shows that (Rgn/Rino) remains very near 5 over the
entire temperature range, (Rgwyo/Rpy) increases so
rapidly, as (103/T) increases from 1.2 K71, that there
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is soon no hope of measuring the large Cino values
apparent in the figure. What counts here is not so much
the absolute magnitude of Rsyg as the degree to which
the R,, C; branch is shorted out by the parallel Rp
branch. For x,=—517.7, Rpy=21.9 and Rgn=22.9 at
1.2 K7L By 1.5 K7, however, Rpy=1 and Rsn=2103,
making meaningful measurement of Ciy, very difficult.
By 1.7 K71, Rsyo has reached about 9.5X10%

Thus, when the majority carriers discharge, experi-
mentally interesting results are only possible under the
present conditions in the range where the material is
intrinsic to weakly extrinsic. As we have seen, the
limitation does not apply when the majority carriers
are blocked. On the other hand, the likely strong
exponential temperature dependence of 7, and 7,, when
they are not taken exactly (,0) at T'=T, [say
(200, 0.01) instead, for example] will lead to great
reduction in both quantities as T' decreases below T'.
Then, for T appreciably below T, 7, may even be <1,
greatly reducing the discharge of the majority carriers
for the x<<—1 case. Under such conditions, the Cixg
curves of Fig. 9 will tend to saturate at their completely
blocking values as 10%/T increases, and these curves
will then look much more like those of Fig. 8.

Finally, comparison of Figs. 8 and 9 shows that in
the high-temperature regions near the left sides Cimo
values are the same for both figures and are thus
independent of the sign of x. Actual deviations begin
to occur between the x,= 517.7 and x,= —517.7 results,
for example, at about (103/T)=1.4 K. At this point,
| x |=231.8, indicating that deviation only occurs when
2n; is appreciably less than N.. Deviations also appear
for the x,= 100 and 2500 curves at temperatures where
x is about 30. Let us define such a temperature as Ty,
that where Ciyo begins to depend appreciably on the
sign of x; that is, it depends on whether minority or
majority carriers discharge. Let the corresponding x
value be denoted by xa.

For a material such as KBr,

ni=N exp[(Ss/Zk) - (h,/ZkT) ]7

where N is the number of anion or cation sites/unit
volume and S, is the entropy for Schottky vacancy
formation. One can now readily derive an expression
for T, The result may be written

he
"~ Sy+2k In[2xa(N./N)1]”

Tq (109)

Here, | N,/N | is just the mole fraction of charged
impurities, and the argument of the logarithm may be
written alternatively as (N/#:.), where nu=N./2xq.
Thus, in comparing theory and experiment, one must
reach T < T, before it is possible to distinguish between
positive or negative x values on the basis of Cino values
alone.
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APPENDIX

1. Eigenvalues

Take the a;; elements defined in Eqgs. (75)-(77) as
the elements of a matrix A. The symmetry of the
problem allows one to write

P1= 6u51+61252 (Al)
and

Ni=cnS1+-62S:, (A2)

where S;=sinh(6,Y) and k=1, 2. Here the 6, are the
eigenvalues of A, determined from | A— 16 |=0, where
| is the identity matrix.

The eigenvalue equation leads to

0,2=0.5{144Qd+[1+2:2(a—b) —R2 ]2}, (A3)
where
a= (8,}/ep) + (8:2/en) (A4)
b= (5n5p/ e,,e,,) Eanap(en—l‘*“p_l) ’ (AS)
c=(8a/x) — (8p/€5), (A6)
and
d=a+b=(8,/e:) + (8,/¢p). (A7)

Note that (a—b)=(8,—38,)c. Now define §?=6,? and
0:2=0_%. Two exact relations between 6> and 8 are

0202=b(iQ—0?) (A8)
and
012+02 = 1+1ﬂd. (A9)
Further, define
e=b(1—a)=—0.0,C% (A10)
Then as 2—0 we find
62—141Qa+ Q%+ - - (A11)
and
0>—1Qb—Qe++ + - (A12)
We shall later need the quantities
m=Mb;, ne=M0,, (A13)
and
vi=mcothn,  va=mn2 cothna. (A14)

Note that when w,=m,=C: a=b=1, ¢=0, d=2, and
e=0 for any values of C and x when »* and p* are
calculated from Eqs. (70) and (71). When »,=1, g is
given by 1+ (26) [ (mm+mm ) —2].

II. Calculation of Yon

Let V=M. Then S)=sinhn;=Siy. Similarly, define
Ci=cosh(6:Y) and Cur=coshy:. Next subtract Eq.
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(80) from Eq. (81) and use in the result expressions
for Piy’ and Ny’ derived from (Al) and (A2) after
differentiation and evaluation at ¥=M. After simpli-
fication, one obtains :

022115622/611= - (Sw]ﬂSzujz), (A15)
where
Ji=rptracat2fm, (A16)
Jo=rptryci+2frye, (A17)
a= 612/622, = 021/611, (AIS)
and
fi=lta, fi=lte. (A19)

If we now use (A1) and (A2) in (73) and (74) and
set the coefficients of Sy and S; individually to zero,
we obtain

a=(02—an)/an="=8,"0,+12(8,/¢.) —0:2] (A20)
and
3= (02— an) /a12=8,""[8,+12(8,/€p) — Oi%]
= — 1+ (€46n) "1 (€02 —08,,), (A21)

where the last equation is obtained on using (A9). It
also follows from (A9) that

