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I. INTRODUCTION 

Interest is rapidly growing in the frequency response of a variety of binary 
charge systems. In such systems, two types of charge carrier are dominant; they 
have opposite signs and may have any mobility values, including zero for one of 
them. Representative systems include aqueous or other liquid electrolytes without 
a supporting electrolyte, glass electrodes, fused salts, and a variety of solid 
materials. Electrodes may be completely blocking for the charge carriers or may 
allow a conduction current, often involving an electrode reaction, to occur. Systems 
of the type considered are not purely ohmic at all frequencies, even neglecting their 
omnipresent geometric capacitance, Cg, but usually exhibit strong frequency- 
dependent capacitative and resistive effects. 

In earlier work 1~, some discussion of experimental results and of the 
various theories put forward to explain these small-signal frequency response 
results has been presented. In particular, considerable analysis has been given of the 
uni-univalent situation with equal mobilities for the two types of carriers 1 3. 
Recently, a detailed theory has been published which involves arbitrary valences 
and mobilities and relatively general electrode boundary conditions 4. It does not 
include specific ionic adsorption explicitly, however. This microscopic, charge-motion 
theory neglects no diffusion terms and yields results which satisfy Poisson's equation 
exactly everywhere within the material considered. Although the new theory applies 
in the fully dissociated extrinsic conduction situation as well as for intrinsic con- 
ditions, only the latter type of conduction will be considered in the present 
paper. Thus, the response of heavily doped solids at low temperatures is not covered 
by the present work and will be considered elsewhere 5. 

The general theory 4 yields an exact analytic result for system impedance 
as a function of frequency, but this result depends on many parameters and is far too 
complex to be immediately transparent. In the earlier work 4, therefore, only its 
limit as the applied frequency goes to zero has been considered in detail. The 
purpose of the present paper is to (a) use corfiputer calculations of the exact 
expression for total impedance to show some of the major types of frequency 
response to which the theory leads in the intrinsic case; (b) derive from the results 
simple approximate frequency response formulas for cases of especial interest; 
(c) present several approximate equivalent circuits applicable over limited frequency 
ranges and made up only of essentially frequency-independent elements together 
with Warburg circuit elements (where appropriate); and (d) finally to compare 
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unsupported and supported results where pertinent. Frequency response will be 
shown by means of impedance-plane plots, by curves showing frequency dependence 
of the real and imaginary parts of the total impedance of the system, and by 
frequency response plots of its total parallel capacitance and conductance, derived 
from the total admittance. All of these types of presentations (and many more) have 
been used in showing small-signal response in the electrolyte, dielectric, and semi- 
conductor fields. Although they involve some or all of the same information in 
different ways, all these methods are separately useful in comparing experimental 
and theoretical results. The presentation of all these approaches should also help 
make those authors who only use one method exclusively more aware of the virtues 
of other methods. 

Note that although the analytic results of the general theory 4 depend on a 
linearizing assumption and thus apply in principle only for small-signal con- 
ditions, they need not necessarily be limited only to electrolyte situations where 
the potential of zero electrode charge and the equilibrium potential coincide. In 
the absence of specific adsorption but even in the presence of a non-zero direct 
current, the tfieoretical results 4 may apply provided the system is sufficiently linear 
around the bias point that the static components of charge are essentially constant 
and independent of position within the material considered. There is then no static 
field gradient in the material. Also, under these conditions an applied a.c. potential 
amplitude appreciably greater than kT/e may be applied as well without necessarily 
destroying the applicability of the theory 6. Here k is Boltzmann's constant, T the 
absolute temperature, and e the protonic charge. 

Although full comparison of theory and experiment requires (or derives) 
knowledge of the individual valence numbers Zp and zn and of the individual 
mobilities #~ and /t n of the positive charge carriers (bulk concentration p~) and 
negative charge carriers (bulk concentration n~), in the normalized form of the theory 
only the ratios nz=-z,~/zp and nm==-t~./l~p are necessary 4. For convenience and 
greatest generality many of the frequency response curves presented herein will thus 
involve normalized quantities. As we shall see, however, elimination of normalization 
when necessary is a simple process. 

Finally, the description of a given space-charge situation with electrodes 
completely blocking or able to sustain charge transfer reactions requires parameters 
which define the specific boundary conditions at the electrodes. In the general 
theory, these dimensionless parameters are denoted rp and r,. When two identical 
electrodes are considered, these parameters are taken to be the same at both. 
Complete blocking occurs when r v = r n =0. On the other hand, for example, when 
rp = 0 and r n = vo, a condition we shall frequently consider herein, positive carriers 

are completely blocked and negative ones completely free to discharge or to appear 
at the electrodes. The condition r n = oo is thus indicative of an infinitely rapid reaction 
rate for the negative carriers. The later presentation of theoretical results is facilitated 
through use of the derived boundary condition quantities gp=-l+(rp/2) and 
g,-= 1 + (r,/2). A glossary of symbols used herein is presented at the end of the paper. 

II. B A S I C  E Q U I V A L E N T  C I R C U I T S  

The exact equivalent circuit found in the earlier work s is shown in Fig. la. 
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Fig. 1. Exact equivalent circuits involving the frequency-dependent admittance Y~. The two circuits are 
electrically equivalent. Here G•r, ~ GE/G ~ and G ~. --=- GD + GE. 

Figure lb provides an alternative circuit which exhibits the same overall im- 
pedance, Zx, as that of Fig, l a  at all frequencies. These circuits apply for the 
case of two identical plane-parallel electrodes separated by a distance l. The effects 
of any electrode roughness are ignored here. Most of the results considered herein 
apply to t he  situation of two identical electrodes, the usual one for solids. 
Modifications in element v.alues to make circuits applicable for the usual aqueous 
electrolyte situation of a single small working electrode and a much larger in- 
different electrode will be discussed later. A comparison will be made later of the 
present results with the conventional equivalent circuit used in the supported case 
(see Fig. 20a), 

All circuit elements herein apply for unit electrode area. Thus, the geometrical 
capacitance Cg is given in the present case by e/4nl, where e is the dielectric 
constant of the basic material in the absence of mobile charge. Now let YT = Z~ 1= 
Gp+iogCp, where Gp and Cp are the parallel conductive and capacitative elements 
of the total admittance YT and o9 is the radial frequency. It will be convenient 
hereafter to deal primarily with normalized quantities. Let us thus write Ya~ = 
Gr,N+iOCPN, where f2-o9"ro=ogCgR ~. The subscript "N" will be used herein to 
indicate normalization of capacitances with Cg, resistances with R o0, conductances 
with G~=-R~ 1, and time constants with %. G~ is the high-frequency limiting 
conductance of the system and is given by (e/l)(zp~ppi+z,la,nl), equal to 
(e/21)(zppl + Znn i )(,/2 n "-F Up) since z.ni - Zpp i because of electroneutrality in the bulk 4. 

The remaining elements appearing in the circuits of Fig. 1 are Y:, GE, and GD. 
Only Y~ depends on frequency. The frequency dependences of the elements of 
Zi = y - l ,  R: and C~, will be considered in detail later. Note that we can write 
ZiN=R:N+(if2C~N) -1. Finally, it turns out that GEN=RE~=gs/gpg, anqi GDN = 
R D~ = 1 -- GEN. Thus, GE + G D = G o~. Now g~ = gpe, + g.ep, and gp and gn have already 
been defined. Here e.=(l+nmX)-l=~tn/(~n+/ap) and ep--(l+nm) -1 =#p/(kt.+/~p). 
These definitions lead to GEN =E,[1 + (r, /2)]- 1 +%[1 +(rp/2)]- ~ and GDN =en[1 + 
(2/r,)] - : + ep [ 1 + (2/rp)] -1. Thus when rp = r, = 0, GEN = 1 and G ON = 0. On the other 
hand, when t o = 0  and rn= 00, GEN='gp and GDN=e.. Note that since in general 
G E N 1 G D N = R E N  - 1, the term GEtGD in Fig. lb may be rewritten as (REN--  1)G== 
(RDN-- 1)- 1G~o. 

Figure 2a shows the low-frequency-limiting form of the circuit of Fig. la. 
Here the subscript "0" denotes the o9--.0 values. The exact formula for R~NO is very 
lengthy, but various expressions :for R~NO in specific cases of interest have been 
given earlier 4. The general expression for C~NO is, however, 
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f i N 0  = ( g p g . ) - 2 i ( 5 . S p M 2 / 3 ) ( g p - g . ) 2 + ( r -  1)gz 2] (1) 

Here 5 . - - ( i  + n~- ~) -1 =z./(Zn+Zp), 6p----(1 +nz) -1 =zp / ( z .+z . ) ,  and gz-gpJn+g.Sp .  
The quantity M = I/2Lr) measures the number of Debye lengths contained in the 
half-cell distance (//2). In the present case 

L D - [ekT/47re2(z2ni q-z2pi)] ~ 

= [ekTb,/4ne2(z 2 ni)] ~ 

= [~kTbp/an~2(z2pi)]½ (2) 

When the bulk concentrations ni an d Pl are given on a molar basis, k should be 
replaced by the gas constant R and e by F, the Faraday. Incidentally, many 
of the intrinsic conduction results ~f the present paper, such as Eqn. (1), apply 
also in the extrinsic case when e,, ~p, fin, and 6p are redefined for the extrinsic 
situation 4. 

The quantity r = M c o t h ( M )  in eqn. (1) will be essentially equal to M for 
all M values of usual interest. Since M may be far greater than unity, CiNo also 
may be much greater than unity. Now when r p = r , = 0 ,  the completely blocking 
electrodes condition, C~N0 = r-- 1. The total low-frequency-limiting capacitance is then 
Cpo = Cg + C~ o = rCg ~ M C g  = e/8nLD. This is indeed, as it should be, the usual small- 
signal intensive double layer capacitance arising from two identical double layel?s in 
series 7. Note that when M >> 1 and rp:#r,, eqn. (1) shows that CiNo and CpN0 may 
greatly exceed the ordinary double-layer value. It is the large diffusion pseudo- 
capacitance represented by the first term of eqn. (1) that leads to the most 
interesting behavior inherent in the present situation. Such pseudocapacitance only 
appears when charges of opposite sign discharge unequally at the electrodes and 
is at a maximum when charge of one sign is completely blocked and the other 
completely free to discharge (e.g., rp = 0, r,  = o0, or rp = oo, r ,  = 0). 

Figure 2b represents the high-frequency-limiting form of the equivalent 
Cg 

tP q II 
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R~ 
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Fig. 2. (a) Low-frequency-limiting form of the circuit of Fig. 1 ; (b) high-frequency-limiting form. 

circuits of Fig. 1. The remaining elements, Cg and R~, are of course independent 
of electrode boundary conditions in this frequency region defined by t2 = mZD > 0.1. 
Note that for O=  1, where e~ is equal to the inverse of the basic dielectric 
relaxation time zr~ the reactance associated with Cg is equal in magnitude to R~. 
If accurate measurements can be carried out for f2 > 0.1, experimental values of Cg 
and R~o are best obtained from this region. 

Finally, it will be useful to introduce the notation used in the earlier work 4 
to designate a specific binary electrolyte situation: (rp, r,; nm, gz; 0, M). Values 
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of these normalized parameters, together with a value of ~, entirely define a specific 
case of the theory in its normalized form; i.e., they allow a specific value of 
Z ~  or YTN to be calculated. Because of the symmetry of the situation in nor- 
malized form, it turns out that for any ~ the case (% rp; nm x, n~-l; 0, M) 
yields the same value of ZTN as does (rp, rn; rim, nz; 0, M) for any specific 
set of values of these quantities. Thus, when a situation such as (0, rn; rim, nz; 0, M) 
is examined for a range of rn values and for nm, nz <> 1, it is unnecessary to con- 
sider separately the case (rp, 0; rim, n~; 0, M). For this reason, I shall here be 
concerned with, e.g., (0, ~ ;  rim, nz; 0, M), not with (oo, 0; nm, nz; 0, M). 

III. IMPEDANCE-PLANE RESULTS 

The circuits of Fig. 1 lead directly to the basic relation 

(ZiN+ REN) (3) 
ZTN = 1 + (i~ + GDN ) (ZiN + REN ) 

from which it is clear that when {(i• + GDN)(ZiN + REN)] ~ 1, (ZTN--REN) -~ ZiN. One 
situation where the above condition holds is that for (0, ~ ;  %,  gz; 0, M) with 
10 M -  2 < (~/nm) < 1 and 7~ m .~ 1, M >~ 1, and gm M < 1. Then GDN = e, ~ n m ~ 1 and 
REN = 1 +gin ~ 1 =R~N. Thus, when the above conditions apply, simple subtraction 
of the bulk resistance Ro~ from the total measured impedance ZT yields the 
"interface" impedance Zi. As we shall see later, Z~ is not always a true interface 
impedance since it is not always completely intensive. 

The above sort of results apply when charge of one sign is nearly or 
completely blocked, that of opposite sign discharges with an infinite or very large 
reaction rate, and the discharging charge carriers have a much smaller mobility 
than those that are completely or nearly completely blocked. As we shall see later, 
this is a very important and interesting case and is overtly consistent with the usual 
electrochemical practice of subtracting Ro~ from the total impedance in order to 
obtain intensive circuit element quantities associated with processes occurring near 
and at the working electrode. 

Another case of some interest is that where 

Z ~  ~Z3N =(1 +it2) -~ (4) 

which yields simple Debye dispersion behavior with the single time constant rD. 
As we shall see, this is the usual result found with M ~> 1 under any other 
conditions at frequencies for which t2 >0.1. It follows immediately from eqn. (3) 
for the above ~m <~ 1 case when IZ~NI ~REN ~ 1. In addition, in the equal mobility 
case (0, or; 1, nz; 0, M), where REN=2 and GDN=0.5, with M > 1 and when 
IZiNI ~ REN, eqn. (3) again leads to eqn. (4). Finally, the uninteresting case ( ~ ,  c~; 
rim, nz; 0, M) involves just Cg and R~ in parallel and thus leads to ZxN=Z3N at 
all frequencies. 

One common way of delineating some aspects of impedance behavior is to 
show the circle diagram a or Cole-Cole plot 9, where the imaginary part of an 
impedance is plotted versus its real part with frequency as a parametric variable. 
Alternatively, admittance-plane circle diagrams may be plotted 2" 10, as in early space- 
charge measurements on KUr 1~. Here, since their use seems somewhat more com- 
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mon, I shall present only impedance-plane ~2 results and will .later illustrate directly 
how the components of the total admittance depend on frequency. Figures 3-6 
thus present impedance-plane plots, in terms of normalized quantities, for some 
specific (rp, rn; ~Zm, 7~z; 0, M) cases of interest. Since the imaginary part of the 
normalized impedance is always capacitative, its negative has been used here for the 
ordinate scale. Note that infinite frequency occurs at the (0, 0) point and zero 
frequency is approached at the right. In addition, where appropriate, points corre- 
sponding to the three basic normalized frequency conditions M2Q =1, MR = 1, and 
~2= 1 have been shown on the curves of Figs. 3~6. The normalized parametric 
frequency variable Q increases from right to left here. 

f' 't I ' 
1.6 I ,, 

(0,0; 1,1; 0,M) 

I.Z 

M = 3  

/ "  

0.~ 1 I 1 I 
0.0 0.4 0 8 
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N 
I 
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Fig. 3. Impedance-plane plots of normalized impedance components for (0, 0; 1, l; 0, M) and 
(0, ~; 1, 1 ; 0, M) situations and several M values, 

Figure 3 shows how the size of M affects the shape of the curves for the two 
extreme cases (rp, rn)=(0, 0) and (0, ~) .  Figure 3a indicates that in the completely 
blocking situation where REN= 1 and GDN=0, ZTN ~ 1 +Z~N ~ 1 +(i~2C~N) -1 for 
Q < M -  a, and thus the reactance of the double-layer capacitance dominates in this 
region. Alternatively, when ~ > 0.1 and M > 10 2, ZTN ~- Z3N. Note that in terms of 
Z :  rather than Z:N, the semicircle lies between Re(Z : )=  0 at ~ ~ and Re(ZT)= R~ 
at ~2 ~ 0.1. 

