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L INTRODUCTION

Interest is rapidly growing in the frequency response of a variety of binary
charge systems. In such systems, two types of charge carrier are dominant; they
have opposite signs and may have any mobility values, including zero for one of
them. Representative systems mclude aqueous or other liquid electrolytes without
a supporting electrolyte, glass electrodes, fused salts, and a variety of solid
materials. Electrodes may be completely blocking for the charge carriers or may
allow a conduction current, often involving an electrode reaction, to occur. Systems
of the type considered are not purely ohmic at all frequencies, even neglecting their
omnipresent geometric capacitance, C,, but usually exhibit strong frequency-
dependent capacitative and resistive effects.

In earlier work'™, some discussion of experimental results and of the
various theories put forward to explain these small-signal frequency response
results has been presented. In particular, considerable analysis has been given of the
uni-univalent situation with equal mobilities for the two types of carriers'—>.
Recently, a detailed theory has been published which involves arbitrary valences
and mobilities and relatively general electrode boundary conditions*. 1t does not
include specific ionic adsorption explicitly, however. This microscopic, charge-motion
theory neglects no diffusion terms and yields results which satisfy Poisson’s equation
exactly everywhere within the materiul considered. Although the new theory applies
in the fully dissociated extrinsic conduction siluation as well as for intrinsic con-
ditions, only the latter type of conduction will be considered in the present
paper. Thus, the response of heavily doped solids at low temperatures is not covered
by the present work and will be considered elsewhere?.

The general theory® yields an exact analytic result for system impedance
as a function of frequency, but this result depends on many parameters and is far too
complex to be immediately transparent. In the earlier work®, therefore, only its
limit as the applied frequency goes to zero has been considered in detail. The
purpose of the present paper is to (a) use coniputer calculations of the exact
expression for total impedance to show some of the major types of frequency
response to which the theory leads in the intrinsic case; (b) derive from the results
simple approximale [requency response formulas for cases of especial interest;
(c) present several approximate equivalent circuits applicable over limited frequency
ranges and made up only of essentially frequency-independent elements together
with Warburg circuit elements (where appropriate); and {(d) finally to compare
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unsupported and supported results where pertinent. Frequency response will be
shown by means of impedance-plane plots, by curves showing frequency dependence
ol the real and imaginary parts of the total impedance of the syvstem, and by
frequency response plots of its total parallel capacitance and conductance, derived
from the total admittance. All of these types of presentations (and many more) have
been used in showing small-signal response in the electrolyte. dielectric, and semi-
conductor fields. Although they involve some or all of the sume information in
different ways, all these methods are separately useful in comparing experimental
and theoretical results. The presentation of all these approaches should also help
make those authors who only use one method exclusively more aware of the virtues
of other methods.

Note that although the analytic results of the general theory* depend on a
linearizing assumption and thus apply in principle only for small-signal con-
ditions, they need not nccessarily be limited only to electrolyte situations where
the potential of zero electrode charge and the equilibrium potential coincide. In
the absence of specific adsorption but even in the presence of a non-zero direct
current, the theoretical results* may apply provided the system is sufficiently linear
around the bias point that the static components of charge are essentially constant
and independent of position within the material considered. There is then no static
field gradient in the material. Also, under these conditions an applied a.c. potential
amplitude appreciably greater than kT/e may be applied as well without necessarily
destroying the applicability of the theory®. Here k is Boltzmann’s constant, T the
absolute temperature, and e the protonic charge.

Although full comparison of theory and experiment requires (or derives)
knowledge of the individual valence mumbers z, and z, and of the individual
mobilities w, and g, of the positive charge carriers (bulk concentration p;) and
negative charge carricrs (bulk concentration #,), in the normalized form of the theory
only the ratios n,=z,/z, and =, =u,/u, are necessary®. For convenience and
greatest generality many of the frequency response curves presented herein will thus
involve normalized quantities. As we shall see, however, elimination of normalization
when necessary is a simple process.

Finally, the description of a given space-charge situation with electrodes
completely blocking or able to sustain charge transfer reactions requires parameters
which define the specific boundary conditions at the electrodes. In the general
theory, these dimensionless parameters are denoted r, and r,. When two identical
electrodes are considered, these parameters arc taken to be the same at both,
Complete blocking oceurs when r,=r,=0. On the other hand, for example, when
r,=0and r,= 2, a condition we shall frequently consider herein, positive carriers
are completely blocked and negative ones compleltely free to discharge or to appear
at the electrodes. The condition r,= v is thus indicative of an infinitely rapid reaction
ratc for the negative carriers. The later presentation of theoretical results is facilitated
through use of the derived boundary condition quantities g,=1+(r,/2) and
g.=1+(r,/2). A glossary of symbols uscd hercin is prescnted at the end of the paper.

IT. BASIC FQUIVALENT CIRCUITS

The exact equivalent circuit found in the earlier work®* is shown in Fig. la.
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Fig. 1. Exact equivalent circuits involving the frequency-dependent admittance Y, The two circuits are
electrically equivalent. Here Gpn=G:/G, and G, =Gp+ Gp.

Figure 1b provides an alternative circuit which exhibits the same overall im-
pedance, Z,, as that of Fig. la at all frequencies. These circuits apply for the
. case of two identical plane-parallel electrodes separated by a distance /. The effects
of any electrode roughness are ignored here. Most of the results considered herein
apply to the situation of two identical electrodes, the usual one for solids.
Modifications in element values to make circuits applicable for the usual aqueous
electrolyte situation of a single small working electrode and a much larger in-
different electrode will be discussed later. A comparison will be made later of the
present results with the conventional cquwalent circuil used in the supported case
(see Fig. 20a).

All circuit elements herein apply for unit electrode area. Thus, the geometrical
capacitance C, is given in the present case by ¢/4nl, where ¢ is the dielectric
constant of the basic material in the absence of mobile charge. Now let Y,=Z1!'=
Gp+iwCy, where Gp and Cp are the parallel conductive and capacitative elements
of the total admittance ¥; and w is the radial frequency. Tt will be convenient
hereafter to deal primarily with normalized quantities. Let us thus write Y=
Gpy+i2Cpy, where Q=wtp=wC;R,. The subscript “N” will be used herein to
indicate normalization of capacitances with C,, resistances with R ,, conductances
with G, =R_', and time constants with 1, G, is the high-frequency limiting
conductance of the system and is given by (e/)(z,popi+ Zauah;), €qual to
(&/210 2P + zom W ja + 14,) SinCE 2z, =z, p; because of electroneutrality in the bulk®,

The remaining elemenlts appearing in the circuits of Fig. 1 are ¥, G, and Gp,.
Only ¥, depends on frequency. The frequency dependences of the elements of
Z,=Y !, R, and C, will be considered in detail later. Note that we can write
Zin=Rn+(i2C;y)"". Finally, it turns out that Gy=Ril =9./¢,9, and Gpy=
Rpn =1=Ggy. Thus, Ge+Gp=G .. Now g, =g,£,+d,¢, and g, and g,, have already
been defined. Here &,=(1+x,, )_ = o /( pin+ ip) and £,=(1 +1r ) "= s/t 1)
These definitions lead to Gen=¢,[1+(r,/2)] ' +¢,[1 +(rp/2)] and Gpy=c,[1+
(2/r )] 42, [14(2/r,)] ™" Thuswhen r,=r,=0, Ggx=1 and Gpn=0. On the other
hand, when rp—O and r,= 0, Ggy=¢, and Gpy=¢, Note that since in general
Ggr lG[N—R,:N 1, lhe lerm GE& Gpyin Fig. 1b may be rewritten as (Rgy —1)G
(Ron—1)"'G,,

Figure 24 shows the low frequency-limiting form of the circuit of Fig. la.
Here the subscript “0” denotes the w—0 values. The exact formula for Ry, is very
lengthy, but various expressions for Ring in specific cases of interest have been
given carlier*. The general expression for C,y, is, however,
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Cino = (9p8a)2[(300, MY3)(g,— 9. +(r — 1)g.7] (1)

Here 6, =(1+n; ") '=z,/(z,+2,), 8, =(1 4+ 1) ' =2z,/(z,+2,), and 9,=g,0,+9.0,
The quantity M =l/2L, measures the number of Debye lengths contained in the
half-cell distance (//2). In the present case

Lp= [8kT/4frez(Z.f m+ Zlfi’i)]i
= [ek T8, /dne*(z2n)]t
— [k T35, /AneX(z2p)]* (2)

When the bulk concentrations n; and p, are given on a molar basis, k should be
replaced by the gas constant R and ¢ by F, the Faraday. Incidentally, many
of the intrinsic conduction results of the present paper, such as Eqn. (1), apply
also in the extrinsic case when &, ¢, d, and &, are redefined for the extrinsic
situation®,

The quantity r=Mcoth(M) in eqn. (1) will be essentially equal to M for
all M values of usual interest. Since M may be far greater than unity, Cy, also
may be much greater than unity. Now when r,=r =0, the completely blocking
electrodes condition, C;yo =r~ 1. The total low-frequency-limiting capacitance is then
Cro=C,+ Cio=rC,=MC,=¢/8nLy, This is indeed, as it should be, the usual small-
signal intensive double layer capacitance arising from two identical double layers in
series’. Note that when M » 1 and r,#7,, eqn. (1) shows that Cix, and Cpy, may
greatly exceed the ordinary double-layer value. It is the large diffusion pseudo-
capacitance represented by the first term of eqn. (1} that leads to the mast
interesting behavior inherent in the present situation. Such pseudocapacitance only
appears when charges of opposite sign discharge unequally at the electrodes and
is at a maximum when charge of one sign is completely blocked and the other
completely free to discharge (eg., r,=0, r,=c0, or r,=0c0, r,=0).

Figure 2b represents the hlgh-frequency-hmltmg form of the equivalent
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Fig. 2. (a} Low-frequency-limiting form of the circuit of Fig. 1, (b) high-frequency-limiting form.

circuits of Fig. 1. The remaining elements, C, and R, are of course independent
of electrode boundary conditions in this frequency region defined by Q=wry > 0.1.
Note that for @=1, where w is equal to the inverse of the basic dielectric
relaxation time tp, the reactance associated with C, is equal in magnitude to R,,.
If accurate measurements can be carried out for €2 > 0.1, experimental values of C,
and R, are best obtained from this region.

Finally, it will be useful to introduce the notation used in the earlier work?
to designate a specific binary electrolyte situation: (r,, r.; 7., ®,; 0. M) Values
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of these normalized parameters, together with a value of @, entirely define a specific
case of the theory in its normalized form; ie., they allow a specific value of
Zm or Yo to be calculated. Because of the symmetry of the situation in nor-
malized form, it turns out that for any @ the case (r, r,; n,% =, ' 0, M)
yields the same value of Zy as does (r,, r.; 7, 7n; 0, M) for any specific
set of values of these quantities. Thus, when a situation such as (0, r; m,, 7,; 0, M)
is examined for a range of r,, values and for =, n,2 1, it is unnecessary to con-
sider separately the case (r,. 0; @, n,; 0, M). For this reason, I shall here be
concerned with, e.g., (0, ; 7, 7,; 0, M), not with (e, 0; 7, 7,; 0, M).

111, IMPEDANCE-PLANE RESULTS

The circuits of Fig. 1 lead directly to the basic relation

ZTN= 1 ! (ziN+REN) (3)
+(1Q2+ Gpn)(Zin+ Ren)

from which it is clear that when {(iQ2 + Gpn ) Zin + Ren)| <€ 1, (Zv— Rpn) = Zin. One
situation where the above condition holds is that for (0, ow0; n,, n,; 0, M) with
10 M~ 2<(Qn,)<land n, <1, M> 1, and n, M < 1. Then Gpn=¢, =7, <1 and
Rgn=1+m,=1=R_ . Thus, when the above conditions apply, simple subtraction
of the bulk resistance R, from the total measured impedance Z; vields the
“interface” impedance Z,. As we shall see later, Z; is not always a true interface
impedance since it is not always completely intensive.

The above sort of results apply when charge of one sign is nearly or
completely blocked, that of opposite sign discharges with an infinite or very large
reaction rate, and the discharging charge carriers have a much smaller mobility
than those that are completely or nearly completely blocked. As we shall see later,
this is a very important and interesting case and is overtly consistent with the usual
electrochemical practice of subtracting R, from the total impedance in order to
obtatn intensive circuit element quantities associated with processes occurring near
and at the working electrode.

Another case of some interest is that where

Zin2Zay=(1+iQ)7" (4

which vields simple Debye dispersion behavior with the single time constant 1p,.
As we shall see, this is the usual result found with M » | under any other
conditions at frequencies for which Q > 0.1. It follows immediately from eqn. (3)
for the above n_ <1 case when | Z;y| € Rgy = 1. In addition, in the equal mobility
case (0, «0; 1, n,; 0, M), where Rey=2 and Gpy=0.5 with M » 1 and when
| 25| <€ Rpn, eqn. (3) again leads to egn. (4). Finally, the uninteresting case (oo, o0;
T 25 O, M) involves just C, and R, ‘in parallel and thus leads to Z;y=2Z,y at
all frequencies.

One common way of delineating some aspects of impedance behavior is to
show the circle diagram® or Cole-Cole plot®, where the imaginary part of an
impedance is plotted versus its real part with frequency as a parametric variable.
Alternatively, admittance-plane circle diagrams may be plotted? '°, as in early space-
charge measurements on KBr!!. Here, since their use seems somewhat more com-
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mon, I shall present only impedance-plane’ 2 results and will later itlustrate directly
how the components of the total admittance depend on frequency. Figures 3-6
thus present impedance-plane plots, in terms of normalized quantities, for some
specific (r,, 7, Ty 7,3 0, M) cases of interest. Since the imaginary part of the
normalized impedance is always capacitative, its ncgative has been used here for the
ordinate scale. Note that infinite frequency occurs at the (0, 0) point and zero
frequency is approached at the right. In addition, where appropriate, points corre-
sponding to the three basic normalized frequency conditions M?Q=1, MQ= 1, and
£2=1 have heen shown on the curves of Figs. 3-6. The normalized parametric
frequency variable Q increases from right to left here.
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Fig. 3. Impedance-plane plots of normalized impedance componenis for (0. 0; 1, 1; 0, M) and

(0. cz; 1. 1; 0, M) situations and several M values.

Figure 3 shows how the size of M affects the shape of the curves for the two
extreme cases (ry, r,)=(0, 0) and (0, «). Figure 3a indicates that in the completely
blocking situation where Rpy=1 and Gpy=0, Zp =1+ Zy = 1+(iQC\)"" for
Q< M, and thus the reactance of the double-layer capacitance dominates in this
region. Alternatively, when 2> 0.1 and M > 10%, Z.y = Z,y. Note that in terms of
Z rather than Zy, the semicircle lics between Re(Z1)=0at 2—c0 and Re(Z)=R,
at @~0.1.

