
CHARGE POLARISATION* 

J. Ross Macdonald 

Department of Physics and Astronomy 
University of North Carolina 
Chapel Hill, North Carolina 27514 U.S.A. 

Space charge polarisation is first defined and those aspects 
of it which will and will not be considered at length are distin­
guished. Basic equations of charge motion in solids and liquids 
are discussed for the situation where a single mobility is an ade­
quate approximation for each mobile species. Rather general 
boundary conditions at the interface between the material of in­
terest and its electrodes are introduced and intrinsic-carrier 

· recombination is considered. Theoretical results are first dis­
cussed for quasi-static differential capacitance as a function of 
applied dc potential, both without and with some account of spe­
cific adsorption. Small-signal ac results and analysis methods 
are then described. After consideration of Maxwell-Wagner inter­
facial polarisation, the remainder of the paper deals with de­
tailed ac response results for a homogeneous material and shows 
how bulk, surface reaction, recombination, and diffusion effects 
may be differentiated and analyzed. 

INTRODUCTION 

Space-charge polarisation (SCP) is a widely encountered com­
ponent of the electrical behavior of solids and liquids. In or­
der to define it unambiguously, it is desirable to start with the 
more general phenomenon of electric polarisation. 
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Electric polarisation arises from charge separation. Two 
kinds of electric polarisation are readily distinguished. Crudely 
speaking, dielectric polarisation involves charge separation on an 
atomic or molecular scale, while SCP i~ associated with greater 
separations. Dielectric polarisation P is defined as the dipole 
moment per unit volume o~ a material. It may in~olve both perma­
nent and induced dipoles or either separately. P is usually de­
fined for a homogeneous material or at least for a homogeneous 
region of macroscopic dimensions of the material. For an iso­
tropic+or cubic+medium exposed to an applied macroscopic electric 
field E, P and E are parallel and one can introduce the scalar++
X = pIE, a quantity known as the polarisability or dielectric 
susceptibility. In CGS-Gaussian units, which will be used herein, 
the dielectric constant associated with X is E = I + 4nx. It is, 
properly, an intensive property of the material considered, the 
same for any region of greater than molecular dimensions and thus 
independent of sample volume. 

++
One of Maxwell's equations may be expressed as VeD = 4np,+ + +

where D is the electric displacement, given by (E + 4nP), and p 
is the net unbalanced charge per unit+volume, the local space 
charge. For a homogeneous material, Vs = 0, and one obtains the 
following form of Poisson's equation 

VeE: = (4n/E)p . (1) 

Here all the dielectric polarisation has been subsumed in E and 
the SCP manifested in p. Thus the bulk dielectric properties of 
the material are accounted for by the intensive qua~tity E which 
will here be taken, as usual, independent of p and E. The 
present work will, for simplicity, deal with a homogeneous, iso­
tropic material, usually in a one-dimensional approximation. It 
will be assumed that all frequency dispersions associated with E 

occur appreciably above all SCP frequencies of interest. This 
criterion requires that the lowest-frequency dielectric dis£Irsion 
region occurs appreciably above the radial frequency, wn = Tn ' 
associated with the dielectric relaxation time of the bulk ma­
terial, TD. 

One might be tempted to conclude from Eq. (1) that SCP only 
occurs where E # O. But this is clearly an insufficient condi­
tion. Ordinary ohmic current flow, as in a metal, involv~s 

E # 0 but no significant charge separation. Only when VeE ~ 0 
is there net charge separation and thus space charge. But 
VeE ~ 0 does not occur when E ~ 0 in the bulk region (no elec­
trode effects) of a homogeneous isotropic material held at con­
stant temperature throughout. It is generally the presence of in­
homogeneities and/or phase changes within the material or at its 
surfaces which leads to p ~ O. Here, I shall primarily be con­
cerned only with homogeneous, isotropic bulk material at constant 
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temperature, and thus with SCP associated with surface boundaries 
and electrode regions. Nevertheless, it will be shown that SCP 
which arises from surface region discontinuities can under certain 
circumstances extend throughout the entire region between elec­
trodes of a material of interest. Further, the existence of SCP 
requires inhomogeneity or discontinuity of a special kind, since 
in principle ohmic electrodes attached to a homogeneous, iso­
tropic material need generate no SCP even though there is a phase 
transition at the interface from experimental material to (dif­
ferent) electrode material. From another point of view, if an 
electrode is reversible (infinitely rapid electrode kinetics) for 
all current carriers, it will fix the thermodynamic potentials of 
these carriers l and no SCP will occur. Since most SCP of inter­
est arises from boundary phase discontinuities, it is clear that 
detailed boundary conditions are of crucial importance in deter­
mining SCP and its concomitant effects. 

The usual experimental arrangement for the investigation of 
the electrical behavior of solids involves a parallelepiped of 
material, often in the form of a thin layer, between two plane, 
parallel, frequently identical electrodes. The electrodes are 
usually metallic but may sometimes be liquid electrolytes in­
volving one or more of any ionic species which are mobile in the 
solid. Just as in liquid electrolyte experiments, it is some­
times desirable that all processes of interest be concentrated in 
the material near one electrode, the working electrode. The 
boundary parameters (and/or shape) of the other electrode, the in­
different electrode, are then taken so that p ~ 0 in its neighbor­
hood and its influence on the electrical behavior of the system 
is usually negligible compared to that of the working electrode. 
Plane, parallel, equal size electrode arrangements are convenient 
for comparing experimental results with the predictions of theo­
retical models which approximate the situation by considering 
only one-dimensional current flow. All quantities herein which 
are proportional to electrode area, such as capacitance, will be 
given in specific form, per unit area, but will, nevertheless, 
usually be referred to as capacitance, conductance, etc. 