Figure 3b shows that in the usual case of M > 102, two connected arcs 
appear for (0, ~ ;  1, 1; 0, M), while they become merged as M decreases towards 
zero. Here for large M and Q > M -  1, only the Debye dielectric relaxation semicircle 
appears. In the opposite extreme, as ~ 0 ,  Z T N - ' ~ Z T N o .  Since IZ~N01= ~ ,  eqn. (3) 
shows that ZTNO = RDN. Whenever both rp and rn are not simultaneously zero, RDN 
is finite. Here, in the equal mobility case, RDN=e.nl= 1 +rim I ----2. Further detailed 
consideratiori of circle diagrams and other response curves for the equal-mobility 
cases (0, 0; 1, 1; 0, M) and (0, ~ ;  1, 1; 0, M) has been given earlier 2"3. 

The dashed line in Fig. 3b through the point (1, 0) is drawn with a slope 
of 45 degrees. Where the second arc is well approximated by this line, Re(ZTN) ~- 1 + 
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[--Im(ZTN)]. But this is just the result one finds when a Warburg impedance is in 
series with a bulk resistance R~. Thus, such a straight line segment of an arc in the 
impedance plane may be (and usually is) an indication of Warburg behavior, 
although it is also necessary that the Warburg part  of the impedance be pro- 
portional to ~o -~. Such behavior will be considered in much more detail later. It 
appears  when diffusion to an electrode of mobile entities influences cell behavior 
appreciably. 

7 I I I I ] I I / I 

6 (0,¢0; 7Tin, I; 0,10 4) / 

5 / Trrn ~0  

' 

Re (ZTN) 
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' I i I i I / / A  I I 
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0.( (0 ~; Trm,i; 0,10 4 ) / 

Trm--.O 

0.4r~ ~ 

I 0.2 

0 ~ I ~ i I ~ I i I , 
t.O 1.2 1.4 1.6 1.8 2.0 

Re (ZTN) 
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Fig. 4. Impedance-plane plot~ for (0, oo ; n,,, 1 ; 0, 104) situations with n,, ~ 1. The 0 ~< Re(ZTN ) < l 
region has been omitted from the bottom plot. 

Figure 4 shows circle diagram results for (0, oo ; rim, 1 ; 0, 104). nm variation 
for (0, 0; n m, 1; 0, M) has relatively little effect here, but this is clearly not the 
case when both charges are not blocked. Further, nz values different .from unity 
within the range 0.25 ~ nz ~< 4 set by available ionic valences make little difference in 
the shapes of the arcs of Figs. 345; significant effects of nz variation will be 
demonstrated later for some other types of plots. Note the different scales used for 
the two parts of Fig. 4. In addition, the (2 > 0.1 semicircle has been omitted from 
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Fig. 4b for simplicity. Also, the line marked irma0 in Fig. 4a and 4b is the limit 
curve that the arc approaches as ~m approaches zero, not the actual limit when 
7rm=0. There is a discontinuity in shape between curves for ~m arbitrarily small 
but n o n - z e r o  (RDN finite) and that for ~m=0 (RDN infinite). In the latter case, the 
charge carrier which is free to discharge has no mobility and therefore cannot 
discharge. Thus, the cases (0, ~ ;  0, rr,; 0, M) and (0, 0; 0, 7r,; 0, M) must lead 
to exactly the same results, as is indeed found. Finally, note that when the discharging 
carrier has much higher mobility than the blocked one, e.9. the z~ m = 9 curve of Fig. 4b, 
the right-hand arc is very small compared to the dielectric relaxation semicircle. 
Thus, for such cases as (0, oo; 7~m, T~z; 0, M) with ~m >~ l, it will be difficult to 
subtract out the dominating effect of dielectric relaxation and obtain accurately the 
small remaining effects arising from electrode processes. As we shall see later, this 
is a low Q (Q=qual i ty  factor) and high dissipation factor situation. 

Figure 5 shows how the shape of the circle diagram depends on r v when 
r.  = oo and on rn when rp = 0  for the 7[ m : 7[ z : 1 case. Only part of the dielectric 
relaxation semicircle has been shown in Fig. 5a. Note that the heights of the arcs at the 
right are here proportional to (1-+-rp)-1. The curves of Fig. 5b are interesting since 
they exhibit a total of three connected arcs when r, < oo. Clearly, the size of the 
middle arc depends directly on rn. Further, the middle arc remains coincident with a 
semicircle over most of its extent, indicating a second single-time-constant Debye 

( r p , o O ;  1 , 1 ;  0 . 1 0  4 )  . .. ~ .  

0 . 4  ~ ~ ~ r p  = 0 

E 

O.C 
1.0 1.2 ~.4 1.6 1.8 2 , 0  

Re (ZTN) 
(a) 

1.6 i z ~ z I ~ z ~ z I z ~ ~ ~ I i z I I 

- ( O , r n ; t , 1 ; O ,  lO  4 )  ® M 2 £ = 1  - 

~, M ,0,=1 1,2 
_ - £ = I  

1 2 3 4 

Re (Z TN ) 

(b) 

Fig. 5. Impedance-plane plots for the (r v, oo ; l, l ; 0. 10'*) and  (0, r , ;  l, l ; 0, 10 4) situations. 
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dispersion in this region with a time constant dependent on r,. Clearly, if frequency 
response measurements aren't extended to sufficiently high frequencies and if R~ and 
Cg are unknown, this middle semicircle might possibly be mistaken for the final 
Q >0.1 semicircle. The low-frequency arc meets the Re(ZTN) axis at the low- 
frequency-limiting value of RDN. Here, RDN -----•n 1 [l +(2/r ,)]  =211 +(2/r,)] .  Further, 
the cusp at the beginning of this arc occurs at approximately Re(ZTN)= [1 + (2/enr.)]. 
Thus, the radius of the middle semicircle is ( e , r , ) -  1, here equal to (2/r.). 

Although Fig. 5a shows that as r 0 becomes larger the low-frequency arc 
becomes smaller and smaller relative to the Z3N semicircle, and thus electrode 
processes become more and more difficult to isolate, this trend may be counteracted, 
provided rp is no t  too large, by the presence of a sufficiently small ~z m ratio. The 
curves of Fig. 6 show results for ~r m = 9-1, r,  = 2, and rp variable. Again, three arcs 
appear with at least one very large compared to the dielectric relaxation semicircle. 
The very rapid reduction of the sizes of the two lower frequency arcs of Fig. 6 as rp 
increases from zero arises primarily from the very strong dependence of GDN on rp, 
especially when ~z m ~ 1, not so much from changes of ZiN with r v. When three arcs 
are present, they will be numbered from right to left in order of increasing 
frequency: 1,2,3• When an arc such as No. 2 is missing, the remaining arcs will 
maintain their original numbers: 1 and 3. 

8 

z 

~7 

(rp,2; 9 -1, I; 0,104) ® M2~:1 

• ~,=1 

4 8 12 16 20 
Re (ZTN) 

Fig. 6. Impedance-plane plot for the (rp, 2; 9-1 1; 0, 104) situation. 

The sizes of the three normalized arcs which appear when 0 ~< rp < r n < 
are of particular interest since many experimental results show two or three arcs of 
the present types• Frequently, the dielectric relaxation semicircle (arc No. 3) either 
has not been measured or is much smaller than the other two arcs. It is often found 
that the low-frequency right arc is much larger than the middle semicircle and, in 
many cases, measurements are not extended to sufficiently low frequencies to allow 
much curvature in the right arc to show up. Then only an approximately straight 
line often at about a 45 ° slope appears. In this case, measurements remain in the 
approximate Warburg frequency response region and do not approach the low- 
frequency saturation region. It is worth mentioning that some authors ~ 3. ~4, working 
with glass membrane electrodes, have observed arcs 1 and 3 (or more probably 2 
and 3) and have ascribed the higher frequency arc to the basic material under 
investigation and the lower frequency arc to a hydrolyzed surface film on the 
material. The present results show that such an assumption is unnecessary and that 
a single homogeneous material can yield both arcs. 

Let us now consider the important three-arc (0, r . ;  gin, nz; 0, M) situation. 
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It turns out that an approximate expression for ZxN (O) can be obtained which extends 
eqn. (4) to lower frequencies and includes separate terms for each of the three 
possible arcs, thereby partitioning ZTN into three normalized impedances frequently 
dominant in different frequency regions. An exact partition of this type has already 
been presented in the two-arc (0, oo; 1, 1; 0, M) situation 3. The approximate 
relation applying in the present case is, for M > 10, 

3 

ZTN ~-- ~ Z~ (4') 
j = l  

Z I N  ~ t2[t2~,,72+iY2{(6p/ep)2(r- l )+  1}] = [GiN +i~2CxN] -~ (4") 
and 

ZjN = [GjN+iQCjN] -1 (j-- 2,3) (4"') 

Here, 72 ~(ibm2g2) + coth (ibm2Q)½; b =- cS,cSv/C.ep; t ~ (  l + iQ)+; G2N = (e,r./2)~ C2N ~- 
r ~ M ;  G3N=I; and C3N=I. Equation (4') is exact for (0, ~ ;  xm, gz=g~;  0, M), 
and in other cases is most accurate when b~2 ~ 1. It may be further simplified, with 
little loss of accuracy, by taking t = 1 for all O. 

The partition represented by eqn. (4') leads directly to an approximate 
equivalent circuit made up of three parallel GC sections in series when 0 < r, < ~ .  
The quantity Z2N is zero when r. = ~ ,  causing arc 2 to disappear. Although Z1N 
may be represented either as a frequency-dependent resistance in series with a 
frequency-dependent capacitance or as a conductance and capacitance in parallel, 
the parallel representation is best in the low frequency saturation region because it 
makes it clear that Re(ZTN0) is overtly finite, as it should be when rp and r. 
are not both zero. For Q--,0, eqns. (4'), (4"), and (4'") lead to the exact result 
ZTN--eZTNo=R1N+R2N+R3N =~m 1 +(2/g,.rn) + 1 -----E£ t[1 + (2/rn)] = Ror~. When f2 > 
10(bM2) -1, ZI ~ shows approximate Warburg frequency response, while GXN and 
C~N approach their low-frequency-limiting values for (2 < 2.5(bM z) ~. Note that 
ZZN is independent of zc~, and Z~N depends on it primarily through b, a quantity 
symmetric in 6,, and 6p. Incidentally, although eqn. (4') holds approximately even for 
r ,=0 ,  it can be considerably improved for this situation by multiplying Z~N by 6~ z 
when rn=0  and ~m is appreciably less than unity. This factor is otherwise in- 
appropriate, however. 

The expression for the second semicircle (arc 2) is particularly interesting• 
Here, C 2 ~MCg is just the ordinary double-layer capacitance when M >>1 and 
rv=r,=O. This does not mean, however, that either Cp or C~ is equal to C2 over 

• the full frequency range where this semicircle is dominant. When zr m= 1, neither 
Cp nor C~ remains near MCg over an appreciable frequency region, even though the 
impedance-plane shape is well approximated by a semicircle. When ~z m ~ 1, on the 
other hand, C~N decreases to approximately M and then remains near it over an 
appreciable region, especially when r n <~ M. It further turns out that CpN reaches M 
at a lower £2 value than does C~N and then remains near M while C+~, does. 
The maximum of this semicircle is - Im(Z2N) =(e.,r,)- 1 and occurs at f2 =(~,r,/2M). 
Clearly, (e,r,)-1 may greatly exceed 0.5, the maximum of arc 3. Under some con- 
ditions, such as rv=r.=-r~, arc 1 is completely missing and only arcs 2 and 3 appear. 
In other possible conditions, arc 1 is so much smaller in size than arc 2 that it 

where 
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can be entirely neglected.  
The quantity Z1N yields the right arc (arc 1), which always appears to some 

degree, as in Figs. 3b, 4, 5 and 6, when 0~<rp<r n. To good accuracy, the size 
and shape of this arc is entirely independent of r.  when 0~<rp~2e n. Then the 
maximum value of - Im(Z1N) is about 0.417 nm ~, occurring at f2 -~ 2.53 b-  1 M -  2. 
For nz = 1 and nrn ~ 1, this value of f2 is about 10 nm M -  2. When appreciable portions 
of all three arcs can be observed and they are distinct, one may very readily derive 
values of the pertinent parameters in the (0, rn; rim, nz; 0, M) situation. First, R~ is 
found from the cusp between arcs 2 and 3. Then C~ may be obtained at high enough 
frequencies that some appreciable portion of arc 3 appears. The f2 scale is then 
determined. Next, nm may be obtained from the maximum height of arc 1. The high 
point on arc 2 then yields ro (since e n and % may be calculated from the value 
of Zrm), and the ~ value at which this maximum occurs, f2=enrn/2M, yields M. 
If the f2~0 intercept of arc 1 can be obtained, the resulting value of Ror~ will then 
yield a check on the consistency of the previously found values of ~.. and r,. Only 
zrzis missing. It will frequently be known from the physical situation being investigated; 
if not, an estimate may be obtained from a detailed comparison of the shape and 
frequency dependence of arc 1, using eqn. (4"). 

Finally, note that even when rp = 0  and r.  < oo, there are combinations of 
7Zm, 7rz, and M values which lead to some melding of the three arcs so that 

' the cusps between them may become less sharp and even disappear. Although the 
curves of Figs. 3q5 and eqn. (4') have by no means illustrated all possible circle 
diagram shapes inherent in the theory, they should give some idea of the variety 
possible. One, two, or three connected arcs of different relative sizes follow from 
the theory. Probably even more than three would appear if charge types with more 
than two different mobilities were present. 

It is hoped to show in a future paper under what conditions a more accurate 
but still simple version of eqn. (4'), may be derived from the exact theory; to show 
how accurate eqn. (4') and its generalizations are for further cases of interest; and 
to demonstrate a wider variety of two-and-three arc shapes following from the 
theory. Since the present eqn. (4') holds, however, within better than one percent 
under many rn, 7rm, ~r z conditions when b~2 ~ 1, it may already be used for experi- 
mental analysis when rp = 0. 

In the present part of this section, we have dealt with the approximate 
relation ZTN ~ ZxN+Z2N+Z3N, which does not involve the "interface" impedance 
Z~ directly. For the remainder of this paper, we shall instead pursue the more 
accurate and general approach of considering th e exact equivalent circuit of Fig. 1 and 
the quantity Z~N, which has been given exactly in closed form 4 and may be cal- 
culated without approximation for the (rp, r . ;  zr m, 7z~; 0, M) situation. 

Although a detailed comparison of the present possible impedance-plane 
curve shapes with experimental results will not be carried out here, they do seem 
sufficiently variable and complex to match quite well a considerable body of experi- 
mental shapes, e.9. many of those in refs. 13 17. It should be noted that frequently 
only a single arc is found, often of the shape of the low-frequency are of Fig. 3b, 
Fig. 4, and Fig. 5a. This important shape, which is associated with diffusion, distri- 
buted circuit elements, and a finite, distributed-element transmission line, even 
appears for the input impedance of a bipolar transistor ~s. 
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There will always be a Debye dielectric relaxation semicircle appearing at 
higher frequencies, but frequently either the diffusion arc size is so much larger than 
that of the t?>0.1  semicircle (e.g., 7~ m ~ 1 for rp~0,  r,-~ 00) that the latter is com- 
pletely overwhelmed and/or measurements cannot conveniently be extended to the 
region where O > 0.1 and the dielectric relaxation semicircle appears. Such extension 
is, of course, easier for a very high resistivity material where 7D is large, and thus 
the co for which Q = 1 occurs in the relatively low frequency range x 3.14. It should be 
noted that for ( ~  0, ~ 0o ; ~ 1, ~ 1 ; 0, M) when M is large the cusp between the 
two arcs (at Re(ZTN)-------1) represents a wide frequency range from O ~ M  -1 to 
f~ < 0.1. Over this range ZTN varies very little and remains near unity. Although 
R ,  may be found from this region, one must go to at least f2 >0.1 to determine 
C, accurately. Finally, it should be noted that sometimes four or more connected 
arcs appear experimentally and Im(ZT) may even be positive 1°. The latter result is 
often ascribed to the presence of specific ionic adsorption. 

