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The small-signal ac response is considered of a system containing a single species of positive charge
and a single species of negative charge.. The charge carriers may be of many different types (ions,
electrons, vacancies, etc.) and are assumed to have arbitrary mobilities and valences. Quite general
boundary conditions are considered which encompass the range from complete blocking to zero
blocking (infinite reaction rate at the electrodes) for positive and negative charges separately. The
present paper deals primarily with approximations to an earlier exact solution of the problem which,
in general, lead to an equivalent circuit made up of three parallel R C combinations in series. The
elements of one of these parallel circuits, associated only with bulk effects, are frequency
independent, and those of another, which are associated with nonzero blocking, may often be well
approximated as independent. The third R C section arises from diffusion effects, involves frequency
dependent elements, and exhibits approximate Warburg frequency response over a considerable
frequency range. In general, Cole-Cole or Nyquist impedance plane plots show three connected arcs,
two of which are frequently good semicircles. These arcs are directly associated with the three R C
sections. Under many conditions, only two of the three arcs may appear and melding of arcs into
each other can also occur. Very simple, as well as less simple, approximations are developed for the

impedances of the individual R C sections as well as the over-all impedance of the system. The
accuracy of these approximations is evaluated, and it is shown how they may be used in
unambiguous cases to analyze frequency response data to yield estimates of mobilities, valences,
electrode reaction rate parameters, and bulk charge concentrations. Surprisingly, it is found that for a
certain mobility ratio range, the center arc, associated with electrode reactions, well approximates a
depressed semicircle of the Cole-Cole relaxation time distribution type, yet no distribution of
relaxation times is present. Further, in the completely blocking case, where the center approximate
semicircle is not depressed but has an infinite radius, the lower frequency portion does not
necessarily begin with a vertical segment as frequency decreases but may be curved away from
vertical over a considerable frequency range. General impedance results for the present unsupported
conduction situation are found to be quite different in some ways from those following from
supported electrolyte treatments. Such treatments should thus not be used to analyze unsupported
situations. Finally, it is found that the parallel capacitance of the system, which may, be far greater
than ordinary double layer values, can exhibit appreciable regions of w™™ frequency response with
0<m <2, and with m =0.5, 1, 1.5, and 2 values especially prominent.

. INTRODUCTION

In a previous paper, ! an exact, closed-form solution
‘was presented for the small-signal impedance of a two-
electrode, intrinsic-extrinsic conduction system con-
taining mobile positive and negative charge species of
arbitrary valence numbers z, and z,, arbitrary mobil-
ities, u, and u,, and quite general boundary condition
parameters, 7, and 7,, themselves simply related to or-
dinary effective rate constants.? Because of its gener-
ality, this solution should often be useful in analyzing
experimental impedance-frequency results for semicon-
ductors and insulators, aqueous and other liquid elec-
trolytes, solid electrolytes such as superionic conduc-
tors, and fused salts. But, because of the extreme
complexity of the exact solution, which depends on seven
parameters even in its normalized form, it has, thus
far, only been explored in detail for an intrinsic conduc-
tion situation.? This exploration was based on accurate
computer calculations of the consequences of the exact
theory. Further, it should be mentioned that the exact
theory is only applicable in the extrinsic case for full
impurity dissociation,

Although numerous explicit formulas were given? for
impedance and admittance components as functions of
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frequency in restricted frequency ranges, one particular
approach toward unifying and simplifying the results was
discovered and briefly mentioned in the previous paper.?
It was based on the finding that in the most general situ-
ation three connected arcs appeared when the imaginary
and real parts of the impedance were plotted parametri-
cally in the impedance plane as circle diagrams or
Cole-Cole plots.® Under favorable conditions the two
highest frequency arcs were excellent semicircles with
origins on the real axis, while the lowest frequency arc
was a distorted semicircle, showing typical Warburg/
diffusion type behavior,?* In general, anywhere from
one to three of these arcs could appear with or without
appreciable melding of one arc into another,

The above results suggested that the total impedance
of the system, Z,, might be usefully represented by the
sum of three separate impedances in series, each made
up of a conductance and capacitance in parallel.? Let the
impedances of the three parallel circuits, each repre~
senting one of the possible arcs, be Z, =Y}, Z,=Y;},
and Z,=Y;!, where Z, applies at the low end of the fre-
quency spectrum and Z; at the high end. The arcs will
be correspondingly identified: thus, arc 1 is the low-
frequency one. Two equivalent forms of the exact equiv-
alent circuit have already been discussed.!*? An alter-
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FIG. 1. (a) Possible exact series~parallel equivalent circuit.

{(b) Form of equivalent circuit for identical, plane-parallel
electrodes.

nate form is that represented in Fig. 1(a). To the de-
gree that arcs 2 and 3 are perfect semicircles, the ca-
pacitive and conductive elements of ¥, and Y, are fre-
quency independent, Further, Y, is essentially intensive
(an interface quantity) when the frequency of the applied
potential is not too low; Y, is intensive for all conditions
of interest; and ¥;, which represents only the bulk prop-
erties of the basic material, is always extensive. The
equivalent circuit can then be expanded to that of Fig.
1(b), applying for the situation of identical plane-parallel
electrodes with identical boundary condition parameters,

The two parallel circuits on the left are thus associated
with conditions at and within a Debye length or two of the
left electrode except at such low frequencies that ¥, be-
comes extensive. Here we have made the identification
of the extensive ¥; circuit elements as C;=C,, the geo-
metric capacitance of the system in the absence of mo-
bile charge, and G3=G,, its bulk or solution conduc-
tance. These important frequency-independent quanti-
ties lead to the intensive time constant 7,=C,/G,,
=C,R., the dielectric relaxation time. A symbol glos-
sary is presented in the next section.

In the present work, the above series-parallel ap-
proach is further investigated, generalized, and eval-
uated for accuracy in a variety of situations of possible
interest. Both simple and somewhat more complicated
results useful in analyzing experiments are developed
and compared with corresponding supported electrolyte
expressions., All circuit elements will be taken as spe-
cific or unit area, quantities, and identical, plane-par- -
allel electrodes and boundary conditions will usually be
assumed. The results may be readily generalized to the
situation of different electrodes and boundary conditions
and to that where there is a single dominant working
electrode with which is associated virtually all the in-
tensive circuit elements (interface quantities) of impor-
tance. The results apply accurately in electrochemical
situations only to the unsupported electrolyte case, but
some of them apply, at least approximately, to the sup-
ported case as well, Further restrictions have been
discussed earlier.!? It is important to note that the
present three arcs and corresponding three series-par-
allel circuits appear here for a single homogeneous ma-
terial, not a three layer model, which can also lead to
three parallel GC circuits in series.’ The two situations
should not be confused, and the present results should

aid one to distinguish between them. Finally, although
main emphasis here will be on intrinsic conduction situ-
ations, many of the formulas of the present work will be
shown to apply to fully dissociated extrinsic conditions
as well.

Il. GLOSSARY OF SYMBOLS
A. Major subscripts

i Designates an intrinsic or series “interface”
quantity; also used as index with i{=» or p
n Designates quantity associated with negative

mobile charged species
Designates quantity associated with positive
mobile charged species
N Normalization of impedances and resistances
with R, of admittances and conductances
with G..=R7}, and of capacitances with C,

pP A parallel quantity

S A series quantity; also indicates a plateau re-
gion quantity

T Stands for “total”

0 Designates either a static quantity or the zero-
frequency limit of a frequency-dependent
quantity

0 The value of a quantity in the limit of high fre-

quencies (i.e., 2>1)

B. Major symbols in text

Numbers in parentheses indicate equations where the
symbol is used or defined.

A (4GypyCysy) /% normalized Warburg param-
eter; (20)

Ag Warburg parameter; (21)

C, Double layer capacitance; essentially MC, in
two-electrode situation

C, Geometric capacitance/unit area; €/4nl

C, “Interface” capacitance unit/area; the series
capacitance associated with Z,

Cis “Interface” capacitance/unit area in the plateau
region

(op Capacitative components of ¥,; j=1,2,3

Cp Total parallel capacitance/unit area; asso-
ciated with Y.; Note: Cpy=Cy=Cy(+C,

Cps Total parallel plateau capacitance/unit area

Cys (A¥Q)1c,; (A33)

D, Diffusion coefficient; for positive carriers i=p;
for negative i=n

F The Faraday

Gp Frequency-~independent parallel discharge con-
ductance/unit area; G, - Gyp; (3); see Fig. 2

Gz (85Gw/8p8n) =(G, — Gp)=RF ; see Fig. 2

G; Conductive components of ¥,; j=1,2,3,

Gp Total parallel conductance/unit area; asso-
ciated with Y,; Note: Gpo=Gp; Gp. =G,

G. Bulk conductance/unit area; RZ!

Ly, Debye length in the present intrinsic case

M @/2Lp)

P, Value of Re(Z;) at cusp between arcs 1 and 2;
(Ry+R.); see Fig. 3 and Table I

P Percent accuracy of approximation for Im(Zy);
(36)
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Percent accuracy of approximation for Re(Z,y);
(35)

Gas constant

Negative resistance in the Warburg region;
(A28)

Gp; (3)

Frequency-independent series resistance-unit
area; G3'; (4)

“Interface” series resistance-unit area; asso-
ciated with Z;

Ry +Pp); (A36)

(Rys +Rg); (A34)

AR /NS ; (A35)

Equilibrium charge transfer resistance-unit
area; (10), (13), (14)

G}

Absolute temperature

z}

zj

Total admittance /unit area of the system

zy

z3; @)

Approximate expression for Y,,; (A20) and Ap-
pendix E,

Approximate expression for Y,,; (Al4)

“Interface” impedance-unit area

Additive components of Z,; j=1,2,3; (1)

Y7 ()

Approximate expression for Z,,; (A27)

Approximate expression for Z,,; less accurate
than Z,,,; (34)

Aol -i)/Vw; Warburg impedance; (18), (19)

(Z,+2Z,)=(Z,.-2Z;)

(62/€,) + (8%/€,)

8,8,/ €,6,

(8,/€,) = (8,/¢,)

(8,/¢€,) +(8,/¢,)=a+b

1+(r,/2); i=e(r,=7,), n, or p
En€p t8p€n

8n0p +8,0,

Effective standard heterogeneous rate constants
for the supported case; i=n or p

Distance of separation of plane, parallel elec-
trodes

Concentration of negative mobile charges

Concentration of positive mobile charges; also
PE=1+iQ

M[coth(M)]

Designation of common value of 7, and 7, when
they are equal

Dimensionless discharge parameter for nega-
tive charges

Dimensionless discharge parameter for posi-
tive charges

7/, ; unity when »,=7,=0

(r;-1);7=1,2; (A10)

Valence number for negative mobile charges

Valence number for positive mobile charges

Q Normalized radial frequency; w7,

Q, Value of @ at peak of arcj; j=1,2,3

Qs (a-1)"1

o Equilibrium transfer coefficient; also parame-
ter in Cole-Cole dispersion formula

B Angle of approximate Warburg response line;
(A38)

12 (M6,)coth(Me,); (A9)

5, QA+ =2,/ (2, +2,)

8, (A +m) " =2,/(z,+2,)

3, 6, for m, «<1; &, for m,>1

€ Dielectric constant of the bulk material

€, A+ =,/ (1)

€, U+ m) =gy / (y + 1)

™ The peak height of arc 1; see Fig, 3

o, Eigenvalues; j=1,2; (Al), (A2)

M The arc 1 length (R, ~ P,); see Fig. 3

Ly Mobility; i=n or p ‘

£y (Dy/Dyr;; i=n or p; effective rate constants;
(11), (12)

T, Designation of common value of 7, and 7, when
they are equal

T Mobility ratio; m,/u,

7, Valence number ratio; z,/z,

P2 Radius of arc 2; R,/2; see Fig. 3 and Table I

Tp Dielectric relaxation time; C,R.,

Radial frequency of the applied sinusoidal

voltage

Il. BACKGROUND

A normalized impedance situation is fully defined in
the intrinsic conduction case by the following six param-
eters, (v,, 7,; Tm, 7,; 0, M) and Q. Here 7, =p,/u,;
m,=2,/2,; M=1/2L,; and the normalized frequency is
Q=wr,. The range of interest of @ is 0SQ 1. In these
expressions, I is the electrode separation, L, the in-
trinsic Debye length, and w the radial frequency. Elec-
troneutrality holds in the bulk of the material when M
>1. When 7,=7,=0, the electrodes are completely
blocking for both mobile charge carriers. Alternative-
ly, when 7,=0, 7,=<, the negative carrier is completely
unblocked and reacts at an electrode with an infinite ef-
fective rate constant, It is important fo note that be-
cause of symmetry if the quantities (r,, v,; 7,, 7,; 0,
M), which define a given situation, represent specific
values, then the situation (r,,7,; =;!, m;'; 0, M) is fully
equivalent as far as its normalized total impedance Z, /
R, is concerned.!