Figure 3b shows that in the usual case of M > 10% two connected arcs
appear for (0, «o: 1, 1; 0, M), while they become merged as M decreases towards
zero. Here for large M and 2 2 M ™7, only the Debye dielectric relaxation semicircle
appears. In the opposite extreme, as Q—0, Zyy—Zyny Since {Z;y,/=c0. eqn. {3)
shows that Zn,=Rpn. Whenever both r, and r, are not simultaneously zero, Rpn
is finite. Here, in the equal mobility case, Rpn=¢, ' =1+, * =2. Further detailed
consideration of circle diagrams and other response curves for the equal-mobility
cases (0, 0; 1, 1; 0. M) and (0, oc: 1, 1; 0, M) has been given earlier?*,

The dashed line in Fig. 3b through the point (1, 0) is drawn with a slope
of 45 degrees. Where the second arc is well appraximated by this line, Re(Zn) = 1+
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[—Im(Zx)]. But this is just the result one finds when a Warburg impedance is in
series with a bulk resistance R . Thus, such a straight line segment of an arc in the
impedance plane may be (and usually is) an indication of Warburg behavior,
although it is also necessary that the Warburg part of the impedance be pro-
portional to @~ % Such behavior will be considered in much more detail later. It
appears when diffusion to an electrode of mobile entities influences cell behavior
appreciably.
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Fig. 4. Impedance-plane plott for (0, oc; =, 1; 0, 10*) situations with n, 2 [. The 0< Re{Z) < |
region has been omitted from the bottom plot.

Figure 4 shows circle diagram results for (0, oc; 7, 1; 0, 10*). n,, variation
for (0, 0; m,. 1: 0, M) has relatively little effect here, but this is clearly not the
case when both charges are not blocked. Further, n, values different from unity
within the range 0.25 < 7, < 4 set by available ionic valences make little difference in
the shapes of the arcs of Figs. 3 6; significant effects of =, variation will be
demonstrated later for some other types of plots. Note the different scales used for
the two parts of Fig. 4. In addition, the £ > 0.1 semicircle has been omitted from
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Fig. 4b for simplicity. Also, the line marked «,,—0 in Fig. 4a and 4b is the limit
curve that the arc approaches as n,, approaches zero, not the actual limit when
7, =0. There is a discontinuity in shape between curves for x,, arbitrarily small
but non-zero (Rpy finite) and that for 7, =0 (Rpy infinite). In the latter case, the
charge carrier which is free to discharge has no mobility and therefore cannot
discharge. Thus, the cases (0, o; 0, #,; 0, M) and (0, 0; 0, n,; 0. M} must lead
to exactly the same results, as is indeed found. Finally, note that when the discharging
carrier has much higher mobility than the blocked one, e.g. the =, =9 curve of Fig. 4b,
the right-hand arc is very small compared to the dieleciric relaxation semicircle.
Thus, for such cases as (0, oD M Tpn O, M) with 7, > 1, it will be difficult to
subtract out the dominating effect of dielectric relaxation and obtain accurately the
small remaining effects arising from electrode processes. As we shall see later, this
is a low Q@ (Q=quality factor) and high dissipation factor situation.

Figure 5 shows how the shape of the circle diagram depends on #, when
ro=c0 and on r, when r,=0 for the =, =n,=1 case. Only part of the d1e1ectr1c
relaxation semicircle has been shown in Fig. 5a. Note that the heights of the arcs at the
right are here proportional to (14r,)~". The curves of Fig. 5b arc interesting since
they exhibit a total of three connected ares when r, < co. Clearly, the size of the
middle arc depends directly on 7. Further, the middle arc remains coincident with a
semicircle over most of its extent, indicating a second single-time-constant Debye
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Fig. 5. Impedance-plane plots for the (r,, oc: 1. 17 0. 10*) and (0, r,: 1. 1; 0, 10%) situations.
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dispersion in this region with a time constant dependent on r,. Clearly, if frequency
response measurements aren’t extended to sufficiently high frequencies and if R, and
C, are unknown, this middle semicircle might possibly be mistaken for the final
£2>0.1 semicircle. The low-frequency arc meets the Re(Z1y) axis at the low-
frequency-limiting value of Rpy. Here, Rpn=¢. ' [1+(2/r,)]=2[1+(2/r,)]. Further,
the cusp at the beginning of this arc occurs at approximately Re(Z ) =[1+(2/e,r,)].
Thus, the radius of the middle semicircle is (,7,)” ", here equal to (2/r,).

Although Fig. 5a shows that as r, becomes larger the low-frequency arc
becomes smaller and smaller relative to the Z,y semicircle, and thus electrode
processes become more and more difficult to isolate, this trend may be counteracted,
provided r, is not too large, by the presence of a sufficiently small =, ratio. The
curves of Fig. 6 show results for m, =97, # =2, and r, variable. Again, three arcs
appear with at least one very large compared to the dielectric relaxation semicircle.
The very rapid reduction of the sizes of the iwo lower frequency arcs of Fig. 6 as 7,
increases from zero arises primarily from the very strong dependence of Gpy on 7,
especially when 7, < 1, not so much from changes of Z,\ with r,. When three arcs
are present, they will be numbered from right to left in order of increasing
frequency: 1,2,3. When an arc such as No. 2 is missing, the remaining arcs will
maintain their original numbers: 1 and 3.

Fig 6. Impedance-plane plot for the (r,, 2; 971, 1; 0. 10%) situation,

The sizes of the three normalized arcs which appear when 0 < ro<F,< o0
are of particular interest since many experimental results show two or three arcs of
the present types. Frequently, the dielectric relaxation semicircle (arc No. 3) either
has not been measured or is much smaller than the other two arcs. It is often found
that the low-frequency right arc is much larger than the middle semicircle and, in
many cases, measurements are not extended to sufficiently low frequencies to allow
much curvature in the right arc to show up. Then only an approximately straight
line often at about a 45° slope appears. In this case, measurcments remain in the
approximate Warburg frequency response region and do not approach the low-
frequency saturation region. It is worth mentioning that some authors** 14, working
with glass membrane electrodes, have observed arcs | and 3 (or more probably 2
and 3) and have ascribed the higher frequency arc to the basic material under
investigation and the lower frequency arc to a hydrolyzed surface film on the
material. The present results show that such an assumption is unnecessary and that
a single homogeneous material can yield both arcs.

Let us now consider the important three-arc (0, r.; z,, &,; 0, M} situation.
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It turns out that an approximate expression for Z (2] can be abtained which extends
eqn. (4) to lower frequencies and includes separate terms for each of the three
possible arcs, thereby partitioning Zy into three normalized impedances frequently
dominant in different frequency regions. An exact partition of this type has already
been presented in the two-arc (0, «v; 1, 1; 0, M) sitvation®. The approximate
relation applying in the present case is, for M 2 10,

3
Zow= Y Zpn (4"
=1
where
Zin= 0[P, 7, +12{(8,/c, 2 r— D+ 1] = [Gn+1QC ] ! (47)
and '
Zin=[GN+iRCN]TY (j=23) (47)

Here, p, =(ibM Q) coth (ibM° Q)4 h=4 8 /e 5, t=(1+iQ)}; Gn=(e,r,/2): Cin=
r=M; G3y=1: and Cyy=1. Equation (4') is exact for (0, oc; n, n,==n,: 0, M),
and in other cases is most accurate when b2 < 1. Tt may be further simplified, with
little loss of accuracy, by taking t=1 for all Q.

The partition represented by eqn. (4') leads directly to an approximate
equivalent circuit made up of three parallel GC sections in series when 0 < s, < oc.
The quantity Z, is zero when r, = o0, causing arc 2 to disappear. Although Z,,
may be represented either as a frequency-dependent resistance in series with a
frequency-dependent capacitance or as a conductance and capacitance in parallel,
the parallel representation is best in the low [requency saturation region because it
makes it clear that Re(Zy,) 1s overtly finite. as it should be when r, and r,
are not both zero. For Q—0, eqns. (4'), (4”), and (4"') lead to the exact result
Zin—=Zino=Rin+ Ron+ Ran=mn* +(2/ear )+ L =2, 11 +(2/7,)]= Rpn. When 2 >
10(bM )1, Z,y shows approximate Warburg frequency response, while G, and
Cyn approach their low-frequency-limiting values for Q <2.5(bM?*)~'. Notc that
Z 4y 18 independent of z,, and Z depends on it primarily through b, a quantity
symmetric in d, and &,. Incidentally, although egn. (4') holds approximately even for
r,=0, it can he considerably improved for this situation by multiplying Z,y by 42
when r,=0 and =, 1s appreciably less than unity. This factor is otherwise in-
appropriate, however.

The expression for the second semicircle (arc 2) is particularly interesting.
Here, C, =MC, is just the ordinary double-layer capacitance when M » | and
r,=r,=0. This does not mean, however, that either Cp or C; is equal to C, over
" the full frequency range where this semicircle is dominant. When m,, =1, neither
Ce nor C, remains near MC, over an appreciable frequency region, even though the
impedance-plane shape is well approximated by a semicircle. When n,, < 1, on the
other hand, C; decreases (o approximately M and then remains near it over an
appreciable region, especially when r, < M. It further turas out that Cpy reaches M
at a lower @ value than does C, and then remains near M while (. does.
The maximum of this semicircle is —Im(Z,5)=(&,r,)” ' and occurs al € =(&,r,/2M).
Clearly, (,,)”" may greatly exceed 0.5, the maximum of arc 3. Under some con-
ditions, such as r =r,=r,, arc | is completely missing and only arcs 2 and 3 appear.
In other possible conditions, arc 1 is so much smaller in size than arc 2 that it
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can be entirely neglected. -

The quantity Z,y yields the right arc (arc 1), which always appears to some
degree, as in Figs. 3b, 4, 5 and 6, when 0<r,<r,. To good accuracy, the size
and shape of this arc is entirely independent of r, when 0<r,<2¢,. Then the
maximum value of —Im(Z,y) is about 0.417 =, occurring at Q=253 b1 M2
For n,=1and 7, < 1, this valuc of  is about 10 n,, M~ *. When appreciable portions
of all three arcs can be observed and they are distinct, one may very readily derive
values of the pertinent parameters in the (0, r,; m,, 7,; 0, M) situation, First, R, is
found from the cusp between arcs 2 and 3. Then C; may be obtained at high enough
frequencies that some appreciable portion of arc 3 appears. The Q scale is then
determined. Next, n,, may be oblained {rom the maximum height of arc 1. The high
point on arc 2 then yiclds r, (since ¢, and &, may be calculated from the value
of 7,), and the Q value at which this maximum occurs, Q=¢,r,/2M, yields M
If the -0 intercept of arc 1 can be obtained, the resulting vatue of Ryy will then
vield a check on the consistency of the previously found values of ¢, and r, Only
7, ismissing. [twill [requently be known from the physical situation being investigated;
il not, an estimate may be obtamed [rom a detailed comparison of the shape and
frequency dependence of arc 1, using cqn. (47).

Finally, note that even when r, =0 and r, < w0, there are combinations of
T T, and M values which lead to some melding of the three arcs so that

" the cusps between them may become less sharp and even disappear. Although the
curves ol Figs. 3-6 and egn. (4') have by no meuns illustrated all possible circle
diagram shapes inherent in the theory, they should give some idea of the variety
possible. One, two, or three connected arcs of different relative sizes follow from
the theory. Probably even more than three would appear if charge types with more
than two different mobilities were present.

It is hoped to show in a future paper under what conditions a more accurate
but still simple version of eqn. (4'), may be derived from the exact theory; to show
how accurate eqn. (4’) and its generalizations are for further cases of interest; and
ta demonstrate a wider variety of two-and-three arc shapes [ollowing from the
theory. Since the present eqn. (4} holds, however, within better than one percent
under many r,, m,, 7, conditions when hQ <€ 1, it may already be used for experi-
mental analysis when r,=0.

In the present part of this section, we have dealt with the approximate
relation Zoy X Z,y+ Z;n+ Z 3y, which does not involve the “interface” impedance
Z, directly. For the remainder of this paper, we shall instcad pursue the more
accurate and general approach of considering the exact equivalent circuit of Fig. 1 and
the quantity Z;,, which has been given exactly in closed form* and may be cal-
culated without approximation for the (r,, r.; 7, 7,; 0, M) situation.

Although a detailed comparison of the present possible impedance-plane
curve shapes with experimental results will not be carried out here, they do seem
sulficiently variable and complex to match quite well a considerable body of experi-
mental shapes, e.g. many of those in refs. 13-17. It should be noted that frequently
only a single arc is found, often of the shape of the low-frequency are of Fig. 3b,
Fig. 4, and Fig. Sa. This important shape, which is associated with diffusion, distri-
buted circuit elements, and a finite, distributed- elcment transmission line, even
appears for the input impedance of a bipolar transistor!®
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There will always be a Debye dielectric relaxation semicircle appearing at
higher frequencies, but frequently either the diffusion arc size is so much larger than
that of the Q> 0.1 semicircle (eg., 7, <1 for r,~Q, r,~ x0) that the latter is com-
pletely overwhelmed and/or measurements cannot conveniently be extended to the
region where Q = 0.1 and the dielectric relaxation semicircle appears. Such extension
is, of course, easier for a very high resistivity material where 1y is large, and thus
the w for which Q=1 occurs in the relatively low frequency range!3-!#. It should be
noted that for (~0, ~o0; ~1, ~1; 0, M) when M is large the cusp between the
two arcs (a1 Re(Zy)= 1) represents a wide frequency range rom Q~M ™! to
25 0.1, Over this range Z,y varies very little and remains near unity. Although
R, may be found from this region, one must go to at least 2 > 0.1 to determine
C, accurately. Finally, it should be noted that sometimes four or more connected
arcs appear experimentally and Im(Z) may even be positive'®. The latter result is
often ascribed to the presence of specific ionic adsorption.

TABLE {

LOW-FREQUENCY LIMITING VALUES OF COMPONENTS OF Z,, AND GF FREQUENCY-
INDEPENDENT NORMALIZED CIRCUIT ELEMENTS

M T Fa Tom Rino Cino Ren Rpn

10* 0 0 1 §5x10°° 9.999 x 10° 1 o]

10* 0 0 10°* 2.500 x 107 9.999 x 10* 1 0

10% 0 ow©c 1 7.995% 107! 8.336 x 10° 2 2

10* 0 o 107% 1.999 x 10* 8.336 x 10° 1.0001 1.0001 x 10*
102 0 o 107% 1.881 x 10° 8.581 % 102 1.0001 1.0001 x 10*
10* 2 2 1074 4.9995 x 10° 24998 x 108 2 2

10* 0 2 1072 2,782 x 10% 2089 x 10° 1.00005 2.0002 x 10+
10* 2 0 10°* 4,782 x 10% 2,089 < 10° 1.9998 2.0002

10% 2 cc  107* 7.997 x 10° 2,084 % 10° 2.0002 1.9998

IV. IMPEDANCE FREQUENCY RESPONSE

Figures 7-11 show how the real and imaginary parts of Zp,, and Z;y depend
on frequency for various cases of intercst. In addition, Table 1 gives values for
pertinent circuit quantities for the various cases considered in this section. Although
an {2 scale is given at the top of Figs. 7a and 8a, the main frequency variable
used here is A~ !, where the diffusion related® quantity A is given by MQ?. Note that
when M = 10%, the points =1, MQ2=1, and M?Q=1 occur at A *=10"% 1072,
and 1, respectively. The use of a frequency variable proportional to @™t is common
in electrochemical studies and immediately shows up the presence of Warburg
behavior. :

Let us write a general Warburg impedance Zy, as

Zy = Ag(l~1)w? (5)

where the constant 4, will be considered in detail in Section V. Then in nor-
malized terms one has

Zon=Zw/R,=A(1-1)/02} (6)
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where
A=(C, /R A,
= [ee(zppit+ zom) (pt + 1,)/870% ] A A7)

Now when the real part of a normalized impedance is the negative of its
imaginary part and both depend on £27% then the impedance in question exhibits
Warburg behavior. In this case, both quantities will show a slope of unily, as in
Fig. 8b, when plotted versus A~ !. On the other hand, when a capacitative reactance
involves a frequency-independent capacitance, plotting versus A~' will yield a
straight line with a slope of two as in Fig. 7a.