T A B L E  1 

L O W - F R E Q U E N C Y  L I M I T I N G  V A L U E S  O F  C O M P O N E N T S  O F  Zis  A N D  O F  F R E Q U E N C Y -  
I N D E P E N D E N T  N O R M A L I Z E D  C I R C U I T  E L E M E N T S  

M r 9 r .  7z m RiN o Ci~o RE,~ RDN 

104 0 0 1 5 x 1 0  -5 9.999 x 103 1 
104 0 0 10 -4 2.500 x 103 9.999 x 103 1 ov 
104 0 ov 1 7.995 x 10-1 8.336 x 106 2 2 
104 0 oo 10 -4 1.999 x 10 a 8.336 x 106 1.0001 1.0001 x 104 
102 0 OV 10 -4 1.881 X 10 a 8.581 X 102 1.0001 1.0001 X 104 
10'* 2 2 10 -4 4.9995 X 103 2.4998 X 103 2 2 
104 0 2 10 -4. 2.782 X 104 2.089 X 106 1.00005 2.0002 X 104 
104 2 0 10 -4  4.782 X 104 2.089 X 106 1.9998 2.0002 
104 2 CO 10 -4 7.997 X 103 2.084 X 106 2.0002 1.9998 

IV. I M P E D A N C E  F R E Q U E N C Y  R E S P O N S E  

Figures 7-11 show how the real and imaginary parts of ZvN and Z~N depend 
on frequency for various cases of interest. In addition, Table 1 gives values for 
pertinent circuit quantities for the various cases considered in this section. Although 
an ~ scale is given at the top of Figs. 7a and 8a, the main frequency variable 
used here is A - 1, where the diffusion related 3 quantity A is given by Mr2 ~. Note that 
when M = 1 0  4, the points f2= l ,  Mf2=I ,  and M2f2= l  occur at A - 1 = 1 0  -4, 10 .2  , 
and 1, respectively. The use of a frequency variable proportional to co -~ is common 
in electrochemical studies and immediately shows up the presence of Warburg 
behavior. 

Let us write a general Warburg impedance Zw as 

Zw = Ao(1-i) /co ¢ (5) 

where the constant A o will be considered in detail in Section V. Then in nor- 
malized terms one has 

ZWN = Zw/R~o = A(1-- i) /O ~ (6) 
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where 

A - ( C g / R ~ ) ¢ A o  

= [~e(zrp, + z.n~)(l~r +/~.)18nl2] ~2 A o  . (7) 

Now when the real part of a normalized impedance is the negative of its 
imaginary part and both depend on Y2 -¢, then the impedance in question exhibits 
Warburg be.havior. In this case, both quantities will show a slope of unity, as in 
Fig. 8b, when plotted versus A - 1 .  On the other hand, when a capacitative reactance 
involves a frequency-independent capacitance, plotting versus A -1 will yield a 
straight line with a slope of two as in Fig. 7a. 

Figure 7 shows results for the completely blocking case for two different 
n,, conditions. Here eqn. (3) yields 

ZTN = (Z~N + 1)/[1 + iQ(Z,N + 1)] (8) 

Now computer calculations indicate that for the equal-mobility case shown in 
Fig. 7a, CiN=C~No--r  - 1 ~--M within 1 percent up to Q ~0.3. Further, the Figure 
shows that Re(Z~r~)- R~N remains very near its small limiting value 4 of R~No = (2M)- 1 
up to Y2= 1. Thus, in the entire frequency range of interest, we may here take 
Z~N "" Z~NO and, further, may neglect R~NO and C~7~ compared to unity. Then (8) 
leads to 

ZTN ~- {I -- i[O +(M~2)- 1]}/(1 +Q2) (9) 

Clearly, for MY2 ,~ 1 (A - ~ >> 10- 2), the normalized capacitative reactance (Y2C~r~)- t 
(OCiN0) -1 ~ ( M ~ )  -~ dominates ZT~. Further consideration of this case has been 
presented earlier 1-3. 
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Fig. 7. Real and imaginary parts of ZTN and Z'iN versus A - 1 - ~ ( M O * )  -1 for (0, O; 1, 1; O, 10 4) and 
(0, O; 10-*, 1; O, 10 4) situations. 
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Although Fig. 7b shows that in the g~ < 1 case, Im(ZiN) still dominates 
ZTN for MO < 1, there is evident a transition from C~N--~CiNo to a smaller 
constant value, CisN, in the neighborhood of A-  ~ ~ 4 x 10- 2. This plateau value, 
CisN, will be discussed in detail in the next Section. Figure 7b also indicates that 
RiN is much larger and more frequency dependent than it is when ZCm= 1. Note 
that although Re(ZTN) and RiN show an appreciable region with a slope of unity, 
this does not indicate pure external Warburg behavior since the dominant nor- 
malized reactances show no such slope. Warburg behavior actually occurs here in 
both Re(ZTN) and Im(ZTN), as shown by eqn. (4') with rp=rn=0,  but its con- 
tribution to Im(ZTN) is swamped by the reactance of CiNO and C~SN. Finally, note 
that the components of ZTN are essentially exactly the same for 7rm= 1 and 10 -4 
when O > 10 -2 (A -1 ~< 10-3). Thus, the mobility ratio has very little effect in this 
relatively high frequency region. 

Next we turn to the (0, oo) case. For the ~rm= 1 situation of Fig. 8a, eqn. (3) 
yields 

(ZiN+2) ( 1 0 )  
ZTN = ] + (i~2 + 0.5)(Z,N + 2) 

When f2 ~ 1 and IZiNI ~ 4, this result reduces to 

Z ~  ~ 1 + (Z,N/4) ( i  I )  

In the region I0  -2 ~<A -~ ~< I0 -~, the unity slope - - Im(ZTN)  and -- Im(Z~N) lines of 
Fig. 8a are separated by just this factor of four. 

The most interesting aspect of Fig. 8a is the Warburg behavior of Z~N in 
the region 10- 3 < A-  ~ < 10-1. Such behavior does not show up directly here in 
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10 -4, 1; 0, 10 4) situations. 
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Re(ZTN) because of the overlying effects of REN and RDN. It is only when these 
effects are eliminated by calculating ZiN from (10), or minimized, by calculating 
it from (11), that Warburg sort of behavior shows up clearly. Relatively small 
deviations from exact Warburg behavior of ZiN are of particular interest and will be 
examined in depth in Section VI. 

It is especially important to note that basic Warburg behavior appears in the 
ZiN normalized "interface" impedance, not necessarily directly in Za~. If in the equal- 
mobilities case (ZT-- R~) is set directly equal to a theoretical Warburg impedance in 
the usual way, rather than to sucl'r an impedance divided by 4, a factor of four error 
can occur, for example, in the calculation of the concentration of the charge involved 
in the Warburg behavior. Even greater errors can occur for gm> 1, and lesser ones 
will appear  for ~m < 1. Note that even in the present ~m---- 1 case, a small difference, 
Re(ZiN/4), between two much larger quantities must be calculated to obtain the 
real part of the Warburg response. Experimental errors are thus magnified and make it 
difficult to obtain Z~N accurately from ZTN when gm > 1. 

The situation is considerably different when 7z m ~ 1, as in Fig. 8b. Here 
approximate Warburg response shows up in both ZTN and Z~N in the region 
0.03 < A-1 < 10. Here eqn. (3) yields 

(ZiN+ 1) 02  ) 
ZTN ~ 1 +(i.2-+- 7Cm)(ZiN+ 1) 

which for the present rCm= 10 -4 and the range 10-10< .2 ~< 10-2, becomes 

ZTN ~ ZIN+ 1 (13) 

Thus, in the ~m ~ 1 region, no error such as that of a factor of 4 just discussed for 
the ~m= 1 case appears when the conventional procedure is used. Incidentally, the 
distinction between ZiN arid (ZiN + 1) is not visible on the present log-log plot for 
A -1 > 0.1. The final low-frequency-limiting values of Re(ZTN), RDN, and Re(ZiN), 
RiN0, are given in Table 1. 

In Fig. 9 the same case as that of Fig. 8b is considered except that M =  l0 2 
rather than 10 4 . Note that the results are essentially the same near  and in the 
low-frequency saturation region, A-1 > 10. The vestiges of Warburg behavior still 
appear for 3 < A-1 < 10 but do not extend very far toward higher frequencies. Here 
the conditions *2= 1, M*2= 1, and 'M2*2= 1 occur at A - l =  10-2, 10 1, and 1, 
respectively. The very high frequency A-  1 < 10- 2 region is shown here tbr complete- 
ness but will generally not be experimentally accessible since the impedance level at 
say A-1--~ 10 -3 or 10 -4  is SO much lower than that in the low-frequency saturation 
region and than R~. Thus, the second Warburg response region of ZiN, occurring z 
at A-  ~ < 10- 2, will not usually be measurable. This region appears for any ~m and 
reasonably large M for , 2>  1 but has been omitted from the other plots for 
simplicity. 

Finally, Figs. 10 and 11 show the curves which appear for a few related 
choices of.rp and r.. Note that the value rp or rn=2  makes 0p or  9 , = 2  rather 
than its unity value when rp or r ,=0 .  It is the 9's rather than the r's which 
enter directly into the theory; thus rp and r ,  values which double 9 seem 
reasonable to choose for special examination. The results of Fig. 10a should be 
compared especially w i t h  those of 7b and 8b. Similarly, Fig. 10b should be 
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compared with Figs. 10a, and 8b. Note that the double hump in the - Im(ZTN) curve 
of Fig. 10b is associated with the ZEN and Z1N terms of eqn. (4'); thus, in this 
situation an impedance-plane plot would show three connected arcs, although the 
dielectric relaxation one will be far smaller than the other two here. The results of 
Fig. l l a  should be compared with 10a and those of 11b with 11a, 8a, and 8b. It 
will be seen that the change of a single blocking parameter from 0 to 2 or 2 to ov 
can make a great deal of difference in some or all of the curves. Further, no 
approximate Warburg regions occur here except for the (2,oo; 10 -4, l;  0, 10 4) case 
of Fig. l l b  which is clearly not too far different from (0, ~ ;  l0 -4, 1; 0, 10 4) as far 
as Z~N is concerned, although even here the normalized impedance level is higher. 
Here, however, ZTN and ZiN are again connected very closely by eqn. (10), which 
does not reduce to Z ~  =(Z~N/4)+ 1 or (Z~N + 1) in the region of interest. 

Solution of eqn. (3) for ZIN yields 

ZTN 
ZiN = 1 - ( i f2+  GDN)ZTN --  REN (14) 

When iK2 may be neglected, this result reduces to 3 

ZiN ~ R2N [ZTN-- 1]/[1 -- GDN REN(ZTN-- 1)] 

= REN [ZTN-- 1]/[1 -- GDN ZTN] (15) 

In the A - 1  ~> 10 - 1  region, where ZTN ~RDN,  the denominator is nearly zero; thus 
again in the (2, oo; 10 -4, 1; 0, l0 4) situation calculation of Warburg response from 
experimental ZT results involves the small difference between two much larger 
quantities and will be difficult to obtain adequately. The present results allow us to 
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conclude that for M ~ l0 z Warburg response will only be seen or be readily 
calculable when q, < 2, r,, >> 2, and most readily when ~m < 1. Of  course one must 
also include the symmetry-related situation rp ~ 2, r n <~ 2, and gm >> 1. 

v. FREQUENCY RESPONSE OF THE ADMITTANCE COMPONENTS 

Equation (3) may be readily inverted to yield a connection between YVN and 
the elements of Z~N. Let RsN = R~N + REN, the total normalized series resistance in the 
bot tom branch of Fig. la. Further, let rSN=--RsCJZD--RsNC~N.  Then DsN=Ds = 
I2rsN = ~oRs C~ -= Qs i _ tan 6s, where Ds is the dissipation factor and Qs the quality 
factor for this branch. Similarly, we may define tEN ~ RENC~N and D E = f2rEN. With 
these definitions eqn. (3) leads immediately to the important  equations 

and 

CiN Ci~N (l 6) 
C p N =  1 + I+(QZSN) 2 -- 1 + l + D s  2 

•2 YEN ~TSN GEN DE Ds GEN (17) 
GpN = GON + 1 - 1 -  ( ~ c ~ S N ) 2  - -  GDN + 1 + D 2 

These equations, together with the frequency responses of R~N and CiN, yield those 
of CpN and GpN in complete generality. For  f2--.0, C p N ~ C p N o = I + C ~ N o  and 
G p N ~ G p N o = G D N  . Note that we are here dealing with the components  of the total 
admittance, no t  that after the effect of R~ or RD and RE is somehow subtracted out. 
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Fig. 12. CpN versus t2 for (0, 0: 1, 1; 0, M) and (0, ~;  1, 1; 0, M) situations and several M values. 

Figure 12 shows how CpN depends on f2 for various values of M in the 
n m = n z =  1 case. The curves of Fig. 12a follow nearly exactly from eqns. (16) and 
(17) with CiN = C I N o ~ - M  - 1, RiN = RiNo = (2M) -1 and rsN = (R~No + R E N ) C i N o ~ R E N  × 

CiNO--= ZEN. Thus, one has simple Debye response herel"19with the only significant 
frequency response arising from those O's which appear overtly in (16) and (17). 
Incidentally, curves such as the M =  l0 3 ones of Fig. 12a and 12b have been ob- 
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served ~t for F-centered KBr. One like that of Fig. 12a was indeed measured with 
completely blocking electrodes, while electrodes which were incompletely blocking 
to electrons yielded curves like those of 12b. 

Figure 13 shows the frequency dependence of GpN and Cm~ when rp= r n -  re. 
In this equal-discharge case, eqn. (1) yields CiNO=(r--l)/g 2 ~M/g if, where g~= 
l+(r~/2). For the present nm=n:z=l situation, the corresponding RiNo is ap- 
proximately ga~/2M and REN =ge" These results, used in (16) and (17) with C~N = CiN0 
and R~N=RiN0, again yield the curves of Fig. 13. Note that the £2-~0 value of 
GFN is here GDN=r~/(2+r~). The low-frequency saturation value of CpN is here 
reached for ~2 ~< [gdlO(r- 1)]. 
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Fig, 13. Normalized frequency response of GpN and CpN for the (re, re; 1, 1; 0, 10 4) situation. 

Figure 14a shows some dependence on n m and nz for the completely 
blocking situation. Detailed calculations based on the earlier theoretical results 4 show 
that the plateau value of C~N, C~sN, is given in the present nm ~< 1 situation by 

C i S N  " . ~  ½ ~--Ot2rnblQftf2) = [M6p-  1]e~-' "" ½ _- M 3 p -  1 (18) 

where the quantities t2, rob, f l ,  and f2 are defined in the earlier work. The 
corresponding plateau value of CpN, CpSN, is, from (16), essentially Mfo ~ since 
D s < 1 in the CeN ~ CpSN plateau region. This region is limited approximately by 
10Xm~<O~ [10M3~,] -1 for M >  10 2. Thus no such region appears unless nm< 
[102M6p] -~. Incidentally, CiN remains at its plateau value over the larger range 
10x m ~ Q ~ 0.1. Note that Mf~p=M2 ½ ~7071 for nz= 1 and M5 ½ ~4472 for nz=4, 
the two nz values of Fig. 14a. Finally, the region where CpN has essentially 
reached its low-frequency-limiting value CpNO is given approximately by whichever of 
the following two conditions yields the minimum f2: f2< (10 M ) - t  and g2(a- 1)~ 1. 
Here a-(b2/%)+(f2/en), and for nz= 1, a=b. The last Q-condition above may be 
expressed more explicitly as O ( a - 1 ) < 2 . 5 × 1 0  -4. For nm=10 -6 and nz= l ,  
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Fig. 14. Normalized frequency response of CpN for (0, 0: gin, 7z,; 0, 104) and (0, oc: 1, rc~; 0, 10 3) 
situations. 

a=b 22.5 x l0 s, yielding f2 < 10 - 9  in the present case. 
It is interesting to note that curves of very similar shape to the nz = 1 curves 

of Fig. 14a were obtained long ago 19 for a (0, 0; ~ ,  1; 0, M) situation, one with 
charge of only one sign mobile but free to recombine with fixed charge of opposite 
sign. This is an idealization of conditions which might occur in a solid. Such 
generation-recombination essentially mobilizes the fixed charge 19" 20, and the time 
constant ratio ~-1 ~ TD/27r of the earlier work 19 there plays the role of the present 
7rm mobility ratio. Here ~r is a recombination time constant involving the bimolecular 
recombination rate constant k2. Since (0, 0; ~ ,  1; 0, M) and (0, 0; 0, 1; 0, M) 
situations lead to the same ZTN, we may now consider the latter situation with 
recombination, since it closer corresponds to the present (0, 0; rim, 1; 0, M) 
situation with rr m ,~ 1 and no recombination. The early work 19 indicates that the 
rise from CpSN toward CpNo begins at f2=f2 r~  10 ~-1, while Fig. 14a shows the 
start at ~ = ~m ~ 10 gm" When ~"~m >~> ~'~r, or ~m ~ ~ - 1 the rise associated with motion 
of the lower mobility charge carrier occurs at a much higher frequency than that 
arising from recombination, and the presence or absence of the latter doesn't affect 
the frequency region where CpN rises from CpSN to CpNo. On the other hand, when 
f2 m ~ 12r and ~m "~ ~- 1, the recombination rise appears  at the higher frequency, and 
it then doesn't matter  how small the actual ~r m is. Incidentally, for any substantial 
plateau to be possible it is necessary that Or as well as O m be appreciably less 
than M -  1. This requirement leads to ~ >> M, or T~ >> MTD. 