Current-carrying entities in the electrodes and in the ma­
terial under investigation may be of a variety of types: elec­
trons and/or holes, positive and/or negative ions, and positive 
and/or negative defects such as cation vacancies. In addition, 
immobile charges may be present with which the mobile charge car­
riers mayor may not recombine. In the present work, it will us­
ually be assumed that the electrodes are electronic conductors 
and that the material being studied is essentially non-electronic, 
involving a single species of positive and a single species of 
negative ionic and/or defect charge carrier. Many of the theo­
retical results to be described are not limited to these condi­
tions, however. 
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The question of detailed boundary conditions at an electrode 
is a delicate one still containing much terra incognita. Omitting 
the possibility of rectification, which will be done throughout 
this paper, one can distinguish a continuum of possible boundary 
effects for a given species of current carrier, ranging from com­
plete blocking, through partial blocking, finally to zero block­
ing, ohmic, or open electrodes. Completely open or reversible 
electrodes generally involve an extremely large (infinite in the 
limit) heterogeneous rate constant for the charge species in­
volved. Detailed dis~ussion of electrode-contact characterization 
for various charge carrier conditions has been given by Kroger 2 • 

In the present work, the above continuum will be described by 
means of dimensionless boundary condition parameters, rand r , 
for positive and negative mobile charge species, respec~ively.n 
These parameters may be related to thermally activated hetero­
geneous rate constants or to surface recombination rates. Al­
though they may sometimes be complex and frequency-dependent in 
ac situations, such possibilities will not be further considered 
herein. When r = 0 for a given positive species at a given 
electrode, the gontact is completely blocking for this species. 
At the other extreme when r = 00, the contact is completely open. 
It is worth mentioning thatPcomplete blocking is an idealized, 
limiting condition, but one nevertheless that is well approxi­
mated in many experimental situations. It requires an infinite 
potential barrier between electrode and experimental material, 
which precludes mass transfer either over the barrier or by 
tunnelling through it. In this limit, the electrode and the ma­
terial are not in thermodynamic equilibrium, and the electro­
chemical potential thus need not be the same in both. 

Since the subject of SCP is an extremely broad one, it is 
necessary to limit its scope for the present discussion. First, 
no further consideration will be given to ordinary dielectric 
response, although electrical behavior arising from the presence 
of electric dipoles may often be confused with SCP behavior and 
vice versa, especially in blocking electrode situations and es­
pecially when a distribution of relaxation times is invoked to 
explain putative dielectric response behavior. Incidentally, it 
is worth mentioning that the expressions frequently used to de­
scribe a distribution of thermally activated relaxation times are 
inappropriate when applied over a range of temperatures and when 
the enthalpy involved in the thermally activated dipole behavior 
is itself distributed 3 • 

Second, the present paper will not deal with current injec­
tion into insulators leading to space-charge limited currents. 
One and two carrier injection situations have been discussed 
quite thoroughly in the past 4 - 6 • Although the present work does 
deal with positive and negative carrier injection through the 
boundary conditions discussed above, it will always involve 
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situations (which may be semi-insulating) where there is a non­
zero bulk-region concentration of positive and negative charge 
(with p = 0) in thermal equilibrium under unperturbed conditions. 
Such a condition is much more applicable to solid state ionics 
than is the one considered in the conventional space-charge 
limited current situation, which invariably considers only elec­
tron and/or hole injection, usually deals with bulk rather than 
electrode effects of these injected carriers, and generally ig­
nores intrinsic carrier generation. 

Further, no consideration of ordinary transient response will 
be included. Much useful information can be obtained from charg­
ing and discharging measurements at different temperatures 3 • 
When the system responds in a linear range, however, the same in­
formation can be obtained from steady-state frequency response 
measurements 7 , S . On the other hand, in the nonlinear response re­
gion this is no longer the case, and it is inappropriate to de­
rive frequency response results from a Fourier or Laplace trans­
form of transient response results. 

Finally, no discussion will be given of the powerful tech­
nique of ionic thermoconductivity, also known as thermally stimu­

1 1 •lated depolarisation9- This procedure is particularly useful 
in observing the relaxation of the polarisation of dipoles and/or 
the release of mobile charge from traps in the material. Neither 
of these processes is included in the present models, but ther­
mally stimulated depolarisation measurements should certainly be 
made in parallel with ordinary transient and frequency response 
measurements whenever possible in order to characterize the 
system investigated more fully. 

There are still many SCP areas of interest not excluded by 
the above limitations, particularly static and steady state situa­
tions. The static, zero-current condition with time-independent 
electric field applied requires complete blocking of mobile car­
riers at at least one electrode. SCP can only be inferred under 
such static conditions by potential (or field) probe techniques. 
Alternating and direct steady-state non-zero current situations 
are of more interest because more can generally be learned from 
them. Note that a non-zero purely displacement current can flow 
across completely blocking contacts (if the capacitance of the 
blocking region or layer is non-zero) in response to an impressed 
alternating potential, since no mass flow between electrode and 
material is then involved. In steady-state ac and dc situations, 
any current-induced temperature variation in the material itself 
and between the bulk material and mobile carriers will be ne­
glected, a particularly good approximation when the carriers are 
ionic rather than electronic. 

The present work deals only with quasi-static and steady­
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state conditions. It applies in situations where charge motion 
may be adequately described by means of mobilities and diffusion 
coefficients. Thus, certain hopping/percolation processes are 
excluded 12 , 1 3 . Further, it is assumed that the Einstein rela­
tion, D. = (kT/ez.)~., holds between diffusion coefficient, D., 
and mobIlity, ~.,10fla charge carrier of valence number z .. 1 

Here k is Bolt.z~ann's constant, T is the absolute temperature, 
and e is the proton charge. The models to be described also as­
sume that D. and ~. are independent of field, concentration, and 

.. 1 1posltl0n. 