Figure 7 shows results for the completety blocking case for two different
n,, conditions. Here eqn. (3) yields

Zon=(Zin+ 1)1 +i(Z i+ 1] (8)

Now computer calculations indicate that for the equal-mobility case shown in
Fig. 7a, Cix=Cino=r—1=M within 1 percent up to 2 =0.3. Further, the Figure
shows that Re{Z;\)= R, remains very near its small limiting value* of Riyo=(2M) "
up to 2=1. Thus, in the entire frequency range of interest, we may here take
Z x> Zno and, further, may neglect Ry, and Cjyy compared to unity. Then (8)
leads to

Zw={1-i[Q+(MQ)']}/(1+27) (9

Clearly, for MQ < 1(A~" » 107 2), the normalized capacitative reactance (2C\) "' =
(QCno) ! 2(MQ) ! dominates Zy+. Further consideration of this case has been

presented earlier! 3.
_ 2 -
1 i i it
T
o A e T T T T
o 10,0:1.1: 0,00%) / 7 10,0:1071.0,10" ! G
wot— / — 10
L /f |
10w / — 0}
L ’ i
. SLOPE 2, .
0% / — 10
n / i
/
10 |- / — 10
- / -
7
1(5 7 i
'l_\'"‘ ! ] =1
10 ﬁ‘(\ ,f — 10
My Ny Re(zy) 7] . Re(Zy}
o= 7 —m(Zy——— - 16 —ImiZ)——— _
L _ N
10'3——/ — 15°
< i
154Lf'" — 15 —
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Fig. 7. Real and imaginary parts of Z;, and Z'ih versus A~ =(MQY) 7 for (0, 0; 1, 1; 0, 10*) and
{0, 0; 107, 1; 0, 10*) situations.
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Although Fig. 7b shows that in the =, <1 case, lm(Z;\) still dominates
Zoy for M <1, there is evident a rransition from Cpn=Cy, to a smaller
constant value, iy, in the neighborhood of A~ !4 x 1072 This plateau value,
Cisns Will be discussed in detail in the next Section. Figure 7b also indicates that
R;x is much larger and more [requency dependent than it is when n,=1. Nole
that although Re(Zy) and Ry show an appreciable region with a slope of unity,
this does not indicate pure external Warburg behavior since the dominant nor-
malized reactances show no such slope. Warburg behavior actually occurs here in
both Re(Zqy) and Im(Zpy), as shown by eqn. (4') with r,=r,=0, but its con-
tribution to Im(Zqy) is swamped by the reactance of Ciyo and Cisn. Finally, note
that the components of Zy are essentially exactly the same for n,=1 and 107*
when Q21072 (A~ £1072). Thus, the mobility ratio has very little effect in thls
relatively high frequency region.

Next we turn to the (0, oo) case. For the m, = | situation of Fig. 8a, eqn. (3)
vields

_ (Zint2)
N iR 05) D) o)

When Q <1 and | Z,y| <4, this result reduces to
ZTN;1+(ZiN/4) ) (11)

In the region 10725 A~ £ 1074, the unity slope —Im(Z ) and ~Im(Z,y) lines of
Fig. 8a are separated by just this factor of four.

The most interesting aspect of Fig. 8a is the Warburg behavior of Z,y in
the region 1073 < A~ 1 £107 L. Such behavior does not show up directly here in

_ 1}
1 ' 15 ° '
S L B R R Y N T I O M B
10 /] 07— SLOPE: 2~y -
F oo, 0.10% Fan L (0,@;157 10,109 w7
4 4
10— Re(Zy) / — 10— —
/
oo-Imizy——— / <| -
il SLOPE: 2-./ ] w0l
/

SLOPE: -2

SLOPE: | _
SLOPE: 2—7

A i
(a} {b)
Fig. 8. Real and imaginary parts of Zpy and Zy versus A~ for (0, oo; L, 1; 0, IO“) and (0, oo
1074, 1; 0, 10*) situations.
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Re(Z 1) because of the overlying effects of Rpy and Ryw. It is only when these
effects are eliminated by calculating Z;y from (10), or minimized, by calculating
it from (11), that Warburg sort of behavior shows up clearly. Relatively small
deviations from exact Warburg behavior of Z, are of particular interest and will be
examined in depth in Section VI

It is especially important to note that basic Warburg behavior appears in the
Z;x normalized “interface” impedance, not necessarily directly in Zqy. H in the equal-
mobilities case (Z;— R ) is set directly equal to a theoretical Warburg impcdance in
the usual way, rather than to such an impedance divided by 4, a factor of four error
can oceur, for example, in the calculation of the concentration of the charge involved
in the Warburg behavior. Even greater errors can occur for n, > 1, and lesser ones
will appear for m,,, < 1. Note that even in the present &, =1 case, a small difference,
Re(Z;n/4), between two much larger quantitics must be calculated to obtain the
real part of the Warburg response. Experimental errors are thus magnified and make it
difficult to obtain Z,y accurately from Z, when =, 2 1.

The situation is considerably different when =, <1, as in Fig, 8b. Here
approximale Warburg response shows up in both Zpy and Z,y in the region
0.03 < A™' £ 10. Here eqn. (3) yiclds

(Zint1)
2w = -
. 1+{iQ+ 7)) (2w + 1)
which for the present n,,=10"* and the range 107'° < Q < 1072, becomes
VA (13)

Thus, in the < | region, no error such as that of a factor of 4 just discussed for
the =, =1 case appears when the conventional procedure is used. Incidentally, the
distinction between Z,y and (Z;y+ 1) is not visible on the present log-log plot for
A~'>0.1. The final low-frequency-limiting values of Re(Z1x), Rpn. and Re(Z;y),
Ring, are given in Table 1.

In Fig. 9 the same case as that of Fig. 8b is considered except that M = 102
rather than 10*. Note that the results are essentially the same near-and in the
low-frequency saturation region, A~" = 10. The vestiges of Warburg behavior still
appear for 3 < A~ £ 10 but do not extend very far toward higher frequencies. Here
the conditions Q=1, MQ=1, and " M?QZ=1 occur at 4 '=10"2% 107!, and I,
respectively. The very high frequency A ! < 10~ % region is shown here for complete-
ness but will generally not be experimentally accessible since the impedance level at
say A~ 1 ~10 "% or 10”* is so much lower than that in the low-frequency saturation
region and than R,,. Thus, the second Warburg response region of Z,y, occurring?
at A7 < 1077 will not usvally be measurable. This region appears for any =, and
reasonably large M for =1 but has been omitted from the other plots for
simplicity.

Finally, Figs. 10 and 11 show the curves which appear for a few rclated
choices of .r, and r, Note that the valuc r, or r,=2 makes g, or g,=2 rather
than its unily value when r, or r =0. Tt is the g¢'s rather than the s which
enter directly into the theory; thus r, and r, values which double ¢ seem
reasonable to choose for special examination. The resulis of Fig. 10a should be
compared especially with those of 7b and 8b. Similarly, Fig. 10b should be

(12)
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of Zy, and Zy versus A~ for (0. oo: 1074 1; 0, 10%) showing
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Fig. 11. Real and imaginary parts of Zy. and Z;\ versus A~! for (2, 0; 1074 1; 0, 10%) and
(2 cw: 1074 1: 0, 10*) situations,

compared with Figs. 10a, and 8b. Note that the double hump in the —Im(Zyy) curve
of Fig. 10b is associated with the Z,y and Z,, terms of eqn. (4'); thus, in this
situation an impedance-plane plot would show three connected arcs, although the
dielectric relaxation one will be far smaller than the other two here. The results of
Fig. 11a should be compared with 10a and those of 11b with 1la, 8a, and 8b. It
will be seen that the change of a single blocking parameter from Q4 to 2 or 2 to «©
can make a great deal of difference in some or alli of the curves. Further, no
approximate Warburg regions occur here except for the (2,005 107%, 1; 0, 10*) case
of Fig. 11b which is clearly not too far different from (0, s0; 1074, 1; 0, 10*) as far
as Z;y is concerned, although even here the normalized impedance level is higher.
Here, however, Zy and Z;y are again connected very closely by eqn. (10), which
does not reduce to Zyy=(Z;n/4)+ 1 or (Z;, + 1) in the region of interest.
Solution of eqn. (3) for Z,y vields

ZTN

Z. = :
iN ]. - (iQ‘I‘ GDN) ZTN

— Ren (14)

When 12 may be neglected, this result reduces to?

Zin = REN[Zn—1]/[1 = Gon Ren(Z1n— 1]
= RE\J[ZTN_I]/[l_GDNZTN] (15)
In the A™! 2 107! region, where Z1y =Ry, the denominator is nearly zero; thus
again in the (2, cv; 1072, 1; 0, 10*) situation calculation of Warburg response from

experimental Z; results involves the small difference between two much larger
quantities and will be difficult to obtain adequately. The present results allow us to
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conclude that for M 2 10* Warburg response will only be seen or be readily
caleulable when r, <2, v 3 2, and most readily when n,, < 1. Of course one must
also include the symmetry-related situation r, > 2, r, <€ 2, and 7, > 1.

V. FREQUENCY RESPONSE OF THE ADMITTANCE COMPONENTS

Equation (3) may be readily inverted to vield a connection between Ypy and
the elements of Z,y. Let Rgy =R,y + Ren, the total normalized series resistance in the
bottom branch of Fig. la. Further, let gy =R Ciftp=RgnCin. Then Dgy=Dg=
Qrgn=wRyC;=0¢ * =tan d, where Dy is the dissipation factor and Qg the quality
factor for this branch. Similarly, we may define ton=RenCiny and Dg =01y, With
these definitions eqn. (3) leads immediately to the important equations

C. C.
Con=1+-—2— =1+ —% 16
PN + 1+(QTSN)2 iy D2 (16}
and
QZTENTSNGEN Dg D5 Gy
Ton = "o TENCSNTEN _ G + S EN 17
Gpy = Gpn + ENTNE DN 1+ D2 (17)

These equations, together with the frequency responses of Ry and Cyy, yield those
of Cen and Gpy In complete generality. For 2—0, Cpn—Cpyo=1+Cing and
Gpen—Gpno = Gon. Note that we are here dealing with the components of the total
admittance, not that after the effect of R or Ry and Rg is somehow subtracied out.
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Fig. 12. Cpy tersus § for (0, 0: 1, 1; 0, M) and (D, oc; 1, 13 0, M) situations and several M values.

Figure 12 shows how Cpy depends on 2 for various values of M in the
n,=n,=1 case. The curves of Fig. 12a follow nearly exactly from eqns. (16) and
(17)with Cix= Cino= M — |, Rin=Ring=(2M) "' and ey = (Rino+ R ) Cino = Rey %
Cino= Tun- Thus, one has simple Debye response here''“with the only significant
frequency response arising from those ('s which appear overtly in {16) and (17).
Incidentally, curves such as the M= 10° ones of Fig. 12a and 12b have been ob-
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served'’ for F-centered KBr. One like that of Fig. 12a was indeed measured with
completely blocking clectrodes, while electrodes which were incompletely blocking
to electrons yielded curves like those of 12b.

Figure 13 shows the frequency dependence of Gpy and Cpy when ro=r, =r,.
In this equal-discharge case, eqn, (1) yields Cino=(r—1)/g2 = M/g2, where g, =
1+(r./2). For the present m,=m,=1 situation, the corresponding Ry, is ap-
proximately gZ/2M and Rex =g.. These results, used in (16) and (17) with Ciy = Cing
and Riyy=Rng again yield the curves of Fig. 13. Note that the Q-0 value of
Gpy is here Gpn=r./(2+7r,). The low-frequency saturation value of Cpy is here
reached for Q@ < [¢./10(r—1)].
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Fig. 13. Normalized frequency response of Gpy and Cpy for the (r,, r.; 1, 1; 0, 10*) situation.

Figure 14a shows some dependence on m, and =, for the completely
blocking situation. Detailed calculations based on the earlier theoretical results* show
that the plateau value of Cin, Cgn, is given in the present x,, < | situation by

Cisn = (itymn/Qf 1 fr) = [MSF—1]e, * > Mt —1 (18)

where the quantities ¢, my, f;, and f, are defined in the earlier work. The
corresponding plateau value of Cpy, Cpgn, is, from (16), essentially Md? since
Dg <1 1n the Cpn = Cign plateau region. This region is limited approximately by
107, < Q <[10Mé{]~! for M 2 10% Thus no such region appears unless 7, <
[10°M3}] ' Tncidentally, C;y remains at its plateau value over the larger range
10m,, < Q< 0.1. Note that M3} =AM2¥ 7071 for n,=1 and M5% =4472 for n,=4,
the two =z, values of Fig. 14a. Finally, the region where Cpy has essentially
reached its low-frequency-limiting value Cpny is given approximately by whichever. of
the following two conditions yields the minimum ©: 2<(10 M)~ ! and 2(a— 1} < 1.
Here a=(5;/e,)+(3/e,), and for n,=1, a=b. The last Q-condition above may be
expressed more explicitly as 2(a—1)<$25%107% For n,=10"% and =n,=1,



20 J. R. MACDONALD

10 | L AL S S S R B B |
L
B/

10 0,0, [, 0,107 \!
.

Lo Lo o L b it Lo
-8 Y] e =5 s B = o]
10 10 10 10 o W 10 19 10

{b)

Fig. 14, Normalized frequency response of Cpy for (0, 0; m,, 7,3 0, 10*) and (0, oo: 1. n,; 0, 10%)
situations.

a=b=25x10° yielding £ < 10"* in the present case.