Since there will usually either be some small residual true mobility for the less 
mobile charge and/or some recombination when nm--0 (this zero-mobility con- 
dition is never actually reached in solids at non-zero temperature), one should not 21 
expect to find experimentally a curve corresponding all the way down to f2=0  
to that for gm = 0  of Fig. 14a. At sufficiently low frequencies for non-zero tem- 
perature there will always be a transition from CpSN to the larger CpNo. This 
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transition frequency may, however, be too low to determine conveniently experi- 
mentally. The above results justify the neglect of intrinsic recombination in the 
present theoretical analysis 4, although it should not be forgotten that non-zero re- 
combination (Zr < OO)affects the magnitudes of the equilibrium concentrations n~ and 
Pi directly in the present intrinsic conduction case. Thus, the presence of recombina- 
tion also affects the value of M directly. As far as the normalized frequency response 
of ZTN is concerned, however, recombination can be approximately accounted for by 
choosing and interpreting ~m properly. It is the effective mobility ratio that counts, 
that arising from both true mobility and from recombination. For  practical purposes, 
the present nm may thus be considered to represent the effective mobility ratio for 
any rp, rn situation. It will thus be the true gm when ~m > ~ -  1 and will be ~-1 
w h e n  717 m "~ ~ - 1. 

Before we leave the situation of only charge of a single sign mobile, it is in- 
structive to compare the results of Beaumont and Jacobs 22, who considered the 
idealized (-, p; ~ ,  1; 0, M) situation without recombination [equivalent for ZTN 
to (p, --; 0, 1 ; 0, M) without recombination]. For  the equivalent case, only the mobile 
positive charges discharge (with rp = p), and no rn need be specified since the negative 
charges are taken immobile and homogeneously distributed. Beaumont and Jacobs' 
results for ZTN turn out to be exactly the same as those which follow from the 
present treatment for (re, re; rim, nz; 0, M) with rim=0 or oo and zcz= 1. 

The (re, r~; 0, nz; 0, M) situation leads, for example, to CpNo=CpsN~ 
9~-2M6~+(1-9~-2).  But, as eqn. (2) shows, 

M,~p = 16 ~p/2LD = (1/2 ) [ 47re 2 z~ pi/ek T]~ - I/2LDp =- Mp (19) 

where LDp = LD/6~ is the Debye length which applies when only the positive carrier 
is mobile, the situation actually considered. In this case, Beaumont and Jacobs' results 
lead to CpN0 =(M/2~)/[1 +(p/2)]  2, in essential agreement with the present expression 
when 7h = I. Further, their frequency response is of course the same as that found 
here. 

The equivalence of these results again follows from the fact that it doesn't 
matter what boundary condition parameter one assigns to a charge carrier which is 
immobile. Thus, the 9~ appearing in C~N is actually go in the 0~<TZm,~M -1  

case, and the value of r ,  is immaterial. Further, eqn. (19) shows that in the present 
treatment it is unnecessary to deal with two separate Debye lengths, one defined 
where there is only one species of mobile carrier present and the other for two. 
The effect on formulas involving the Debye length of a shift from both positive 
and negative charge carriers mobile to only one type mobile occurs automatically 
here. 

Figure 14b shows how CpN depends on ~ for the (0, oo) discharge situation. 
On this scale the change from zt~= 1 to n~=3 is quite small. Incidentally, the 
n~ = 3-1 curve lies so close to that for ztz = 3 that it cannot be shown separately on 
this plot. Although it m has no effect on CpN0, it does of course affect CpN at 
non-zero f2. Thus, it is possible to compensate the effect of n~ # 1 to large degree 
by choice of 7z m, except in the neighborhood of low-frequency saturation. For  
example, the choice gm= 1.15, Z~, = 3, makes the resulting CpN and GpN curves lie 
almost exactly on those for ~m = 1, rt~ = 1 except for the saturation region, f2 < 10 
nm M - 2. To illustrate, at t2 = 10 - 4, the (0, ~ ; ~m, n,; 0, 10 3) case leads to the following 
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values of Cp. for (gin, ~ ) = ( 1 ,  3=1), (1, 3), (1, 1), and (1.15, 3) respectively: 698.1, 
695.4, 616.2, and 616.3. Corresponding values of GpN are 0.9218, 0.9196, 0.9308, 
and 0.9300. This possible compensation effect requires one to be especially careful 
in deriving values of gm and g~ from experiment in the rather unusual case where both 
ratios are initially unknown. 

Figure 15 shows important results for GpN and CpN in the variable ;gm 
discharge case. Notice that the CpN curves show portions with slopes of - 2, - 1.5, 
and -0 .5 .  The somewhat odd looking values of nm used here result in GpNo -= 
GDN = ~,, = (1 + nZ ~)- ~ yielding particularly simple values. The CpN curves for 7~ m >~ 9 
appearing in Fig. 15b are here included largely for completeness. As ~m increases, 
the resistance R E in series with Z~ increase while Ro, in parallel with the Z~, R E 
branch, decreases toward R~. When ~m ~ - - - 9 9 9 ,  for example, RDN -~ 1.001 and REN = 
103. At f2= 10 -9, RiN -- 134 and (12CiN) -~ = 186. Thus, as mentioned earlier, when 
~m >~ 1, it will be difficult to obtain the components of ZiN accurately. 
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Fig. 15. Normalized frequency response of GpN and CpN for the (0, ~; n m, 1; 0, ]0 4) situation. 

Let us now consider how the various types of curves of Fig. 15 may be 
explained. To do so, we need further information concerning R~N(f2) and CiN(f2). 
These quantities show approximate Warburg response in part of the 12 region and 
thus are approximately proportional to O -~ in this region. One way of showing such 
response is to plot the normalized quantities C~D =-- A ( CiN/CiNo) and Rio - A (RiN/RiNo) 
versus  O, as in Fig. 16. Those curves with slope 0.5 in Fig. 16a represent constant 
CiN regions, that on the left for CiN ~ C~NO and that on the right for C~N ~ CiSN, 
as will become clearer later. Similarly, the lines with slope 0.5 in Fig. 16b 
represent RiN ~-R~NO regions while R~N decreases as ~ - 2  for the ~z m 4 1 lines with 
slope - 1.5. 

The regions with essentially zero slope in Fig. 16 are those where Z~N ~-ZWN. 
A more exact approximation for Z~N in these regions will be considered in the next 
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Fig. 16. Normalized frequency dependence of the normalized quantities CiD~A(CiN/CiNo) and R~D.~ 
A(R~s/R~No) for the (0, ~ ;  rim, 1; 0, 104) situation. 

section. Low-frequency saturation clearly occurs when f2 <~ 10rim M-2.  Thus, ap- 
proximate Warburg response is well started by f2 > 102nm M-2.  Figure 16 shows 
that for 7"c m ~< 1 it is over by O,-~n  m. These results also indicate that no such 
response occurs unless M ~> 10, so that the Warburg range is non-zero. We shall 
generally consider only M ~> 102 from now on. Because the range of nz is physically 
limited, the above Warburg range is still adequate for any experimental n~, not 
just the nz= 1 of Fig. 16, and the inequalities that limit it need not involve nz. 

In the Warburg range of ZiN, we have approximately, 

Zm ~ ZWN --= RwsN +(iOCwsN) -1 (20) 

where 

and 
RWSN ~ A/(2 ½ (21) 

CwsN = (Af2~) - '  (22) 
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Similarly, we may write 

-1 YIN ~ YWN -- ZWN -- GwpN + i~CwpN 

where 

and 

(23) 

Gwp N ~ f2~/2A (24) 

CWPN --= (2AQ½) -1  (25) 

Now when C~N is replaced by CwsN and RiN by RwsN in eqns. (16) and (17) 

(An½)- 1 
1 + [1 + 0½(REN/A)] 2 

one obtains 

CpN ~ 1 + (26) 

and 
( ~ / A )  [1 + ~ (REN/A)] (27) 

GpN ~ GDN + 1 + [1 +g]½(REN/A)] 2 

Since (0½REN/A)=REN/RwsN ~REN/RiN here, we need to consider the two cases: 
(A) (REN/R~N) ~ 1, and (B) (REN/R~N) >> 1. 

In case (A) we have 

CpN = 1 +(AO½) - 1/2 -= 1 + CwPN -~ 1 +(C~N/2) 

and 

These 
which 

(28) 

GpN -~ GDN + ( (2~/ A )/2 = GDN + GWPN (29) 

equations lead to the important slope _+0.5 regions of Figs. 15a and 15b 
there occur for nm < 10 -4,  the value of M -  1. 
Low-frequency saturation is approached when O <  10 nm M-2, and CpN 

approaches the plateau value CpSN = 1 + C~SN -~ M6~p when ~2 > x m. Figure 15b shows 
that this rp=rn=0,  ~m < M-1 plateau is also reached for ~m < M-1 even in the 
rp=0, r ,=oo  discharge situation. As pointed out earlier, this plateau is reached 
when the mobility of the discharging carrier (here #.) is sufficiently low and the 
frequency sufficiently high that the discharging carrier has insufficient time to 
discharge and is essentially immobile; it then acts as though it were completely 
blocked. If we take the necessary condition as Q > 10nm,'then the actual radial 
frequency corresponding to the choice of the equality sign is 

gO : ~0 b ~ 10 ]gn/lgpCgR~ 
= (4he/e)(10 zpp~/G)(1 + rim) 

40 xezpp i ~n/~; (30) 

where the last equation follows on using nm ¢ 1. As before, the plateau region gives 
way to a simple Debye dispersion region proportional to O- 2 when (2 > (M6~)- 1. 

The various regions which appear when nm ~ 1 and especially when nm M ~ 1 
as well are described for CpN and C~N in Table 2. Although the (2-values chosen 
to divide the various regions are somewhat approximate, they are quite adequate for 
usual situations. In the (r v, r.; nm, /l:z; O, M) situation with O ~ n m ' ~  1 the 
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appropriate expression for CisN is gp 2[Map_ 1]; GEN ~- [1 + (rp/2)]- ~ + ~m [l -[- 
(rn/2)]-a; and GDN=[I+(2/rp)]-t+rc,,[I+(2/rn)]-L Thus, when rp=0. RDN = 
nm~[1 +(2/r.)] and may be neglected for sufficiently small ~z m. In addition, RIN will 
be appreciably less than unity in the plateau region and may be neglected com- 
pared to REN~_ 1. When r p = 0  Fig. 17 then shows the approximate ~quivalent 
circuit of the overall system. Of course when ~m ~ rp ~ ~Z m 1, the R~ in Fig. 17 must 
be replaced by R E ~ [1 +(rp/2)] R o~ and the resistance R D -  [1 +(2/rp)] R oo must be 
connected in parallel with Cg. 

Cg 
il 

CiS Rco 

Fig. 17. Approximate equivalent circuit in the plateau region (Regions C and D of Table 2). 

In order to find under what conditions (REN/RiN) is smaller or greater than 
unity, we require an expression for the normalized Warburg parameter A. In the 
approximate Warburg region, the exact expression for ZiN given earlier 4 may be 
simplified under the overlapping conditions M > I ,  10~<MZb£2, (a-1)(2<~ 1, 
£2 [b(a - 1)]½ ~ 1, (b~?) ½ ~ 6n 3p [ (gp  - -  gn)/gz] 2, and b£2 ~ 3n ~$~ (gp  - -  gn)2/g_s M. Note that 
for rp = 0, r, = oo the last two conditions reduce to (b£2) ~ ~ 3n/6p-- gz, and b12 ~ oo. 
The condition 10 < M2bf21eads to f2 >~ 10 M-2(2 + ~z+ n~-a)/(2+nm + ~ ,  t)when the 
exact relations (e,gp)-' =- (2 +gm +gm 1) and (6n6D)- 1 _ (2 +'gz + ~£- 1) are used. For 
gz= l ,  this reduces to (2>40 M-2gm, 10 M -z, and 40 (M2gm) -1 for nm~ 1, 
~m = 1, and rc m > 1, respectively. When M2bl2 < 10, one approaches the low-frequency 
saturation region. 

The result of the Z~N simplification yields ZiN--~ZwN together with the 
following expression for A, 

A =- [MGpn(2~nep,3nbp) *~] -~ (31) 

applying for (r v, r,; ~m, ~z; 0, M). Here 

Gpn ~ [(Op--gn)/gpgn] 2 (32) 

The  symmetric func t i on  Gpn is unity for rp = 0, r n = o(3 and, in  the rp = 0, r n < o(3 case, 
decreases only slowly as r. decreases. For example for r . =  200, Gpn ~ 0 . 9 9 .  Since 
Gp. is symmetric in n and p, so also is A. 

Now since (REN/RiN) "~ f2~/AGEN in the Warburg region, we find 
½ ½ REN/R~N ~- MY2 Gpn(gpgn/gs)[2~.ep6.6p] (33) 

Now for rp  = 0,  r n = 0(3, this result reduces to 

REN/RiN ~ My2½[2~n~nC~p/ep] ½ 

= M [TCm~"2] ½ [2~n(~p] ~ 

= M [ g m Q  ] /[1 +0 .5(gz+~Z z t)]½ (34) 
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Again since the range of rcz is limited, the rtz terms in the last expression may be 
neglected for most purposes. At the large-12 edge of the Warburg region where 
12=rCm when ~m ~ 1, (REN/RiN)'~Mgm . Thus, in order for case (A) to hold in 
Region B of Table 2 we must have 12 ,~ (M2 rCm) - 1 and Mrc m ,~ 1. It is, of course, essen- 
tially just the M~z m .~ 1 condition that ensures that Region C, the plateau of Table 2, 
is appreciable. When Mrc m ~ I, Fig. 15b shows no plateau. 

Before considering case (B), let us first examine the intermediate (0, oo ; 1, 1; 
0, M) situation. Here (REN/RiN)- M(f2/2) ½ and low-frequency saturation occurs near 
f2 = 10 M -  2. Thus the (REN/RiN) = 1 condition is almost within Region A of Table 2. 
In this region, of course ZiN#ZwN, however. Figures 15b and 16a show that for 
ZIN--ZwN in the present situation, we must have f2 > 3 2 M  -2. At this point 
(REN/R~N)=4. The denominator of eqns. (25) and (26) is then 26, sufficiently large 
that explicit external Warburg behavior, as in Region B of Table 2, does not 
appear. We will thus next consider the limiting (REN/R~N) >> 1 situation. Now 
consider case (B), where eqn. (34) yields 12 ,> (M2/ tm)-  1, consistent with the general 
simplification condition 12 > 10(bM2) - 1, which itself allows case (B) behavior even 
for gm as small as 10 -2 when f2> 10 -4 in the present M = 1 0 4  case. Now eqns. 
(26) and (27) lead to 

CaN 1 (35) 
and 

GpN ~ GDN + GEN "= 1 (36) 

On using the earlier expression for A, eqn. (35) becomes, for (rp, rn; 7t m, ~ ;  0, M), 

CaN ~ 1 + [O k M {(go-  g,)/g~} 2(2/~n%6n0P)~] -1 (37) 

As mentioned earlier, equations such as (37) also hold in the extrinsic conduction 
situation when the E's and 6's are suitably redefined 4. When rp=0  and r , =  oo, eqn. 
(37) reduces to 

CpN ~ 1 + [(%0- 1)~e; ~/M(Z6,6v)½ ] (38) 

and for rc z = 1 as well to 

CpN ------- 1 +[2½Q-kep~2~M -1] (39) 

This result describes those curves of Fig. 15b which show a slope of - 1.5. In the 
~'~z = TCm = 1 case, 

CpN ~ 1 +(2kMf2k) -1 (40) 

To illustrate the size of the second term in (38), take (REN/RiN)= 10 and use 
this value in (34) and the result in (38). At this point, where f2 = 100 %/2en6n,SpM z, 

CpN ~ 1 +2~n6,6plO-3M 2 (41) 

For  r~z= 1 and gm >~ 1, this equation yields CpN-----1+(M2/2000), which can still 
be considerably larger than the plateau value, M6~, for large M. 