Let a subscript “N” denote normalization of imped-
ances and resistances with R,,, admittances and conduc-
tances with G, and capacitances with C,. Then we may
write

Zyoy=Ziy+Zay+2sy, 1)

where Z,, is the exact normalized impedance of the sys-
tem. Since Cgy=C,/C,=1=G4y=G,/G., one readily
finds that Y3, =(G; +iwC;)/G,, may be written as ¥,
=1+iQ =7,

It only remains to obtain useful expressions for Y,y
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and Y,,. Unfortunately, it is impractical to derive these
in general from the exact solution, both because of its
complexity and because the results would themselves be
too complex to be very useful. Nevertheless, the gen-
eral solution and its simple exact results in certain spe-
cific situations can be of great value in determining the
general forms of Y, and Y, and limiting cases of these
quantities. Beyond this, exact computer results can
help one discover specific forms which jointly meet the
goal of maximum useful simplicity married to adequate
accuracy.

Let (Zpy—Z35)=Z1p5=(Z y+Z,y). The previous work
then leads to the important quantity

Y155 =Z15n =Gran +iQC 5y = p[(PPREy - 1) +P2R2EN‘YW(] )
2

When the quantity Y, is taken from the exact solution
of the problem,! ¥,,, may be obtained exactly as well.
When Y,y or Y,y is infinite, Y,y equals the noninfinite
member of the pair. Here Rj and Ry are frequency-in-
dependent elements in the exact equivalent circuit!+?; in
normalized form they are given by

Rpn =Gy ={eJ1+@/r ) + & [1+ /7). 3)
and
Rpy=Giy=1e1+(r,/2)] + €[1 + (v, /2)] 1} . (4)

In addition, €,=(1+m)™ = u,/(u, + 1), €=(1+7,)"
=,/ (1, +1,), and (€, +€,)=1. Note also that (Gpy
+Gpy) =1,

The normalized admittance Y,y is the only frequency
dependent quantity in the exact theory and exact equiv-
alent circuit, "2 two equivalent forms of which are shown

in Fig. 2. The impedance of the circuit of Fig. 1(a) may
be made identical to that of Fig. 2(a) and (b) when some

Cq
(1
11
o- AAA —o
6p
3

Yilw) A —

Cq
I
11
-1
Gey Gp
A\
6e
o—+ —AAA— —0
-2
Gey Vi
(b) ‘
FIG. 2. (a) Exact equivalent circuit involving ¥;. (b) Alter-

nate form of exact equivalent circuit,

{rp\Ty5 T 72: O, M)
M>>1

—Im (ZTN)

— )\m"’ﬂ
s
|

_ fow |
ﬂ.—1 i //?”‘
A1
® g ® 4 N ﬂ,’m\\;
phe / / 1/ 45° | 9=0\
0 | P

R
Re (ZTN) 2N ON

FIG. 3. General arcs and definition of quantities in the nor-
malized impedance plane for (ry, 7,5 m,, T, 0, M),

frequency dependence is allowed for the Y, and Y, con-
ductive and capacitative elements of Fig. 1(a). The in-
verse of ¥;, may be written Z,, =R, +(i2C,y)™, where
the series “interface” components R; and C; are both
frequency dependent in general. If we write for the total
normalized admittance of the system, Y, ,=Z7%=Gpy
+iQCpy, then it follows that in the limit Q@ -0, which
will be designated hereafter by a subscript zero, Gp
=Gpy and Cpyo=1+Cyyo=Ghy +Ghy Cizyg. We may also
Write Zpyy =Goyo=Rpy =Z1xo+ Zawo + Zswo =Gl + G + 1.
An exact expression for C;,, is given in Appendix E.

IV. SOME APPROXIMATE RESULTS
A. Arcs

Let us first consider the simplest case: that where
all arcs present are well defined and the cusps between
them are sharp. Such behavior occurs when M>>1, so
that there are many Debye lengths contained between the
electrodes, and when Q,, <, <<1, where these spe-
cific 2’s are defined in Fig, 3. Approximate expres-
sions for the arcs and their underlying frequency re-
sponse are then simplest and easiest to use to analyze
experimental data. Some exact and less approximate
results for various cases are discussed in the Appendix.

In general, three separate arcs can appear simulta-
neously, as illustrated in the diagrammatic normalized
impedance plane representation of Fig. 3. The encircled
numbers show the arc designations. In the present case,
arcs 2 and 3 are good semicircles with centers on the
real axis; arc 3 is fixed in size; and the sizes of arcs 1
and 2 may independently vary, making all sizes possible
relative to arc 3. Note that with the present normaliza-
tion the point 1 on the real axis corresponds to Re(Z,)
=R.. The point § =1 corresponds to w =73, the fre-
quency where the capacitative reactance of C, equals R...
The general lengths: p;y, Ay, and 7y ; points: P,y and
R,y ; and normalized frequencies at arc maxima on the
imaginary axis: Q,, and &,,; are defined as illustrated
in Fig. 3. Note that Ay =R py — Pyy.

Table I presents expressions for most of the above
quantities for specific (r,,7,) choices of interest and in-
creasing complexity. Note that when a length is zero
the associated arc does not appear. The expressions
for R,y are exact here but those for the other quantities
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TABLE I. Expressions for arc points and lengths for various
values of 7, and 7,,.

Points Lengths
Yps7n Poy Rpy Pan My
Vp=Ta=7,  1+@/7) 1+2/7,) r;! 0
0, 1 e 0 !
0, 7, 1+@2/er,) I+ e/r)l ()t wt
2 Tl
nt o
L Thet 1 (‘rp+2€") 0 1 +(rP72€"-}
2 -1
V517 t (s"r" +e,, ) Rpy Enr+ )™ Rpy—Poy)

are only good approximations when cusps are well de-
fined, In cases where arc 1 or 2 but not both appear and
Tm =T, =T, €Xact expressions for Y,y and Y,, may be
found {see Appendix B). Assessment of the accuracy of
the present approximations will be given later. Figures
4-6 show idealized arc situations for some of the spe-
cific cases of Table I. Approximate equivalent circuits
involving frequency-independent elements (except for Y,)
are also included in Figs. 4 and 5. A simple approxi-
mation for ¥, is given later [Eq. (17)] and more accu-
rate ones in Appendixes D-and E,

B. Approximate components of Y,

We have already seen that Yy =% =1+:Q, a simple
Debye dispersion situation involving bulk properties
only. Richer possibilities appear in Y,y and Y, 5. In the
present 7, <o, M>1 case, we find that for 0=Q « Qg

You =Gy +iQCy 2 Gy +iRCoyy (5)

where the “0” subscript indicates the & - 0 limit as usu-
al. The quantity ¢ is approximately =, for 7, <1, A
‘'more general definition is given in Sec. V. This ap-
proximation of taking G,y and C,y essentially frequency
independent is pertinent, of course, when arc 2 is a good
semicircle, when M> 1, and for frequencies where
<«1 and thus p#=1. Exact results' for Y,,, together
with Eq. (2), then lead to the expressions

Gopo =0.5(€,7, +€,7,) (8)
and
Como=r+(€7r,+€7,) , m

where 7 = (M)coth(M). Since » = M here and p,,

{Tp,Tp) = (®, ©) Cq (0,0} Cq
Ca0
- L - |
LE o K b @~
£
: ® ®
05
Q=0 020~
0 Re (Zyy) to Re (Zyy) 1
{a) (b}

FIG. 4. (a) Arc and equivalent circuit for (r,, 7,)=(, =), (b)
Idealized arcs and approximate equivalent circuit for (0, 0).

~Im (Zqy)

(rouT)={rg g

L .

0 Re (Zyy) [1+(2/r)]
(a)
Cq (rP,rn) =(0,m)
=
-
)
E
-t
]
0 =y
Re (Z1n) [' s ]
(b}

FIG. 5. Idealized arcs and approximate equivalent circuit for
(ry, v)=r, 7). () Idealized arcs and equivalent circuit for
(0, ).

= (€, 7, +€,7,)"! must be of the order of unity or greater
for arc 2 to be comparable to or larger than arc 3, C,yg
may usually be well approximated as

Cono=M (®)

when M > 1. Equations (6) and (7) are exact when #,
=7, =7,. Finally one finds, when arc 2 appears in the
region 0<Q «Qg, .

(rP,rn)=(0,rn)
— rn<<1 +7Tm
z
9 %on
£
- . @
ﬁ (egral”
0 1 :
Relzpy)  *l1+(2/enm)]
(a)
(rP,rn) =(0.rn)
>>{ 4+,
,_z n m //
-
2]
=
-
:

" Reyy . slema]
(b}
FIG. 6. (a) Idealized arcs for (r,, 7,)=(0, 7,) when 7,<<1 +7,,
Here 1, >1, 7,~1. () Idealized arcs for (0, 7,) when r,>>1
+Ty. Hererw,~1, 7,> 10%,
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Qou = Goyo/Cano = 20,Cane)™ =€, 7, +€,7,)/2M . (9)
Clearly we must have Q,, «<1.

Equation (8) leads to Cyy=CyyoC, = MC, = €/87L,,
where C,=¢/4nl and € is the dielectric constant of the
underlying bulk material., But €/87L, is essentially just
the expression for the unbiased double layer capacitance
of two completely blocking (r,, =7,=0) double layers in
series, one in the neighborhood of each electrode.® We
thus see that in the context of the present approximation
Z, is made up of just the blocking double layer capaci-
tance, C,=C,,, in parallel with a resistance

Rg=G3hoR.=2R, /(€ 7,+€,7,). (10)

Since R4 depends directly on the boundary parameters

7, and 7, and is infinite when they are both zero, it may
be identified as an electrode reaction rate resistance,
here expressed for two identical electrodes in series.
Note that in unnormalized terms p, is just Ry/2 and P, is
just (R, +R,).

The above unnormalized results for arc 2 are formally
exactly those found in the conventional supported elec-
trolyte situation for a perfectly irreversible redox reac-
tion.” There, a semicircle of radius R,/2 begins at
(R. +R,) on the real axis and ends on the same axis at
R.. (C, is ignored in the conventional treatment, thus
eliminating arc 3). But to what extent are the R,’s ap-
propriate in the two cases the same? Let us consider a
single working electrode and introduce the unsupported-
situation effective reaction rate constants?

£, =D,/ N, (11)
and '
t,=(D, /)y, , (12)

where D, and D, are the diffusion coefficients of the mo-
bile charges. Since £, and £, are intensive, #, and 7,
are extensive.

For a single working electrode, designated with a
superscript (1), the unsupported R, thus becomes

R, = (R./D/(€, D E, + €, 8,)
=(2RT/F?) /(2 n; +2, ;) (2,8, +2, ;)
=(RT/F?)/(z%n, +22 p;)(0,, + 6,&,)
=(RT/F¥)/(2n &, + 22 p,8,) (13)

where R, =(l/F)[z,u,n; + 2,1, p;]™" has been used along
with the electroneutrality condition z,n; =z,p;; n; and p;
are the equilibrium bulk intrinsic-conduction charge
concentrations; 6,=(1+m))"=z2,/(2,+2,); 8, = +m,)™"
=2,/(2,+2,); and §,+8,=1. In addition, the Einstein
relation D, =(RT/Fz,)p; has been employed here with
i=n and p. The R, of Eq. (13) is clearly intensive; it
differs somewhat from the corresponding R . resistance
given earlier® because R, and Rg appear. in different
equivalent circuits. When there are no reactions, &,
=£,=0 and R, = in this blocking case. On the other
hand, when either &, or &, approaches infinity, R,~0 and
thus Z,~0 as well, No double layer capacitance then ap-
pears in the present equivalent circuit. For (7,,7,)

=(0, 7,) and the typical values T=290 K, n,=10"%M, z,
=1, and §,=10™ cm/sec, one finds VR, ~2,6x10°
ohm-cm?, For D,=10% cm?/sec and 1=0.1 cm, the 7,
value corresponding to &, =10"* cm/sec is just unity.