Tt is interesting to note that curves of very similar shape to the 7,=1 curves
of Fig. 14a were obtained long ago!® for a (0, 0; w0, 1; 0, M) situation, one with
charge of only one sign mobile but {ree to recombine with fixed charge of opposite
sign. This is an idealization of conditions which might occur in a solid. Such
generation-recombination essentially mobilizes the fixed charge'® 2" and the time
constant ratio £ 7! =tp/1, of the earlier work!'® there plays the role of the present
T, mobility ratio. Here z, is a recombination time constant involving the bimolecular
recombination rate constant k,. Since (0, 0; s0, 1; 0, M) and (0, 0; 0, 1; 0, M)
situations lead to the same Zp, we may now consider the latter situation with
recombination, since it closer corresponds to the present (0, 0; =, 1; 0, M)
situation with n,, < | and no recombination. The early work'? indicates that the
rise from Cpgn toward Cpy, begins at Q=Q, =10 £ !, while Fig. 14a shows the
start at =0 =210 n_,. When Q_> O, or n,,» £ 7!, the rise associated with motion
of the lower mobility charge carrier occurs at a much higher frequency than that
arising from recombination, and the presence or absence of the latter doesn’t affect
the frequency region where Cpy rises from Cpgy to Cpng. On the other hand, when
Q. <Q,and n, < & !, the recombination rise appears at the higher frequency, and
it then doesn’t matter how smail the actual =, is. Incidentally, for any substantial
plateau to be possible it is necessary that Q, as well as Q be appreciably less
than M ~!. This requirement leads to ¢ > M, or 7, » M1y,

Since there will usvally cither be some smali residual true mobility for the less
mobile charge and/or some recombination when z, =0 {this zero-mobility con-
dition is never actually reached in solids at non-zero temperature), one should not?!
expect to find experimentally a curve corresponding all the way down to Q=0
to that for n,, =0 of Fig. 14a. At sufficiently low frequencies for non-zero tem-
perature there will always be a transition from Cpg to the larger Cpng This
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transition frequency may, however, be too low to determine conveniently experi-
mentally. The above results justify the neglect of intrinsic recombination in the
present theoretical analysis, although it should not be forgotten that non-zero re-
combination(z, < oo)affects the magnitudes of the equilibrium concentrations n, and
pi directly in the present intrinsic conduction case. Thus, the presence of recombina-
tion also affects the value of M directly. As far as the normalized frequency response
of Zyy is concerned, however, recombination can be approximatety accounted for by
choosing and interpreting n,, properly. Tt is the effective mobility ratio that counts,
that arising from both true mobility and from recombination. For practical purposes,
the present 7,, may thus be considered to represent the effective mobility ratio for
any ry, r, situation. It will thus be the true m,, when =, >&"! and will be £ !
when 7, <&

Before we leave the situation of only charge of a single sign mobile, it is in-
structive to compare the results of Beaumont and Jacobs??, who considered the
idealized (-, p: o0, 1; 0, M) situation without recombination [equivalent for Zq,
to(p, -3 0, 1; 0, M) without recombination]. For the equivalent case, only the mobile
positive charges discharge (with r, = p), and no r need be specified since the negative
charges are taken immobile and homogeneously distributed. Beaumont and Jacobs’
results for Zpy turn out to be exactly the same as those which follow from the
present treatment for (r_, r.; m,,, 7,; 0, M) with =, =0 or o0 and x,=1.

The (r., r; 0, m,; 0, M) situation leads. for example, to Cpnp= Cpsn =
g7 2 Mt +(1—g, 2). But, as eqn. (2) shows,

Mot = 18}/2L, = (1/2)[4ne®zlp fek T = I12Lp, = M, (19)

where Ly, = Lp/8?% is the Debye length which applies when only the positive carrier
is mobile, the situation actually considered. In this case, Beaumont and Jacobs’ results
lead to Cpno=(M/2%)/[1+(p/2)]? in essential agreement with the present expression
when 7, = 1. Further, their frequency response is of course the same as that found
here.

The equivalence of these results again follows from the fact that it doesn’t
matter what boundary condition parameter one assigns to a charge carrier which is
immobile. Thus, the g, appearing in Cpy is actually g, in the 0<m,, <M "'
case, and the value of r, is immaterial. Further, eqn. (19) shows that in the present
treatment it is unnecessary to deal with two separate Debye lengths, one defined
where there is only one species of mobile carrier present and the other for two.
The effect on formulas involving the Debye length of a shift fram both positive
and negative charge carriers mobile to only one type mobile occurs automatically
here.

Figure 14b shows how Cpy depends on =, for the {0, «o) discharge situation.
On this scale the change from n,=1 to n,=3 is quite small. Incidentally, the
m,=3"" curve lies so close to that for z,=3 that it cannot be shown separately on
this plot. Although 7, has no effect on Cpng. it does of course affect Cpy at
non-zero €. Thus, it is possible to compensate the effect of n,# 1 to large degree
by choice of m,, except in the neighborhood of low-frequency saturation. For
example, the choice n, =115, m,=3, makes the resulting Cpy and Gpy curves lie
almost exactly on those for #n, =1, n,=1 except for the saturation region, 2< 10
mn M =% Toillustrate,at 2= 10"%,the (0, wo; m,, 7,; 0, 10%) case leads to the following
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values of Cpy for (n,, m,)=(1, 371, {1, 3}, (1, 1), and (1.15, 3) respectively: 698.1,
6954, 616.2, and 616.3. Corresponding values of Gpy are 09218, 0.9196, 0.9308,
and 0.9300. This possible compensation effect requires one to be especially careful
inderiving values of mr,, and n, from experiment in the rather unusual case where both
ratios are initially unknown.

Figure 15 shows important results for Gpy and Cpy in the variable
discharge case. Notice that the Cpy curves show portions with slopes of —2, — 1.5,
and — 0.5 The somewhat odd looking values of m, used here result in Gpy,=
Gpn=¢t,=(1+mn.,") " yielding particularly simple values. The Cpy curves for 9
appearing in Fig. 15b are here included largely for completeness. As x,, increases,
the resistance Ry in series with Z, increase while Rp, in parallel with the Z;, R
branch, decreases toward R.,. When 7, =999, lor example, Rpny = 1.001 and Rpx=
10%. At Q=10"%, Rix =134 and (§2Cy)™ ' = 186. Thus, as mentioned earlier, when
7, > 1, it will be difficult to obtain the components of Z;y accurately.
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Fig. 15, Normalized frequency response of Gpy and Cen for the (0, x¢; a, 1; 0, 10*) siluaiion.

Let us now consider how the various types of curves of Fig. 15 may be
explained. To do so, we need further information concerning Rn(€2) and Ck(£2).
These quantities show approximate Warburg response in part of the @ region and
thus are approximately proportional to £~ ¥ in this region. One way of showing such
response is to plot the normatized quantities C;p = A(Cin/Cing) and R = AR/ Rino)
versus €2, as in Fig. 16. Those curves with slope 0.5 in Fig. 16a represent constant
C,n regions, that on the left for Cy = Cino and that on the right for Gy = Cign,
as will become clearer later. Similarly, the lines with slope 0.5 in Fig. 16b
represent Ry = Rino regions while R,y decreases as 272 for the n, < | lines with
slope —1.5.

The regions with essentially zero slope in Fig. 16 are those where Z;, = Zyn.
A more exact approximation for Z,, in these regions will be considered in the next
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Fig. 16. Normalized frequency dependence of the normalized quantities Cin=A(Cin/Cing) and Rip=
A{Rin/Ring) for the (O, «c; 7, 1; 0, 10*) situation.

section. Low-frequency saturation clearly occurs when 2% 10g, M ~2 Thus, ap-
proximate Warburg response is well started by Q 2 10%z, M ~2 Figure 16 shows
that for = <1 it is over by Q~m,. These results also indicate that no such
response occurs unless M 2 10, so that the Warburg range is non-zero. We shall
generally consider only M = 10 from now on. Because the range of =, is physically
limited, the above Warburg range is still adequate for any experimental n, not
just the m,=1 of Fig. 16, and the inequalities that limit it need not involve m,.
In the Warburg range of Z,\, we have approximately,

Zin = Zwn = Rwsn +(iQCWSN)7l (20)
where

Rygn = A/Q’é' 21
and
Cwsn E(A-Qi)A1 (22)
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Similarly, we may write

Yn=Yun= Z\:'rt = Gy +12Ckpn (23)
where

G'WPN = Qé/ZA (24)
and

Cwen =(240%) 71 (25)

Now when C,y is replaced by Cysy and R;y by Ry in egns. (16) and (17)
one obtains

(AQ#)!
o 26
en= 1+ L+[1+0%(Ren/A)])* "
and
(Q*/A)[l +Q%(REN/.A)]
_ A 27
Gen = Gpn + L+ [1+QF (Ren/A)]? "

Since (2F Rpn/A)= Rpn/Rwsn = Rpn/Rin here, we need to consider the two cases:
(A) (Ren/Rin) < 1, and (B) (Ren/Rin) » 1.
In case (A) we have

Cen = 1+H(AQY) /2= 14+ Cypn = L +{Cin/2) (28)
and
GPN = GDN +(£¢?Q/A)/2 = GDN + vapN (29)

These equations lead to the important slope +0.5 regions of Figs. 15a and 15b
which there occur for n,, < 107#%, the value of M~

Low-frequency saturation is approached when <10 7, M™% and Cpy
approaches the plateau value Cpgy =1 + Cign = MS% when 2 2 =, Figure 15b shows
that this r,=r,=0, n, <M~ plateau is also reached for T, <M ! even in the
rp,=0, r,=co discharge situation. As pointed out earlier, this plateau is reached
when the mobility of the discharging carrier {here y,)} is sufficiently low and the
frequency sufficiently high that the discharging carrier has insufficient time to
discharge and is essentially immobile; it then acts as though it were completely
blocked. If we take the necessary condition as Q2 10z, then the actual radial
frequency corresponding to the choice of the equality sign is

@=o,= 10 p,/u,CR,
= (4nefe)(10 z,p; )1+ 70,0
= 40 nez]lpiﬂn/a (30)

where the last equation follows on using x,, < L. As belore, the plateau region gives
way to a simple Debye dispersion region proportional to Q2 when Q> (Mé3) ™"

The various regions which appear when =, < 1 and especially when o, M < 1
as well are described for Cpy and Ciy in Table 2. Although the Q-values chosen
to divide the various regions are somewhat approximate, they are quite adequate for
usual sitvations. In the (r,. v, 7, %, 0, M) situation with 0<r, <1 the
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appropriate expression for Cgy 18 gy *[MOF—1]; Gon={1+(rp/2)] '+, [1 +
(ro/2)]7"; and Gpy=[1+(2/r)] '+ 7 [14+(2/r,)] . Thus, when r,=0. Rpy=
7, [1+(2/r,)] and may be neglected for sufficiently small z,,. In addition, Ry will
be appreciably less than unity in the plateau region and may be neglected com-
pared to Regny=1 When r,=0 Fig. 17 then shows thc appreximate equivalent
circuit of the overall system. Of course when =, <r, <=z ’, the R, in Fig. 17 must
be replaced by Rp =[1+(r,/2)]R,, and the resistance Rp=[1-+(2/r,)] R, must be
connected in parallel with C,.

(2]

—4.
—_e

Cis

']
LA

Ra

Fig. 17. Approximate equivalent circuit in the plateau region (Regions C and D of Tablc 2).

In order to find under what conditions {Rgn/R ) is smaller or greater than
unity, we require an expression for the normalized Warburg parameter 4. In the
approximate Warburg region, the exact expression for Z, given earlier* may be
simplified under the overlapping conditions M3 1, 105 M?bhQ, (a—1)Q<€ 1,
Q[bla—1)]* < 1,(bR) < 3,8,[(9,~¢n)/g.]% and bQ < 3,6, (9, —ga)*/g. M. Note that
for r,=0, r == oo the last two conditions reduce to (bR2)! < 8,/8,=n,, and b2 < w.
The condition 10 < M2bQleadsto @ 2 IOM ™22+ n, + n; )/(2+ =+, ' ywhen the
exact relations (£,6,) '=(2+ 7, + 7, ') and (§,5,) ' =(2+n,+ 7, !) are used. For
m,=1, this reduces to Q=40 M~ *n,, 10 M2 and 40 (M?n,) ! for n, <1,
n,=l,and m, > 1, respectively. When M? 68 < 10, one approaches the low-frequency
saturation region,

The result of the Z,y simplification yields Z, = Zyy together with the
following expression for A,

A=[MGo(26,2,8,8,)1] (31)
applying for (r,,, rp; 7 7, 0, M). Here
Gpn = [(gpign)/gpgn]z (32)

The symmetric function G, is unity for r,=0, 7,= o0 and, in the r,=0, r, < @ case,
decreases only slowly as r, decreascs. For example for r,=200, G, =099. Since
G, s symmetric in n and p, so also is A.

Now since (Rgn/Rin) = £2%/AGgy in the Warburg region, we find

RF.I\'/'RiP\ = 1\'1";2% Gpu(gpgn/gs)[z‘gnapénép]% (33)
Now for r,=0, r,=co0, this result reduces Lo

Ren/Riw = MQ* [26,6,0,/¢,]) 3

= M, 2]i[26,5,]*
= M[z,Q]/[14+0.5(n,+=n; "))} (34)
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Again since the range of xn, is limited, the =, terms in the last expression may be
neglected for most purposes. At the large-Q edge of the Warburg region where
Q=n, when n, <1, (Ren/Rin)~Mn,. Thus, in order for case (A) to hold in
Region B of Table 2 we must have @ < (M?#,) ! and M, < 1. Ttis, of course, essen-
tially just the Mr,, < 1 condition that ensures that Region C, the plateau of Table 2,
is appreciable. When Mz, = 1, Fig. 15b shows no plateau.

Before considering case (B), let us first examine the intermediate (0, oo 1, 1;
0, M) situation. Here ( Rp~/Rin) = M(2/2)* and low-frequency saturation occurs near
Q=10 M 2 Thus the (Rgn/Rin)=1 condition is almost within Region A of Table 2.
In this region, of course Z# Zwn, however. Figures 15b and 16a show that for
Zn=Zwn in the present situation, we must have Q32 32M ™2 At this point
(Ren/Rin)=4. The denominator of eqns. (25) and (26) is then 26, sufficiently large
that explicit external Warburg behavior, as in Region B of Table 2, does not
appear. We will thus next consider the limiting (Ren/Rin)3 1 situation. Now
consider case (B), where eqn. (34) yields 2 > (M?r, )", consistent with the general
simplification condition Q 2 10(bM?)™ !, which itself allows case {B) behavior even
for =, as small as 10”2 when Q 210~ in the present M= 10* case. Now eqns.
(26) and (27) lead to

Cen = 1+(E23RE/A) 1 (35)
and

Gpxn = Gpny + Gen= 1 (36}
On using the earlier expression for A4, eqn. (35) becomes, for (ry, ro; Tpp 7.5 0, M),

Con = 1+ [ M {(g,—9.)/9.) *(26,8,8,0,1] " (37)

As mentioned earlier, equations such as (37) also hold in the extrinsic conduction
situation when the ¢'s and &'s are suitably redefined*. When #,=0 and r,= <0, eqn.
{37) reduces to

Cp[\ = 1+{(EPQ_ ')%;?/M(Zénép)*] (38)
and for z,=1 as well to
Con = 14+[27Q 7 3ede M (3%

This result describes those curves of Fig. 15b which show a slope of —1.5. In the
n,=m,=1 case,

Con = 14+(22MOH) ! (40)

To illustrate the size of the second term in (38), take {Rgn/Rin)= 10 and use
this value in (34) and the result in (38). At this point, where Q=100 ¢,/2¢,8,6,M?,

Con 2 1+ 22,3,5,1073 M? ' (41)

For n,=1 and =n, % 1, this equation yields Cpy=1+(M?/2000), which can still
be considerably larger than the plateau value, M3, for large M.