In case (B), where Warburg behavior of ZiN requires f2 > 40(M2~m) - 1, and 
CiN approaches low-frequency saturation for 12< 10(M2rcm) -1 when rc m ,> 1, the 
curves of Fig. 15b show that CpN--*CpN0 in this case when 12 < 10(MZrcm) -1. The 
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irfitial decrease of CpN below CpNo thus arises here both from the decrease of 
C~N and from an increase in the denominator of (26). 

When the expression for A of eqn. (31) is converted to one for A 0 through 
using eqn. (7), one obtains in the present two-electrode situation 

A o = [(e2/2 ~ kT)(Gpn/2)(2nn i -+- z~,pi ) X [ { ( z p O p )  - 1  + ( z , D . ) - 1 }  {z,,1 + z ;  1}]-+1-1(42) 

where mobilities have been converted to diffusion coefficients through the relation 
D~ = (kT/ez~)pv This result for Ao will be considered in more detail in the next 
section and compared to earlier expressions for the Warburg parameter. It simplifies 
for(0, oo; Ztm, 1; 0, M) and Zp=Zn~-Ze to 

A 0 = [(z~e 2 c~/2kT){D~ ~ +Dg 1} -~]-1 (43) 

where n~=p~=c~ has been used, a condition following from rtz=l.  Since A o is 
independent of I and thus intensive, Zw is also intensive as it should be. 

The unnormalized form of eqn. (28), applying in the case (A) Warburg region, 
is just 

Cp ~_ Cg +(2co~Ao) -1 (44) 

Similarly, the case (B) result given in eqn. (35) becomes 

Cp ~- Cg +( A o / R ~ o  ~) (45) 

In the z o = z .  = 1, (0, oo ; rim, 1 ; O, M )  case, this result reduces to 

C p ~  2 2 C, +(  Aoep/Roo ofi) 
= Cg + (2eci/l ~ ) [l~p(Dp/Dn) ~ (Dp + Dn) ~] co - ~ (46) 

Although the Warburg ( C p -  Cg) of eqn. (44) is intensive, the (Cp-  Cg) of eqn. (46) is 
certainly not. 

For this same rp=0, r n = ~  situation, Friauf 23 obtained the expression 
(rewritten in the present notation) 

Cp = (2eci/l 2)[],ln(Dn/Dp)k (D,  + D p ) k  ] ¢D - k (47) 

Except for the absence of Cg and the subscript transformation n ~ p  and p--,n, the 
results are the same. In addition, however, Friauf gives no range of ~o defining 
the region of applicability of this result. The n-p transformation is just that here 
changes (0, ~ ;  rcm, 1; 0, M) to (oo, 0; rim, 1; 0, M) or its equivalent, 
(0, oo; zt~, t, 1; 0, M). Thus Friaufs result applies not, as he states, for (0, co) but for 
(oo, 0) boundary conditions. When ~m is appreciably different from unity, Friaufs 
result, when incorrectly applied to the (0, oo) case, leads to Cp values which will differ 
very significantly from the correct values since the ratio of his result to the correct 

2 one is, on neglecting Cg, just ~Zr~. 
Figure 15b shows that ~r2~10-3  is necessary for very much case (B) 

behavior to appear. Therefore, for case (B) we may write (rim M 2 )  - t ,~ Q < 10-3 
Thus here/gin M 2  ~ 1, as compared to the M g  m ~ 1 condition required for case (A). 

We have devoted especial attention to the curves of Fig. 15b because most 
experimental results yield similar sorts of curves. Figures 18 and 19 show how the 
ltm=rt~= 1 curves of Fig. 15 change when rp or r n are separately varied. The 
Tables in these Figures also indicate how RiN0, RrN, and RDN vary. Nore from 
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Fig. 19. N o r m a l i z e d  frequency response of  GpN and CpN for the (0, r.;  1, 1; 0, 10 4) situation. 

Fig. 18b that for small rp there is still an appreciable region of approximately 
- 1.5 slope present and that regions with negative slopes nearer zero appear as rp 
increases. On the other hand, Fig. 19 shows that a new dispersion region appears 
when rp=0 and r, < oo. This result is consistent, of course, with the three arcs 
which appear in Fig. 5b for the same (0, r.; 1, 1; 0, 10 4) situation. 

Some comparison of theoretical and experimental Warburg region behavior 
will be presented in the next Section from an electrochemical point of view. But 
a great deal of experimental evidence is available for solids and fused salts where 
Cp or the apparent dielectric constant, e,, shows ~o-" dependence over appreciable 
ranges with 0 ~< m ~< 2 and especial concentrations of values around 0.5 and 1.5. 
Reference has already been given to the work of Friauf 23 (m,-, 1.5)and the author 11 
(m= 1.5, 2). In addtion some of the earlier literature has been summarized else- 
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where 1~. Here only a few relatively recent experimental results will be briefly 
mentioned. 

Some of the types of frequency response results with which we shall be 
concerned have been ascribed to the presence of a continuous or discrete distribution 
of relaxation times. While this explanation will be appropriate in some cases, a 
partially blocking space-charge theory 2'4"23 explanation seems more likely in most 
cases, especially those where very high values of Cp or e, a appear at low frequencies. 

Michel et al. z4 have seen ~o-" behavior in diverse solid materials with 
0 < m < 1.5 and numerous results with m~ 1. Cochrane and Fletcher 25 have found 
ea versus frequency curves rather similar to some of those of Figs. 15b and 19b for 
single crystal AgI. Armstrong and Race 26 have observed good rp=r,  ~-0 type 
curves in liquid electrochemical situations. Allnatt and Sime 27, working with single 
crystal NaC1, found many slopes in the range 1.3 < m ~< 1.9. In contrast, Lancaster 28 
found many slopes of ~ 1.5 or less for thin films of cerous fluoride. 

Some application of the results of the present theory to the experimental 
measurements of Mitoff and Charles 29 has already been given 2a'3°. Although these 
authors question the applicability of some of the conclusions 3 ~, their reasons do not 
seem convincing 2~. Mitoff and Charles found m-values of 0.5, 1, 1.5, and 2 for a 
variety of solid materials. Also, Tibensky and Wintle 3z found series capacitance 
frequency dependences with m ~ 0.5 for KBr single crystals, although the conversion 
from measured parallel capacitance to calculated series capacitance was not carried 
out using one of the circuits of Fig. 1. Nevertheless, Warburg response appears 
and may be associated with a 7r m ~ 1 situation. Finally, Maeno 33, working with pure 
and doped single crystals of ice, has found many e,, curves with shapes like those 
of Figs. 15b and 19b. Both m~0.5 and m~ 1.5 values appear. He also gives impe- 
dance-plane results consistent with those of Fig. 3b. Although the data indicate the 
high probability of an incompletely blocking space-charge situation, Maeno suggests 
a distribution of relaxation times explanation. 

Incidentally, for simplicity I have presented no discussion of the many different 
doping and electrode situations applicable for the various experiments mentioned 
above. Both essentially blocking and non-blocking (e.9., rp~O, rn~ ~ )  electrodes 
were used. Not all the materials measured were in an intrinsic conduction temperature 
region but many were. It is hoped to compare intrinsic-extrinsic conduction 
theoretical predictions 4 and appropriate experimental results, with especial emphasis 
on temperature dependence, in a later paper 5. 

Vl. DETAILED CONSIDERATION OF APPROXIMATE WARBURG RESPONSE 

A. Analysis 
In this Section, we shall be particularly concerned with the region showing 

approximate Warburg response of ZiN. As we have seen, strong external Warburg 
response only appears for nm < M-1  and  leads to Region B of Table 2. But Fig. 
16 shows that approximate Warburg response appears in Zi~ in certain frequency 
regions for all rtm. Thus, to the degree that experimental accuracy allows Z~ to be 
obtained adequately from ZT, Warburg response can be derived from even the 
m = 1.5 regions of case (B) of the last Section, where nm may appreciably exceed unity. 

As an extreme example, consider the (0, ~ ;  999, 1; 0, 104) curve of Fig. 15b 
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at (2=10 -9, where the overall dissipation factor, DT----GpN/(2CpN=----Re(ZTN)/ 
Im(ZTN), is about 7085. Now although Seitz et al.  34 have described a technique 
which allows measurement of Cp and Gp with reasonable accuracy up to DT 
values of about 104, the main difficulty arises here in the calculation of C~ and R~ 
from Cp and Gp measurements. Assume that Cg and R~ can be obtained from 
t2 > 0.1 measurements and Go from measurements in the low-frequency saturation 
region, f2 < b-1 M-2. Then at a given co value of interest, ~, CpN, GpN, GDN, and 
GEN may be calculated. The solution of eqns. (16) and (17) for CiN and R~N yields 

CiN = ( CpN -- 1) + [(Gph -- GDN)2/E22( CpN -- 1)] (48) 

and 

R~N = [(GpN -- GDN)/{f22(CpN -- 1) 2 +(GpN -- GDN)2}] -- REN (49) 

For the (0, oo; 999, 1; 0, 104) situation, the terms involving (GpN--GDN) dominate. 
But here GpN ~- GDN ----- 1, and (GpN-- GDN) -~8.59 X 10 -4. The problem is thus evident: 
GpN and GDN must be known to one part in 104 or better to achieve even 
moderate accuracy in Cih and Rih. Of course when ~m is appreciably smaller,- 
this problem is much less severe. 

Some comparison has already been given 35 of the present expression for 
the Warburg parameter Ao, which applies for a binary system without a supporting 
indifferent electrolyte, with the conventional expression. In the usual derivation 36' 37 
of Ao, electroneutrality is assumed everywhere, implicitly or explicitly arising from 
the presence of a supporting electrolyte whose ions are taken to be completely 
blocked. Then the contributions to A 0 are, for example, from the diffusion of 
oxidizing and reducing species in the neighborhood of the working electrode. The 
situation is considerably different in the present work. Here in the rp=0, r ,=oo  
case, for example, charges are coupled through Poisson's equation; charge of one 
sign is completely blocked; and only that of opposite sign reacts at the electrode. 
Further, we have considered the situation of two identical electrodes. Thus, in the 
simplest case the charged state of the reacting species is created by charge transfer at 
one electrode and destroyed at the other. These processes are reversed when the 
polarities of the electrodes reverse. 

It is believed that the physical situation described above and analyzed 
earlier 2'4 is a plausible one for the unsupported binary electrolyte and for the two 
carrier intrinsic conduction situation in solids. Some modification is necessary to 
pass from the present assumption of two identical, plane-parallel electrodes, usual 
for experiments with solids, to that of a small working electrode and a large 
indifferent counter electrode, common for work with liquid electrolytes. To good 
approximation, it seems plausible to pass from two identical electrodes each of area 
a to a single working electrode of area a by dividing intensive impedance com- 
ponents, associated with processes at the electrodes, by two. Thus, in the present 
situation, where only specific quantities are considered, ¢l)Zw ~ 0.5 (2)Zw, where the 
superscripts indicate one or two electrodes. It follows that ¢1)A o ~ 0.5¢2)A o. NQn- 
intensive quantities such as Cg and R~ cannot be treated in this way, of cod rs~. 
For the actual single working electrode situation used in an experiment, Cg and 
R~ should either be calculated accurately or, preferably, directly measured in the 
region where they dominate, f2 > 0.1. 
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The above prescriptions may be adequate when Z T - R  ~ ~ Z  w to good 
approximation, but they are impractical to apply accurately in the present binary 
case where ZT and Z~ may be made up of both intensive and extensive circuit 
elements mixed together in complicated fashion. In a recent preliminary note 35, com- 
parison of Ao's was made for a single working electrode situation. Here such 
comparison will be made for two identical electrodes by using (2)Ao=2(1)Ao, 
where (1)Ao is the conventional result. We may then continue to de~tl directly with 
the unmodified two-electrode theoretical circuit elements Cg, RE, Ro, and Z~. 

The conventional supported result for oxidizing and reducing species with 
concentration Co and CR, diffusion coefficients D O and D R, and stoichiometric factors 
v o and v R may be written in the two-electrode case as 36"37 

Ao = [(,2 eZ/2½ k r ) {(vZ/coD~)+(V~CRD~)} -1]-1 (50) 

where n is here the number of electrons participating in the reaction. This result 
may be compared to that of eqn. (42) for Zp and Zn arbitrary in the (rp, r,; 
rim, rtz; 0, M) situation. The explicit result for (0, oe; rim, 1; 0, M) and Zp=Z.=--Ze 
has already been given in eqn. (43). 

Although eqns. (43) and (50) are still notably different in ways readily 
amenable to experimental verification, in the special situation where z~Z= (n/vo)Z= 
(F//~,'R) 2, Do=DR=D , =Dp, and Co=CR=Ci, the equations yield the same result. It is 
this result which is, in fact, most often used to analyze experimental measurements, 
probably because of lack of separate information on Do, DR, etc. Although the 

• ni, p~, and ci quantities in the present treatment are equilibrium bulk values, as 
are Co and CR, the diffusion coefficients Dn and Dp refer to charged species in the 
present binary case while the question of the charge states of the possibly many 
species considered in the conventional supported case 36 does not enter the derivation 
explicitly except through the presence of n. Comparison between the present result 
for A 0 and a more pertinent generalization of the conventional result will be carried 
out later in this Section. 

Let us now consider a somewhat better approximation for Z~ than the Zw 
employed in the last Section. Let c==_(6./e,)-(6p/ep). Next apply the inequalities 
M >> 1, f2 >~(lO/bM2), f2(a- 1) ~ 1, f2lcl ~ 1, and f2[c[ ,~ [(gp-g,)/g.] to simplify the 
complete expression for ZiN given earlier 4. The result of very considerable mani- 
pulation can be written as 

YiN~ GWPN[ (1 -~1-~2)+ i (1  +62 + 6 3 ) ]  (51) 
(1 +~1)+i~2 

where 

61 =- (2/baM2) ~ 

g)z =- O(r-  1)GZEhGp.a /g~epE. 
~-- Q(M/gs) G2N G~: (2 + ~z,. + rq~ a) 

63 -- ( r -  1)(2t?/e..e. 6n60  M H.. 

cq -- 0£1(,~i-1- 1) 

(52) 

(53) 

(54) 

(551 
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and 
~2 ~ -  gs 11611 "[- Q ( a -  1 ) ( r -  1)] (56) 

Here, 

Ho n = [(g2 _ gs)/(gp -- gn) 2] (57) 

When gp or gn is infinite, Hp, reduces to 62 or 62, respectively. For rp=0, 
r. >> I, n m < 1, and rt~ = 1, Hp, = 0.25. 

Although eqn. (51) is only an approximate result for the Warburg region, 
it nevertheless maintains the original symmetry of Zin which ensures that Zin is 
the same for (rp, r,; rim, nz; 0, M) and for (rn, rp; nm 1, nS~; 0, M). Note that when 
gp or gn is infinite, 62, al, and ~2 are all zero. Since we require f2 >~(lO/bM 2) here, 
eqn. (52) yields the result 6a ~ 5-  ~ ~ 0.447. It will be considerably smaller away f rom 
the low-f2 edge of the Warburg region. 

Let us now introduce some new quantities and write 

YIn - -  GKN + i~'~CKN 

-= Ywn+ Yon 

and 

(58) 
Yon  - -  Goen + if2CoPn (59) 

ZiN =-- RiN+( iOCiN)  -1  

= Zwn + ZON (60) 

Zon =-- Rosn +(iOC0sn)- '  (61) 

We have ZiN--Yin 1 here but have not assumed ZON----Yon 1. The above exact 
relations lead to 

and 

GKN = GwPn + Gopn (62) 

CKN -- CWPN + CoPn (63) 

RiN = RWSN + R~N (64) 

-1  -1  CiN 1 ~ CWSN "4- COSN (65) 

Although eqns. (62) through (65) are always possible when the 0 quantities are 
arbitrary, we shall be particularly interested here in relatively small deviations 
from Warburg behavior, where the second term in each equation is substantially 
smaller in magnitude than the first term. Further, we shall also be interested in any 
frequency region where the second terms are substantially independent of frequency. 
In this region, let us denote the constant parts of the second terms with a sub- 
script "C". Thus for example, over a certain f2 range Gop N _~ GCr,N, a frequency- 
independent circuit parameter. Equivalent circuits involving the above 0-subscript 
quantities will be considered in the next part of this Section. Note that eqn. (64) 
suggests that R0s (or Rcs ) plays a role in the present unsupported case equivalent 
to the equilibrium charge transfer resistance Ro appearing in the usual supported 
situation. A detailed comparison will be made later in this Section. 