The conventional supported R, is not usually given in
the present case of possible simultaneous parallel reac-
tions involving both the positive and negative charges
(0=¢,=o, 0=§,=w), Generalization to this case has
been given earlierz; the supported result is

MR,=(RT/F?)/(22c ek, +22C,0k,) (14)

which may be directly compared to Eq. (13). Here %,
and %, are the effective standard heterogeneous rate
constants in the supported case and ¢, and c,, are effec-
tive concentrations. If &, is associated with a redox re-
action, for example, c¢,, is usually written as cgck®,
where « is the equilibrium transfer coefficient and ¢,
and ¢ are the concentrations of oxidizing and reducing
species involved in the reaction. If we take the £’s and
the &’s the same, (13) and (14) lead to the same resis-
tance except for the apparent difference in the concen-
trations involved.

The quantities n; and p; appearing in (13) are bulk
concentrations of charged species. On the other hand,
the supported-electrolyte concentrations c,, and ¢,, usu-
ally involve the concentrations of both charged and un-
charged species. But at the equilibrium potential, the
point at which the present unsupported and supported
treatments apply, ¢, =cg=c, and cgck®=c,.=c,. This
concentration is equivalent to »;, for example. Since
both the &’s and &’s are standard rate constants and thus
account for both forward and reverse reactions, there is
evidently no significant difference between the present
unsupported R, and the conventional supported result at
the equilibrium potential. The present results apply
rigorously for very small ac perturbations around the
equilibrium potential, especially when it coincides with
the point of zero electrode charge in the electrochemical
case, but they may also apply approximately in other
regions where the current-voltage response is approxi-
mately linear® provided the rate constants are suitably
interpreted.

C. Experimental analysis of arc 2 results
In unnormalized form Eq. (9) becomes
Wy = (RyC)t = (€, 7, + €7,)G../2C, . (15)

Since R, may be found from the P, intercept, C, may
then be obtained from the experimental value of w,y.
Although R, may be found from the left real-axis inter-
cept of arc 2, one must extend measurements to at least
Q< 0.1 in order to determine C, adequately. Then C,,
C,, and w,, allow one to calculate M and L,,.

Figures 5(a) and 6(a) show two principal cases where
only arcs 2 and 3 appear. While this is strictly true for
the 7, =7, =7, case of Fig. 5(a), the condition », «1 +7,,
applying in the (0, »,) case of Fig., 6(a) only ensures that
arc 2 will always be far bigger than arc 1, not that arc
1 will be completely absent. Nevertheless, arc 1 may
then not be experimentally distinguishable. To what de-
gree can we then distinguish between these two similar
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cases from experimental data? In the first case, Ry
=2R,/r,, while it is 2R_/€,7, in the second. Let us now
assume here that arc 1 is much smaller than arc 3 as
well as arc 2, Then 7,>1, €,=1, and thus R,=2R_/7,
in the case of Fig. 6(a). Unless vestiges of arc 1 can be
identified in this case, there is no way to distinguish it '
from the first case to the present order of approxima-
tion. One then will not know whether R, involves 7, or
7, and thus whether the experimental situation involves
equal 7, and 7, or #,=0, 0<%,<~, Even the results of
the exact theory will generally not allow distinction be-
tween the two cases except for data much more accurate
than usually achievable.

Suppose that a good arc 2 semicircle, or even part of
a semicircle, has been measured along with enough of
arc 3 to yield C,. Arc 1 may or may not be present.
Assume that I and the electrode area are known and that
both z, and z, are known as well, the usual experimental
situation. It is of interest to summarize just what sig-
nificant material parameters can then be calculated us-
ing the four arc 2 and 3 results: C,, R., Ry, and w,,.
Assume as usual that the circuit parameters are given
per unit area. We may then calculate the estimates:

(a) e=4niC,

(b)  Cy= (Rowyy)™
M=Cy/C,=C,/C,
Lp=1/2M

n; = €RTO,/4n(Fz,L
Di=meny

(¢) (up+uy)=1/Fz,nR,

() (2,8,+2,8) = QRT/F?)(z,n,Rp)™
(W 7, + by 7,) =21 /Fz,m, R,
(€7n+€7,) 2R /Ry =2R}, .

From the four independent inputs, we calculate the four
independent outputs €, »; and p;, (i, + u,), and

(248, +2,%,). It is clear that from these data alone we
are unable to obtain estimates of ,, u,, £,, and &
separately.

To obtain u, and u, we must know 7,,. Further,
2y, +2,8,) =2,8,[1 +m7 (r,/7,)]

when z,£,#0. Thus to obtain &, and &, =(n,/7,)(r,/7,)¢,,
we must also know (r,/'r,,). In most cases of interest,
this intensive quantity will be either unity or zero. I
no trace of arc 1 appears at very low frequency the 7,
=7, =7, assumption is indicated. Otherwise, one may
either see vestiges of arc 1 or have information suggest-
ing that 7, must be zero. Then in either of these cases
¢, and £, may be obtained. Even though 7, is not needed
in the (,/7,) =0 case to obtain £,, it is needed in the 7,
case. Although as we shall shortly see, 7, may be
readily obtained when arc 1 is significant, it can only be
estimated in the 7, situation through the use of a higher-
order approximation than that employed in the present
section (see Appendix C).

Incidentally, although very little least squares analysis
of complex data, such as impedance as a function of
frequency, temperature, and/or dc bias, seems to have
appeared in the literature, it is worth emphasizing that
recently described methods of generalized least squares
analysis® allow such data fitting to be carried out most
expeditiously. This approach should be particularly ap-
propriate in obtaining best parameter estimates from
impedance or admittance data using one of the more ac-
curate models, or impedance formulas, given in the Ap-
pendix.

D. Approximate components of Y,

Simplification of the approximate expressions for Y,
given in Eq. (A20) of Appendix D leads for 7,~0 to the
even more approximate result

Y,y =G,y +iQC, y =7, ((QbM )2 coth(iQbM2) /2]
x[1-s]2, (16)

where s =7,/7,, defined as unity when 7,=7,=0, and
b=6,8,/€,€,. The (1-5)" term in (16) is needed to make
Yy~ when 7, =%, =7,, a situation where arc 1 should
not appear at all in the impedance plane plot.

It follows from Eq. (16) for the (0, »,) situation with
7,>0 that Gyyo= 7, and Cyyo= b7,M?/3=05,06,M%/3¢5,
leading to extensive behavior for G,y and Cy,. Equation
(16) holds most accurately when bQ2<« 1. It leads to the
arc 1 shape of Fig. 5(b). To this order of approximation,
Y,y is independent of #,(>0) when 7,=0; thus essentially
the same shape appears for arc 1 in Fig. 6(b), where
arc 2 is negligible. Note that when 7,=7,, b=1. Fur-
ther when 7,=1 and 7, <1, b=7;1/4 and C,,,=M?/12.
For M>1, Ciyy is then much larger than Cyyy= M
= Csy. The normalized admittance ¥, approaches its
low frequency limiting value when Q< 2, 5(5M2), and
the maximum arc 1 height, ny = 0.4177;}, is reached
at Q =0, =2.53(bM?)™. Note that the conditions €,
< Qy<<1 given earlier lead to the following conditions
on M when the present approximate expressions for £,,
and Q,y are used: M> (2p,5)™ and M> 5b7p,,. These
inequalities only apply when p,, <,

Now when Q >10(bM2)™, coth(i26M?)2~1 and for s =0
one finds

Yy = (bn2 M3 /2)M2(1 +iVQ | amn

simple Warburg behavior. If we write for a Warburg
impedance

Zy=A1 - DN, 18
and for Zy,,
Zyy =A(Q - i) NQ =Rygn+ ((QCysn)™! , (19)

then the present two-electrode results lead to

A=(C,/R.)2A,=2n2bM3) 2 = (e2/M)(2¢,€,6,5,)" /2
(20)

and
A= €[(2V2RT/F?)(z n, +2,p)™]
x{ [(z4Dp) " + (z,0,) ] [2;} + 2, /2 . (21)
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Except for the presence of a factor of € f here and a
missing term involving 7, and #,, these results for the
Warburg parameters A and 4, are exactly the same as
those found previously.? The differences arise from the
different equivalent circuits in which the parameters ap-
pear. Note that for 7, <1 and m,=1, A=(2/n,M?)2,
The A, result is quite different from that found in the
supported case, where Poisson’s equation does not
couple positive and negative charge motion appreciably.
A detailed comparison has been given earlier? along with
much examination and discussion of approximate War-
burg response. Some deviations from exact Warburg
behavior which follow from the present approach are
discussed in Appendixes D and E,

E. Further experimental analysis

In order that the good separation shown in Fig. 2 be-
tween arcs 1 and 2 be maintained, it is necessary that
Q4 > 9y,. This condition leads to M > 5¢,/8,5, 7, for
7, =0, which becomes M > 20/, for m,=1 and 7, <1 as
well. Thus, in addition to the condition M >1, », may
not be too small if we wish to be able to distinguish arcs
1 and 2 adequately. Finally, comparison of Figs. 5(b)
and 6(b) shows that the cases 7,=0, #,= and #,=0,
¥, > 1 +m, cannot be well distinguished for the present
order of approximation, When g,y <« 0.5, arc 2 will be
indistinguishable, and it will not be possible to deter-
mine », or £,. For #,=0 and 7,, <1, 7, can thus only be
obtained from the present results when it falls in the
range 5/6,5, M «<v,5107;!. This is probably somewhat
too restrictive a condition on the low end, since even if
arcs 1 and 2 overlap appreciably, they may still be ad-
equately separated analytically in many cases if overlap
is incomplete.

Let us continue to consider only the (0,7,) case for
simplicity. If we now assume that p,, and 7, must both
be 0.1 or greater to allow adequate observation of the
associated arcs, we find 7, <4 and 7, S10¢€! or
10(1 +m;1). Even though one may sometimes be able to
measure with some accuracy impedance components
whose magnitudes are less than R,,/IO, it is clear that
meaningful measurements in the arc 1 region will be-
come very difficult to obtain when =, >10. Some other
aspects of this problem have been discussed earlier.?
Although measurements frequently cannot be extended to
sufficiently low frequencies that all of arc 1 can be
delineated, it is sufficient that enough of the bend away
from Warburg behavior can be reached that extrapolation
based on the known approximate shape of arc 1 will allow
the height 7,y to be estimated. Then an estimate for
T, is 0.417n;%=0.417R./[-Im(Z;)y ], where
- Im(Z ;) is the maximum height of arc 1 on the un-
normalized impedance plane. Finally, this estimate of
m,, may be used in the previous arc 2 equations along
with arc 2 measurements to yield estimates of ., u,,
and £,.

Since the sizes of arcs 1 and 2 depend on the separate
factors =, and 7, for (0,r,), one will have a certain
amount of control of the relative sizes in this case be-
cause 7,( #0, =) is proportional to I. If arc 2, for ex-
ample, is too small to measure accurately, its size may

be increased by reducing I/ and thereby 7,, leading to a
larger p,y. Such variation should not, of course, have
any effect on such intensive system parameters as ¢,
Mn, My, and & but it can help improve the accuracy with
which they may be obtained.

The above conclusions apply when the arcs are given
in normalized form. In unnormalized form, however,
the sizes of all arcs are proportional to R,. Therefore,
arcs 1 and 3 will increase in size proportional to /. On
the other hand, p, is intensive since 7, and », are them-
selves directly proportional to /. Thus, ordinary un-
normalized impedance plane plotting should lead to an
arc 2 size almost entirely independent of I. As above,
it can be made larger relative to the sizes of ares 1 and
3 by decreasing /.

Although it is most convenient to determine 7, from
the arc 1 height, 5, 7, may still be estimated when
only the initial 45° straight-line portion of arc 1 is
available and measurements cannot be extended down to
Q4. Let O be a value of Q(> Q) at a point in the
straight line region. Then in this region (Z;y)g = Ppy
+(ZIN)91. Therefore,

IYINIQIE ][(ZTN)QI—PZN]-l' =7, MVb%y , (22)

where the last equation follows from Eq. (16) when
2bM3210.