Two other idealizations, which like the above have usually 
been made in most past calculations, are inherent in the present 
approach. One is the neglect of all inertial effects of the 
charge carriers, effects which may tend to make them contribute 
a negative term to the effective dielectric constant of the ma­
terial below their plasma frequencies 1 4 • The present models ap­
ply primarily, however, at frequencies so much lower than the 
plasma frequency that one would expect that other effects would 
dominate and the present approximation wo¥ld be quite adequate. 
For referey§e, !~e plasma frequency of Ag ions at a concentra­
tion of 10 cm is of the order of 45 MHz. 

A more stringent approximation under certain conditions is 
the neglect of discreteness-of-charge effects 1 S ' 1 6 , including 
the finite size of charge carriers such as ions 1 7 • This approxi­
mation may be expected to be weakest when the charges under con­
sideration are completely blocked and when they may be specifi­
cally adsorbed at an electrode as well. This matter will be fur­
ther considered in Section III. 

Section II is concerned with the basic equations which de­
scribe the idealized situation defined by the above discussion. 
Then, in Section III the differential SCP capacitance of a system 
which may involve specific adsorption is considered as a function 
of dc bias. Section IV is concerned with ac response as a func­
tion of frequency in a variety of situations. First, certain 
aspects of the Maxwell-Wagner theory of interfacial polarisation 
are discussed; then, some data analysis methods are considered. 
Finally, Section IV-4 deals with the varieties of frequency re­
sponse possible when a single species of mobile positive charge 
and a single species of mobile negative charge are present in a 
material, the mobilities and valences of the charges are arbi­
trary, and many different boundary conditions are possible. Be­
cause of the restriction to a, single species of positive and a 
single species of negative charge, the situation considered cor­
responds to the unsupported electrolyte condition in liquid elec­
trolytes, that which leads to maximum space charge. 
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II. BASIC EQUATIONS 

The basic equations consistent with the discussion of the 
last section will be given here in one-dimensional form. It will 
usually be assumed that symmetrical plane, parallel electrodes 
are placed at x = 0 and x =~. The situation to be considered 
involves an arbitrary amount of dissociation of intrinsic neutral 
centers of concentration n (x), which arises from an originally 
unperturbed, homogeneous, geutral bulk concentration N. It will 
also be assumed that there may be present a homogeneous concentra­
tion, N = N; - N~, of immobile charged impurity_centers asso­
ciated ~ith extrinsic conduction. Here N+ and N are the indi­
vidual concentrations of charged donor an~ accep~or centers. +t 
will be assumed for simplicity that any impurity centers present 
are fully ionized at all temperatures of interest. Thus, al­
though the treatment may include generation-recombination of in­
trinsic centers, it takes all extrinsic centers always fully 
charged. This is equivalent to assuming shallow donor and/or 
acceptor energy levels and not too low temperatures. When 
N = 0, one deals with intrinsic rather than extrinsic conduc­
tIon. 

Let z and z be the valence numbers of positive and negative 
charge speRies ofnconcentrations p and n and mobilities ~ and V • 
The current equation is P n 

(2) 

where 

I - ez j I - -ez j (3)
p p p n n n 

and 

jp - (u pE - D ~) J" - -(~ nE + D an) (4)
P P ax ' n n n ax 

Poisson's equation becomes 

~ = (4n/s)p , (5)ax 

where 

p = e(z p - z n + N ) . (6)
p n e 

The material will be taken electrically neutral (p = 0) in its 
unperturbed bulk region under thermal equilibrium conditions. 
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Since the field E is related to the electrostatic potential ~ by 
E = -(d~/dx), the applied voltage across the electrodes is given 
by 

(7)Va = -J: E(x)dx • 

The continuity equations 1 8 may be written in the following 
generalized form 1 9 

a · 
~ = -z --c - ~ (8) 
a an

at pL at ax 

an a · Ian c n- = -z -- - - (9)
at nL at ax 

and 

an ___c _ znL z 
at - -kln )(p pL) · (10)c + k2(n 

In the above, k is a temperature-dependent generation co­
efficient and kl

2 is a recombination coefficient. For generality, 
it has been assumed that an intrinsic neutral center dissociates 
into Z L positive charges each of valence number z and z L nega­
tive cRarges of valence number z. The original ngutrali~y of 
the center then requires that z nz = z LZ' In all the work to 
be discussed here, whenever int¥rnEic g~ne¥ation-recombination 
is considered, z and z will be taken equal and z L = z L taken 
unity in order tg avoidPthe need to consider m-bodY massEaction 
recombination with m > 2. 

Since one of Maxwell's equations leads directly to the condi­
tion v-t = 0, the total current (including both conduction and 
displacement terms) is space invariant at all times even in dy­
namic situations. This is often a useful condition in the one­
dimensional case since it allows one to write 

-1J
~ 

I = <1>:= s. 0 I(x)dx (11) 

for the current path x = 0 to x =~. The averaged form of I is 
often simpler to use in obtaining final results than the origi­
nal form. Equations (2)-(11), the Einstein relation between D. 
and P., and appropriate boundary conditions define the idealiz~d 
situaEion considered. Note that no mobile charged aggregates 
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have been included. Any immobile charged aggregates may be in­
cluded in N. Some conditions which need to be met for the dif­
fusion term~ in Eqs. (4) to be appropriate have been given else­
where for electronic charge carriers 2 0 • It should also be noted 
that models of the present genre are usually limited to condi­
tions which ensure that maximum mobile charge concentrations are 
small compared to the concentration of intrinsic atomic or ionic 
sites in the material. 

The boundary conditions considered herein are generalized 
forms of those suggested by Chang and Jaffe 2 1 which involve the 
dimensionless rand r parameters already mentioned. Using sub­
scripts "L" andP"R" tondenote left and right electrodes, one can 
write these conditions for the conduction current components I 
and I as p 

n 

-r'L(ez D /~)[PL - p L] (12)p p p e 

(13) 

r R(ez D /~)[PR - p R] , (14)p p p e 

and 

I R = -r R(ez D /~)[nR - n R] · (15)n n nne 

In the above, the subscript "e" denotes thermal equilibrium.
 