Let us now assume ~a ~ l and ~2 ~ 1 in eqn. (51). On series inverting the 
denominator, retaining only first-order terms, and ignoring all small frequency- 
dependent product terms, one is immediately led to 
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and 

where 

GOPN ~ --GWPN[(61 +62)+(0{1--0{2)] 

Cop N ~ CWPN[(62+63)--(O{1 +0{2+0{3) ] 

, . ,  = C w b ~ / - / p n 6 p ° ( M / ~ )  

the difference between ( r -  1) and M, 

Gcp N ~ --GwPN61 = -ep~nGpn= -Gpn/(2+~m+/~m 1) 
and 

Ccp N ~ CwPN[~53--2(gsa1) 1--0{3] 

-~ mGpn[Hpn-  ~Sn bp(M/,qs)] 

(66) 

(67) 

(68) 

The frequency-independent parts of the above expressions are, on ignoring 

(69) 

(70) 

Because of the presence in GovN and CoPN of somewhat compensating terms in- 
volving f2" and f2-", where m¢0,  the approximations GoPN ~-- GCPN and CopN ~-- CCPN 
hold good over an appreciable f2 range. 

If we next write an expression for Z~N from (51), now assume 61, 62, and 63 all 
small compared to unity, invert the denominator of ZIN, and again neglect all small 
frequency-dependent products, we obtain 

Ros N ~ RwsN[0{ 1 +0{2(1 +61)--62--(63+26162)(1--gs 1)] (71) 
and 

C~ 1 ~ CWS1N [0{1 (1 + ~51)- 0{2 + (61 + g~2)] (72) 

The corresponding frequency-independent quantities are 

RCSN = RwsN12(gs61)- 1 _ (63 + 26162)(1 _g~ 1) + g.~-lbxO(a_ 1)( r -  1)] 

r - 1  

\6.ap) 

\Gpngs/) 

(Gpn gn gp)-I los  1 __ (Hpn/mbn 6p)] (73) 

and 
CCSN ~ CWSN [61( 1 __g~ 1)]-1 

(6 n 6p m 2) Gpn (74) 

where g~ 1 has been neglected compared to terms of order unity in the last forms 
of eqn. (70) and in eqns. (73) and (74). These simplified results will be used as the 
definitions of the constant quantities from here on. Note that the larger of the two 
contributions to CiNO when rp and r, are appreciably different is just (6n 6p m 2 Gp,/3); 
thus, CCSN as given above is then appreciably larger than C~N0. Table 3 shows how 
the various frequency-independent elements depend on several quantities of interest 
for (0, t~ ; ~m, 7"Cz; O, M) with ~m ~ 1. 

Using the properties of the Warburg impedance, one may readily derive the 
exact equation 

YwNZoN + Y0N ZwN + ZoN YON =0  (75) 



B I N A R Y  E L E C T R O L Y T E  S M A L L - S I G N A L  F R E Q U E N C Y  R E S P O N S E  35 

T A B L E  3 

D E P E N D E N C E  O F  N O R M A L I Z E D ,  F R E Q U E N C Y - I N D E P E N D E N T  C I R C U I T  E L E M E N T S  
O N  V A R I O U S  Q U A N T I T I E S  F O R  (0, rn; rc m, n~; 0, M), W I T H  ~m ~ 1, A N D  S E V E R A L  
( M / m )  S I T U A T I O N S  

A B C D "E - F  Y o c M  ~mr. Gp.6pO. 

Y M/r .  A B C D E F 

Rcs N 0 - l - 1 - -  1 - 1 
>>l 0 - 1  --1 - 1  0 0 

Ccp N 0 1 0 - -  2 0 
>>1 2 0 - 1  1 1 1 

GcPh Any 0 1 0 1 0 0 

Ccs N A n y  2 0 0 1 1 1 

When the last term can be neglected, the result yields the approximate relations 

C~s I ~- - 2A 2GoPN (76) 
and 

R0sN "" -- 2A 2 CoPN (77) 

Here, of course, 2A2--(GwpNCwsN)-I--RwsN/CwPN. Equations (76) and (77) are 
satisfied exactly by the final forms of the constant quantities, those where the sub- 
script transformation 0 ~ C  is made. These results suggest that examination of the 
ratios 

- 1  - 1  u1 - --( C'opN/C'wPN)/( Co  /CwsN) (78) 
and 

U2 = --( CoPN/ CwPN)/( RosN/RwsN) (79) 

which both should be near unity over an appreciable O range, should be of some 
interest. 

It is of especial interest to point out that eqns. (70) and (73) show that 
CCp N and R c s  N a r e  both zero when 

Hpn(fn6p) -1 = (M/gs) (80) 

We may thus expect that COPN and R0sN will also be zero near this value. In the 
rp = 0, r n >~ | situation with Zrm ~ 1, this condition becomes approximately 

6p8~ -~ = 7rz ~ -~ (M/gn) ~-(2M/r.) (81) 

Therefore, when r,-~ 27rzM, one may expect CoPN and R0sN to pass through zero. 
Although this zero point, where CKN = CWPN and RiN = RWSN, yields perfect Warburg 
response for CKN and RiN to the degree that CopN "~ CCPN and R0sN ~- RCSN, ZiN is 
not exactly equal to ZWN here since the small quantities GoPN and C0~ are not 
exactly zero as well. At r n -~ 2~zzM, ZiN will, however, be closest to showing perfect 
Warburg response. It is interesting that such maximal Warburg response does not 
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occur at rn = oo, where one would expect an infinite electrode reaction rate, but at a 
finite value of rn. 

Next, the apparent intensive-extensive character of Gcp, Ccs 1, Rcs, and 
Ccp needs examination. Since Gwp and Cws are intensive, eqns. (69) and (74) show 
that Gcp oc G~ oc l - 1 and Ccs ~ oc (M 2Cg)- 10C 1 - 1. These quantities are thus clearly not 
intensive, but it will shortly be shown that they make no significant contribution 
to GpN and CiN in the Warburg region when 7~ m <~ 1 ; thus their failure to be intensive 
is not important here. 

On the other hand, Ccp and Rcs do play important roles. Because of eqn. 
(77), we need examine only Ccp for dependence on l. When 9~ = oo, eqn. (70) shows 
that Ccp oc M C  v a properly intensive quantity. The second part of Ccp, dominant 
when (M/gs)>> 1, is proportional to M2CgGpn/@s, however. If rp and r ,  are them- 
selves independent of l, as was tacitly assumed in the preliminary note on this 
work 35, then this second part is proportional to 1 and is therefore strongly 
extensive. 

The normalized Chang-Jaff6 boundary parameters rp and r ,  require further.  
consideration, however. They have been introduced into the theory 4 through relations 
such as 

Ip(/) = (ezp)(rpDp/l)[p(l)-  Pe(/)] (82) 
and 

I.(0) = (ez , ) (r ,D, /1)[n(O)-  he(0)] (83) 

Here lp(/) is the conduction current of positively charged carriers at the right 
electrode; In(0) is that associated with negative carriers at the left electrode; p(1) 
and n(0) are boundary charge concentrations; and the subscript "e" denotes equi- 
librium values. In the present a.c. solution for the intrinsic-conduction case of no 
static fields within the material, P~=--Pl, ne=-ni, and eqns. (82) and (83) reduce to 
the a.c.-only results 4 

Ip, (I) = (ezp)~ppl(l) 
and 

where 

and 

Inl(O ) = (eZn)~nnl(O) 
the effective rate constants are 

~p = (Op/l)rp 

~n -= ( On/l)r.  

(84) 

(85) 

(86) 

(87) 

Each ~ can be separately associated with a thermally activated rate process 
involving a symmetric free energy barrier to charge transfer at the electrode 22"23. 
Under these conditions, ~p and ~n are never actually either zero or infinite, but 
their possible range is such that the r's may be well approximated by either zero or 
infinity. Note that we have followed Beaumont and Jacobs 22 rather than Friauf 23 
in writing rp and rn rather than 2rp and 2r. in (82) and (83). Thus the present rp and 
r ,  are twice Friaufs rp and r .  and agree with Beaumont and Jacobs' equivalent 
parameter p as well as the original Chang-Jaff6 parameters. The present usage is 
slightly unfortunate, however, since it leads to definitions such as #p - 1 + (rp/2) rather 
than the simpler gp = 1 + rp, but it has been widely enough used that it does not seem 
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worthwhile to redefine rp and rn at this stage. 
Now since ~p and ~. are clearly intensive quantities, eqns. (86) and (87) show 

that rp and r n are extensive! The virtue of using rp and r n in normalized 
solutions of the general (rp, rn; nm, ~tz; 0, M)  situation is, however, that they are 
dimensionless and no separate knowledge of l, D., and Dp values is required for a 
normalized solution. Now it is clear that while M/r, and M/rp are purely intensive, 
quantities such as M/gs, Gpn, and Hp., which involve g. and gp, contain parts 
independent of l as well as parts directly involving I. Thus, even the introduction 
of eqns. (86) and (87) into the full expression for Zi will not make it entirely 
intensive. It is thus not a pure interface impedance under all conditions. 

Let us next consider, however, the usual situation of interest when electrode 
charge transfer occurs, that where e.rp or epr, is much greater than unity. Then 
Gp, ~- 1, gs ~-0.5(enrp+epr.) ~ 1, Hp, ~_g2/(gp_gn)2= [(6.rp+6pr,)/(rp_r.)]2, and 
eqn. (80) becomes 

(e.rp + epr.)[(c~.rp + 6pr.)/(rp- rn)] 2 ~ 2M6,6p (88) 

For arbitrary n m and rp,-,0, r n >~ 1, for example, this zero condition becomes 

(e.rp + epr.) -- 2Mnz (89) 

in agreement with (81 ) when ~m ~ 1. Note that eqn. (88) is entirely intensive when eqns. 
(86) and (87) are used for r,  and rp. 

Now for the present gs ,> 1, arbitrary nm situation, Rcs becomes 

[ (  2 ) -- (M6,,6p) - I  (6.rp+ . .  I~o) 
R c s ~ ( e . % ) - i  e . rp+epr.  \ r p - r  n / l 

Let us now examine the case where the clearly intensive negative part of this 
expression is negligible compared to the positive part. Then on using 

( R~/e.ep) = ( 21/e)[(l~p + #.)/l%!a.](z.ni + Zppi) -1 (91) 

and eqns. (86) and (87), one finds that 

(4kT/e 2) 
Rcs = (z,,ni+zpPi)(z.¢.e2+ZpCpe.2) (92) 

This entirely intensive result holds, provided the positive part of Rcs remains 
dominant, for any nm and either r.  ~> 1, 0 ~< rp < r n or rp ~ 1, 0 ~ r n '~ rp. Note that 
its calculation requires values of z. and Zp, not just their ratio, nz. Further, this 
expression for Rcs has been derived for a two-electrode situatioa; it must be halved 
when only a single working electrode is considered. 

Equations (82)-(85) are similar to those used in conventional supported 
electrolyte theory; thus a comparison of effective rate constants is of interest. Note 
that in the region around equilibrium, where the present linearized results par- 
ticularly apply, quantities such as the p~ and n 1 of eqns. (84) and (85) are directly 
proportional to the amplitude of the applied a.c. potential, in consonance with 
supported case results 38. 

In the conventional analysis, it is somewhat unusual to consider together 
both positive and negative charged entities which can react simultaneously at the 
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electrode. But this is the general situation considered here when both rp and r .  are 
non-zero. The usual expression for Ro for a single charge carrier reacting at an 
electrode may be written 39 Ro=(kT/neio), where i 0 is the apparent exchange 
current density. In the present case, we must introduce such a current for each 
reacting entity. Since the overall currents are in parallel and are assumed non- 
interacting, the effective Ro may be written for the case of two identical electrodes as 

Ro = (2k T/e) [(Zp i0p) + (z, i0.)] - '  (93) 

Now in the present case of zero direct current, i0p, for example, may be expressed 
as 4°'4~ zpekpcpe , where kp is the apparent standard heterogeneous rate constant for the 
positive charges, and the effective concentration Cpe is often given by c~c~ -~. Here 
c o and CR are, as before, bulk concentrations of the oxidizing and reducing species 
and e is the transfer coefficient. We may now write 

Ro = (2kT/e2)[z 2 kp Cpe)-~-( Z2 kn c,¢)] -~ (94) 

The predictions of eqn. (94) are different in general from those of eqns. (73) 
and (92) for the coupled-case Rcs. For  example, the present unsupported treatment 
involves the ratio of the mobilities of the charged particles, while the extended 
conventional result does not. This difference between Rcs and Ro certainly arises from 
the strong coupling between charges of opposite sign in the unsupported situation. 

When eqns. (92) and (94) are set equal and zppi = z,ni is used, one finds 

= (Zp ~pPiEn "~ Z n ~nFli~p) (95 )  (zZkpcp,+zZk.c.e) 2 z 2 2 

Now when ~p and kp are  both zero, (95) leads to 

~n = (Cne/ni)gp 2 kn (96) 

This result applies in the general (0, rn; gin, gz; 0, M) case with r n ~> 1. When 
7[ m ~ 1, ep 2 in (96) is essentially unity. We then see that when C.e=ni as well, 
~n = k,. A result analogous to (96) can be derived in the rp > 0, rn = 0 case. Finally, 
it should be noted that the comparisons represented by eqns. (95) and (96) only 
turn out so simple when the negative second term in Rcs is negligible. There is 
clearly a contribution to Rcs in the present work which does not appear in the 
analogous Ro of the unsupported case. Again, this term probably arises because of 
charge coupling effects in the unsupported case. Since it involves a negative 
resistance, the electrode is more open (less blocking) when r , =  ~ and this term is 
dominant than it is when eqn. (80) holds, 9s < oo, and Rcs = 0. 

Finally, when kp and k, are both non-zero, we may patch together an 
expression for the appropriate A 0 in this generalized supported case for com- 
parison with the unsupported result of eqn. (42). Let us consider the situation where 
there is a large reservoir of neutral forms of the mobile positive and negative ions at 
(and in) the electrodes. The neutral concentrations will be taken large enough to be 
essentially invariant: small a.c. perturbations change these concentrations only 
negligibly, and they will not contribute significantly to the expression for A o in 
the supported case 42. Take Pi and n~ as usual as the concentrations of the two ionic 
species in the bulk of the electrolyte or solid material. Then the two conventional 
contributions to the Warburg admittance arising from these charges are uncoupled 
and add directly. For  the two-electrode case, the expression 
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Ao [(e2/2½kr){zZppiD~ ° 2 , Uo(kp)+ z.,,,og Uo(k.)}]-' 
= [(e2/2 kT)(zop,+z°n3' ' ~zoDguo(kp)+ znD~Uo(k,)} ]- ' (97) 

then seems appropriate. Here uo(:¢) is the unit step function: Uo(X ~< 0) = 0; uo(x > O) = 1. 
The introduction of this function is probably an approximation (associated with the 
assumption of no coupling at all), but it is needed, just as is the function Gp., which 
appears in eqns. (31) and (42) for A and A o and in all unsimplified expressions 
such as eqns. (69), (70), (73) and (74). When ro=r ., Gp,=0, so A and A o go to 
infinity in this completely blocking case. 

The present supported Ao is still quite different, however, from the un- 
supported case result of eqn. (42). There, when one D is much smaller than the 
other, that one dominates the expression for A o. Here, when zpD~uo(kp) ~ z,D~nuo(k.), 
for example, only the larger D is important in A o. Even when z ,=zo-z~ ,  
nl = Pi = el, D o  = D .  =- Do, and kp, k. > 0, the unsupported result is, from eqn. (43), 
Ao ~ 2~kT/e 2 z~c~D), while the result following from eqn. (97) is one fourth of this 
A o. The differences between the unsupported and supported results again arise from 
the charge coupling present in the unsupported case and perhaps also from some 
possible inappropriateness of eqn. (97). It does, however, seem very reasonable that 
the magnitude of the Warburg impedance be appreciably higher, as above, in the 
unsupported than in the supported situation. Finally, although the present theory 
and results have been here applied primarily in an electrochemical context, they 
also apply to solids as well. Impurity ions and various charged defects in crystals 
may be the dominant charge carriers, and electrode kinetics may involve injection 
and annihilation of defects as well as electron (and hole) transfer and chemical 
reactions at the electrodes. 