Equation (22) readily leads to
TRl s (120,8,0,)°2 | ¥yl o (23)

When R, and C, have been determined, one easily ob-
tains @, and |Y;y|,, from the experimental Z, results.
If it is assumed as usual that 7, is known, then 6,5, may

‘be calculated. Finally, assume that M has been calcu-

lated from known quantities or estimated from an arc 2
experimental result such as a value of €,,. Then the
RHS of Eq. (23) is completely determined, and the cubic
in 71/* may be solved to yield an estimate of 7,,. Final-
ly, previously presented expressions may be used to ob-
tain w,, u,, and 7, estimates. A typical case where the
above procedure is applicable is given by (0, 80; 10"",
1;0,10°) with £,, <, 5(100M)™", A somewhat more ac-
curate approach is outlined in Appendix E. The situation
0 <7, <7, < will usually be considerably more compli-
cated! and will not be discussed here.

It is worth noting that all formulas given in this paper
and earlier*? that involve only such 7, 7, related quan-
tities as ¢,, €, 9,, and ,, and quantities such as b
derived from them, apply formally in the fully dissoci-
ated extrinsic conduction case as well as for intrinsic
conduction.! Even those results which explicitly contain
7,, and/or 7, can readily be generalized for the dissoci-
ated extrinsic situation by carrying out the transforma-
tions 7, - m, and 7, ~7;, where these quantities are de-
fined in the full theory.' In the intrinsic case , =7, and
m, =1, ; for dissociated extrinsic conditions 7, and m,
{and thus ¢,, €,, 6,, and §,) depend on the uncompen-
sated impurity level and thus on the extrinsic parameter
y introduced in the earlier work.! The earlier work® is
incorrect in implying that the theory holds for all ex-
trinsic conditions. Its implicit assumption of homoge-
neous, immobile charged impurities limits its applica-
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bility to the fully dissociated situation. Further, al-
though dissociation of intrinsic neutral centers to give
charged entities such as vacancies and interstitials de-
termines the intrinsic charge level (z; and p;), the effect
of recombination has otherwise been neglected. 1 Al-
though some justification for such neglect has been given
earlier,? it is hoped to include other effects of recom-
bination exactly in future work, )

V. TRANSITION REGION RESPONSE

Let the quantity a be defined as [(6%/¢,) + (8%/¢,)]. It
turns out that a =5 when 7,=1. Further, when 7,=7,,
a=b=1. Finally, when n,=7;, 5=1 but a +#1 unless

=1 as well, We may now define the quantity &, intro-
duced in Sec. B as (@-1)"', Thus, when (a-1)Q <1,
Eq. (5) holds quite well. When a=1, Eq. (5) holds well
over nearly the whole § range of interest, 0= Q51,
Since 7, is limited by physical considerations to the
range 0.25=7,=4, a and b cannot differ greatly, and
we may usually approximate @, by 5™ when a> 1.

On taking Q4 = 5" for simplicity, we find when &,
« Qg that for v,=7, =7,

(Qz,u/ns)zb(’re/ZM). (24)

Thus, it is necessary in this case that (r,/2M) < b7,
Note that symmetry ensures that Z, is the same in the
(re, o3 Tm, T3 0, M) case for the two situations m, =B,
7,=D and m,=B"!, n,=D"', The quantity b=(Q2+7, +m,)/
@+m,+mY) is (2+B+B™")/(2 +D+D™) for both these
choices. Clearly m, can be either too large or too small
here for (v,/2M) < ™! to hold adequately when » and M
are fixed. It is this 7, transition region where Eq. (5)
fails that we are particularly concerned with in this
section.

Let us now consider the 7, =0, 0<%, <« situation,
Dominance of arc 2 as in Fig, 6(a) requires that »,
«1+m, , which may be satisfied for small enough 7,
when 7, <«<1, Letus, however, ask for the conditions
that ensure that Z,y is essentially the same for the situ-
ations (r,,7,; B,D; 0, M), (r,, v,; B, D™; 0, M), and
(0,7,; B, D; 0, M), Figs. 5(a) and 6(a). It is thus nec-
essary that | Zy | < | Zpy .

In the first two cases above, we have Rgy =1+ (7,/2)
=g,, Rpy=1+2/r,), and G,y =7,/2, all independent of
B and D, In the last case, on the other hand, one finds

Rpy=(1+B)g,/(B+g,), (25)

Rpy=1+BYHY[1+2/7,)], (26)
and

Gyyo=Br,/2(1+B), 27

where g,=1+(r,/2). It is clear that these results well
approximate those for the first two cases when r,=7,,
T,=B>1, and n, =B>g,. These last two conditions
may be combined into m, > 1 +(#,/2). Arc 2 is still dom-
inant, and it turns out that Z,, is very closely the same
for the (r,,7,) and (0,7,) cases when m, > 1 +(r,/2). The
results are quite different,? however, when 7, <« 1.

Note that the w,, > 1 +(r,/2) condition in the (0,7,=7,)
case ensures that the mobility of the discharging carrier

is much greater than that of the blocked carrier. Then,
arc 1 is negligible and arc 2 is essentially the same as
that for the (r,,v,) case. As we have already noted, it
may be virtually impossible to distinguish between the
two cases unless additional physical information on the
boundary processes is available. In the present 7,
>1+(7,/2) case, the dominant electrochemical step is
the heterogeneous electrode reaction, which involves the
most mobile charge carrier. On the other hand, when
v,> 1 +7,, and especially when 7, <<1, the dominant
process contributing to the total impedance is diffusion
to the electrode of the reacting charge carrier, which in
the 7, <« 1 case is much less mobile than the blocked
carrier [see Fig. 6(b)]. As usual, the slowest process
plays the major role in determining the impedance.

Now when Eq. (5) no longer holds well, Eq. (9) for
Q,, is no longer a good approximation either. Let us
see what happens under these conditions. Figure 7
shows some arc 2 results for various (7, , 7,) values.
Arc 3 has been omitted, as well as any vestiges of arc
1 for the two (0,1; 10*, 7,; 0,5x10%) cases shown. Note
that although (v,/2M) <«<b™=1inthe (1,1;1, 1; 0,5x10%)
case, this inequality fails for the 7, =10* cases, where
the (r,,7,) and (0, 7,) results are essentially indistin-
guishable.

The most interesting result of Fig. 7 is the appear-
ance of arcs with depressed centers, first distinguish-
able when 7,, becomes appreciably larger than 100. Al-
though the 7, =1 curve is essentially a perfect semi-
circle with its center on the real axis, in agreement with
Eq. (5), the arcs for m, =10* are both depressed and
somewhat asymmetric, The broken line curves are
symmetric depressed semicircles; some deviation from
them occurs on the low-frequency side of the =, =10*
arcs. In many cases, these deviations might, however,
be obscured by experimental error.

The listing in the figure shows the values of the Cole—
Cole® a, related to the included angle {an/2) defined be-
low the real axis. Here & values have been derived from
the best-fitting depressed semicircles, ignoring the low-
frequency deviations. Clearly, for constant m,,, «is

W7 T 7 7T 7 7T 7 T T T 1T T 11 T

T T 1
Tw T, O

=1, 15, T3 0,5x10%)
1.2 4 | | 0
(0, 1; Ty>100, 73 0, 5x10%)
= m z —e-10% 1 005 -

0@ g=107> ® -5~ 10% 025 014

.0
1.0 1.2—_14 16 18 ] 2.2

T
A

FIG. 7. Exact arc 2 resuits for (1,1; T, 7, 0,5x10%) and
0,1; 7,>100, 7,4 0, 5x10% for various values of 7, and 7.

24 2.6 2.8 3.0
Re (Z1y)
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larger than the 7, =1 value when 7, <1, and it approaches
Zero as 7, increases beyond unity. For 7,=1, the maxi-
mum & of about 0.054 occurs at 7, =(7,),,, approxi-
mately 4x10*, As 7, increases beyond (m,),, o ap-
proaches zero, reaching it by 7, ~107,

Depressed semicircles of the present type are usually
described by the Cole—Cole dispersion formula, ® which
implies a wide distribution of relaxation times when
a>0. Here such curves, or at least quite good approxi-
mations to them, occur without such a distribution but
instead for a specific range of 7, values. For (0,7,;
Tm, T3 0, M), this range clearly includes and is perhaps
centered near 7, ~M. This is then the center of the
transition region, where (m,), ~M, and where maximum
arc depression may be expected. Depressed arcs have
been observed for such widely different materials as di-
electrics, ® biological substances,® and glass elec-
trodes.!® In many cases, especially the biological and
glass areas just mentioned, it seems more likely that
the present mechanism is operative rather than that
there is a real distribution of relaxation times of the
Cole-Cole type present.

The quantity b(r,/2M) is about 0.025 for the m,, =10*,
7,=1 curve of Fig., 7, Equation (5) no longer holds well
and usually the exact theory! must be used to analyze re-
sults in detail in this depressed-arc region. Approxi-
mately, however, one may estimate m, from the amount
of depression; but there is a chance of ambiguity in the
result if shape alone is considered since curves with 7,,
both less and greater than (7,), have approximately the
same shape when 7,=1. There is some significant dif-
ference in shape, however, if it isn’t obscured by ex-
perimental errors. When n,=1, Fig. 7 shows that points
lie above the best-fitting depressed semicircle for Q
<§y when m, <(7,),. When r, >(r,),, however, theo-
retical points lie above the depressed semicircle for
 >Q,y. The arc associated with (7,), is thus essentially
symmetric. It turns out, for example, that the arcs for
(T, m,)=10% 1 and 10°, 1 are almost mirror images of
each other in the plane through the line [Re(Z,) =2,

- Im(Z,,) arbitrary] and perpendicular to the paper.

To give some idea of frequency response, a few spe-
cific values are shown on the curves of Fig. 7. The @
=10~ point corresponds to Q,, for m,=7,=1; it is clear-
ly not &, for the other values shown. Incidentally, the
curves obtained for 7, =1 and 0,25=7,=<4 cannot be dis-
tinguished from those with 7, =7, =1 when plotted as in
Fig. 7. This is not surprising since the RHS of Eq. (5)
does not depend on 7, at all. When 7, =1, the £=10%
point moves progressively toward larger Re(Z,,) values
as m, increases. By m, =107, it lies back on the (m, ,7,)
=1 semicircle but with the coordinates [Re(Z ),

- Im(Z,,)]=2.33, 0.94 instead of 2,1. Alternatively,
when 7,,=10" and 7, varies, the point moves from 2.11,
0.99 at 7,=4 down to 2.66, 0.74 at 7,=0.25.

The change of curve shape with 7, variation when 7,
<1 is somewhat more complicated. Some typical re-
sults are shown in Fig. 8 for 7,=0.25. No depressed
semicircles have been drawn in here, and we see that
there may be very appreciable deviations and asymme-
try for 7,=0.25, Clearly, for m, >10% the high fre-

L S e e e s s B s s B
(1, 1;,7,0.25;0,5x10%) ® Q=10

| (0,1,7,0.25,0,5x10%)

20 22
Re (ZTN )

FIG. 8. Exact arc 2 results for (1, 1; m,, 0.25; 0, 5x10% and
©, 1; 7, 0.25; 0, 5x10%) for various ,, results with 7, > 1,

quency side of the arc approaches the limiting semicir-
cle faster than the low frequency side. So much for the
transition region, although the present few curves
scarcely exhaust the different curve shape possibilities,
especially when extrinsic conduction behavior is pres-
ent,

VI. PLATEAU REGION RESPONSE

In the plateau region, ¢ the smallest  value of interest
is appreciably larger than Qg. Thus, the region to be
examined is roughly bounded by 106™'=Q 50.1, It is
therefore only of consequence when b>> 10 and either 7,,
>1 or 7, <«1, It is here called the plateau region be-
cause within it C;y is virtually constant with a value C;gy
less than C;y,. In the earlier work,? C;s, was found to
be essentially g;2(M V3, - 1) for (r,,7,) and g;2(M V35, - 1)
=(MV§, - 1) for (0,7,) when 7, «1. Here g,=1+(r,/2).
Arc 1 will then be very large. But the plateau region
extends over an appreciable £ span when 7,,>>1 as well.
In this situation, it turns out that C;5, =g (M3, - 1)
and g;2(MV5, - 1) for the two cases above. For m,>1,
arc 1 becomes negligible compared to arc 2, as we have
seen. As discussed earlier,? the plateau region in Cpy
is narrower than that which appears in C;y. Generally,
the range for the Cpy plateau, where Cpy =Cpgy, is ap-
proximately 106-*5Q <M™!, Thus, there is no apprecia-
ble plateau unless a is sufficiently large that 7! > M and
conditions are thus beyond the 7, ~M transition region.
Since the plateau region has already been considered® for
the (0, 7,) situation with 7,, <1, here main attention will
be given to the v, > g, case. Note that the shift from
\/6_‘, to V5, in the above results arises because C;sy €ssen-
tially involves the real part of the eigenvalue 6, given in
Egs. (A5) and (A7) of the Appendix.