Thus, the boundary conditions are linear in the boundary concen­

tration perturbations from the zero-current equilibrium situa­

tion. Such linearity is necessary for small perturbations around
 
equilibrium but cannot necessarily be expected to hold accurately
 
for large perturbations. Note, however, that a boundary concen­

tration perturbation must be zero when the corresponding r.
 
(i = n or p) is infinite. Also when r. = 0, the current i~ zero
 
even for large perturbations. Thus, tEe above expressions may be
 
expected to apply more broadly near these limits.
 

Let us now consider that the applied potential difference V 
is made up of a possibly large static part V and a small per- a 
turbation part oV , so that V = V + oV . aOThen the current, 
field, and concentrations wilt als~oeach aivide into a static 
part and a perturbed part. But since the basic equations govern­
ing the system are nonlinear, it will not generally be possible 
to write I, and the other quantities, in the separated form 
I = I (V ) + oI(oV ) with a linear dependence of 01 on oV. If 
oV i~ s~~ficientlyasmall [generally «(kT/e)], however, t~e 

a 
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system may be linearized and such separation justified. 

The static and differential capacitances of the system are 
of particular interest and relevance for completely blocking 
electrodes. If the total amount of stored SCP charge at V = V 
· d· d h h·· I · a ao1S eS1gnate q, t en t e stat1c or 1ntegra capac1tance 1S 
C = q /V . S~milarly, if at a given V = V an additional 
s~all ~er~arbation 8V is applied, the dtffer~gtial capacitance 
is given by Cd = (dq/aV ) = [d(V C )/dV ~ 8q/8V , where 8q is 
the change in q arisingafrom 8V ~ sThe aifferent1al capacitance 
is usually of more interest thag is C . 

s 

The small-signal ac response of the system may be calculated 
from the above equations around the ~bias point V by taking, for 
example, 8V = Vlsin(wt), where VI is the amplit~~e of the sinus­
oidal pertu~bation of radial frequency w. When V «(kT/e), all 
higher-order harmonics in the Fourier expansion or quantities 
such as I, E, 0, and p may be neglected compared to the funda­
mental, and the admittance Y{V ) = 8I/8V is a well-defined 
quantity which may be calculat~8 from theaabove equations. The 
explicit separation of the equations into a nonlinear set depend­
ing only on V and a linearized ac perturbation set dependent on 
8V = VLexp(i~~) is necessary to solve the equations in the most 
ex~edit10uS way22. First the nonlinear dc equations must be 
solved, then the resulting steady-state inhomogeneous fields, 
concentrations, etc. must be used in the perturbation set of 
equations to obtain the final ac current or admittance. In gen­
eral, this sort of sequential calculation must be done numeri­
cally by computer simulation. The equations can, however, be 
solved exactly for small-signal ac response when V = 0 and the 

22.equilibrium state of the system is one with E(x) =a8 for all x
Results of such a solution for completely sy~etrical electrodes 
will be discussed in Section IV-4. 

There is one further complication which needs consideration. 
It causes ~x) not to be zero near surfaces even in therntal equi­
librium. Although an isolated ionic single crystal such as AgCI 
may be taken macroscopically neutral, Frenkel23 pointed out long 
ago that in thermal equilibrium the surface of the crystal should 
be charged and this charge balanced by a diffuse space charge of 
opposite sign adjacent to the surface. In this instance, the 
above non-ideal surface dipole arises from any difference in the 
energy required to form positive and negative defects in the 
crystaI23- 26• Even the presence of an essentially completely 
blocking electrode adjacent to the surface may be expected, how­
ever, to modify the surface-region dipole through imaging ef­
fects. The presence of a partially blocking electrode, which re­
quires in equilibrium that the electrochemical potential of any 
charge carrier crossing the interface be the same in the elec­
trode and in the material next to it, may be expected to affect 
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the surface dipole region even further. More discussion of this 
phenomenon, which may be characterized by a diffusion potential 
V which determines the strength of the dipole, has been givenn
elsewhere 2 6 • 

Several interesting cases may be distinguished. With com­
plete blocking of both positive and negative mobile charge car­
riers in the material, i.e. (r ,r ) = (0,0), the surface charges 
may be considered to be specif~ca~ly adsorbed according to an 
electrical adsorption isotherm which generally depends on both 
V and the applied p.d., V. If the surface charges are not com­
p£etely blocked, then it s~ems sensible to conclude that there 
are no specifically adsorbed surface charges, and charge on the 
electrode alone balances that in the diffuse layer. Finally, if 
the diffuse layer charge is not blocked and that on the surface 
is, one would expect that in general any diffuse layer charge 
would be balanced both by specifically adsorbed charge and by 
charge on the electrode. The complete-blocking, VD ~ ° situation 
will be discussed further in the next section. 

III. COMPLETE BLOCKING: QUASI-EQUILIBRIUM 

Both positive and negative mobile species are taken to be 
completely blocked in the work considered in this section. Two 
situations have conventionally been examined: a single blocking 
electrode at x = 0 with the material of interest extending to 
x = 00 in the right half space, and alternatively, two blocking 
electrodes at x = 0 and at x =~. A good experimental approxi­
mation to the first of these arrangements is to place a blocking 
working electrode at x = 0 and an indifferent or ohmic electrode 
at x = ~ and ensure that ~ is large compared to the bulk Debye 
length. Theoretical and, where possible, experimental curves of 
potential, field, and charge concentrations versus x are instruc­
tive in such situations. Representative results are given in 
Refs. 20, 27-34, not all applying just to complete blocking. 
References 28, 29, and 31 include the substantial effect of in­
trinsic recombination on the curve shapes when one species of 
carrier is immobile. Space limitations preclude detailed dis­
cussion of such shapes here. A brief summary of some of the theo­
retical work through 1963 on static space charge distributions 
has been given elsewhere 35 • 