In case (B), where Warburg behavior of Z,y requires € 2 40(M?r,,)"%, and
Cin approaches low-frequency saturation for €< 10(M?m,)~" when x, » 1, the
curves of Fig. 15b show that Cpx— Cayyp in this case when Q < 10(M2n ) L The
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ifitial decrease of Cpy below Cpy, thus arises here both from the decrease of
Cn and from an increase in the denominator of (26).

When the expression for A of eqn. (31) is converted to one for A, through
using eqn. (7), one obtains in the present (wo-electrode situation

Ao = ({2 KT Gpa/2) 2+ 2,p5) % [{(2,D0) 71 +(2.D0) 7 12y +2, 1] 72171 (42)

where mobilities have been converted to diffusion coefficients through the relation
Dy =(kT/ez;) ;. This result for 4, will be considered in more detail in the next
section and comparcd to earlier expressions for the Warburg parameter. It simplifies
for (0, oo; 7, 1; 0, M) and z,=z,=z, to

Ag=[(z2e’c,/2kTY{D '+ D1} 73] 7! (43)

where n;=p,=¢; has been used, a condition following from n,=1. Since 4, is
independent of T and thus intensive, Zy, is also intensive as it should be.

The unnormalized form of eqn. (28), applying in the case (A) Warburg region,
is just

Cp= C,+{20t Ay) ! (44)
Similarly, the case (B) result given in eqn. (35) becomes
Co = C,+(Ay/REw?) (45)
In the z,=2,=1,(0, w:m,, 1;0, M) case, this result reduces to
Cp = C,+(A4,e2/RE 0F)
= Cy +(2ec,/1*) [ pp(Do/D, ) (D + D, leo ™3 (46)

Although the Warburg (Cp— C,) of cqn. (44) is intensive, the (Cp— C, ) of eqn. (46) is
certainly not,

For this same rp=0, r,=o0 situation, Friau
(rewritten in the present notation)

Cp = (2ec; /1) [l Do/ D)} (D + DY o™ (47)

Except for the absence of C, and the subscript transformation n—p and p—n, the
results are the same. In addition, however, Friauf gives no range of o defining
the region of applicability of this result. The n—p transformation is just that here
changes (0, o; m, 1; 0, M) to (o, 0; 7, 1; 0, M) or its equivalent,
(0, co; 7, ', 15 0, M). Thus Friauf's result applies not, as he states, for (0, o) but for
(2c, 0) boundary conditions. When n, is appreciably different from unity, Friauf’s
result, when incorrectly applied to the (0, oo) case, leads to Cp values which will differ
very significantly from the correct values since the ratio of his result to the correct
one is, on neglecting C,, just 2,

Figure [5b shows that 2<107? is necessary for very much case (B)
behavior to appear. Therefore, for case (B) we may write (n,M?) ' < Q<1073
Thus here 7, M* » 1, as compared to the Mn,, < 1 condition required for case (A).

We have devoted especial attention to the curves of Fig. 15b because most
experimental results yield similar sorts of curves. Figures 18 and 19 show how the
n,=7,=1 curves of Fig. 15 change when r, or r, are separately varied. The
Tables in these Figures also indicate how Ry, Rgn. and Rpy vary. Nore from

23 obtained the expression
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Fig. 19. Normalized frequency response of Gpy and Cpy, for the (0, r,; 1, 1; 0, 10*) situation.

Fig. 18b that for small r there is still an appreciable region of approximately
— L.5 slope present and that regions with negative slopes nearer zero appear as Fp
increases. On the other hand, Fig. 19 shows that a new dispersion region appears
when »,=0 and r, < co. This result is consistent, of course, with the three arcs
which appear in Fig. 5b for the same (0, r,; 1, 1; 0, 10*) situation.

Some comparison of theoretical and experimental Warburg region behavior
will be presented in the next Section from an electrochemical point of view. But
a great deal of experimental evidence is available for solids and fused salts where
Cp or the apparent diclectric constant, ¢,, shows ™™ dependence over appreciable
ranges with 0 << m < 2 and especial concentrations of values around 0.5 and 1.5.
Reference has already been given to the work of Friauf?* (m~ 1.5) and the author"*
(m=1.5, 2). In addtion some of the earlier literature has been summarized else-
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where' . Here only a few relatively recent experimental results will be briefly
mentioned.

Some of the types of frequency response results with which we shall be
concerned have been ascribed to the presence of a continuous or discrete distribution
of refaxation times. While this explanation will be appropriate in some cases, a
partially blocking space-charge theory®* 23 explanation seems more likely in most
cases, especially those where very high values of Cp or &, appear at low frequencies.

Michel ¢t al** have seen @~ ™ behavior in diverse solid materials with
0 < m< 1.5 and numerous results with m~ 1. Cochrane and Fletcher®® have found
g, versus frequency curves rather similar to some of thase of Figs. 15b and 19b for
single crystal Agl. Armstrong and Race?® have observed good r,=r,=0 type
curves in liquid electrochemical situations. Allnatt and Sime?”, working with single
crystal NaCl, found many slopes in the range 1.3 < m< 1.9. In contrast, Lancaster>®
found many slopes of ~ 1.5 or less for thin films of cerous flueride.

Some application of the results of the present theory to the experimental
measurements of Mitoff and Charles®® has already been given?!:*°. Although these
authors question the applicabilily of some ol the conclusions?’, their reasons do not
seem convincing?'. Mitoff and Charles found m-values of 0.5, 1, 1.5, and 2 [or a
variety of solid materials. Also, Tibensky and Wintle*? found series capacitance
frequency dependences with m = 0.5 for KBr single crystals, although the conversion
from measured parallel capacitance to calculated series capacitance was not carried
out using one of the circuits of Fig. 1. Nevertheless, Warburg response appears
and may be associated with a 7, < 1 situation. Finally, Maeno®?, working with pure
and doped single crystals of ice, has found many ¢, curves with shapes like those
of Figs. 15b and 19b. Both m~0.5 and m~ 1.5 values appear. He also gives impc-
dance-plane results consistent with those of Fig. 3b. Although the data indicate the
high probability of an incompletely blocking space-charge situation, Maeno suggests
a distribution of relaxation times explanation.

Incidentally, for simplicity [ have presented no discussion of the many different
doping and electrode situations applicable for the various experiments mentioned
above. Both essentially blocking and non-blocking (e.g., r,~0, r,~cc) electrodes
were used. Not all the materials measured were in an intrinsic conduction temperature
region but many were. It is hoped to compare intrinsic—extrinsic conduction
theoretical predictions* and appropriate cxperimental results, with especial crphasis
on temperature dependence, in a later paper’.

V1. DETAILED CONSIDERATION OF APPROXIMATE WARBURG RESPONSE

A. Analysis

In this Section, we shall be particularly concerned with the region showing
approximate Warburg response of Z;y. As we have seen, strong external Warburg
response only appears for n,, £ M ! and.leads to Region B of Table 2. But Fig.
16 shows that approximate Warburg response appears in Z in certain frequency
regions for all «,. Thus, to the degree that experimental accuracy allows Z; to be
obtained adequately from Z,, Warburg response can be derived from even the
m= 1.5 regions of case (B) of the last Section, where 7, may appreciably exceed unity.

As an extreme example, consider the (0, oc; 999, 1; 0, 10*} curve of Fig. 15b
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at @=107° where the overall dissipation factor, D;=Gpn/RCen=—Re(Zw)/
Im(Z ), is about 7083, Now although Seitz er al.** have described a technique
which allows measurement of Cp and G, with reasonable accuracy up to Dy
values of about 104, the main difficulty arises here in the calculation of C, and R,
from (p and Gp measurements. Assume that C, and R, can be obtained from
€ = 0.1 measurements and G, from measurements in the low-frequency saturation
region, 2 <h~'M "2 Then at a given m value of interest, €, Cpn, Gpn, Gpn, and
Gy may be calculated. The solution of eqns. (16) and (17) for Cx and R,y yields

Cin =(Cpn— 1)+ [(Gpn— Gpn /2% (Cpn— 1)] (48)
and
Rm = [(GPN—GDN)/{QZ(CPN‘ ])2+(GPN—GDN)2}‘}‘REN ’ (49)

For the (0, o0; 999, 1; 0, 10%) situation, the terms involving (Gey — Gpn) dominate.

But here Gpy = Gpy = L, and (Gpy — Gpy) =8.59 x 10~ *. The problem is thus evident:

Gpy and Gpy must be known to one part in 10* or better to achieve even

moderate accuracy in Cy and R;,. Of course when rn,, is appreciably smaller, -
this problem is much less severe.

Some comparison has already been given®® of the present expression for
the Warburg parameter 4,, which applies for a binary system without a supporting
indifferent electrolyte, with the conventional expression. In the usual derivation%37
of Ag, electronentrality is assumed everywhere, implicitly or explicitly arising from
the presence of a supporting electrolyte whose ions are taken to be completely
blocked. Then the contributions to A4, are, for example, from the diffusion of
oxidizing and reducing specics in the neighborhood of the working electrode. The
situation is considerably different in the present work. Here in the r,=0, r,=c0
case, for example, charges are coupled through Poisson’s equation; charge of one
sign 1s completely blocked; and only that of opposite sign reacts at the electrode.
Further, we have considered the situation of two identical electrodes. Thus, in the
simplest case the charged state of the reacting species is created by charge transfer at
one electrode and destroyed at the other. These processes are reversed when the
polarities of the electrodes reverse.

[t is believed that the physical situation described above and analyzed
earlier®* is a plausible one for the unsupported binary electrolyte and for the two
carrier intrinsic conduction situation in solids. Some modification is necessary to
pass from the present assumption of two identical, plane-parallel electrodes, usual
for experiments with solids, to that of a small working electrode and a large
indifferent counter electrode, common for work with liquid clectrolytes. To good
approximation, it seems plausible to pass from two identical electrodes cach of area
¢ to a single working electrode of area ¢ by dividing intensive impedance com-
ponents, associated with processes at the electrodes, by two. Thus, in the present
situation, where only specific quantities are considered, (1'Zy, = 0.5'¥Zy,, where the
superscripts indicate one or two electrodes. It follows that ‘14, =0.5'4,, Non-
intensive quantities such as C, and R, cannot be treated in this way, of coitrsm

g

For the actual single working electrode situation used in an experiment, C, and

R.. should either be calculated accurately or, preferably, directly measured in the
rcgion where they dominate, Q > 0.1,

5
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The above prescriptions may be adequate when Z;— R, =Zy to good
approximation, but they are impractical to apply accurately in the present binary
case where Z; and Z; may be made up of both intensive and extensive circuit
elements mixed together in complicated fashion. In a recent preliminary note?*, com-
parison of A,’s was made for a single working electrode situation. Here such
comparison will be made for two identical electrodes by using ‘¥’A,=2'14,,
where ‘14, is the conventional result. We may then continue to deal directly with
the unmodified two-electrode theoretical circuit elements C,, Rg, Rp, and Z;.

The conventional supported result for oxidizing and reducing species with
concentration ¢, and cg, diffusion coefficients I, and Dy, and stoichiometric factors
vo and vy may be writlen in the two-electrode case as®%-37

Ao ={(n?e*22kT){(v&/co DE)+ (vi/cx D)} '] 7! (50)

where » is here the number of electrons participating in the reaction. This result
may be compared to that of eqn. (42) for z, and z, arbitrary in the (r, r,:
T 7,5 0. M) situation. The explicit result for {0, oo; n,, 1; 0, M) and z,=z,=z,
has already been given in eqn. (43).

Although eqns. (43) and (50) are still notably different in ways readily
amenable to experimental verification, in the special situation where z2=(n/vy)*=
(n/vg):, Do =Dy =D,=D,, and ¢, = ¢y =¢;. the equations yield the same result. Tt is
this result which is, in fact, most often used to analyze experimental measurements,
probably because of lack of separate information on Dg, Dg, etc. Although the

~m, p. and ¢; quantities in the present treatment are equilibrium bulk values, as
are ¢g and ¢y, the diffusion coefficients D, and D refer to charged species in the
present binary case while the question of the charge states of the possibly many
species considered in the conventional supported case*® does not enter the derivation
explicitly except through the presence of #. Comparison between the present result
for A, and a more pertinent generalization of the conventional result will be carried
out later in this Section.

Let us now consider a somewhat better approximation for Z; than the Zy,
employed in the last Section. Let ¢=(d,/e,)—(d,/8,). Next apply the inequalities
M» 1, Q2(10/bM?), a—1)< 1, Qfe| < 1, and Q|c| < (g, — dn)/ga| to simplify the
complete expression for Z,, given earlier®. The result of very considerable mani-
pulation can be written as

(1-9,-8,)+i(1 +5z+53)]

=~ Gupn | e 51

Y = wp”[ (14 a,)+ia, (51)
where

3, =(2/bQM?)? (52)
3, = XAr—1YGING /g 6480

= Q(M/g,)GEnGpn 2+ +70 ") (53)
0y = (r—1)(282/c,6,0,6,)t M T H,,

=(2Q) Ho[(2+ g +7, )2 +7, + 1, 1)) (54)

o, =g, o7 1) (55)
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and

2y =g, o7 +Q(a—1)(r—1)] (56)
Here,

H,.=[(g:—9)/90—9.)*] (57)

When g, or g, is infinite, H,, reduces to 67 or 82, respectively. For r =0,
> L, < and n,=1, H,, =0.25.

Although eqn. (51) is only an approximate result for the Warburg region,
it nevertheless maintains the original symmetry of Z,, which ensures that Z, is
the same for (r, r,; 7, 7,; 0, M) and for (r,, ry; nnt, @, '; 0, M). Note that when
dy OT g, is infinite, é,, «;, and «, are all zero. Since we require € >(10/bM?) here,
eqn. (52) yields the result 6, < 5~ % =0.447. 1t will be considerably smaller away from.,
the low-(2 edge of the Warburg region.