The quantities MvS, =1vV5,/2L, and MV, =1V§,/2L,
are of especial interest. Using the definition of the in-
trinsic Debye length,® one readily finds that

Lp/V8, =Ly, =(eRT/4nF 222 p,) /2 (28)
and
Lp/N8, =Ly, =(eRT/4nF2zEn )% | (29)
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Here Lp, and Lj, are just the Debye lengths appropriate
for positive charges only mobile and for negative charges
only mobile, respectively. In the plateau frequency re-
gion, the mobility of the less mobile charge is so low
relative to the relatively high frequency in this region
that it can make no significant contribution® to C;.

Figure 9(a), which follows directly from Fig. 2(a),
shows the exact equivalent circuit applicable in the pla-
teau region, where C;=C;s. But it turns out that R; de-
creases rapidly as @ increases in the plateau region.

By @ 22507, for example, R,y is appreciably less than
unity. Thus, in most of the plateau region, R;y <Rg,
and Fig. 9(b) then applies, a circuit made up entirely of
frequency-independent elements. Finally, when 7, <1,
Rp=R, and Ry>»R,. Then R, may be neglected and one
obtains® Fig. 9(c).

Let us now see how an alternative series-parallel
equivalent circuit of the Fig. 1(a) type can be obtained
for the plateau region, It is clear that when the C, of
Fig. 2(b) is reconnected so that it is just in parallel with
G., one separates the total Z, into two series-parallel
circuits. The impedance of one of these circuits is just
Z,4, and the other is, for Q «1, nearly Z,+Z,=2,,=2Z,
—-Z,. When Z,=0, as in the v, =%, =7, situation, Y,y is
just the Y,y of Eq. (2). For this case, taking Rpy=g,,
one thus finds that for all §

_ 2 2Ye . 2 iQC
Yoy =Yion =0 (P 2 +iQ +Pzge——w-—"1 9, By ) (30)

The problem of obtaining a useful expression for ¥,y at
least for 7, =7, =%, would then be solved if a simple ex-

Cq
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1R}
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O- AV -0
Cis R Rg
11} A
1 VVV b A2
(a}
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11
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O AN O
?i[s Rg
11 ANV
(b)
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o—iq t—o
8 o
11 —W
(c}
FIG. 9. (a) Exact equivalent circuit in plateau region (b)

Usual approximate equivalent circuit over most of plateau re-
gion. (c) Approximate equivalent circuit for the plateau re-
gion when 7, <<1,
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FIG. 10, (a) Approximate equivalent circuit for (r,, 7g; Tp,

7 0, M) and (0, 7,; T,>>1, T 0, M) when @ <Qg= -1)".
(b) Approximate equivalent circuit for same situations when
2>Qq.

pression for the frequency response of Z;, were avail-
able. Further development of this possibility is carried
out in the Appendix; here we need to consider only re-
gions where C,, is essentially frequency independent,

First notice that for &~ 0 and with C,y,=g:2(r - 1),
Y,y from Eq. (30) approaches

YZNO:[(re/2)+iﬂ(y+7e)]’ (31)

in agreement with Eqs. (5)-(7) for 7, =v,=v,. Figure
10(a) shows the equivalent circuit applicable when &
«<Qg, taking Cypq =7 =M. The general relation C,y,
=R%,Cino + (2Rgy — 1), which applies here with Cpy
=Cay, 1S implicit in Eq. (2) and consistent with the
term G, ¥; of Fig. 2(b). The corresponding G relation
is Gyoyo=(Rey— 1) =Rpy = 1) =Rpy Gpy.

Now it turns out that for the plateau region, where
2> 85, (QC;yR;y)? <1 and Cp5y may be obtained to ex-
cellent approximation by replacing C,y, in the above ex-
pression-for Cypyo by C;sy. Thus,

Yon=Yosy 5‘1’2 { Pl /2) +iQMVT, ]}
=[(r,/2) +iQMV3,] , (32)

where the second form applies when Q <1 and M > 7,,
Here &, is §, for m, « 1 and §, for 7,,>1. The simple
equivalent circuit corresponding to the second result in
Eq. (32) is shown in Fig. 10(b) for =, > 1. This circuit
will usually be easier to apply than one of the circuits of
Fig. 9.

Now in the (0, 7,) case, we have seen that when 7,
>g, ., Zyy~0 and may be neglected compared to Z,,.
Thus, in this situation the plateau admittance is also well
approximated by Eq. (32) and Fig. 10(b) applies with 7,
replaced by €,7,27,. Then in both the 7, =7, =7, and
(0,7,) cases,

Yoy 2{0.5(c, 7, + €, 7,) +iQ[MVE, + (€, 7, + € 7,)]} . (33)

A somewhat more accurate expression is given in Eq.
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TABLE II. Some exact and approximate results for the (r, ¥,; m,, 1; 0, M) situation, M=5x 10%for rows 1 through

12, and M=10%/v2 for rows 13-15.

Zpy % Error Zpy, % Error Zpy,
Row 7, 7, T Q RelZgy) -ImZpy)  Pp Py P, P,
1 K L ) 10" 2,9802 0.19802 10-14 —3x1014 9.8x10"6  3,0x10"°
107 1,99998  1,00003 1014 0 —1.9x10"8 1.5%10%
5 0 5 . 10-¢  2.9911 0.21452 ~1.1x10"! 1.1 -1.1x 10" 1.1
1075 1,9977 1.0023  -3.3x10" -2 2x10! -3.4x10"! 2 2x10
3 0 L5 9 1076 2. 9846 0.20629 —7,7x10%2 7.8x10"  —7.7%x 102 7.8x10!
: 10% 11,9981 0.99976 —2,0x10"1 -2 2x10"! ~-2,0x10"1 -2 4x10-
4 0 5 0.5 1078 3,0024 0.22807 —1,5x10"1 1.5 —1.5%10"! 1.5
: 10" 11,9981 1. 0061 -5.2x10"1  —2,3x10 —5,1x10" -2 4x10"
5 1 1 10 10" 2,9801 0.19783 —1,4x10% —3,2x10% —4.2x10% -9 ,6x10™
107 2,0026 0.99746 4,3x10"% -8,5x10% 1.3x10"0  —2 6x10
6 0 L1 10 10" 2,9798 0.19934 -—3.6x10"2 3.2x10"  —3,9x102 2.5%x 101
° 107 2,0013 0,99644 -3,1x102 —2,2x10 5.3x10% -3.8x101
4 107 3,0514 0.28700 —3.2x10" 2.7 -3.3x10" 2.7
7 0 11 10 - . .
10 2.0012 1.0218 -1.2 —-3.5x10" —1.2 —~3.8x10"
8 ) 1 Lo? 10 2,9797 0.19723 —5.7x10% —1,3x10" —-1,7x10% —4,0x10"
107 2,0107 0, 98965 1.8x101 -3, 4x10" 5.3x101 ~1,0
9 0 Lol 102 1076 2,9794 0.19747 —1,7x10% ~2,6x102 -2,8x10% -2,9x10"
’ 10 2,0103 0, 98922 1.6x10"! —3,8x10"! 5.1x101 -1.1
; 107 3,2269 0.50225 —9,7x10! 4,8 -1.0 4,8
10 0 -2 . . . . . .
101 10 1075 2,0093 1.0768  —=3.9 -1.1 -3.9 -1.1
1 ) 0.5 5 10" 2,9861 0.20518 ~—1.8 —-25 -1.8 —-25
: 10" 2,0002 1.0019  —9.4x10"1 -—1.7 -9.4x10 —1.7
12 0.5 5 0.5 10" 2,9861 0.20518 -3.0x10"1 —3.7 -3.0 -3.7
’ : 107 2,0002 1.0019 —2.3x10' —2,7x10"' —2.,2x10! -2,9x10"
13 1 L 108 106 2.9793 0.19797 4,6x10" 74 —6.1%x10% —1,3x10"
107 1.99996  0.99955 —42 84 -1,0x10% ~9,8x10%
14 0 1 108 106 2.9793 0.19797 4,6x 101 74 3.3 —1x10%!
10" 1.99996  0.99955 —42 84 5% 102 —200!
1076 1,0997 19.9984 —14 89 —162 ~1.0
15 0 10® -8 : : : :
10 1075 1.00097  2.00001 —94 47 —99 - 50
(A17). But arc 1 cannot generally be neglected when ,, both cases. Thus, discrimination will not be possible

«1 for (0,7,). Therefore, in this case the full series-
parallel circuit should be used for the plateau region
with the usual Y,,, arc 1, circuit added to that of Fig.
10(b), again with 7, replaced by €,7,, which is here
essentially n,7,. Alternatively, Y, in the plateau re-
gion can be approximated by the expression for Ygy
given in the Appendix, Eq. (A22).

For 7,=7,=v,, the arc 2 radius p,y is 7;!, independent
of n,, and §,, in the plateau region is approximately
¥,/2MV5,, I 7, is known, 7, and M may be readily ob-
tained from p,, and §,, as in the § < case. Consider
now the (0, #,) situation with the same p,, as that for
(re,7.). It is then necessary that €,7,=7,, or 7,
=1 +7;Y)r,. To what degree can one distinguish between
the two cases? When 7, <10, even though the arc 2
sizes and shapes may be essentially identical, arc 1 will
be present in the (0,7,) case and not in that with (r,,7,),
thus allowing immediate discrimination between the
cases. But when 7, >g, 7, and 7, will be essentially
identical and no significant arc 1 will appear for (0, v,).
The quantity §,, will also be very nearly »,/2M V3§, for

without additional information. Finally when 7, is com-
pletely unknown, unless M and n, are known it will not
even be possible to distinguish between the arc 2 shape
associated with the § < condition and that present in
the plateau region, Q> Qg, when 7, > g, and all Q’s of
interest are much less than unity.

VIl. ACCURACY OF SOME APPROXIMATE RESULTS

Table II gives some numerical results for a variety of
(#py ¥ Ty 13 0, M) situations with p,y, =1 and Qp, =107
when these latter quantities are calculated from the per-
tinent formulas already given, We see that the actual
exact results for — Im(Z,) at Q =,y are very near the
expected value of unity for rows 1-12, Also shown are
values of the components of Z,, at the low-frequency
side of arc 2, € =10, Very similar values for
- Im(Zy) are found at the other side, £ =10,

The remaining columns in Table II show the percentage
errors arising in the various cases for the approximate
expression for Z, given in the Appendix, Z,y,, Eq.
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(A27), and for the even more approximate expression
Z .y made up of the foregoing results:

Zrwe=YietVime+ Y5k, (34)

with ¥, given by Eq. (16); Y.y, by Egs. (5)-(7) for the
first twelve cases and Eq. (33) for the last three plateau-
region cases; and Y,, =p#=1+iQ. Interms of Z,y,,
j=1or 2, Pgand P, are

Pg=100 {[Re(Z;y) - Re(Z,y;)]/Re(Z1y)} (35)
and
B= 100{ [Im(ZTN)—Im(ZTNj)] /Im(ZTN)} . (36)

In row 1, the P’s for Z,,, arise solely from roundoff
since Z,y, is exact for this situation. Although several
situations will be noted where the errors in Z,y, are ap-
preciably smaller than those in Z,,,, many times they
are essentially equal. In such cases, the error ob-
served arises principally from the way approximations
for Z,, and Z,, are combined in forming an approxima-
tion for Z,,, not from lesser inadequacies in the indi-
vidual approximations.