It is worthwhile to summarize expressions for diffuse-layer 
differential capacitance, Cd' in various blocking situations. 
For simplicity, all Cd results will be given only for the 
z = z = I case. In the present completely blocking case, Cd 
c~n bePmeasured quasi-statically as (oq/oV ) or, when the system 
is linear, as the low-frequency limiting v~lue of parallel ac 
capacitance. For a single blocking electrode with VD = 0 and no 
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specific adsorption, the intrinsic-conduction diffuse double 
layer differential capacitance is then given by 2 7 

Cd = (E/4nLD)cosh(V:/2) , (16) 

where V* = V /(kT/e) and V is the applied potential difference. 
When bo~h ca~riers are mobile, the appropriate Debye length re­
duces to 

L = L = [skT/4ne2(z 2n . + z 2p )]1/2
D D2 n 1 p i 

[EkT/8ne2c.]1/2 (17)
1 

where n. and p. are the bulk intrinsic concentrations, satisfying 
h 1 ltlon z n. = z p.; ln t e present1 1 1· d· · · htee ectroneutra lty con 

z = z = 1 case, n. = p. = c .. ~l~n sa~ 5nly the negative car­n p . 111
rlers are moblle, 

L = L = [skT/4ne2c . ]1/ 2 (18)D D1 1 • 

Eq. (16) and subsequent Cd expressions hold adequately only as 
long as the diffuse layer charge carrier concentrations remain 
small compared to the concentration of intrinsic entities (atoms 
or ions) which make up the material. Grimley 36 , 37 has given a 
V = 0 treatment, applied specifically to Schottky defect car­orlers, where this restriction is relaxed. Nevertheless, Eq. (16), 
which includes no finite-size corrections, has usually been found 
adequate for liquid electrolyte experimental results 17 • 

The situation is somewhat more complicated in the two­
electrode case. Assume again that V = 0 and there is no spe­D
cific adsorption, so that E = 0 throughout the material before 
the application of V across the electrodes. Then 2 7 

a 

Cd = (E/8nLDZ)ctnh(M)cosh(Va/4)* , (19) 

where 

M = Q,/ZLD2 • (20) 

The two factors of two present here and not in Eq. (16) arise 
from the equal division of V across the two interphase regions 
and from the series combination of equal diffuse layer capaci­
tance for these regions to give the total capacitance. Note that 
when V + 0 and (Q,/L + 0, Eq. (19) reduces to E/4nQ" just theD)
geomet~ical capacitance C of the material. Thus, the purely SCP g 
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part of Cd is 

C [(M)ctnh(M)cosh(V*/4) 1] . (21)
g a 

Again when V + 0, it is clear that for M > 3,
a 

just the ordinary unbiased capacitance of two diffuse double 
layers in series. This capacitance is intensive as far as ~­
dependence is concerned, in accord with its approximate locali­
zation near the electrodes. 

For either one or two electrodes, the situation is more com­
plicated when one species of charge is immobile but bimolecular 
recombinatio~ between positive and negative charges can occur 2 8 , 2 9 
Note that it is an idealization to speak of applying V across 
completely blocking electrodes because of possible pot~ntial drops 
between the electrodes and the material studied. One can place 
the material to be investigated in an electric field, i.e., be­
tween capacitor plates, and calculate the applicable V from in­
tegration of the actual resulting field in the materia! from 
x = 0 to ~ as in Eq. (7). Note that when VD = 0, V must be zero 
when the electrode charge, q , is zero. The systemamay often be 
realized experimentally by pPacing very thin insulating layers be­
tween metallic electrodes and the material. If the capacitances 
of these layers are much greater than C for the material, then 
the V (across the material) which shou1d be used in Eq. (19) will 
be wetl approximated by the actual p.d. applied across the elec­
trodes. The case where the potential drop across such an insulat­
ing layer is not negligible has also been considered2 8 , 38 . 

Let us now consider the possible presence of specifically 
adsorbed surface charge, q , with VD not necessarily zero. Denote 
the total, integrated diff~se layer charge by qd' For a single 
blocking electrode many Debye lengths away from any other elec­
trode (M » 1), the relation ~ + q + qd = 0 must hold. The dif­
ferential capacitance may be calcul~ted from Cg= dq /dV when the m a
dependences of q and qd on V

I 

are known. Alt ough qd should most 
properly be giveg by Grimley'~ expression 36 modified to include 
VD and arbitrary valences, for illustrative simplicity I shall 
here use the conventional zn = z 

p 
= 1 diffuse layer result2 6 , 2 7 

C ~ MCd g 

where 

(23) 

(4kT/e)C , (24)
o 
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and V* ~ Vn/(kT/e).n 

One next requires electrical adsorption isotherms for the 
individual components of q ~ q+ + q-. For simplicity in writ­
ing equations, let us alte~nati~ely ~enote all positive-related 
(p and +) quantities with a subscript "1" and negative ones with 
a subscript "2". Assume that there are N+ :: N 1 and N- :: N 2 
surface adsorption sites occupied by Posf~ive ~nd nega~ive s 
charges, respectively. Then, q . ~ (-1) +J e z. N ., with j = 1,2. 
Further assume that there is a ~lxed maximum Ju~Ber of adsorption 
sites for charge of each sign, Nsml and N m2.l+Then the maxi­
mum surface charge components are q . = ~-I) J ez. N .. Under 
these conditions the Langmuir isoth~~~ is an appropr~~te choice2 6 

except that it takes no account of planar interaction between 
adsorbed entities, important when N ~ N 1 + N 2 begins to become 
an appreciable fraction of N 1 or sN 2~ Nev~rtheless, on using 
the Langmuir isotherm for ilINstrativ~mpurposes, one may write2 6 

+ + +-1
(N-/N- ) = [1 + exp(~G-/kT)] , (25)

s sm 

where the ~G's are electrochemi~al+free energies ~f adsorption 
from the bulk, referenced to (N-/N- ) = 0.5 at ~G- = o. s sm 