Let us now introduce some new quantities and write

Yin = Gen+1QCkn

= Yon+ Yon (58)
Yon = Gypw +12Cpn (59
and '
ZiN = RiN+(iQCiN)_1
=Zwn+Zon (60)
ZHN = Rf)Sl\' ‘L(]QCFEN)il (61)

We have Zj=Yy! here but have not assumed Z, =Y, The above exact
relations lead to

Gyn = Gwpnt+ Gepn {62)

Cen = Cwpnt Copn (63)

Rin = Rusn + Rusn (64)
and

Cn' = Cydn + Cagh (65)

Although eqns. (62) through (65) are always possible when the 0 quantities are
arbitrary, we shall be particularly interested here in relatively small deviations
from Warburg behavior, where the second term in each equation is substantially
smaller in magnitude than the first term. Further, we shall also be interested in any
frequency region where the second terms are substantially independent of frequency.
In this region, let us denote the constant parts of the second terms with a sub-
script “C”. Thus for example, over a certain @ range Ggpn = Gepn, 3 ITequency-
independent circuit parameter. Equivalent circuits involving the above 8-subscript
quantities will be considered in the next part of this Section. Note that egn. {64)
suggests that Ry (or Rc) plays a role in the present unsupported case equivalent
to the equilibrium charge transfer resistance R, appearing in the usual supported
situation. A detailed comparison will be made later in this Section.

Let us now assume «, <1 and 2, <1 in eqn. (51). On series inverting the
. denominator, retaining only first-order terms, and ignoring all small frequency-
dependent product terms, one is immediately led to
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Gopn = — Gwpn [(91 +33) + (o) — )] (66)
and

Copn = Cwpn[(82+63) = (o + 2 +23)] (67)
where

03 = C\:’II’NHpn Gpn(M/{Is) (63)

The frequency-independent parts of the above expressions are, on ignoring
the difference between (r— 1) and M,

GCPN = - GWPN{SI = Ep‘c"nGpn = Gpll//(2+nlrl + 7[,: ! ) (69)
and
Cepn = Cwpnl6:—2(g,04) T 23]
z JMGPTI [Hp“—éﬂall(M/.t]S)] (70)

Because of the presence in Gupy and Cgppx of somewhal compensating terms in-
volving 07 and Q7™ where m#£0, the approximations Gepny =~ Gepn and Capn = Copn
hold good over an appreciable @ range.

If we next write an expression for Z; from (51), now assume d,, d,, and 4, all
small compared to unity. invert the denominator of Z,y, and again neglect all small
frequency-dependent products, we obtain

Resn = Ryon [z +22(14+81)= 3,85+ 26,8,)(1 —g. )] (71)
and
Cosn = Cwan| 2, (14 81) — 02 +(31 + 3] (72)

The corresponding frequency-independent quantities are

Resn = Rwsn|2(9:.8,) 1= (83+26,0,)(1—g ) +g. '8, 2(a— 1){(r—1)]

_ AR Cd VA
- (gsGPné'n ép) ( ‘MZ ) (51151;

N Y

e for-en - 501+ (5]

; (Gpl'.l Engp)_ ! [gS_ ' - (Hpn/Mo‘n 6p)] (73)

and
Cesy = Cwsi[64(1 _9;1)]71
= (6,0,M?)G,, (74)

where g, ! has been neglected compared to terms of order unity in the lasi forms
of eqn. (70) and in eqns. (73) and (74). These simplified results will be used as the
definitions of the constant quantities from here on. Note that the larger of the two
contributions to Cjno when r, and r,, are appreciably different is just (8,0,M?G,,/3);
thus, Ceey as given above is then appreciably larger than C;y,. Table 3 shows how
the various frequency-independent elements depend on several quantities of interest
for (0, 1 o 7,5 0, M) with 7, < 1

Using the properties of the Warburg impedance, one may readily derive the
exact equation

YonZon+ YonZwn + Zgn Yo =0 (75)
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TABLE 3

DEPENDENCE OF NORMALIZED, FREQUENCY-INDEPENDENT CIRCUIT ELEMENTS
ON VARIOUS QUANTITIES FOR (0. r,: 7 m,: 0. M). WITH =, <1, AND SEVERAL
(M/r,) SITUATIONS

Yo MA b Gh oE oF

Y Mir, A B C D E F

Ry O -1 —1 - 1 —1
»1 ~1 —1 -1 0
Cern 0 1 0 - — 2
»1 2 0 -1 1 | 1
Gepn ANy ‘ 0 | 0 1 0 0
Cesn  Any- 2 0 0 1 | 1

When the last term can be neglected. the result vields the approximate relations

Cegé o —2AZGgpN (76)
and
Ro = —242 Copn (77)

Here, of course, 24°=(Gypn Cwsn) ™ ' =Rwsn/Cwen- Equations (76) and (77) are
satisfied exactly by the final forms of the constant quantities, those where the sub-
script transformation 8—C is made. These results suggest thal examination of the
ratios

U = —(Ggpn/Gwen)/( Cosn/Cwsn) (78)

U, = ‘(CHPN/CWPN)/( Rosn/Rwsn) (79)

which both should be near unity over an appreciable € range, should be of some
interest.

It is of especial interest to point out that eqns. (70) and (73) show that
Cepn and Ry, are both zero when

H,,(3,8,)"" =(M/g.) (80)

We may thus expect that Cypy and Rggy will also be zero near this value. In the
r,=0, r, 3 1 situation with x,, <1, this condition becomes approximately

828, L =1y L = (Mg,) =(2M/r,) (81)

Therefore, when r,~2r,M, one may expect Cypy and Ry to pass through zero.
Although this zero point, where Cyy= Cwpy and R;y= Ryxy, vields perfect Warburg
response for Cyy and R;y to the degree that Cypy = Cepn and Ry = Rexny, Zin 18
not exactly equal to Zyy here since the small quantities Gypy and Ced are not
exactly zero as well. At 7 ~2xn, M, Z,y will, however, be closest to showing perfect
Warburg response. It is interesting that such maximal Warburg response does not

and
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occur at r, = oo, where one would expect an infinite electrode reaction rate, but at a
finite value of r . ‘

Next, the apparent intensive-extensive character of Gep, Ca'. Res, and
Ccp needs examination. Since Gywp and Cyyg are intensive, eqns. {69) and (74) show
that Gepoc G, ool ™ and C5' sc(M2C,)™ ' oc ™. These quantities are thus clearly not
intensive, but it will shortly be shown that they make no significant contribution
10 Gpy and C,y in the Warburg region when n_, < 1; thus their failure to be intensive
is not important here.

On the other hand, C.p and R do play important roles. Because of eqn,
(77), we need examine only Cgp for dependence on . When g, = w0, egn. (70) shows
that Cepoc MC,, a properly intensive quantity. The second part of Ccp, dominant
when (M/g,)» 1, is proportional to M2C,G,,/g,, however. If r, and r, are them-
selves independent of [, as was tacitly assumed in the preliminary note on this
work??, then this second part is proportional to [ and is therefore strongly
extensive. )

The normalized Chang-laffé boundary parameters r, and r, require further .
consideration, however. They have been intreduced into the theory* through relations
such as

Io(1) = (ez,)(ra Do/ D) p(1) = pe(1)] (82)

1,(0) = (ez,)(r, 2,/1)[n(0)—1,(0)] (83)

Here I,(l) is the conduction current of positively charged carriers at the right
electrode; I,(0) is that associated with negative carriers at the left electrode; p(I)
and n(0) are boundary charge concentrations; and the subscript “e” denotes equi-
librium values. In the present a.c. solution for the intrinsic-conduction case of no
static fields within the material, p,=p. n.=n,, and eqns. (82) and (83) reduce to
the a.c.-only results*

and

Ipn(”=(€zp)épp1(1) (84)
and

L, (0) = (ez,)¢,n,(0) (85)
where the effective rate constants are

o= (Dy/Dr, (86)
and

Ea=(Duflira (87)

Each ¢ can be separately associated with a thermally activated rate process
involving a symmetric free energy barrier to charge transfer at the electrode® 23,
Under these conditions, ¢, and £, are never actually either zero or infinite, but
their possible range is such that the s may be well approximated by cither zero or
infinity. Note that we have followed Beaumont and Jacobs?? rather than Friauf?’
in writing r,, and r, rather than 2r, and 2r, in (82) and (83). Thus the present r,, and
r, are twice Friauf's r, and r, and agree with Beaumont and Jacobs’ equivalent
parameter p as well as the original Chang-Jaff¢ parameters. The present usage is
slightly unfortunate, however, since it leads to definitions such as g, = 1 +(r,/2) rather
than the simpler g, =1+, but it has been widely enough used that it does not scem
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worthwhile to redefine r, and r, at this stage.

Now since &, and &, are clearly intensive quantities, eqns. (86) and (87) show
that r, and r, are extensive! The virtue of using r, and r, in normalized
solutions of the general (r,, r,; %, 7,; 0, M) situation is, however, that they are
dimensionless and no separate knowledge of I, D,, and D, values is required for a
normalized solution. Now it is clear that while M/r, and M/r,, are purely intensive,
quantities such as M/g;, Gp,, and H,,, which involve g, and g,, contain parts
independent of { as well as parts directly involving I. Thus, even the introduction
of eqns. (86) and (87) into the full expression for Z; will not make it entirely
intensive. It is thus not a pure interface impedance under all conditions.

Let us next consider, however, the usual situation of interest when elecirode
charge transfer occurs, that where £,7, or ¢,r, is much greater than unity. Then
Gpn = 1’ gs ;O'S(Enrp+£prn) > 1! Hpn ;gf/(gp_gn)2= [(‘Snrp+6prn)/(rp_rn)]2s and
eqn. (80) becomes

(Enrp + gprn)[(énrn+ aprn)/(rp_rn)]z = 2‘Z‘/I(Snap (88)
For arbitrary =, and r,~0, r, > 1, for example, this zero condition becomes
(&arp+8,y) = 2Mm, (89)

inagreement with(81)when n,, < 1. Note thateqn.{88)is entirely intensive when eqns.
(86) and (87) are used for r_ and r,
Now for the present g, > 1, arbitrary xn,, situation, R becomes

2 Saro+0,r\?
~ -1 - “1{“n’p T %n
RCS = (gnap) [(En rp+£prn> (Ménap) ( rp_rn ) :| Rau (90)

Let us now examine the case where the clearly intensive negative part of this
expression is negligible compared to the positive part. Then on using

(Roo/ﬁnﬁp) = (21/6)[(#;14- un)/nupﬂ'n](znni + zppi)- ! (91)
and eqns. (86) and (87), one finds that
2

(znni + zppi)(Znéna‘; + Zp cpai)

This entirely intensive result holds, provided the positive part of Ry remains
dominant, for any =, and either r,» 1, 0<r,<rorr,» 1, 0<r, < r,. Note that
its calculation requires values of z, and z,, not just their ratio, n,. Further, this
expression for R has been derived for a two-electrode situation; it must be halved
when only a single working electrode is considered.

Equations (82)«(85) are similar to those used in conventional supported
electrelyte theory; thus a comparison of eflective rate constants is of interest. Note
that in the region around equilibrium, where the present linearized results par-
ticularly apply, quantities such as the p, and n, of eqns. (84) and (85) are directly
proportional to the amplitude of the applied a.c. potential, in consonance with
supported case resulis®®,

In the conventional analysis, it is somewhat unusual to consider together
both positive and negative charged entities which can react simultaneously at the
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electrode. Bul this is the general situation considcred here when both r, and r, are
non-zero. Thc usual expression for R, for a single charge carrier reacting at an
electrode may be written’® R,=(kT/neiy), where i, is the apparent exchange
current density. In the present case, we must introduce such a current for each
reacting entity. Since the overall currents are in parallel and arc assumed non-
interacting, the effective R, may be written for the case of two identical electrodes as

Ry =(2kT/e)[(zpl0p)+(2ai0n)] ™" (93)

Now in the present case of zero direct current. iy, for example, may be expressed
as*®* z ek c..where k,istheapparent standard heterogeneous rate constant for the
positive charges, and the effective concentration ¢, is often given by ¢ ci ™" Here
¢o and cy are, as before, bulk concentrations of the oxidizing and reducing species
and « is the transfer coefficient. We may now write

Ry = (2kT/e?) 25 kyepe) + (23 ke )] (94)

The predictions of eqn. (94) are different in general from those of eqns. (73)
and (92) for the coupled-case Res. For example, the present unsupported treatment
involves the ratio of the mobilities of the charged particles, while the extended
conventlional result does not. This difference between Ry and R, certainly ariscs from
the strong coupling between charges of opposite sign in the unsupported situation.

When eqns. (92) and (94) are set equal and z,p, =z,i; is used, one finds

(zgkpcpe+z§kncm)=(ngppiﬁf"i‘zfin"iﬁ;) (95)
Now when £, and k, are both zero, (95) leads Lo
in = (Cnc/’”i)ﬁgzkn (96)

This result applies in the general (0, r,; n,, 7,; 0, M) case with r % l. When
<1, & " in (96) is essentially unity. We then see that when ¢, =n; as well,
¢ =k, A result analogous 10 (96) can be derived in the r, >0, r,=0 case. Finally,
it should be noted that the comparisons represented by eqns. (95) and (96) only
turn out so simplc when the negative second term in R s negligible. There is
clearly a contribution to R in the present work which does not appear in the
analogous R, of the unsupported case. Again, this term probably arises because of
charge coupling effects in the unsupported case. Since it involves a negative
resistance, the electrode is morc open (less blocking) when r = oo and this term is
dominant than it is when eqn, (80) holds, g, < 0, and Reg=0.

Finally, when k, and k, are both non-zero, we may palch together an
expression for the appropriate A, in this generalized supported case for com-
parison with the unsupported result of eqn. (42). Let us consider the situation where
there is a large reservoir of neutral forms of the mobile positive and negative ions at
(and in) the electrodes. The neutral concentrations will be taken large enough to be
essentially invariant: small a.c. perturbations change these concentrations only
negligibly, and they will not contribute significantly to the expression for 4, in
the supported case*2. Take p; and n; as usual as the concentrations of the two ionic
species in the bulk of the clectrolyte or solid material. Then the two conventional
contributions to the Warburg admittance arising from these charges are uncoupled
and add directly. For the two-clectrode case. the expression



BINARY ELECTROLYTE SMALL-SIGNAL FREQUENCY RESPONSE 39

Ag > [(92/2%1(71){2;9{1)3 “a(kp)"‘ zin D} “o(kn)” !
=[(e*/23kT)(zp i+ zom) {2, DEuglky) + 2, DEug(k, )1 ] (97)

then seems appropriate. Here ug{ x)is the unit step function: ug(x € 0}=0; ng{x>0)= 1.
The introduction of this function is probably an approximation (associated with the
assumption of no coupling at all), but it is needed, just as is the function G, which
appears in eqns. (31) and (42) for A and A, and in all unsimplified expressions
such as eqns. (69), (70), (73) and (74). When r,=r. G,,=0, so 4 and 4, go to
infinity in this completely blocking case.

The present supported Aq is still quite different, however, from the un-
supported case result of eqn. (42). There, when one P is much smaller than the
other, that one dominates the expression for Ao, Here, when z, DYug(k,} 3 z, Diug(k,),
for example, only the larger D is important in A, Even when z,=z =z,
m=pi=¢, Dy=D,=D,, and k,, k,>0, the unsupported result is, from eqn. (43),
Ap =23kT/e* 27 ¢; DF, while the result following from eqn. (97) is one fourth of this
Ao The differences between the unsupported and supported results again arise from
the charge coupling present in the unsupported case and perhaps also [rom some
possible inappropriateness of eqn. (97). It does, however, seem very reasonable that
the magnitude of the Warburg impedance be appreciably higher, as above, in the
unsupported than in the supported situation. Finally, although the present theory
and results have been here applied primarily in an electrochemical context, they
also apply to solids as well. Impurity ions and various charged defects in crystals
may be the dominant charge carriers, and electrode kinetics may involve injection
and annihilation of defects as well as electron (and hole) transfer and chemical
reactions at the electrodes.