B. Approximate equivalent circuits 
Figure 20a shows the conventional equivalent circuit usually employed over 

the entire frequency region for both supported and unsupported electrolyte situa- 
tions 37'43"44. The Zw here is usually taken to involve the Ao of eqn. (50), rewritten 
for a single working electrode, or a simplification of it. The element Cd is the 
double-layer capacitance. The usual expression for Cd in the case of two identical 
plane-parallel electrodes is MCg = e/SzrLo, where LD here involves the concentrations 
of all mobile charges completely blocked at the electrodes. Finally, Ro is the 
equilibrium charge transfer resistance discussed in Part A of this Section; it will be 
zero for infinite electrode reaction rates. All quantities in this circuit are intensive 
except the extensive R~. Here the other extensive quantity, Cg, has been omitted 45. 
Figures 20b and 20c show the limiting forms of the circuit when ~o~0 and o9~oo, 
respectively. Note that although the circuit is supposed to apply to a faradaic 
process, it does not allow a continuous current to flow as it should 35"46 and as the 
circuits of Fig. 1 do. 

Let us now consider how the circuits of Fig. 1, representing the unsupported 
situation, simplify for rc~ ,~ 1 when the relations of Section VI-A for Y~ and Z~ are 
used in the approximate Warburg region. The results thus only apply when r v ¢: r,,. 
Figure 2 la is a form of Fig. la in which exact Warburg elements are shown explicitly. 
Now consider the situation (0, rn; rcm, rrz; 0, M) when rtm ~ 1 and r n >> 1. Then 
GE-~Goo, Go=[~.rn/(r,+2)]G~o, and Gop_~Gcp=-[~pe.{r,/(r,+2)}Z]Go~, Since 
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Fig. 20. (a) Conventional electrochemical equivalent circuit; (b) low-frequency-limiting form of the 
circuit; (c) high-frequency-limiting form of the circuit. 

Fig. 21. (a) Form of the exact equivalent circuit of Fig. 1 appropriate in the Warburg frequency 
response region. (b) Approximate but frequently applicable form of the circuit. 

~p~l and e.----nm, GDN and IGopN[ are much smaller than unity. It will thus make 
little difference if Gop is reconnected to the right terminal of G E rather than the left. 
Then GD and Gop are in parallel, and their sum is approximately 7Zm[rn/(rnq- 
2)] [1 - (r./(r, + 2)}] G~ = [27rmr,/(r. + 2) 2] G~. For  Zm ~ 1 and r ,  >> 1, the result is 
completely negligible, thus justifying the absence of GD in the conventional circuit 
when applied to an unsupported situation: (a) in the Warburg region only, and 
(b) when it m ,~ 1. 

The result of the above manipulations is shown in Fig. 2lb. Note the 
absence of any direct current path from electrode to electrode in this f2 region, 
region B of Table 2. Under some usual conditions, we may still simplify the 
circuit of Fig. 21b further. The reactance of Cop i's (coCop)-I~R,~/~'2CopN "~ 
(f2CcPN)- 1Roo. Taking, for example, ~=0 .1  ~m and assuming (6,6pM/gs) >> Hp,, one 
finds IOCcPN1-1R~ ~- ( IOgs/tSn~pM)(7~mM) -1 G~n ~ R~ _~( lOgs/t~n6pM)(rrmM )- 1Roo. 

.Since 1tram '~ 1, this result will appreciably exceed R~ provided Hp, ~ (6.6pM/g~) 
,~ 10(r~mM)-L, a quite practical situation. Then, and for smaller f2 values, it will be 
an adequate approximation to reconnect Coo to the right end of R~, and the circuit 
of Fig. 22a is obtained. 

Another approximate equivalent circuit appropriate for nm ~ 1 may be 
obtained by introducing the results of eqns. (64) and (65) in Fig, la. One then 
obtains the circuit of Fig. 22b. On ignoring RD~TZ~IR¢~, replacing Re ~ R~, with 
R~, and ignoring C~ 1 compared to Cws t, the circuit of Fig. 22c is obtained. This 
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Fig. 22. (a) A more approximate form of the circuit of Fig. 21b; (b) an alternate form of the exact 
equivalent circuit of Fig. 1 appropriate in the Warburg region; (c) approximate form of the (b) circuit. 

clrcmt is probably not quite as accurate as those of Fig, 21b and 22a since R D 

was ignored, not "cancelled". 
Comparison of the circuits of Figs. 20a, 21b, 22a, and 22b shows both 

similarities with and differences from the conventional circuit. In Fig. 22a, 
Cg + Cop~ Cop plays the role of the Cd of Fig. 20a. But note that the maximum 
positive value of Cop ~- Ccp applicable for rp = 0 and r. = oo, is about 2 M6p Cg, always 
less than MCg. When "Cd" is actually determined in the unsupported case from 
measurements in the plateau region (region C of Table 2; see also Fig. 17), 
the result is not MCg anyway but is Crs ~-Mf~pCg, still always greater than Mf2pCg. 
Thus Cop is never exactly the double-layer or even the plateau capacitance. 
More important, eqn. (70) shows that Cop ~- Ccp can go negative, and its maximum 
magnitude for (M/gs)>> 1 can greatly exceed MCg. 

Similarly, the R0s element of Fig. 22c may be taken to play the role of the 
charge transfer resistance of Fig. 20a. Note that Cop and R0s are not independent, 
however, as shown by eqn. (77). When one is positive, the other is negative. In the 
rp:~ ~ ,  r , =  ~ case, eqn. (73) shows that Ros ~ Rcs =RcsNR~ is negative. Similarly 
when (M/9~) >> I, Rcs is positive with dominant part (Gp,,e.,,e~,9s)- 1 R~. In the present 
~m ~ 1 case,  ~n 1 ~-~m 1 ~>l; thus, this term will greatly exceed R~. Note that the 
ratio R~/gs will be very nearly intensive if r,  >>2 but will be neither purely 
intensive nor extensive when this condition does not hold, i.e. in the case of a very 
slow electrode reaction. Finally, it is important to note that Cop and R0s do not 
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Fig. 23. Normalized frequency dependence of the electrode-reaction quantities Ross and Cov~ for the 
(0, r . ;  10 7, 1: 0, 105) situation. 

appear  simultaneously in the same equivalent circuit as do the Cd and Ro of Fig. 20a. 
Figure 23 shows how R0sN and CopN actually depend on f2 for the (0, r , ;  

10 -7, 1; 0, 105) case. These quantities were calculated essentially exactly by the 
computer  rather than from the approximations of eqns. (67) and (71). We see that 
R0SN and CopN are substantially constant up to (2~(/Zm/30) but do not remain 
constant close to the lower Warburg region boundary of 40 7~m M - z ,  here at 
~2=4 × 10 -16. Figure 23a shows that R0sN-*0 as f2 > n  m. Actually, in this region 
Ross -~ - RwsN, so R~N -- RWSN + Rosy approaches zero rapidly. For example at ~2 = 10- 5 
RwsN = 10x/2 and RiN "6.1  × 10 -3. Note that there is not much of a Cos plateau 
region here since nm M is not sufficiently small. There is, of course, a wider plateau 
for CiN, and we see in Fig. 23b COPN~C~sN as f2>  10 -8 or so. Since the 
susceptance of Cop will be much greater than the admittance of Zw as f2 appreciably 
exceeds rim, the circuit of Fig. 21b approaches the plateau circuit of Fig. 17 as it 
should in this plateau region. Similarly, the circuit of Fig. 22b also goes to that of 
Fig. 17 as ~ increases since R i - + 0  and C i = (C%vs 1 + C~j  S 1 ) -  1 approaches CiS.  

In order to present further information on the important  quantities COPN, 
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TABLE 4 

VALUES O F  C I R C U I T  ELEMENTS M U L T I P L I E D  BY 9~ FOR THE (0, r , ;  10 -7, 1; 0, 105) S ITUATION 

Range values give 10 percent variation values of ~2 on a logarithmic basis 

r, Constant quantities Frequency-dependent quantities 

g~RcsN --gsCcPN Max(g~Rosy) loglo(2 range Min(-g~Cor, N) loglof2range 
rain~max min/max 

2 x 1 0 6  --9.000 X 10 v --2.250X 101° - -9 .10x 107 --12.4/--8.6 --2.26 x101° --14.6,/--9.0 
2X105 1.001 2.502 x 102 - -1 .92x 105 --11.7/--11.2 --3.72 x 107 --12.2/--11.4 
2×10'* 9.002 X 106 2.250 X 109 8.93 x 106 --13.1/--9.5 2.20 X 109 --14.1/--10.3 
2X103 9.920 x 106 2.470 x 109 9.88 x 106 --13.8/--9.8 2.32 x 109 --14.4/--11.8 
200 1.019 x 107 2.448 x 109 1.02 x 107 - 14.4/ -  10.6 2.02 × 109 - 14.8/ -  13.3 

20 1.210 x l07 2.066 × 10 9 1.21 × 107 - 15.1/ -  11.6 1.23 × l09 - 15.3/-  14.6 

CCPN, R0SN, and RCSN, Tables 4 and 5 show their variation under different con- 
ditions. Table 4 applies for the same (0, rn; 10 -7, 1; 0, 105) situation presented in 
Fig. 23 but extends to much smaller r n values and thus into the very slow 
electrode reaction region. All element values in Table 4 are multiplied by gs in order 
to remove first order variation arising from 9s changesl Here 9s ~gn = 1 +(rn/2 ) to 
excellent approximation.  The Table gives the approximate  maximum values of gsR0sN 
and minimum values of --gsCoPN for comparison with gsRCSN and - - g s C c P N .  In 

addi t ion  the Table presents the f2 ranges over which RosN remains within 10 
percent of its maximum value and COPN remains within 10 percent of its minimum. 
The ranges are shown in logarithmic form as (log 10f2mi.)/(loglof2max) where f2mi n 
and f2ma x are the lower and upper 10 percent points. 

Table 4 shows that when r,, is appreciably smaller than the 2M cross-over 
value, the quantities shown remain nearly constant for more than a 100-times 
reduction in r,. When (r./2M)< 10 - 4 ,  however, such constancy disappears. In- 
cidentally, (RosN)ma x values occur here at O ",- 10-12(10 r,/2m) ~. For  (r,/2M)< 0.1, 
(CoPN)mi n values appear  at f2 --- 10-11 (r./2M). Thus at r n = 2 x 103, these f2 values are 
approximately 3 x 10- 13 and 10-13. The ranges given show that in the approximate  
constant region R0sN remains close to its maximum value for 3 or 4 decades, and 
CopN shows a decreasing ___ 10 percent range as r n decreases below 0.2M. Incidentally, 
for (0, 2x103;  10 -7, 1; 0, 105) the quantity U1 shows a +10  percent log~ol2 
variation range around a value of unity of - 14.75 to - 12.7 and increases mono- 
tonically with f2 in this range. On the other hand, U 2 shows a range of - 13 .9  to 
-12 .2  for 10 percent variation around the value of unity and decreases mono- 
tonically with increasing f2. 

Table 5 is similar to Table 4 except that here (r,/2M) is fixed at the value 
10-2 and thus both r n and M vary. In addition, although 9~ is again used to mul,- 
tiply the resistive elements, M -  1 is used in its place for the capacitative ones. Here 
we see quite good constancy of the elements shown nearly down to rn= 20. Note 
that the log mr2 ranges decrease for both quantities as r n and M decrease, but most 
of the decrease arises from a decrease in magnitude of the low-f2 boundary value 
associated with the M reduction. Here (R0s~)ma~ values occur at 12~ 10 - 7 . 5  M - 1  

and (CopN)mi, values at f2"-- 10 -~ M -1. For (r,/2M)= 10 -2. RcsN itself increases 
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here from about 99 to 1.2 x 106 as r ,  decreases from 2 x 105 to 20. Thus, in this 
entire range Rcs ~> Ro~, and the reaction resistance dominates the bulk resistance. 
Over this same range, Ccp remains approximately equal to - 2 4  MCg, much larger 
in magnitude than the corresponding double-layer capacitance. 

C. Warbur 9 data analysis 
There are two principal ways Warburg-region data are usually presented 

either as impedance or admittance components. In the impedance case, the real and 
imaginary parts of ZT (or here more properly Zi) are plotted versus o) -~ to yield 
approximate straight lines. In the present n m ~ 1 case, over much of the range of 
interest where ZTN ~ Z~N+ 1 and ZiN >> 1, either Z T or Z~ may be used, but it is 
better to eliminate R~ whenever possible as is usually done, either correctly or 
incorrectly, in electrochemical situations. 

We shall use normalized variables in plotting Z~ here since their use will 
make the results more independent of M and n m. Let the frequency variable be 

X = 2-1-(AMO~) -1 = 2~(MAZ) -1RwsN = 2~M -1 CwsN (98) 

When n m ~ 1, n~ = 1, and Gp. ~ 1, X = [0(2 + 7~ m -~- ~ m  1)] -½ ~--- (~m/ff~)½" Next, further 
normalize the impedance to NZ~N, where 

N =- (2/IOMA 2) (99) 

The numerical values 2 ~, 2, and 10 in these quantities are arbitrary scaling factors. 
We may now write, on using eqn. (64) and replacing R0sN by RCSN, 

NRiN ~ NRcs N +(2½X/10) 

= - 0.4M-1 CcpN + (2~X/10) 

= 0.4Gp,[6,6p(M/gs)- Hpn ] +(2½X/10) (100) 

Similarly, on replacing C0sN by CcsN and using eqn. (65), we find 

N(g2CiN)-' ~ N(f2CcsN)-' +(2~X/10) 

= (lOGpnbnbpM) - '  X 2 + (2½X/10) ~ (2½X/10) (101) 

Figure 24 shows curves of this kind for r p ' ~ 0 ,  rn= 00. The points, ap- 
propriate for nm= 1, show how little the curves change on going from n m ~ 1 or 
n m >> 1 to nm = 1. The slopes agree with those above, and the X = 0  intercept for 
NRIN is, from eqn. (100), 2 - -  0.4Gpn Hpn -- - 0.4bp -- - 0.1. The actual intercept shown is 
slightly larger in magnitude. The capacitative reactance curve extrapolates to the 
origin, in agreement with eqn. (101) and with most experimental results. Note that 
for the present case, since (2 ~ nm X-2,  these curves where X ~< l0 emphasize the (2 
region near rim. They remain substantially straight lines, nevertheless, down to X,~ 2, 
where (2,-,n~/4. Curves of this sort for series capacitance and resistance are 
frequently found experimentally a7.44'47-s3, but usually the R i c u r v e  lies above the 
other (i.e. Ro >0).  Some slight evidence of Ro < 0, as in the present rp '-~0,  r n =  O0 
case, has, however, been published '~9' 51. 

Turning now to the admittance approach, we may rewrite eqn. (3) as 

YTN -- GpN + if2CpN = (iO + GDN) +(ZIN + REN)-' (102) 
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Fig. 24. The further normalized quantities N(QC=N) z and NR= N versus X for the (rp, co; ~..  1; 0. M)  
situation. Here N -=(5MA 2) z and X =-(2/Q)I(AM) - i. 

In the 7~rn <~ 1 case, where REN ~ 1 and [Z~N[ >> 1, this equation leads, on using 
eqns. (58) and (63), to 

CpN ~ 1 + CweN + Cops (103) 
and 

GpN ~ Gwp N +(GDN %- GopN) (104) 

Note that eqn. (103) is more accurate than eqn. (28) of Section V which applies to 
the same situation. Now we have already seen that for ~r, < 1, GDN%-Gop y ~_ 

GDN + GCPN ~ 2nm/r, ~ 0 for rn >> 1. Thus, GpN ~ Gwp N here. 
Now if we set COPN ~- CCPN and neglect the unity term on the r.h.s, of eqn. (103), 

the result can be written 

m - i Cp N ~_~ M - 1 CCPN %- (X/2 ~) 

= Gpn { H p n -  ~ n O p ( M / g s ) }  +(X/2 ~) (105) 

On using the good approximation GpN ~- GWPN = ~2CweN, one also readily finds that 
eqn. (103) may be rewritten as 

Cp N ~ COPN %- ~'~ - 1 Gp N 

CCPN %- ~c~ - 1 Gp N (106) 

In unnormalized form this equation becomes 

Cp ~- MGp. [ H p n -  iJnOp(M/g~) ] Cg %- g0-1 Gp (107) 

De Levie 1° and Leonova et al. 54 have derived the similar result 

C ,  = C~ + ( ~ R , ) -  ' (10S) 

which is consistent with the conventional circuit of Fig. 20a only when R0~0. 
Again we see, however, that plotting Cp vs. (caRp)-1 here does not yield Cd but 
rather Ccp Although the above authors required the assumption R0~0 to obtain 
eqn. (108), the similar eqn. (107) found here does not require the assumption 
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R0s = 0. In fact, eqn. (77) indicates that when Cop~ ~-CcpN :# 0. R0s N ~ Rcp N cannot be 
zero either. Thus, experimental satisfaction ofeqn. (107) does not necessarily indicate 
that Ro--0 and kp or kn is infinite. 