+
Following conventional practice, one may separate ea~h ~G-

into a chemical part independe¥t of applie~ potential~ ~G-, and a 
potential dependent part, ez A V or -ez A V. The A- qugntities 
introduced here are usually gf t~e ordernof flnity or less and are 
included to account at least ~pproximately for discreteness of 
charge effects 1 S ' 16 . Thus, A-V are micr~potentials*ratherthan 

Ithe macropote~tial, V Separa~ion of ~G- yield~ ~G.:: * * 
(~G./kT) :: ~G . - (-11J(z.A.V*). Finally, let ~. :: 6,S(VD + V ). 
The~ the fore~~ing equati~n~ lead for z = z = £ to a n p 

*(2C )cosh(tlJ )Cd o 0 

2 1+· 2 * 
+ (e/4kT) I (-1) J(A.q .)sech (~G./2) (26)

J smj Jj=l 

2A term equivalent, for A±= 1, to the first of the sech expres­
sions above has been cited by Pleskov3 9 for the differential 
capacitance of electron surface states on a semiconductor surface. 
Note that P., defined as eA_lq . l/akTC ~ (A./2Al) Iq . I, will 

larger thanJunif1.usually be ~uch 0 J smJ 

Raleigh, in unpublished work4 0 , has considered a simpler ver­
sion of the present case, that which follows when the diffuse 
layer contribution is ignored, ~ = N- ~ N ,~G± = 0, and sm sm sm 0 
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+ ­A± = 1. Thus, when V = 0, N = N = O.5N ,a very special con­
dition. Under these ~ircumst~ncesSEq. (26~~ rewritten for arbi­
trary zn and zp' reduces to just 

2(V*/2)(2pC )sech (27)o a 

where p = (eN )(z + z )/2A. The maximum value of the symmet­
rical Cd curv~~ 2pe = ~e/4kt)[(eN )(z + z )], will generallyo2C.
be much larger than Raleigh S~dju~ts (~ + z ) somewhat ar­
bitrarily to yield agr~ement between 2pC andnthe ~eak of an ex­
perimental AgBr curve for Cd taken near ~he melting point of AgBr 
for a single blocking electrode situation41,42. He then finds 
good agreement between theory and experiment near the peak. 
Better agreement over a wider potential range could probably+be 
achieved with inclusion of diffuse layer effects and with ~G­
values non-zer9 and unequal. Raleigh takes the negative sur~ace 
charges as Br-; it seems more likely that silver ion vacancies, 
which have appreciably higher mobility, would predominate. 

When ~G+ = ~G-, there is no equilibrium Frenkel space-charge 
double layer~ instgad, positive and negative adsorbed charges are 
of equal concentration when V = 0. It is thus clear that when 

a + ­V # 0, eVn must b~ a function of (~G - ~G). Thus, the ¥n 
wRich appears in ~ is not independen~ of tRe values of ~G-. This 
matter has ~een cogsidered in some detail previously26 forOthe 
case of (~G-/kT) » 1, which allows the Langmuir/Fermi distribu­
tions of Eq? (25) to be reduced to Maxwell-Boltfmann ~istribu­
tions. An explicit linear relation between (~G - ~G ) and V n

in Iq=f/-Iq was found and used to 0 for aand calculate0 Cd curves 
two-bloc~~ng~~lectrode s!tuation. Some of the results derived, 
particularly those for A- ~ 0, were qualitatively similar to the 
Raleigh AgBr experimental results, which show a central peak, un­
equal minima, and final rises. But in this two-electrode situa­
tion, most of this sort of behavior arose from unequal splitting 
for V # 0 of V between the two electrode regions, even for the 
M » £ case. T~e results were compared to an earlier, less accu­
rate calculation43 which erroneously assumed splitting of V into 
equal parts. Conditions are depicted very diagrammaticallyai n 
Fig. I for the V > ° case. There "e" and "s" denote electroden
and surface regions. As V increases, one diffuse layer grows 
and the other decreases un~il finally the signs of the left­
region diffuse charge and the right-region surface charge change, 
as shown in Fig. I-c. 

+ + +
Even if Eq. (26), with appropriate values of ~G-, A-, N- , 

and V could fit Raleigh's AgBr data excellently, tgere re~fnsD,an important stumbling block arising from the finite size of 
specifically adsorbed ions. Figure l-d shows a crude picture of 
some ions specifically adsorbed on a metal electrode, say 
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v« = 0	 v, =Va,>Oe 5 5 e e 5 5 e 

0 

(a ) ( b) 

v, = V e.. 5a2>Val el SI 15 Ie 

+ 
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Fig. 1.	 (a) - (c). Signs of charge concentrations at electrodes 
(e), surfaces (s), and in diffuse layers for V > O.n(d). Specifically adsorbed charge at electrode surface. 

platinum. The charge centroids of such ions are located at the 
inner Helmholtz plane 1 5 , and the ion material between the center 
of charge of an ion and charges in the metal should have a low 
udielectric constant,U insofar as this concept is meaningful. One 
may expect an inner layer capacitance to be present associated 
with the charge-free region between the electrode and the inner 
Helmholtz plane. The approximate plane-parallel capacitor formed 
when charges in the metal and the adsorbed layer are smeared in 
their planes cannot be eXP2cted44 to have an effective capacitance 
even as large as 100 ~F/c,. But Raleigh finds a maximum capaci­
tance of nearly 500 ~F/cm at V = O. One would expect that the 
considerably smaller inner-regi8n capacitance would be in series 
with any adsorption and diffuse layer capacitances and would dom­
inate the combination. The solution to the problem of the missing 
inner layer capacitance is still unclear. It is possible, however, 
that it is essentially shorted out by partial charge transfer 
between the electrode and specifically adsorbed charges. 