B. Approximate equivalent circuits

Figure 20a shows the conventional equivalent circuit usually employed over
the entire frequency region for both supported and unsupported electrolyte situa-
tions®™*34* The Z,, here is usually taken to involve the 4, of eqn. (50), rewritten
for a single working electrode, or a simplification of it. The element C, is the
double-layer capacitance. The usual expression for €, in the case of two identical
plane-parallel electrodes is MC, =¢&/8n Ly, where Ly, here involves the concentrations
of all mobile charges completely blocked at the elecirodes. Finally, R, is the
equilibrium charge transfer resistance discussed in Part A of this Section; it will be
zero for infinite electrode reaction rates. All quantities in this circuit are intensive
sxcept the extensive R .. Here the other extensive quantity, C,, has been omitted*s,
Figures 20b and 20c show the limiting forms of the circuit when w—0 and w— oo,
respectively. Note that although the circuit is supposed to apply to a faradaic
process, it does not allow a continuous current to flow as it should?* *¢ and as the
circuits of Fig. 1 do.

Let us now consider how the circuits of Fig. 1, representing the unsupported
situation, simplify for 7, < 1 when the relations of Section VI-A for ¥, and Z, are
used in the approximate Warburg region. The resulis thus only apply when Fp# o
Figure 21a is a form of Fig. 1a in which exact Warburg elements are shown explicitly.
Now consider the sitvation (0, r,; m,, 7,: 0. M) when =, <1 and r_ > 1. Then
Gp =G, Gp=[e /(1 +2)] Gy, and Gpp = Gep= —[ee, {1, /(r,+2)}%]G,,. Since
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Fig. 20. (a) Conventional electrochemical equivalent circuit; (b) low-frequency-limiting form of the
circuit; (c) high-frequency-limiting form of the circuit.

Fig. 21. {a) Form of the cxact equivalent circuit of Fig. 1 appropriate in the Warburg frequency
response region. (b) Approximate but frequently applicable form of the circuit.

g,=1and g, =7, Gpn and |Gyen| are much smaller than unity. It will thus make
little difference if Gyp is reconnected to the right terminal of G rather than the left.
Then Gy and Ggp are in parallel, and their sum is approximately =, [r./(r.+
DI = {rofra+ 221G =210/ (7, +2)2] G, For @, <1 and r, 1, the result is
completely negligible, thus justifying the absence of G, in the conventional circuit
when applied to an unsupported situation: (a) in the Warburg region only, and
(b) when =z, < 1.

The result of the above manipulations is shown in Fig. 21b. Note the
absence of any direct current path from electrode to electrode in this Q region,
tegion B of Table 2. Under some usuval conditions, we may still simplily the
circuit of Fig. 2tb further. The reactance of Cgp is (wCpp) ' =R /RCepn =
(Q2Ccpn) "' R,,. Taking, for example, 2=0.1 n, and assuming (8,5, M/g,) » H,,, one
finds |QCcpn| ™" Ry ~(10g,/8,6, MY M) PG ' R, =(109,/8,6,M)(n, M) 'R,
-Since 7, M < 1, this result will appreciably exceed R, provided H , <(6,6,M/g,)
< 10(m,, M)*l, a quite practical situation. Then, and for smaller £ values, it will be
an adequate approximation to reconnect Cyp to the right end of R,,., and the circuit
of Fig. 22a is obtained.

Another approximate equivalent circuit appropriate for n,,<1 may be
obtained by intraoducing the results of eqns. (64} and (63} in Fig. la. One then
obtains the circuit of Fig. 22b, On ignoring Rp~7, ' R, replacing R, =R, with
R, and ignoring Ciz' compared to Cyy', the circuit of Fig. 22c is obtamned. This
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Fig. 22. (a) A more approximate form of the circuit of Fig. 21b; (b) an alternate form of the exact
equivalent circuit of Fig. 1 appropriate in the Warburg region; (c) approximate form of the (b) circuit.

curcull is probably not quite as accurate as those of Fig. 21b and 22a since Ry
was ignored, not “cancelled”.

Comparison of the circuits of Figs. 20a, 21b, 22a, and 22b shows both
similarities with and differences from the conventional circuit. In Fig. 22a,
C,+ Cop=Cyp plays the rale of the Cy of Fig. 20a. But note that the maximum
positive value of Cep > Cep applicable for #,=0 and r, = oo, is about Mé2C,, always
less than MC,. When “C,” is actually determined in the unsupported case from
measurements in the plateau region (region C of Table 2; see also Fig. 17),
the result is not MC, anyway but is Cps = M3} C,, still always greater than M32C,.
Thus Cpp is never exactly the double-layer or even the plateau capacitance.
More important, eqn. (70} shows that Cpp=Cp can go negative, and its maximum
magnitude for (M/g,)3 1 can greatly exceed MC, .

Similarly, the Ry element of Fig. 22¢ may be taken to play the role of the
charge transfer resistance of Fig. 20a. Note that Cyp and Ry are not independent,
however, as shown by eqn. (77). When one is positive, the other is negative. In the
7p# 00, 1, =<0 case, eqn. (73) shows that Ry >~ Reg=Rn R, is negative. Similarly
when {M/g,) » 1, R is positive with dominant part (Gontatads) ' R, In the present
€1 case &, ' =a ! »1; thus, this term will greatly exceed R,. Note that the
ratio R, /g, will be very nearly intensive if r, 2 but will be neither purely
intensive nor extensive when this condition does not hold, /.. in the case of a Very
slow electrode reaction. Finally, it is important to note that C,, and Ry do not
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FFig. 23. Normalized frequency dependence of the electrode-reaction quantitics Reey and Cypy for the
(0. r,: 1077, 1: 0, 10°) situation.

appear simultaneously in the same equivalent circuit as do the Cy and R, of Fig. 20a.

Figurc 23 shows how R,gy and Cgpy actually depend on € for the (0, r,:
10°7, 1; 0, 10°) case. These quantities were calculated essentially exactly by the
computer rather than from the approximations of egns. (67) and (71). We sce that
Rgsw and Cepn are substantially constant up to Q~(n,/30) but do not remain
constant close to the lower Warburg region boundary of 40 n, M 2 here at
2=4x1071% Figure 23a shows that Rgy—0 as Q > n,,. Actually, in this region
Roen = — Rwen, 50 Rin = Ryysny + Rosn approacheszerorapidly. Forexampleat Q= 1077,
Rysn=10,/2 and Ry = 6.1 x 1077 Note that there is not much of a Cp plateau
region here since n,, M is not sufficiently small. There is, of course, a wider plateau
for Cin,» and we see in Fig. 23b Cypn—Cisn as €22 107% or so. Since the
susceptance of Cyp will be much greater than the admittance of Zy, as Q appreciably
exceeds m, the circuit of Fig. 21b approaches the plateau circuit of Fig. 17 as it
should in this plateau region. Similarly, the circuit of Fig. 22b also goes to that of
Fig. 17 as £ increases since R; -0 and C;=(Cys + Cy') ! approaches C.

In order to present further information on the important quantities Cypn,
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TABLE 4

VALUES OF CIRCUIT ELEMENTS MULTIPLIED BY g, FOR THE (0. r,; 1077, 1; 0, 10%) SITUATION

Range values give 10 percent variation values of £ on a logarithmic basis

I Constant guantities Frequency-dependent guantities

4, Ress — ¢, Cepn Muax(g,Ren)  IngqQ range  Min( —g, CipnJ log, 82 range
min/max min/max
2 % 108 —9.000 > 107 —2250 % 101° —-9.10x 107 —124/-8.6 —226x101° —14.6/—9.0
2x10° 1.001 2.502 % 102 —-1.92x10° — 117/ ~112  <3.72x107 —f2.2/—114
2x 104 9.002 x 10° 2.250 x 10° 8.93 x 10® —13.1/-9.5 2.20 x 10° —14.1/—103
2x10* 9920 x 10 2470 x 10° 9.88 x 10° —13.8/—9.8 232 x 107 —144/—118
200 1.019 x 107 2448 »x 10° 1.02 x 107 —144/—10.6 2,02 x 10° —14.8/—133

20 1.210 x 107 2.066 x 10° 121 x 107 -151/-1L6 1.23 x 10° —15.3/—14.6

Cepns Rgsne @and Ry, Tables 4 and 5 show their variation under different con-
ditions. Table 4 applies for the same (0, r,; 1077, 1; 0, 10°) situation presented in
Fig. 23 but extends to much smaller r, values and thus into the very slow
electrode reaction region. All element values in Table 4 are multiplied by g, in order
to remove first order variation arising from g, changes. Here g, =g,=1+(r,/2) to
excellent approximation. The Table gives the approximate maximum values of g, Rygn
and minimum values of —g, Copy for comparison with g,Rn and —g,Cepy. In
.addition the Table presents the ¢ ranges over which Ry remains within 10
percent of its maximum value and Cypy remains within 10 percent of its minimum.
The ranges are shown in logarithmic form as (log; 3 Q,,;,)/(108, 99,2, ) Where Q
and Q... are the lower and upper 10 percent points.

Table 4 shows that when r, is appreciably smaller than the 2M cross-over
value, the quantities shown remain nearly constant for more than a 100-times
reduction in r, When (r,/2M)< 10~ %, however, such constancy disappears. In-
cidentally, { Rygn)man values occur here at Q ~ 10712(10 r,/2M)*. For (r,/2M) < 0.1,
{Copx)min values appear at @ ~ 107 ' (+,/2M). Thus at r,=2 x 10%, thesc {2 values arc
approximately 3 x 10 "% and 10~ 3. The ranges given show that in the approximate
constant region Ry, remains close to its maximum value for 3 or 4 decades, and
Cypn shows a decreasing + 10 percent range as r,, decreases below (.2M. Incidentally,
for (0, 2x10°; 1077, 1; 0, 10%) the quantity U, shows a 110 percent log,,2
variation range around a value of unity of —14.75 to —12.7 and increases mono-
tonically with Q in this range. On the other hand, I/, shows a range of —13.9 to
—12.2 for 10 percent variation around the value of unity and decreases mono-
tonically with increasing Q.

Table 5 is similar to Table 4 except that here (r,/2M) is fixed at the value
107 ? and thus both r, and M vary. In addition, although ¢, is again used to mul-
tiply the resistive elements, M ~! is used in its place for the capacitative ones. Here
we see quite good constancy of the elements shown nearly down to r,=20. Note
that the log 42 ranges decrease for both quantities as r,, and M decrease, but most
of the decrease ariscs [rom a decrease in magnitude of the low-Q boundary value
associated with the M reduction. Here (Rygy)max Values occur at 2=10"75 p1
and {Copn dmin values at Q=10 "% M ™1 For (r,/2M)=10"2 Rggy itsclf increascs

ntin
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here from about 99 to 1.2 x 10° as r, decreases from 2 x 10° to 20. Thus, in this
entire range R ® R, and the reaction resistance dominates the bulk resistance.
Over this same range, Ccp remains approximately equal to —24 MC,, much larger
in magnitude than the corresponding double-layer capacitance.

C. Warburg data analysis

There are two principal ways Warburg-region data are usually presented
either as impedance or admittance components. In the impedance case, the real and
imaginary parts of Z1 (or here more properly Z;) are plotted versus ™ ¥ to yield
approximate straight lines. In the present m, < | case, over much of the range of
interest where Zy=Zn+1 and Z » 1, either Z; or Z, may be used, but it is
better to eliminate R whenever possible as is usually done either correctly or
incorrectly, in electrochemical situations.

We shall use normalized variables in plotting Z; here since their use will
make the results more independent of M and x,. Let the frequency variable be

X =25 AMOY) L = 2 M A?) " Rysn = 2P M 71 Coygne (98)
When n, < 1, m,=1, and G, =1, X = [Q2+ 7, +75")] " * =(7,,/R)*. Next, further
normalize the impedance to NZ,, where

N =(2/10M A7) (99)

The numerical values 2%, 2, and 10 in these quantities are arbitrary scaling factors.
We may now wrlte, on using eqn. (64) and replacing Regn by Resn,

NR;y = NRn+(2X/10)
= —04M ! Copn+(24X/10)
=04G,,.[0,6,(M/g,)— H,,] +(2 X/10) (100)
Similarly, on replacing Cgn by Cegn and using eqn. (65), we find

N(RCp)™" ~ N(QCcen) " +(24 X/10)
=(10G,, 8,8, M) "' X2+ (24 X/10) = (2 X/10) (101)

Figure 24 shows curves of this kind for r,~0, r,=co. The points, ap-
propriate for n,,=1, show how little the curves change on going from =, <1 or
7, 1 to 7, =1. The slopes agree with those above, and the X =0 intercept for
NRyyis, fromeqn. (100), - 04G,, H,,= —0.46}= —0.1. The actual intercept shown is
slightly larger in magnitude. The capacitative reactance curve extrapolates to the
origin, in agreement with eqn. (101) and with most experimental results. Note that
for the present case, since € ==, X ™2 these curves where X < 10 emphasize the
region near x,,. They remain substantially straight lines, nevertheless, down to X ~ 2,
where Q~mn /4. Curves of this sort for series capacitance and resistance are
frequently found experimentally®”-##-47-33 byt usually the R, curve lies above the
ather (i.e. R;>0). Some slight evidence of R, <0, as in the present r,~0, r,=c0
case, has, however, been published*®-3!.

Turning now to the admittance approach, we may rewrite eqn. (3) as

Yin = Gpn +iQCpy = (i2+ Gpn) +(Zin+ Ren) ™! (102)
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Fig. 24. The further normalized quantities N(QC;)™% and NRy versus X for the (r, @t . 1 0, M)
situation. Here N =(5MA%)7! and X =(2/0){(AM)™ "

In the n, <1 case, where Rpy=1 and |Z,y| » 1, this equation leads, on using
eqns. (58) and (63}, to

Con & 14+ Cypn+ Copn (103)
and
Gpn = Gupn+(Gpon+ Gepn) (104)

Note that eqn. (103) is more accurate than eqn. (28) of Section V which applies to
the same situation. Now we have already seen that for n, <€ 1. Gpn+ Gppy =
Gon+Geen = 27,,/ra~0 for r, > 1. Thus, Gy = Gwey here.