The cases of rows 1-12 are just a few of the many
situations which can lead quite accurately to p,, =1 and
Q,, =10, The exceedingly close similarity of most of
these results will make it exceptionally difficult to dis-
criminate between them. Since in several cases the
numerical results at given @ are closer together than
the errors in Z,y,, curve fitting using the exact expres-
sion for Z ,y will be necessary as well as exceptionally
accurate experimental results in order to allow discrim-
ination. Of course, outside the arc 2 region examined
here, discrimination will usually be possible between
such cases as 7, =7, =7,=1 and v, =0,7,=2, 7,=1 be-
cause of the appearance of some arc 1 behavior in the
7, =0 case which is absent in the 7, =7,=7, case. Dis-
crimination between such cases as 7, =7,=m, =1 and 7,
=7,=1, 7, =10 will be virtually impossible, however.
Since 7, =7, is a more unlikely situation than 7, #7, or
7,=0, 7,+#0, the need for such discrimination may not
often arise, however,

Rows 7 and 10 show that as =, becomes small, even
though the desired values of p,y and §,, may be main-
tained by the proper choice of v,, Z,y will begin to be
appreciably different away from Q,,. By symmetry, the
exact results of rows 11 and 12 must be identical as
shown. Note, however, that the Z,,, results are ap-
preciably more accurate for (v,,7,)=0.5,2 than for 2,
0.5. This happens because the expression for Z,, en-
tering Z,y, has been optimized for (r,,r,) with », <,
rather than with 7, >7,. Modification of this Z,, approx-
imation to make it show the symmetry of the exact solu-
tion would have made the expression given in the Appen-
dix considerably more.complicated. Such modification
is unnecessary since the symmetry relation may be used
to change any v, >7, case into a 7, <7, case.

The final three rows of the Table show plateau cases.
As expected, the errors of Z,,, are large here. On the
other hand, the Z,,, expression appropriate for the pla-
teau region has been used here, and the row 13 Z,, er-
rors are small. The corresponding errors for row 14

are far from small, however. In this case the contribu-
tion to Z, from Z,,, should have been negligible but was
not. In#,<1+m, plateau cases with n,, > M, one must
clearly omit all Z,, contributions. Row 15 shows that
when 7, < M1, arc 1 plays a large role compared to arc
2 and the desired values of p,, and Q,, are not obtained.

VIIIl. SOME IMPORTANT CURVE SHAPES

In the original paper in this series, ! numerous curves
were presented of the dependence of Ry, and C,yq on the
parameters of the situation;: M,r,, r,, 7,, 7,, and
temperature. In the second paper,2 many computer-cal-
culated curves of Cpy and Gp, versus frequency and nor-
malized impedance plane plots (such as Fig. 3) were in-
cluded, again for various values of the input parameters.
The exact curves of the present paper help fill in re-
sponse possibilities not adequately covered by the pre-
vious work, A few important further responses of this
kind are discussed in the present section.

Figure 11 shows some Cp, frequency response curves.
Note that for 72> 1, three different dispersion regions
(associated with Z,,, Z,y, and Z,,) appear in Cp, Tre-
sults when 7, <«. From right to left, the first rise is
associated with the final bulk single-time-constant dis-
persion (Z;,) and leads to the plateau region (here ap-

~pearing at 107525107, The second small rise, in the

region of £ ~1078 to 10 carries Cpy up to approximate-
ly the ordinary double layer value of M, and the final
rise, whose onset clearly depends appreciably on the
magnitude of 7,, carries Cpy to Cpye=1+Cyy,. For m,
=108 only the 7,=« curve shows an appreciable region
of slope - 0.5, Warburg frequency response, It is im-
portant to point out that for 25,5200, appreciable re-
gions with a slope of — 1 appear. Such w™! frequency re-
sponse has often been observed for various solids. The
important implications of the result that Cp,, is asymp-
totically proportional to M2 for M>1, not M, so that
Cpy may be very large indeed, have been discussed
earlier.ls?

The impedance levels which appear for the m, =10

—_—

\
\

1021~ SLOPE:-1.5)
N (0,15 108 4; 0,10%)
10 r .................. (0,25 1, 1 ;0'104)
y b ————(0,2;10%0.25;0,10% SLOPE: -
TR IS N AU TOUU! (NS NN U N NN U S IO A
0" 0™ 6" 60 g 0 0t 02

FIG. 11. Curves for Cpy= Q! Im(Yy) vsnormalized frequency
¢ for several situations. :
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TABLE III. Values of impedance components for (0,2; T, 7,;
0, 10%),

Q=101
Tos T Apy Crro ReZgy) ~Im(Zpy)  Cpy
1078, 4 2x10%  1.337x10%° 1.13x10° 1.11x10%°  8888.6
1, 1 4 2.089x10%  3.99999  3,34x10%. 2,089x10¢
108, 0.25 2 1.341x10% 2 8.93x1077  2232,9

curves are very high and hence relatively easy to ob-
serve. Thus for (0,2; 10, 4; 0,109 at @=10"" Z,,
~(1.17-0.189)x10%, AtQ=10", Z,,=(3.31-19.1})
x10°, On the other hand, the situation is quite different
for the 7, =10° curve. For (0,2;10% 0.25;0,10%), Z,
=(2-1,89%x10%) at £ =10"" (2-5.08x10%7) at 2=10"¢,
and (1.998 - 4.47x10°%) at 10, Table II shows some
results for £ =10"!°, In these frequency ranges Re(Z,)
dominates, and it will usually be difficult to measure
Im(Z,) much below perhaps € =10"%, Thus, although the
Cpy curve is given for smaller & in Fig. 11, it will not
be measurable, This result is consistent with that of
Fig. 6(a) which shows the effect of Z,, to be negligible
for v, <1 +m,.

The curves indicate that the lower limit of the plateau
region is between 1067 and 5*'. Here 5™ ~6x107® for
both the two 7,=2 curves with 7, =10"® and 10°, Thus,
the lower frequency parts of the curves will appear at
lower and lower frequencies the larger 4. For m,~0
and for 7, —«, one will therefore again find the plateau
region extending all the way down to Q@ =€, with €-0,
Under such conditions, only one species of charge is ef-
fectively mobile, and Cpy cannot exceed Cpgy.

The normalized impedance plane results of Fig, 12
are interesting because such shapes are frequently found
experimentally'!~!* and also because very nearly the
same sort of results appear in theoretical treatments of
the supported electrolyte situation.™!® Note that the
curves as shown do not extend far enough to the right to
include the low frequency limiting region of arc 1, asso-
ciated with Z,,. It is interesting that the curve of Fig,
1(b) of Ref. 14 for the superionic solid electrolyte
Ag,Rbl; is very close in shape to that for M= 10% in Fig.
12. The authors of Ref. 14 were unable, however, to
obtain results in the high-frequency region of arc 3.

Although the shapes of theoretical impedance plane
curves for the supported electrolyte case™® are very
similar to those of Fig. 12, their dependence on M and
L, seems considerably different. Here the cusp be-
tween arcs 1 and 2 becomes sharper and sharper the
larger M, or the smaller L,. But Sluyters!® gives sup-
ported curves which show sharper and sharper cusps as
the double layer capacitance C, decreases (L, in-
creases). The intercept of the Warburg 45° line ex-
tended back to the real axis is also somewhat different
in the two cases.” These results suggest that it is quite
important to use theoretical results for the unsupported
situation!? rather than supported-electrolyte theory in
cases where the unsupported situation is likely. It is
quite probable that the unsupported assumption will be
applicable for many superionic conductors, fused salts;

and intrinsic-defect-conduction single crystals!® at tem-
peratures where electron-hole conduction is negligible.

The dependence of some of the present curves on !
variation is also of some interest, First note that §2 and
MC, are independent of . When the Cpy of Fig, 11 is
changed to Cp=CpyC,, an increase in ! (or in M arising
from the ! increase) will make no significant change in
Cp in the plateau frequency region or above when M > 1.
Even in the Cp = MC, region, when it appears, ! variation
will have little or no effect on Cp. But whenever Cp
>MC,, an increase in ! will tend to increase Cp, since
CPDOCMZCKOC 1. These regions of the graph thus depend
strongly on I, and the results are extensive, not inten-
sive there. Since the normalization of Z,y in Fig. 12 in-
volves R, « I, the scales of both axes change together
when ! changes. It has already been mentioned that when
unnormalized impedance plots are considered, the sizes
of arcs 1 and 3 will be directly proportional to I, but the
arc 2 size is independent of I. Since arc 2 is associated
with electrode reactions, it should indeed be intensive.

It is, of course, in the intensive plateau region of Fig.
11 that arc 2 makes its contribution to Cpy.

The region near the cusp between arc 3 and arc 2 (or
arc 1 if 2 is missing) is of particular interest. Fre-
quently, frequency response measurements cannot be
readily extended to sufficiently low frequencies that all
of arcs 2 and 1 can be covered. Then, one must depend
on the limited measurement region available in order to
try to reach sensible conclusions about what happens in
the experiment. Separation of the effects of electrode
reactions and diffusion is particularly difficult when
these effects overlap in frequency, as they do somewhat
in Fig. 12 for M S$10%. But the ambiguity can be much
greater.

When the frequency region covered between the end of
arc 3 and the lowest frequency measurable is quite lim-
ited, it may be exceedingly difficult to tell whether the
situation being investigated involves (7, ,#,)}=(0, 0),
(r,,7,), or (0,7,). Figure 13 shows some results for
(0,2x10%; 7, , 1; 0,10%). Although we have 0 <7, <»

— T T T T T T T
5 (0,80, 1021, 0,M) ]
o 102MQ=1 N
51— 102 m
@ 10 MQ=1 &
4 2 mast _
g VRS
N ]
=
n
fyy1-2625 .
Py = 3525
Rpy=103.525
[ N

6 7 8 9 10

FIG. 12, Arcs in the normalized impedance plane for (0, 80;
1072, 1; 0, M) showing approximate Warburg-response lines at
the right. The figure does not extend to low enough frequencies
to show all of arc 1.
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(0,2x10% 7, 1; 0,10%)
v :107°

| | 1 1
4 6

Re (Zyy)

FIG. 13, Normalized impedance plane results for (0,2x10%;
Ty 13 0, 10%) and 7, =M™, Arc 1 closure not shown.

here, the 7, <1 curves shown are not good approxima-
tions over very much of their extent to the initial parts
of semicircles in the region Re(Z,y)= 1, The effect of
7, here is to change the curve shape somewhat and slow
the eventual approach to Warburg behavior but not to
yield any distinguishable arc 2 semicircle. Here, in
fact, all curves eventually become asymptotic to the
dashed Warburg line through the point — Im(Z,,) =0,
Re(Z ;) =1 before finally approaching the real axis as
Q-0.

Armstrong et al. have suggested!” that even in a com-
pletely blocking (0, 0) situation, where one would ordi-
narily expect a vertical rise, as in Fig. 4(b), the rise
may be curved over, as in the curves of Fig. 13, be-
cause of the presence of electrode surface roughness,!?
Here, where we deal with smooth electrodes, such cur-
vature can appear because blocking is not complete and
some electrode reaction occurs at the electrode. One
may possibly be able to distinguish between the two
causes of curvature by varying the roughness of the elec-
trode surface. But there will usually be no guarantee
that going from a very smooth surface to a rougher one
will not itself appreciably increase the probability of an
electrode reaction. A rough surface will have asperities
where the electric field will be far higher than that for
a smooth surface. Such a high field will itself most
probably enhance electron transfer at the electrode.
Therefore, in practice it may be difficult to distinguish
between a rough (0, 0) surface and a rough (0, 7,) surface.

But Fig. 14 shows that the situation is even more un-
certain, Here we see what happens for a theoretical
smooth (0, 0) surface when the mobility ratio is far dif-

ferent from unity. Again the low frequency curves are
not entirely vertical, These results apply to the situ~
ation where the capacitative reactance is far greater
than R, ; thus, arc 3 is too small to appear on this
scale., Here again curvature appears, even in a com-~
pletely blocking situation when 7> 1. It is therefore
dangerous, even when complete blocking can in fact be
assured, to ascribe cbserved curvature only to electrode
roughness.