OnCe= —0pC1. (A22)
Now we may rewrite (A1) and (A2) as
Pi=cu(S1+conciSs) (A23)
and
Ni=cu(eSi+canSs), (A24)

where ¢y is undetermined. It remains to obtain Vy*,

When (A23) and (A24) are substituted in Eq. (60)

and the result integrated, one obtains
EX(Y)=CH+en( 0 1Ci—cuandnboC2), (A25)

where C is an integration constant and (A22) has been
used. The constant C can be evaluated by taking V=M
in (A25) and equating the result to the Ej»* obtained
by adding Eqgs. (80) and (81). The complete expression
for E*(Y) then becomes

EX*(Y)=(cuSiu/2MJT:)
X (nJ2{1—ca4-26, i [ (C1/Crar) — 17}
+yoJ1{1—c1428, 18,72 (Ca/ Conr) — 17}
+3[Te(rp—ruce) —J1(rp1i—1,)]).  (A26)

Finally, we may use Eq. (68) to obtain Vi*. The
result may be written

Vi*=— (euSw/T2) (g:01+ gt el eaJotz), (A27)

where
go=14(r,/2), G=1+4(r:/2) ’ (A28)
Q1§]2—J161, QzEjl—chz, (A29)
h=v1—1, h=v—1, (A30)
6g= 1—62—25pf101_2, (A31)

and

ea=1—0c1—23, fof,2. (A32)

4999

When the preceding results are used in Eq. (84), one
obtains

Yov=—2Q./[(g:01+£:02) + (erS et +eaTst2) ],

where

(A33)

Or=e,01t€: s (A34)

Much reduction to basic quantities is still possible in
(A33). Expansion of the elements in (A29) leads to

a 01=2[g. fit+ (fite—focrtr) ] (A35)
an
Qo= 2[g, fit+ ( ei—ficata) ], (A36)
where
fi=l—aa=fi—afi=fo—c fi. (A37)

The quantity Q, may now be expanded to yield
0:=2[g. ftfits(1~frea) +ot1(1—fre,) ],

where

(A38)

gsEgpen_l— En€p. (A39)

Next, define the denominator of Eq. (A33) as D,, a
quantity which can be put in the form

Do=4g,g. fi+ ot + Iy, (A40)

where
h=exJ1+2f1(gp—C2gn)
=4[ (go— 1028n) — 80 foB 2 (gpFCagn) + (€2 fot1/2) ]

(A41)
and

he=e1Jo+2f5(ga— 1)
=4[ (gn—c16agp) —8p f1O1 2 (gntC1gp) + (€1 fite/2) ]

(A42)
Since as @0, e, fe, %, and £ all go to zero,
Yawo=—(g/gvgn) = —Grn, (A43)
a result which leads to Eq. (85).
III. Calculation of Z;»
First define
Yin=2Zsw'=Y:x+Gax. (A44)
Then from Eq. (88) we may write
Zin=Zsn— Ragn, (A45)
where Rgy=Ggy"1. Next let
So=erloti+e0J 1l (A46)
and
8d= §p€n— Enép- (A47)

Then on using (A33), (A43), and (A44)-(A47), one
finds

Ziv=[2(g:20)%/81{Qs/[8:S0+ga(g:01— g (=) ]}. (A48)

The above expression for Z.», although more appro-
priate for calculation than Eq. (88), can still be greatly
reduced to yield a much more transparent and useful
form. After a great deal of algebra, (A48) may be re-
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expressed in terms of more basic quantities as

2/ 28

Zo= (g (L)) (agg)

where
Di=D,+Dy+D., (A50)
Do=1t,(gn+c1gp) 1, (AS1)
Dy=tibagimn, (A52)
De=t(gp+cogn) me, (AS3)
Ma=180g0pe, 02— frengy, (AS4)
my=1Qf10,6,"0 " — fo(cr+0n o ?),  (ASS)

and

M=10g:0nen 10272 — frepgn. (A56)

These equations form the final computational expres-
sion for Z;y. A Fortran program listing for Zzw, Z:v,
etc,, calculations in the general (r,, 7.} mm, 7.5 %, M)
case is available.
IV. Calculation of Ciyo and Rixq
In the 2—0 limit, it turns out from (A49) that Zy
reduces to the form

Z:'N(;%o) (£084)*[ (80 +1Qbo) / (iQ) (co-+1Qdy) 1. (AST)

In terms of these quantities
Riyo= (gpgn) Gl (boco—aedo) / 602]

Cino= (gpgn) 2(co/a0). (A59)

It is thus clear that to obtain all Q—0 contributions
to Rino one must expand D; to second order in Q. The
normalized time constant r.yo=r/7p is just

(A58)
and

Tivo=RinoCino= (bo/a0) — (do/c0). (A60)

Next, as 9—0 we need
Cr—0n8p 1 1Q08,0, 14+ - -, (A61)
cr——1—iQc—Ped, 1+ -0 -, (A62)
h—>(r—1)—iQ(a/2) (M? csch?M ~7)+---, (A63)
QU (M?/3) {b—iQ[ (B*M?/15) —e]}+- -+, (AG4)
Fio0, 714 208,85~ 4+ - (A65)
(gnt1gp) — (gnt3n0571gp) +1Q08,8,7 g4+ -+,  (A66)
(gpt+cogn) > (gp—ga) —iQegut-+++,  (A67)
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