Now if we set Cypy 2 Cepy and neglect the unity term on the r.h.s. of eqn. (103),
the result can be written

M7 Con 2 M7 Cepn +(X/29)
= G (0= 8,0,(M/g,)} +(X/21) (105)
On using the good approximation Gpy = Gy px = 2Cywpn. oDe also readily finds that
eqn. (103) may be rewritlen as

Con = Copn + 27 ' Gpy

= Copn+ 807 Gpy (106)
In unnormalized form this equation becomes
Cp= MG, [H,,—0,0,(M/g.)]C,+w™ " Gy (107)
De Levie'? and Leonova et al.3* have derived the similar result
Co=Cot{wRp)™ (108)

which is consistent with the conventional circuit of Fig. 20a only when R,=0.
Again we sce, however, that plotting Cp vs. (wRp)™ ' here does not yield C, but
rather Cep. Although the above authors required the assumption R,=0 to obtain
eqn. (108), the similar eqn. (107) found here does roif require the assumption
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Rps=0. In fact, eqn. (77) indicates that when Cypn 2 Cepy #0. Rygn & Repy cannot be
zero either. Thus, experimental satisfaction of eqn. (107) does not necessarily indicate
that R,=0 and k, or k, is infinite.

Figure 25 shows some =, <1 curves of the form of eqn. (105). They are
fully consistent with it aver most of the X range and of the form found experi-
mentally. For the present situation, eqn. (103) yiclds a X —0 intercept of 6% Thus
the corresponding Cp intercept is Mé2C,, always less than MC, or M&}C,, as
mentioned earlier. The insert in Fig. 25a shows the X <0.6 region in expanded
form. For X 2 1. the curve is cssentially independent of =, for n,, <(10 M)~ ',

(0,0, Ty 1; 0, M)

M0 pyipd

|
0 5
X
{a)
LI AL L AL L L B S L L
4 -6 4
(0,210,715 0,107) " 4
773
i msct  byio? _
i 3 A
(=]

T2k _
= .
1 _
[ S8 S S NI I NI N SN EEN SO B
0 1 2 3 4 5 § 7 8 9 10
X
(b)

Fig. 25. The quantity M~'Cpy versus X for (0, o n,, 1; 0, M) and (0, oo 1079, m,; 0, 10%)
situations,

Figure 26 is plotted for r, < oo and may be compared to the r,= o results
of Fig. 24. On the much extended X scale used here, the dots, corresponding to
the r =cc condition, seem to lic virtually on the ideal Warburg line (Rgn=0),
because the resolution is less here than that of Fig. 24. Tables of pertinent values
are shown on each part of Fig. 26. The specific values of Regy shown in the Table of
Fig. 26a apply for x,,= 1079, although the curves themselves apply for n,, <0.03.

The X —0 intercepts of Fig. 26a all lie somewhat below thosc that follow
theoretically from egn. (100), NRg. The differences arise both from inaccuracies
in determining the final limiting slope graphically and probably also from the
approximate character of eqn. (100). Now Fig. 26b shows no large departure from
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Fig. 26. The quantities NR;, and N(QCw) ™" versus X for the (0, r,; m,, 1; 0, 10*) situation with
large values of (M/r,).

the Warburg line as 7, is decreased down to ~200 (where M/g, ~ 10%), while in-
creases of Rpgy with decreasing r, move the NR;, line upward. Thus, when
{M/g,)>(8,6,)" ' H,,(equal 1o unity for 7, = 1),so that the X —0 intercept is positive,
the R; lines will then lie above the (wC)™! lines, as is usually observed experi-
mentally.

It is also worth noting that the forms of the NR,y and N(QC;y) " curves of
Fig. 26 are very similar to those given by Vetter*® for the components of the
[aradaic impedance (supparted case) with diffusion and heterogeneous reaction rate
control. But the present curves for NR;y are quite unlike those given by Vertter
for the more complicated combined case of charge transfer, diffusion, and hetero-
gencous reaction rate control®3.

In Vetter's diffusion and heterogencous reaction rale control case, his laradaic
impedance, which essentially corresponds to the present Z,. invalves Z,, in series
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with a resistance R, and capacitance C,, also connected in series. These elements thus
correspond to the present Ry and Cu (see Fig. 22b). It is found®® that R o
[1+{ew/k)*] ' and C,oc[1+(k/w)?], where k is an effective rate constant for the
reaction considered. These frequency dependences arc somewhat similar to but not
the same as thase of Ry and Cg following from the present treatment. For
example, in Fig. 23 Ry begins to drop off rapidly with @ at a value of £
related much more to n, than to &, (or r,), and it goes negative to a value
determined principally by (n,,M)~" before then beginning to approach zero. It
should be noted, however, that for {r,,/2M) < 1072, as in the r, =200 curves of Fig.
26, the maximum negative value is far smaller in magnitude than is (Rygy)max 2 Reswe
Similarly, Cygy drops off from ~ Cggy eventually as Q increases toward n,,. As Q
decreases, on the other hand, Cgy reaches a maximum nearly equal to Cegy 2nd
then slowly decreases toward C;y,, rather than increasing indefinitely as does C.
' It is important to emphasize, nevertheless, that it is the drop off with
increasing 2 of Ry and Cgn which leads to the behavior of the curves of Fig. 26
in the interesting region 5< X <33, Incidentally, for the choice n,=10"° when
X =98 here, 2=10"° and Q@=10"'° for X ~31. The minima in the N{QC;y)™"
curves (apparent for r, € 400) occur when Cygn > Cygn. Since Cogy decreases with
increasing Q faster than Cygy in this region, Cgy soon dominates the series com-
bination, and the maxima in the reactance curves occur at Cen ~ Cwsn/3.

Alternatively, the curves of Fig. 26 may be interpreted in a simple fashion
using eqn. (4'). The maxima in the curves of Fig. 26b are associated with the
maximum value of —Im({Z,\), (¢,r,)”'. The Warburg response of Z,y (not exactly
Zyy) is in series with the parallel combination of R,=(2/e,r,)JR,, and C,=MC,.
Note that when Reg is dominated by its positive part, as in the present situation,
and n, <€ 1, Rgg =(2/e,e2r )R, =(2/e,r,)R,, =R, Thus R, may be considered a
pertinent equilibrivm charge transfer resistance in the present unsupported case.
It is interesting that in the formulation represented by eqn. (4') such a quantity
appears directly in parallel with the double-layer capacitance C,=MC, and thus
no effect of C, appears at all when r,= !

The close correspondence of the curves of Figs. 24 and 26, first with those
that are found in the supported case for diffusion and charge transfer rate control*4,
then with those for diffusion and chemical reaction rate control®*® is no accident.
In the (0, r,: @, m,; 0, M) situation with r_ 3> 1, we may use eqns. (73) and (87) to
allow definition of an effective rate constant, &, which particularly covers the Ry
region of most interest, 1 < Ry < o0. Let us thus write in this case,

Resn = (2D, /1G 6, 88) ot (109)
where
ne! = (ep 2D ) {1+ (2,06,/2D,)} ™" — (H,n/Md,8,)]
=& (e, Lp Hpn/3,0,D,) (110)

A more exact expression for ¢, could be formed as in eqn. (109} but with
Rygn replacing Regn.

Now the foregoing results show that when the first term on the r.hs. of
eqn. (110) does not dominate the expression but ¢! remains >0, Ry and Cyy lead
to results like those of simple charge transfer in the unsupported case. But
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when the £, ! term dominates, the results arc like those for chemical reaction
control. Evidently in the present exact treatment of the unsupported case. the two
processes meld together. There is a smooth transition from apparent charge transfer
control in the region 0 < (¢, /¢,.)<€1 to apparent chemical reaction rate controi
when(&,/£,.) < 1. Notice that the effective rate constant &, is more analogous to the
conventional rate constant than is £, since {,_= o0 corresponds to zero electrode
reaction resistance, to the degree that Rggy = Regn.
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Fig. 27. The quantity Cuy plotted versus {Gp. /@) for the (0. r,; 1077, 15 0, 10%) situation.

Finally, Fig. 27 shows Cpy versus (Gpy/Q) for various r, values. The results
are in substantial agreement with eqn. (106). Here, because (2M/r,) > | for most
ol the curves shown, most of the Cgpy intercepts are negative, although positive
ones would be found for r, values satisfying (g, H,,)>(8,6,)M. A specific value
of X is shown at the bottom of this Figure. Its size indicates that most of this plot
corresponds to £ values much less than r. These curves are also of the form of those
determined experimentally’®>!-3* except thal the cxperimental intercept found is
usually positive.

The methods of plotting experimental resuits described in this last Section
have been quite widely used in liquid electrochemical situations but not appreciably
for analysis of frequency-response data on solids. When such data indicate a Cp
slope of m~0.5, it should be profitable 1o test the data against the equations of this
Section and, when agreement is found, determine the values of the various para-
meters entering the equatious, In general, comparison of experimental results with the
theoreticul results of the present paper should, in pertinent cases, permit the
determination of values of the following physically significant parameters: g, p,;
T Zpt P For e 00 omn i G Ro M oand & Measurements at several tem-
peratures should then allow estimates of the thermal activation energies associated
with such quantities as £, and ¢, to be obtained.
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LIST OF SYMBOLS

A. Major subscripts

i

ZT =

o 3w

o 8}

Designates an intrinsic or series mterfac.e quantity; also used as index with
i=norp

Designates quantity associated with negative mobile charged species
Designates quantity associated with positive mobile charged species
Normalization of impedances and resistances with R, of admittances and
conductances with G,, =R ", and of capacitances with C,

A parallel quantity

A series quantity; also indicates a plateau region quantity

Stands for “total”

Designates either a static quantity or the zero-frequency limit of a frequency-
dependent quantity

The value of a quantity in the limit of high frequencies {i.e., 2 » 1)

B. Major symbols in text

Numbers in parentheses indicate equations where the symbol is used or

defined.

A (4Gypn Cwsn) ¥ normalized Warburg parameter; (6), (31)

A, Warburg parameter; (5), (42), (50), (97)

Cep Freguency-independent part of Cpyp

Co Frequency-independent part of Cy

C4 Apparent double-layer capacitance in the supported case; see Fig. 20

C, Geometric capacitance/unit area; g/4nl

C; “Interface” capacitance/unit area; the series capacitance associated with Z;; (60)

Cis “Interface” capacitance/unit area in the plaleau region

Cx  (Cwpt Cop) ]

Cp  Total parallel capacitance/unit area; associated with ¥r; (102). Note: Cpo=
Co=Cip+C,

Cps  Total parallel plateau capacitance/unit area

Cwr (242%) 1€,

Cws (AR%)71 Cg

Cye  See eqns. (58), (63), and (67)

Cos See eqns. (65) and (72)

D;  Diffusion coefficient; for positive carriers i=p; for negative i=n

Gop  Frequency-independent part of Gyp

G Frequency-independent parallel discharge conductance/unit area; see Fig. 1;
Gon=a[1+(2/r)] " +e,[1+(2/r,)]

Ge (9,6 /,0,)=(Go— Gp)=Re ' Gynme,[1+(r/2)] ™" 4, [1H(ry/2)]7" see
Fig. 1

Gk (Gwp+Gup)

Gp  Total parallel conductance/unit area; associated with Y,; (102).
Note: Gpo=Gp: Gpe =G,

Gow [(9p—9u)d09.)°

Gwp 28G_/24

Gop  See eqns. (58), (62) and (66)
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Bulk conductance/unit area; R7'
[(gg _gs)/(gp_gn)zl
Debye length in the present intrinsic case
(//2Lp)
(5M A% !
Frequency-independent part of Ry
Gyt
Frequency-independent series resistance-unit area; Gg !
“Interface” series resistance-unit area; associated with Z;; (60)
(Re +Ry)
AR, /023
Equilibrium charge transfer resistance-unit area in supported case; see Fig. 20
See eqns. (64) and (71)

-1

=]
Absolute temperature
HAMQY) 1 (98)
z!
Total admittance/unit area of the system; (102)
Zyt
(Gop+iwCop); (59) _
“Interface” impedance-unit area; (14), (60)
Components of Z; j=123;(4")
' (3)
Aof1—1)/w*; Warburg impedance
[Ros +(i2Ces) ']z (61)
(82/6,)+(5%7e,)
(5“51,,/8“8',
(5.1/8“)-'(6};/5]))
Protonic charge
L+(ri/2);i=e(ry=ry,), 0, 0r p
InEptdpEn
Ynd+9p0,
Boltzmann’s constant
Apparent standard heterogeneous rate constants for the supported case;
I=norp
Distance of separation of plane-parallel electrodes
Exponent in ™™ response
Concentration of negative mobile charges
Concentration of positive mobile charges
M [coth(M)]
Designation of common value of »; and r, when they are equal
Dimensionless discharge parameter for negative charges
Dimensionless discharge parameler for positive charges
Valence number for negative mobile charges
Valence number for positive mobile charges
Normalized radial frequency; wrp
(1+a")"" = 2,/(2,+ 2p)
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8, (l+n,) '=z,/(z,+2,)

& Dielectric constant of the bulk material

g (4w ) T= e/ (st 1)

& (I+m) ' =pp/(pa+ pp)

A MQ?F

i  Mobility; i=nor p

f tr/rD

g (DyDr; i=n or p; elfective rate constants
¢ [Effective rate constant in unsupported case; (110)
n, Mobility ratio; p./p, :
m,  Valence number ratio; z,/z,

1y Dielectric relaxation time; C, R,

7w ReG

T, Recombination time constant

s (Rg+R)G o _

»  Radial frequency of the applied sinusoidal voltage

SUMMARY

The frequency response is considered of a two-electrode linearized system
containing a single positively charged species and a single negatively charged
species. These species may have arbitrary valences and mobilities and may in-
dividually react at the electrodes. The results follow from a detailed solution of
the equations of charge motion given earlier. Normalized response is exhibited for
this unsupported, intrinsic-conduction situation for a wide range of mobility ratios,
valence number ratios, and reaction rate ratios. Resulls are given in the form of
specific formulas, impedance-plane plots, and the dependences on normalized
frequency of series and parallel resistive and capacitative components of the nor-
malized total impedance of the system.

Impedance-plane plots exhibit from one to three connected arcs, depending
on the specific situation. Approximate Warburg frequency response appears for the
“interface” impedance over a certain frequency region when normalized reaction rate
parameters differ, but it only shows up strongly in the total impedance when the
mobility ratio departs appreciably from unity as well. Under such conditions, a
plateau region, where the total parallel capacitance remains essentially in-
dependent of frequency over a wide frequency range, may appear at frequencies just
above the Warburg region. The plateau capacitance is close to but not identical to
the conventional double-layer capacitance present when both species of charge are
completely blocked. In incomplete blocking cases, however, this double-layer
capacitance only makes a significant appearance in the approximate equivalent circuit
under slow reaction conditions; it is thus not present when one of the reaction rate
constants 1s infinite.

In general, the system can show w ™ frequency response for the parallel
capacitance over 4 wide frequency range with 0 < m< 2, and with the experi-
mentally common regions where m =0, 0.5, 1.5, and 2 especially likely. Particular
altention is given to deviations from ideal Warburg behavior which kad to a com-
bined charge-transfer and heterogeneous chemical reaction resistance. Results are



54

1R MACDONALD

compared to those from conventional supported treatmentsand show both important
similarities and differences. Finally, several new equivalent circuits are presented
which are pertinent in various frequency ranges for the unsupported situation.
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