The reason the curves of Fig. 14 are not almost ex-
actly vertical even in a completely blocking situation is
that the exact equivalent circuit of Fig. 2(a) leads to C,
in parallel with the series combination of C; ,R;, and
R.. In this frequency range, where £<0.1, C;y=C;y,
for complete blocking, virtually independent of frequen-
cy. But for il >1, R,y is far greater than unity and is
frequency dependent. It is the presence of this “inter-
face” resistance R,y in series with Cyyg=7r~12M=Cyy
that causes the departure from verticality. For the
present situation at =108, R,, =2.98x10%, 1.09x10%,
and 3.31x10% for 7,=0.25, 1, and 4, respectively. The
real part of Z,y is thus entirely dominated by R;,. Now
R;y increases from a very small value much less than
unity at 2 2 0.1 to Ry, as @~ 0. Inthefrequency regions
covered by the curves of Fig. 14, 1 <R,y <<R;y,, but at
constant & R,y increases as R;y, increases. Further, it
turns out that for 72 > 1, so thata> 1, Ry, is essen-
tially equal to a. Thus, the larger the ratio of mobili-
ties, the larger a, and the larger the departure from
verticality one may expect in a completely blocking situ-
ation. In this connection it is worth mentioning that the
solid electrolytes investigated by Armstrong e? al.'” are
very likely to have a large mobility ratio.

Although the curves of Fig. 14 are shown as turning

ax10—

(0,0;10°° ,;0,10%)

oMEQ =1
10* _
-
/////’Kumw SLOPE |
0 S el I T TR T R R B
0 2x10°  4x10®  ex10°  8x10® 10*
Re (Zqy)

FIG. 14, Normalized impedance plane resuits for the com-~
pletely blocking situation (0, 0; 10-8, 7,; 0, 10%).,
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TABLE IV. Compopents of Zpy at 2=10"?
for (0,7, 107, 1; 0, 10%,

Tn Re(Zzy) ~Im(Zzy)
0 1,085x10° 1.273x 104
2x10? 1.124x10° 1.276x 104
2x%10% 3,151x 10° 1.256x10%
w 3.629x 10° 1.142x 10t

over to the right, such behavior does not continue indef-
initely in the completely blocking case as § gets smaller.
Clearly when §<2.5 (6M?)™, so that R;y =Ry, the
curves will againapproach verticality, with Re(Z,y)

=1 +R'IN0‘

Finally, it is worth pointing out that the curves of Fig.
14 are primarily controlled by the small value of 7,
present, not by whether 7, is zero or not, When r, is
sufficiently small, the reaction rate of the negative
charge carriers is largely irrelevant because their mo-
bility is so small relative to that of the positive car-
riers. This conclusion is quantified by the results of
Table IV taken at 2 =10"%, Here, all values of Re(Z,y)
given are essentially just R,y values. Not until 7,
22x10* does Re(Z,) depart appreciably from its 7,=0
value. These results show that in the frequency range
covered by Fig. 14 it will again be virtually impossible
to distinguish between a (0, 0) and a (0, 7,) situation un-
less 7,2 M. Otherwise, good distinction will be possible
only if frequency response measurements can be carried
to low enough frequencies to show up the difference be-
tween (0, 0) curves, which must eventually turn more
vertical, and (0.7,) curves, which must eventually curve
over to the real axis.

APPENDIX
A. Eigenvalues

Two eigenvalues, 6% and 62, enter importantly into the
exact solution of the present problem.! Their use has
been avoided in the simplified formulas of the main text
but cannot be sidestepped in the more complex expres-
sions derived subsequently. Thus, before discussing
more accurate expressions for Y,y and Y,y , the eigen-
values need some examination.

In the general case, the full eigenvalue expressions
1
are

62=62=0.5{1+iQd +[1+2iQ(a - b) - QcPF? (A1)
and

g2 =02=0.5{1+i0d -[1 +2iQ(a - b) - (Qc)*]/?}. (A2)
Here

d=a+b=(5,/€,) +(5,/¢,);

a=(88/¢) +(8/¢,);

b=06,0,/€,6,;
and

c=(5,/€,) - (6,/€,=(5,/€)(m, - 7p,) .
It follows that

J. Ross MacDonald: Impedance/frequency response for solids and liquids

(@a~-0)=(8,-08)c=(8/¢)(m, - 1)(m, - 7,) .

When 7,,=m,, a=b=1, ¢=0, and d=2. Further when 7,
=1, a=b=(4¢,¢,)" = (m, +2+7;})/4. This quantity will be
very large when 7, <1 or 7,> 1,

Two approximate expansions of (Al) and (A2) are often
useful, When (z -1) « 1, one finds

6=1+iQa (A3)

and

02=iQb . (A4)

These results are exact for all § in the special ¢ =0 case
where 7, =7, and a=b=1.

Interesting things happen to Gi in the 7, #m, case when
(¢ =1 and when (Qc)*> 1. When m,=1 as well, the
square root term disappears at the (Q¢)? =1 point and 62
=0.5+iR2a=0.5+0.5i(l€, - €,1)™. The branch point at
(Qc)?=1 in this 7, =1 case leads to possible ambiguity in
the assignment of 62 and 62 to 6% and 6% for Q= Ici™.
Such ambiguity is of no consequence in the exact solution
since it is indifferent to the assignment. Our present
inexact solutions may not be, however, and it is thus
important to choose that pairing that leads to simplest
and most accurate results in the region (QcP=1.

When (S2¢c)* > 1, one can readily expand the square-
root terms in the exact solution and obtain first-order
expansions for 6%, For this case, I have made the fol-
lowing 6%, 62 choices for the expansions:

0325, +iQ(5,/€) 0] QcF>1 (A5)

3= 6, +iQ(6,/€,) *** } T >, (A6)
and

G20, +i0(0,/6) o+ | @cP»1 (A7)

05=06,+iQ(5,/€,) " " } T <T . (A8)

Note that the sign of ¢ =(3,/€,)(n, - 7,) depends directly
on that of (m, - m,). The above choices ensure that under
all m,, 7, conditions Re(6%)> Im(6%) for sufficiently
small @, asis alsothe case for Gzlwhen (Qc)¥<«< 1, Thepres:
ent expansion is of course invalid whenn, =7, and ¢ =0.

In the exact theory,! several functions of 6, and 6, ap-

pear. Those that will be used in the admittance formu-
las of the Appendix are

v, =(M6,)coth(M6,) (A9)
and

t=v,-1, (A10)

where j=1 and 2. When 7, =7m,=7,, ¥, = (Mp)coth(Mp)
and 7, = ((M20)2coth((M 2Q) 2.
B. Exact and approximate admittance results for
T =My =T

First consider the 7, =7,=7, situation. The full solu-
tion! yields in this high symmetry case the simple exact
result

Yy =975, (A11)

When this expression and Rgy =g, are substituted into
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Eq. (2) one obtains
Yoy =You =Pl 1P (re/2) +i07]

in agreement with an earlier result! for 7,=0.

(A12)

Notice that Eq. (A12), and hence Z,, is wholly in-
dependent of 7, in this (r,,7.; 7., 7. ; 0, M) case. It fol-
lows from (A12) that G,y = (7,/2) and Cyye=(r +7,). The
parallel quantities Gpy, and Cpyy thus become Gpyg
=[1+2/7)]" and Cpyo=1+g2(r - 1), quite different
from the arc 2 quantities., When > v,, the quantity
Q,y is closely given by the solution of the approximate
equation Q(r +7,)=0.5 (v, - 3Q%). Then

Qo =7, — (372/47)1/2(r +7,) 2 7,/27 .
It follows that
pon=[ve - Br2/an] i,

The other situation where a simple exact result can be

derived is (r,,=; m,,7,; 0, M), Earlier results** and
Eq. (2) yield
Yion=Yiy=tP{ .72+ (r,/2¢)] +iQv}. (A13)

It follows that G,y =[7, +(7,/2€,)] and C,y, =7,[(37/3) +2]
+[r+(r,/¢,)]. In addition, Gpyg=Gpy=€,+€[1+(2/7,)]!
and Cpyo=1+g;%[(6,6,M2/3) + 82 (r - 1)], where here ¢,
=6,,€,=98,. Notice that Eq. (16) does not reduce to
(A13) in the (0, »; 7, 7,; 0, M) case because the differ-
ence between ## and unity has been neglected in (16), as
has the term iv,, valid when M> 102,

It is natural to ask how well the present Y,y and Y,y
results, which are exact separately, work together in
the (0,7,; m,,7,; 0, M) case. The Z,, calculated using
Egs. (A12) and (A13) together is exact when 7, =% but
only valid when #,=0 if Y, is then taken infinite. Some
intermediate #, results for M =10° have been examined
over the  range 1071%(10)1, i.e., at decade intervals in
Q. For m,=1, it is found that for an 7, range of
0.1(10)10°%, |Pg} is generally less than 0.1%, reaching
0.2% at 7,=0.1 and remaining below 107%% for 7,>10°,
On the other hand, |P;l,,, may be appreciably larger.
For 7,=10% |P;l,,, is less than 2xX10™%. It reaches
about 4% at 7,=100 and is down to about 2% at »,=1.
Over most of the  range, |P;| is less than 0.1%, how-
ever, and the regions where it is considerably larger-
coincide with those where — Im(Z, ) is near a relative
minimum, Such regions, where - Im(Z,,) <0.1, are of
small importance in the overall picture anyway and
probably are where experimental measurements for
- Im(Z,,) tend to be least accurate. Similar results to
the above are found for (0,10%; 0.25,0.25; 0,10°), al-
though |P; |, reaches about 5% for this case.

These general results are sufficiently favorable to
suggest that a useful plan of attack when 7, #7, is to find
adequate expressions for Y,y in the (7, , ) situation and
for Y, for (»,,r,) and then combine them as above for
(r,,7,), or at least for the case of most interest, (0,7,).
This course of action is followed below.

C. Approximate admittance results for{r,,re ; 7, 7, ; 0, M}

In this more complicated situation, the exact theory
leads to no simple expression for Y,,. There are cer-
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tain conditions that an approximate formula should sat-
isfy, however, which may be helpful in synthesizing a
useful result. First, it should be invariant under the
transformation (m, ,7,)~ (m;1, 77!). Second, it should lead
to the exact G,,, and C,y, results. Unfortunately, this
seeond condition is not particularly helpful here since it
turns out that G,y and C,y, are the same for the general
(7, ,7,) case as they are for 7, =m,=7,. Some help
comes, however, from ensuring that terms in Q% are
correct as § — 0, especially when 7,=0.

The synthesis begins by adding plausible terms to
(A12) which nevertheless allow the results to still reduce
essentially to (A12) when n,=%,=7,. Then by examining
the numerical differences between the approximate Y,
expression, here denoted as Y,y;, and the exact Y,y as
a function of €, modifications to reduce the differences

can be made. The best result obtained so far is
Yon = Yoy =0 (pY/ 2 €7, + €,7,) +iQ+p%Q], (A14)

where

_ i
Q—(l +iQ1 + v { g2 r ~ 1)R}yo - 1 +[ar/2lr - 1)]}))
(Al15)
and

Rixo=g, [(a - 1)"('72%"1_) <1 +mz%fg§—11w)_—r)>] (a16)

Note that the full expressions for 6, and 8, must be used
here in calculating # and y;. The y;' term in the denom-
inator corrects for terms in Y,y of order %2,

This approximation for Y,y , which holds well down to
M~1 when it is a good approximation for large M, could
be further improved, but only at the cost of considerable
additional complexity. I have written the expression for
Yay1 in terms of 7, and 7, in this »,=7,=7, case so that
it may be used, to whatever degree. it is applicable, in
the (0, 7,) case and possibly even in some (r,, 7,) cases
with 7, < r, as well, situations where Z;, will involve
Ziyy Zay, and Zy when 7, 7,#<. The expression for
R}y above is just the exact! Ry, in the 7,= ¥, =7, case
when g, is set equal to g,.