IV. STEADY-STATE AC RESULTS 

I. Introduction 

The most general situation of interest for a homogeneous ma­
terial with a single species of mobile positive charge and a 
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single species of mobile negative charge would involve two elec­
trodes with different boundary conditions (r , r , and V / 
adsorption all different for the two electroHes)~ and ex~rinsic­
intrinsic conduction with trapping and recombination. The applied 
p.d., V , would, in general, be made up of a static part V and 
an alte~nating part V l' not necessarily small. For simpligity, 
and because this gene~al situation has not yet been fully worked 
out, results for much simpler conditions will be discussed here. 

Consider a homogeneous, isotropic material between two iden­
tical electrodes without Vn/adsorption. Take V = 0 and con­
sider that (V) «kT/e. Finally, only resfl~ts for intrinsic 
conduction wi~to~~Xtrapping will be discussed, although a theory 
for extrinsic-intrinsic conduction without trapping has been 
given2 2 • Most of the results following from the equations of 
Section II will be for zero recombination (full dissociation) of 
intrinsic carriers, i.e. k = k = 0, but some findings of currentlcalculations which include intrInsic generation-recombination will 
be mentioned at the end of this section. 

Before discussing detailed ac SCP results for a homogeneous 
material, a simplified SCP approach for inhomogeneous conditions 
will be examined in the next subsection and methods of data anal­
ysis examined in the following one. 

2. Interfacial Polarisation 

As its name implies, interfacial polarisation (IP) arises 
from mobile charges piling up at interfaces in a material. For 
example, the N-Iayer Maxwell-Wagner (MW) capacitor4 S ' 46 consists 
of a series of layers, each of specified dielectric constant and 
conductivity, lying parallel to plane, parallel electrodes. Al­
ternatively, one or more species of conducting particles of spe­
cific shapes may be considered to be dispersed in a carrier me­

47 •dium with different electrical properties 4 S­

Interfacial polarisation theory is simplified because no de­
tailed account is included in ~t of mobilities, valences, recom­
bination, or specific conditions at interfaces; instead every­
thing is subsumed in the dielectric constant and conductivity 
assigned to each layer. More properly, the equations of Section 
II should be solved for each region with appropriate boundary con­
ditions at each interface. Since this is usually impractical, it 
is interesting to compare results of the lumped-constant IP ap­
proach with those following from the detailed solution of the 
transport-continuity equations even for a homogeneous material. 

The usual MW N-Iayer IP equivalent circuit made up of 
frequency-independent lumped-constant elements is shown at the 
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Fig. 2. Two equivalent circuits for interfacial polarisation. 

right in Fig. 2. It is known as the Voigt model when used to de­
scribe mechanical viscoelasticity effects (with reinterpretation 
of the r's and c's) and describes a retardation situation8 , 4 8 . 
Each parallel circuit represents the properties of a single layer. 
An alternate circuit, the Maxwell model, is shown at the left of 
Fig. 2. It conventionally describes a relaxation situation and 
is the usual model applied to describe a discrete or continuous 
(N = 00) distribution of relaxation times for dielectric mate­
rials. As shown, these two circuits can have identical imped­
ances at all frequencies if the relations between their elements 
are correctly chosen. It is possible to calculate the elements 
on the left directly from those on the right but the reverse 
solution cannot be carried out (for N > 1) explicitly and ex­
actly. The following relations are applicable, however: 

N N N 
IT T~ = IT T~ and RI = L r~, where the N time constants T~ and 

t=l ~=l ~=l 

T are defined in the figure. Note that C in the left circuit 
sfiould be identified with C , the geometricl capacitance, and Rlis the dc resistance of thegsystem; it may sometimes be taken 
infinite to good approximation. 

Maxwell-Wagner IP has frequently been invoked to explain ob­
servations of very large low-frequency apparent or effective di­
electric constants (e.g., 49,50). It is often implied or stated 
that the high (apparent) dielectric constant is a true property 
of the material. Such is not the case; the error comes from cal­
culating and using a properly intensive quantity, dielectric con­
stant, in a situation where it is inapplicable. The problem is 
illustrated by the following simple example. Consider a two­
layer MW situation with equal true dielectric constants, € 4'6. 
Assume that the layer thicknesses are dl and dZ' with d = ~l + dZ
and d « d and take the resistivity of layer one much larger

l 2, 
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than that of layer two. Now if the effective low-frequency­
limiting dielectric constant of the combination is calculated, 
one obtains E ff ~ »E. But clearly this is not a(d Z/d1)Etrue dielectric constant; i~ has geen arrived at using d rather 
than the proper d «<d), and the resulting E ff is not an inten­lsive property. In general, whenever a materi~l is expected to be 
inhomogeneous and/or whenever space charge can occur near bound­
aries and electrodes it is wise initially not to calculate prop­
erly intensive quantities such as dielectric constant and con­
ductivity, even with the appellation "apparent" or "effective," 
but instead to deal only with actual capacitances and conduc­
tances or specific (unit area) values of such quantities. Once 
the dependencies of frequency-independent circuit elements on 
electrode separation have been found, it may be possible to in­
terpret some of them in terms of intensive bulk properties. It 
will certainly not be possible to do so, however, for all ele­
ments arising from interface-related processes. 