Figure 25 shows some 1r m < 1 curves of the form of eqn. (105). They are 
fully consistent with it over most of the X range and of the form found experi- 
mentally. For the present situation, eqn. (105) yields a X--*0 intercept of & 2. Thus 

½ the corresponding Cp intercept is M62Cg, always less than MCg or M~p Cg, as 
mentioned earlier. The insert in Fig. 25a shows the X < 0.6 region in expanded 
form. For X > l, the curve is essentially independent of 7rn, for lr m < (10 M)-~. 
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Fig .  25.  T h e  q u a n t i t y  M XCpN versus X fo r  (0,  oo;  ~m, 1; 0, M )  a n d  (0 ,  oc ;  10 - 6  , ~z;  0, 104 ) 
s i t u a t i o n s .  

Figure 26 is plotted for r,  ~< oo and may be compared to the r , =  oo results 
of Fig. 24. On the much extended X scale used here, the dots, corresponding to 
the rn=OO condition, seem to lie virtually on the ideal Warburg line (R0sr~=0), 
because the resolution is less here than that of Fig. 24. Tables of pertinent values 
are shown on each part of Fig. 26. The specific values of RcsN shown in the Table of 
Fig. 26a apply for ~m= 10 6, although the curves themselves apply for gm< 0.03. 

The X ~ 0  intercepts of Fig. 26a all lie somewhat below those that follow 
theoretically from eqn. (100), NRcs ~. The differences arise both from inaccuracies 
in determining the final limiting slope graphically and probably also from the 
approximate character of eqn. (100). Now Fig. 26b shows no large departure from 
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Fig. 26. The quantities NRiN and N(QCis)-I 
large values of (M/r.). 
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versus X f o r  t h e  (0, r , ;  ~m, l ;  O, 104 ) s i t u a t i o n  w i t h  

the Warburg line as r, is decrea.sed down to ~ 200 (where M/g~ ~ -  102), while in- 
creases of  Rcs N with decreasing r. move the NRiN line upward. Thus, when 
(M/g~) > (&p6.)- 1Hp,(equal to unity for ~ z =  1), so that the X ~ 0  intercept is positive, 
the R i lines will then lie above the (oC~)- ]  lines, as is usually observed experi- 
mentally. 

It is also worth noting that the forms of the NRiN and N(QCI~)- 1 curves of  
Fig. 26 are very similar to those given by Vetter 56 for the components  of  the 
faradaic impedance (suppqrted case) with diffusion and heterogeneous reaction rate 
control. But the present curves for NRiN are quite unlike those given by Vetter 
for the more complicated combined case of charge transfer, diffusion, and hetero- 
geneous reaction rate control 5s. 

In Vetter's diffusion and heterogeneous reaction rate control case, his faradaic 
impedance, which essentially corresponds to the present Zi, involves Zw in series 
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with a resistance Rr and capacitance C,  also connected in series. These elements thus 
correspond to the present Ros and Cos (see Fig. 22b). It is found 55 that Rroc 
[1 +(co/k)2] -1 and CrOC [1 +(k/oa)Z], where k is an effective rate constant for the 
reaction considered. These frequency dependences are somewhat similar to but not 
the same as those of Ros and Cos following from the present treatment. For 
example, in Fig. 23 RosN begins to drop off rapidly with f2 at a value of f2 
related much more to rtm than to ~, (or rn), and it goes negative to a value 
determined principally by (XmM) -1  before then beginning to approach zero. It 
should be noted, however, that for (rn/2M) < 10- 2, as in the r. = 200 curves of Fig. 
26, the maximum negative value is far smaller in magnitude than is (R0SN)ma x ~ Rcs N. 
Similarly, COSN drops off from ~ CcsN eventually as f2 increases toward nm. As f2 
decreases, on the other hand, C0SN reaches a maximum nearly equal to CcsN and 
then slowly decreases toward CiN0, rather than increasing indefinitely as does Cr. 

It is important to emphasize, nevertheless, that it is the drop off with 
increasing f2 of RosN and CosN which leads to the behavior of the curves of Fig. 26 
in the interesting region 5 < X < 35. Incidentally, for the choice nm= 10 -6,  when 
X'-~9.8 here, O = 1 0  -9,  and O=10 -1° for X-~31. The minima in the N(f2CIN) -1 
curves (apparent for rn ~< 400) occur when CosN ~ CwsN. Since C0sN decreases with 
increasing f2 faster than CWSN in this region, C0sN soon dominates the series com- 
bination, and the maxima in the reactance curves occur at CosN ~ CWSN/3. 

Alternatively, the curves of Fig. 26 may be interpreted in a simple fashion 
using eqn. (4'). The maxima in the curves of Fig. 26b are associated with the 
maximum value of -Im(Z2N), (earn)-1. The Warburg response of Z~N (not exactly 
ZWN) is in series with the parallel combination of R z = ( 2 / e n r . ) R  ~ and C 2 = M C v  
Note that when Rcs is dominated by its positive part, as in the present situation, 
and 7r m ~ 1, Rcs ~-(2/e.e2r.)Roo ~-(2/e.r.)Ro~ = R  2. Thus R 2 may be considered a 
pertinent equilibrium charge transfer resistance in the present unsupported case. 
It is interesting that in the formulation represented by eqn. (4') such a quantity 
appears directly in parallel with the double-layer capacitance C2=MCg and thus 
no effect of C 2 appears at all when r,  = oo ! 

The close correspondence of the curves of Figs. 24 and 26, first with those 
that are found in the supported case for diffusion and charge transfer rate control 44, 
then with those for diffusion and chemical reaction rate control s5 is no accident. 
In the (0, rn; ~m, ~z; 0, M) situation with r n ~ 1, we may use eqns. (73) and (87) to 
allow definition of an effective rate constant, ~.~, which particularly covers the Rcs N 
region of most interest, 1 < Rcsy ~< oo. Let us thus write in this case, 

where 

Rcs N = ( 2Dn/IGpn,~n,~)~- ~e 1 (109) 

~1 = (ep l/2D,)[{ 1 + (ep l~n/2Dn) } -1 __ (Hpn/M3n 3p)] 

"~ ~;  ~ - ( % L D H p . / 6 . 6 p D . )  (110) 

A more exact expression for ~,e could be formed as in eqn. (109) but with 
RosN replacing RcsN. 

Now the foregoing results show that when the first term on the r.h.s, of 
eqn. (110) does not dominate the expression but ¢~1 remains /> 0, RiN and CIN lead 
to results like those of simple charge transfer in the unsupported case. But 
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when the ~21 term dominates, the results are like those for chemical reaction 
control. Evidently in the present exact treatment of the unsupported case. the two 
processes meld together. There is a smooth transition from apparent charge transfer 
control in the region 0 < (~ , /~ , e )<  1 to apparent chemical reaction rate control 
when (~,/~,e) ~< 1. Notice that the effective rate constant ~,e is more analogous to the 
conventional rate constant than is ~,, since ~,e = CO corresponds to zero electrode 
reaction resistance, to the degree that R0sN = Rcsy .  

3x10 5 

2xlO 5 

z 

10 5 

0 

0 

[ I I I I i ~ ~ ~ I J i i i I i l.;,i i 

-- - [DEAL WARBURG / / /  
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Fig. 27. The quantity CvN plotted versus  (GpN/Q) for the (0, r,; 10 6, 1; 0, 10 4) situation. 

Finally, Fig. 27 shows CpN v e r s u s  (GpN/~"2) for various r,  values. The results 
are in substantial agreement with eqn. (106). Here, because (2M/r,)>~ 1 for most 
of the curves shown, most of the Ccp N intercepts are negative, although positive 
ones would be found for r n values satisfying (gsHpn)>(C~nt~p)M. A specific value 
of X is shown at the bottom of this Figure. Its size indicates that most of this plot 
corresponds to ~2 values much less than gm- These curves are also of the form of those 
determined experimentally 1°5154 except that the experimental intercept found is 
usually positive. 

The methods of plotting experimental results described in this last Section 
have been quite widely used in liquid electrochemical situations but not appreciably 
for analysis of frequency-response data on solids. When such data indicate a Cp 
slope of m ~ 0.5, it should be profitable to test the data against the equations of this 
Section and, when agreement is found, determine the values of the various para- 
meters entering the equations. In general, comparison of experimental results with the 
theoretical results of the present paper should, in pertinent cases, permit the 
determination of values of the following physically significant parameters: /2n, ~p; 
z., Zp; rn, rp; i , ,  iv; n~, p~; Cg, R~; M and e,. Measurements at several tem- 
peratures should then allow estimates of the thermal activation energies associated 
with such quantities as in and ~p to be obtained. 
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LIST OF SYMBOLS 

A. Major subscripts 
i Designates an intrinsic or series "interface" quantity; also used as index with 

i = n o r p  
n Designates quantity associated with negative mobile charged species 
p Designates quantity associated with positive mobile charged species 
N Normalization of impedances and resistances with R~, of admittances and 

conductances with G~ - RL ~, and of capacitances with Cg 
P A parallel quantity 
S A series quantity; also indicates a plateau region quantity 
T Stands for "total" 
0 Designates either a static quantity or the zero-frequency limit of a frequency- 

dependent quantity 
The value of a quantity in the limit of high frequencies (i.e., f2 >> 1) 

B. Major symbols in text 
Numbers in parentheses indicate equations where the symbol is used or 

defined. 
A (4GwPN CwsN)-~-; normalized Warburg parameter; (6), (31) 
A o Warburg parameter; (5), (42), (50), (97) 
Ccp Frequency-independent part of Cop 
Ccs Frequency-independent part of Cos 
Cd Apparent double-layer capacitance in the supported case; see Fig. 20 
Cg Geometric capacitance/unit area; e/4nl 
Ci "Interface" capacitance/unit area; the series capacitance associated with Zi; (60) 
C~s "Interface" capacitance/unit area in the plateau region 
CK (Cwp+ Cop) 
Cp Total parallel capacitance/unit area; associated with YT; (102). Note: Cpo= 

C O ---~ Cio -~- Cg 
Cos Total parallel plateau capacitance/unit area 
Cwp (2A-Q~)- ~ Cg 

(An ) ' G 
Coo See eqns. (58), (63), and (67) 
Cos See eqns. (65) and (72) 
D~ Diffusion coefficient; for positive carriers i=p ,  for negative i=n  
Gcp Frequency-independent part of Gop 
Go Frequency-independent parallel discharge conductance/unit area; see Fig. 1; 

GDN =--en[1 + (2/rn)]-1 +Sp[1 -q- (2/rp)]- ' 
GE (gs Go~/gv g , ) -  (G~ - Go) = RE -a ; GEN = ~n [l + (r./2)] -1 + % [1 + (rv/2)] -1 ; see 

Fig. 1 
GK (Gwp + Gop) 
Gp Total parallel conductance/unit area; associated with YT; (102). 

Note: Gpo~GD; Gp~---G~ 
Gpn [(gp--gn)/ypgn] 2 
Gwe f2~ G~/2A 
Gop See eqns. (58), (62) and (66) 
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G~ Bulk conductance/unit area; R~ 1 
Hpn [ (g2-gs ) / (gp-  an)2] 
L o Debye length in the present intrinsic case 
M (l/2LD) 
N (5MA2) -1 
Rcs Frequency-independent part of R0s 
RD Go 1 
R E Frequency-independent series resistance-unit area; Gff 1 
Ri "Interface" series resistance-unit area; associated with Z~; (60) 
gs (RE + Ri) 
Rws ARo~/f2 ½ 
R o Equilibrium charge transfer resistance-unit area in supported case; see Fig. 20 
Ros See eqns. (64) and (71) 
Roo G~ 1 
T Absolute temperature 
X 2~(AMt2I) - 1; (98) 
Y~ Zi -1 
YT Total admittance/unit area of the system; (102) 
Yw Zw 1 
Yo (Goe+koCop); (59) 
Zi "Interface" impedance-unit area; (14), (60) 
Zj Components of ZT; j =  1,2,3 ; (4') 
ZT Y~T ' ;  (3) 
Zw A0(1-i)/~o~; Warburg impedance 
Zo [R0s +(ioC0s)-1];  (61) 
a (~2//~p) --~ (~ n2/,~n) 
b 6.6p/~.% 
C (t~n//~n) -- (~p/Sp) 
e Protonic charge 
gi 1 + (ri/2); i = e (r. = rp), n, or p 
g~ gnep -t- Open 
gz gn (~p -~- gp t~n 
k Boltzmann's constant 
ki Apparent standard heterogeneous rate constants for the supported case; 

i = n  o r p  
l Distance of separation of plane-parallel electrodes 
m Exponent in co -m response 
n Concentration of negative mobile charges 
p Concentration of positive mobile charges 
r M [coth(M)] 
r e Designation of common value of rp and r n when they are equal 
r. Dimensionless discharge parameter for negative charges 
rp Dimensionless discharge parameter for positive charges 
z. Valence number for negative mobile charges 
Zp Valence number for positive mobile charges 
f2 Normalized radial frequency; OT D 
6n (1-~-7~z 1) l~Zn/(Zn"l-ZP) 
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6p (1 - Zp/(Zn + zp) 
Dielectric constant of the bulk material 

ep (1 + ~m) - i  ~ flp/(#n + [2p) 
A Mr2 ~ 
/~i Mobility; i=n  or p 

"l~ r/'L" D 
~i (Di/l)ri; i = n  or p; effective rate constants 
~,e Effective rate constant in unsupported case; (110) 
~m Mobility ratio; ktn/#p 
nz Valence number ratio; zn/zp 
rD Dielectric relaxation time; CgR~ 
Z E RE Ci 
zr Recombination time constant 
Z" s (R E + Ri) Ci 

Radial frequency of the applied sinusoidal voltage 

SUMMARY 

The frequency response is considered of a two-electrode linearized system 
containing a single positively charged species and a single negatively charged 
species. These species may have arbitrary valences and mobilities and may in- 
dividually react at the electrodes. The results follow from a detailed solution of 
the equations of charge motion given earlier. Normalized response is exhibited for 
this unsupported, intrinsic-conduction situation for a wide range of mobility ratios, 
valence number ratios, and reaction rate ratios. Results are given in the form of 
specific formulas, impedance-plane plots, and the dependences on normalized 
frequency of series and parallel resistive and capacitative components of the nor- 
malized total impedance of the system. 

Impedance-plane plots exhibit from one to three connected arcs, depending 
on the specific situation. Approximate Warburg frequency response appears for the 
"interface" impedance over a certain frequency region when normalized reaction rate 
parameters differ, but it only shows up strongly in the total impedance when the 
mobility ratio departs appreciably from unity as well. Under such conditions, a 
plateau region, where the total parallel capacitance remains essentially in- 
dependent of frequency over a wide frequency range, may appear at frequencies just 
above the Warburg region. The plateau capacitance is close to but not identical to 
the conventional double-layer capacitance present when both species of charge are 
completely blocked. In incomplete blocking cases, however, this double-layer 
capacitance only makes a significant appearance in the approximate equivalent circuit 
under slow reaction conditions; it is thus not present when one of the reaction rate 
constants is infinite. 

In general, the system can show 09-" frequency response for the parallel 
capacitance over a wide frequency range with 0~< m~< 2, and with the experi- 
mentally common regions where m = 0, 0.5, 1.5, and 2 especially likely. Particular 
attention is given to deviations from ideal Warburg behavior which lead to a com- 
bined charge-transfer and heterogeneous chemical reaction resistance. Results are 
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compared to those from conventional supported treatments and show both important 
similarities and differences. Finally, several new equivalent circuits are presented 
which are pertinent in various frequency ranges for the unsupported situation. 
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