Equations (A14)-(A16) lead to Egs. (5)—(7) in the text
for -~ 0. Whenever the text equations are reasonably
good approximations for @<« g, the present results
generally yield better approximations over the entire Q
range of interest: 0=Q51. Very considerable im-
provement generally occurs for »,=7,=7, cases, less
for others. Some comparisons have already been pre-
sented in Table II. None of the equations is really ade-
quate in the transition region where 11;‘1 2100 and yet is
not large enough to lead to plateau conditions. A simple
equation for the plateau region itself has already been
discussed, and a somewhat more accurate result is

Yoy = Yosx = [(€,7,+€,7,)(0.5+iQ) + (iQ - 1.5 1],
(A17)
where y, here involves the 6, of Egs. (A5) and (A7).
Thus, Eq. (A17) applies only when (Q¢)*>1, a condition
consistent with the plateau requirement Q> Q¢ = (a - 1)'1.
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D. Approximate admittance results for (r,,: 7 7,: 0, M)

To derive an approximate relation for Y, in this
case, one may first start with Eq. (A13) and generalize
it to yield the correct Gyyo and Cyy, results while still
requiring it to reduce to (A13) when m,=m,=m,. The ex-
act results' readily lead to

Giyo =Ty + (7,/2¢,) (A18)

and
Cwo=[(2,/€,) - 1]+ €7 (6,8,M%/3) + 82r —1)], (A19)

where [(2g,/€,) - 1] may also be written as [(r,/¢,)
+2m,+1]=[(r,/€,) + 7, +€;']. The corresponding com-
ponents of Yy are Gpyo=Gpy =1~ (€,/g,)=g3{€,+ (r,/2)},

and Cpyo=1+ (6,6,,M2/3gi) +[6i(r - 1)/gi].

The above procedure leads to a result which is still
incorrect to order %2, though correct to order . Nu-
merical experimentation using the exact solution allows
one to establish the form of the needed 2*Zterm. The
result is the still approximate expression

Yix = Yig1 = p5{(6%7,/2€,) + p*Ty2(1 + i)
+if(8,/€,lys - 1) +1 - pmyen]},

where

1= (C/Z) [(ﬂm‘nz + 3)/(1Tm‘nz+ 1)] .

Although it would be possible to correct this expression
to order szz, the added complexity is unnecessary for
M 2100 since by the time incorrect £ terms become
important, | Z;y| < |Zz;1. The above approximation
does not apply very well in the plateau region where @
> §s. An approximate expression for this region is

Yip = Yigy =[r, /2¢,) + (i - 1. 50%)y,], (A22)

(A21)

where vy, again involves the 6, of Eqs. (A5) and (A7).

Equation (A20) is exact for (r,,~; 7,,7,; 0,M). Some
idea of its accuracy for »,=0,7, =« and m, #7, can be
formed from the following results. For M=10°, m,=1,
and 1 =7, <10, the maximum value of | ;| found is
about 3x10™, with | Pyl . much smaller. |P,| does
not increase in the region 2=, <10*. On the other
hand, for m,=1 and 10"*=n, =1, the error increases as
w, decreases., Again, it is principally in P, and reaches
a magnitude of about 1% by m,=10"% and 60% by =, =10".
It should be added that such maximum values of | P;| are
generally isolated and occur near Q~ 1072, where
- Im(Z,y) is very small. Over most of the range of £,
| Pl and | ;| are usually well below 0.1%.

In the 7,,=1, w, §1 situation, results are somewhat
different. Again the maximum error shows up in | P;l.
Within the range 0.25<7,<4, |P;l 4., is less than 1073,
Even in the larger range 10~* <7, <10* (important for
extrinsic conditions when #, is re-interpreted) } Py} ..
remains less than 3x107?%. When 7, =7!, on the other
hand, | P;l 4, remains less than 1073% for 1 <m, <10°.
As might be expected from the above results, it in-
creases as 7, decreases. It reaches about 1% by =,
=102 and 75% by m,,=10"3, Again such a value as 75% is
an isolated peak; over most of the  range the formula
yields | P,} and | P;| values less than 0.1% for 7, =10,

(A20)

Let us continue to consider only the »,=0,», = gitu-
ation and investigate the approximate Warburg response
region following from Eq. (A20) when 5! <M. Now
this region falls in the range 10(6M %) <Q <™, which,
for the 7, << 1 case of interest, becomes 407w, M2 <
<4m, when m,=1 as well. Then, for this region we may
take p?=1 and rewrite (A20) symbolically as

Yivi 2eo? + e+ e, %% . (A23)

It follows that eq =, Mv3b and e; =4[(5,/€,P(r ~1)+1
~Tme1]=i(6,/€,)?(r—1). On taking (» —1)=M, one finds
that the ratio |eg2*/?| /] e,82| becomes approximately
(€,€,/ 02)(B/Q)" /2. For @=b"', this reduces to just 7,.
Thus, in the main part of the Warburg region where £
« b, the ratio will be much greater than unity. Fur-
ther, the third term on the right will also be much less
in magnitude than the first term.

Under the above conditions, one can immediately cal-
culate Z,y; = ¥y, by series expansion and obtain

Z1y1= (o)1 - (e1/e0)' % — (ea/ g} ].

Now (eg@!/2)"'=Z,,, =A(1 -i)/V®, an exact normalized
Warburg impedance, with 4 defined in Eq. (20). On ne-
glecting the e, term, one obtains

(A24)

ZINI =~ ZWN - (61/63) = ZWN +RCIN ) (A25)
where
Royy=—(6,/€,m MP¥r -1)/b=-(m,m,M)™".  (A26)

Thus, to this order of approximation, Z; shows exact
Warburg response plus a negative, frequency-indepen-
dent resistence Rg;.

E. Approximate admittance results for (r,,r,; 7, 7,; 0, M)

Here, we shall primarily consider the »,=0 situation
but with some investigation of the utility of the results
when #,<7,. The plan of approach is to combine the ap-
proximate results given in Eqs. (Al4) and (A20), or
(A17) and (A22) for the plateau region. Since Z;, should
be zero when »,=v, and s =v, / ¥, is unity, it turns out
that the ¥;,’s given in Egs. (A20) and (A22) should be
multiplied by (1 —s)*? in order to ensure that this is the
case. Although the (1 - s)% term will be shown to be
correct for s=0 and 1, it is only an approximation other-
wise.,

We may now write

Zry 2 Zoy1=Zig1+ Zoy1+ Ly (A27)

where Z,y, is formed from the Y,y;, of Eq. (Al4) and
Zi1 = Y1xi{l ~s)?, with ¥, from Eq. (A20). The result
should be most applicable when either r,=v, or 0=y,

K Ve

Let us now investigate how Z;y,, differs from Z,
=Rpy. Analysis shows that

ZTNOEI+[2/(€n'rn+€p"'p)]+H51, (A28)
where
Hy={m,+(r,/2¢,) +s[2+(r,/2¢,) + m;is]} {1 - s)2.
(A29)

But Eq. (A27) leads to

J. Chem. Phys., Vol. 61, No. 10, 15 November 1974

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Ross MacDonald: Impedance/frequency response for solids and liquids 3995

Zryo=1+[2/(er, +€,7,)] +HT , (A30)
where
Hy=[m,+r,/2¢,)] (1 -s)2. (A31)

Comparison of (A29) and (A31) shows that they yield the
same results for s=0 and 1 but that the s term in (A29)
has been omitted for simplicity from (A31). Even when
¥,~0, the s term will only be negligible when s < ,,.

The accuracy of Eq. (A27) in the general 7y 7ns T,
7, ; 0, M) case is illustrated by many of the results of
Table II. There is some slight tendency for errors to
increase as v, decreases in the range v, <M. For 7,

2 M, errors are generally quite negligible. For M=10°,
7,=10% and m,=1, | P;| ..., increases with increase in
7. At 7,=10% and 7,=10" it is under 8%. For M
=10°, #,=0.1, and m,=0.1, it is under 12%. As usual,
the major percentage errors occur in P, rather than Py,
usually because {Im(Zpy)| <Rel(Z;,). All major errors
here arise not so much from errors in the individual
(r,,7,) Zoyand (7,, %) Z,, expressions but because of the
simple way they are combined in the present (r,,r,)
situation.

Finally, let us examine response in the Warburg re-
gion, restricting attention to the »,=0, 0<7, = situ-
ation. Inthe Warburg region, where Q«1 and Q< &, ,
Zay = Zyyo=1and Zyy = Zyyg=(Py; —1). Then the approxi-
mate equivalent circuit of Fig. 15(a) reduces to that of
Fig. 15(b), where pure Warburg elements are enclosed
by dashes. On using these results and Eq. (A25) as
well, one may write

Zrn = Zyy + Ry + Poy = iQCysy) ™ + Rsy (A32)
where

Cwsy=(A0"%)", (A33)

Rgy=Rygy+Rpyy » (A34)

M .°°
ot 1 11 1
I c I
| "‘ls Rws | Rgy
: 1
1
| ! 2Ry /&gty R
Lo 4 L AANN—
z
w (a)
| a
{ i
| c I
1 WS Rys Rr
[ I | |
| i
| I
1 [}
[ 4
Zy
(b)

FIG. 15, (a) Approximate series-parallel equivalent circuit
in the Warburg response region. (b) Simplified approximate
equivalent circuit in the Warburg region. Ideal Warburg ele-
ments enclosed in dashed box.

Rysy = (A/Ql/z) ]
and
Rpw=Rcw+ P =1+2/¢,r,) - (m,m M) . (A36)

Thus in this region Z;, is approximately made up of

an exact Warburg impedance Zyy = Rysy + (i2Cysy)™" and
a frequency-independent resistance Rgy. Such response
is frequently found experimentally.?

(A35)

The above results lead to

[Re(Zry) — Rpy] = - Im(Zy) =AQ 2, (A37)

Therefore, plotting — Im(Z ;) versus [Re(Z)) = R oy ]in the
impedance plane should yield a straight line at a 45 ° slope.
We shalluse this conditionbelow as a test of Warburg re-
sponse. Further, note that if Rpy or Ry is initially un-
known, it may be determined from the data by selecting
the value subtracted from Re(Zy,) which yields the best
and straightest approximation to a straight line at 45°.
Then the present somewhat more accurate approach may
be used in the same way as Eq. (22) of the body of this

. paper to estimate the value of 7,,.

It is interesting that (Rgy — 1) or even Rp, may be
zero for certain values of =, ,7,,7,, and M. Note that
(Rpy —1) corresponds to (R —R.,), the usual subtraction
of the bulk resistance from the total frequency-indepen-
dent resistance. Further (Rp, -1) is very nearly the
same under wide conditions as the normalized resistance
Rcgy which appeared in the earlier work.? When 7, > 2,
it turns out that (Rgy — 1) and €2 Ry are virtually iden-
tical. In the 7, <« 1 case of principal interest, ¢,=1.
The difference between the two quantities occurs because
they appear in different equivalent circuits. When =,
«1, (Rgy - 1) is zero when 7, = 2%, M.

A more exact Warburg region condition may be derived
by requiring that

B= tan™'{ - Im(Z,y)/[Re(Z1y) ~ Ry ]} (A38)

be (45°+2°). It actually turns out that (45° =~ 0°) and
(45° +2°) are the limits of interest. Then on the basis
of numerous numerical results one finds that B reaches
~45° by Q2 25(bM2)™" and remains less than ~ 47° until
Q~1,. Here I is the smallest of I,=(10M)™, 1,=(105)",
and I,=v,/(800bM). It is always necessary for Q <M
for Warburg response to occur. Thus, Warburg re-
sponse, as defined by B~ 45°, occurs when

25(bM3) S QL. (A39)

When 7, <1, 7,=1, 7, <80M, and ¥, <80b, the conditions
become

1007, M 2 $Q S v,m,/200M. (A40)

Since Ry = €,7,/2M 27,7, /2M for 7,< 1, condition (A40)
requires that @« Q,, for Warburg behavior to appear,
as initially stated. Finally, note that no such response
shows up when »,M & 2x10%. Under such conditions Z,y
rather than Z,; dominates Z,y.

Finally for completeness, since Cpyg=1+Cyyy, it is
worthwhile to give the exact expression for C,yp in the
present general case. It is!*?

CiNO = (gpgn)-z[(éna,Mz/3)(g’ —g,,)a + (T - l)gf] ] (A41)
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where g, =g,0,+g,0,. Some special results for Ry are

given elsewhere.?
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