Another wayan incorrect or misleading large effective di­
electric constant or capacitance can be obtained from even an 
N = Z Voigt-model circuit is if experimental imped~nce data asso­
ciated with such a circuit are interpreted in terms of a series 
capacitance and series resistance: ZT = R + (iwCS)-l, where ZTSis the total impedance. The N = Z circuit leads to a frequency 
dependence o!ZC of the following form: As w decreases, C in-S s 
creases as w from a high-frequency value of c (assuming

l 
c « saturates over an appreciable frequency interval atl c Z),
(c + and_2hen finally increases indefinitely again pro-l c Z),
portional to w • This rise, of course, should not be inter­
preted in terms of a dielectric constant increase; it appears 
because of inappropriate analysis of E~e circuit. For example, 
the total parallel admittance, Y = Zr = Gp + iWCp' leads to ar
C which properly saturates at (c as W + o.p l 

+ c Z) 

Figure 3 shows two circuits which are electrically equiva­
lent and arise from the SCP theor y 2 2 to be disc~ised in IV-4. 
Here_ the de disch~rge conductance is G Goo = Roo = GE +_GD, andD, 
GDN = ~D/Goo' GEN = GE/~oo· -1N~te that. the ~lements of Yi = 
G. p + 1WC. and of Z. = Y. = R. + (1WC.) are all frequencyu1 d 14 11 Th1 1 h 1. d·depen ent 1n genera. ere are, owever, two 1mportant con 1­

tions for which the circuit of Fig. 3 can be well approximated 
as an N = Z type of circuit over an appreciable frequency range. 
Define Case A as that where in the range of interest C. is essen­
tially frequency independent and eit~Ir R is as well,1Ca s e AI' 
or, the usual case, A R. « RE = GE . i 

Case B is that whereZ' over a given frequency ra~ge the frequency dependencies of the 
series-connected elements R. and C. are just those which lead to 
frequency independent va1ue~ of th~ parallel elements, G.p and 
C. . There are two Case B situations where the N = Z cifcuit is 
w~11 approximated. The first, of lesser interest, Case B1 , 
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Fig. 3.	 Two exact equivalent circuits following from detailed 
theor y 2 2 of charge motion in solids and liquids. 

occurs when G.p may be neglected, i.e. we. p » G. ; it is then 
essentially e~uivalent to Case AZ- Case BZ,_~n Eb~lother_l 
hand, occurs when GD may be neglected: G. + G «G = ~.E D
Then the circuit b~2omes like that of Fig_ 3~E but with GE~GD 
replaced by G.p' GENY. by C. p' and Roo by RE, essentially equal to 
Roo for this high dc r~sistafice case. It can be shown 5 1 that such 
a circuit corresponds exactly to an N = 2 arrangement of the kind 
shown at the right of Fig. 2. 

3. Data	 Analysis 

Since even results for a homogeneous material with electrode 
effects and/or recombination can sometimes lead to a simple N = 2 
parallel-series circuit, it is of interest to discuss how data 
associated with such a circuit might best be analyzed. The ini ­
tial aim of analysis should be to determine the frequency­
independent values, if any, of the capacitative and conductive 
elements of the equivalent circuit. Then, investigation of the 
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dependence of these elements on temperature and electrode spac­
ing, together with any other information known about the system,
 
should help one decide to what degree the results arise from a
 
MW IP or a homogeneous SCP system. Note that discussion of a
 
N = 2 circuit is sufficient since N = 2 methods may be applied
 
sequentially to pairs of a system exhibiting N > 2 circuit be­

havior.
 

In addition to an examination of the frequency response of 
series and parallel components of the circuit impedance/admit­
tance, another approach may be particularly valuable. This anal­
ysis method involves plotting the real versus imaginary parts of 
some such complex quantity as admittance S2 , S 3 or impedance 54- 56 

as parametric functions of frequency. Such Argand or "circle 
diagrams" have been used for many years in electrical engineer­
ing; when complex dielectric constant is the quantity considered, 
they are known as Cole-Cole p10ts 5 7 • 

There are four complex quantities worth investigating. Con­
sider normalized forms denoted by a subscript "N", where resis­
tances_ire normalized with Roo and capacitances with C. Let 
Y == ZT be the total admittance. Then we may write, g

T 

(28) 

(29) 

(30) 

and 

(31) 

where the asterisk denotes complex conjugation and n = wC Roo as 
before. In the above, is the complex modulus of Hodgeget a1. 5 8 , 

and ~~ is the conjugate of the complex ef~ectiYi dielectric con­
stant ln normalized form 5 9 • Note that ~ = ~. All the quan­
tities defined above have positive imaginary par~s. These parts 
are plotted on the positive y-axis versus the real parts of a 
given complex quantity on the positive x-axis. 

What sort of shapes arise from these plots? Admittance­
plane curves for several different circuits have been presented 
by Bauerle 5 3 , and complex dielectric constant and complex con­
ductivity-plane curves given for several other circuits by * 
Grant 6 0 • For the N = 2 circuit, it turns out that~ and ZT 
plots lead to two connected but well distinguishable semicirc~es 
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with circle centers on the real axis provided the ~wo time con­
stants of the circuit are well separated. But as Hodge et al. 
have demonstrated 5 8 , ~ shows good semicircle separation when 
the time constant difference arises priwarily from a difference 
in resistances, e.g., rZ/r »1, and ZT~ shows such separation 
when the difference comes trom an appreclable difference between 
the two capacitances of the circuit. In all cases, both semi­
circles are present, but their sizes are very different in the 
above limiting cases. Generally, when one type of plot shows 
two distinguishable semicircles, only one will be apparent on the 
other. In the absence of furthei information, it is thus a good 
idea to construct both~ and ZTN plots initially. When two 
joined semicircles appear, all N = Z circuit element values may 
be obtained from the real-axis intercepts and the frequencies at 
which the peaks of the semicircles occur. 

The other two kinds of plots have been used more in the past 
but are generally not quite as instructive as the first two. For 
the N = Z circuit, they never give two semicircles but, at best, 
lead to a single semicircle melding into a vertical line at its 
right end. Thus, the fact that there are two time constants 
present does not show up so clearly, and not all the circuit ele­
ment values follow as readily from these plots. There thus seems 
t~ be little reason to use YT and ~N plots rather than ~ and 
ZTN ones, at least in the inl~ial stages of an investigation. 

By restricting attention to the complex dielectric constant, 
Volger 4 6 concluded that in an N-layer MW situation, (N-l) re­
laxation times rather than N occur. As we have seen, this need 
not be the case. Bauerle 5 3 used an N = 3 circuit to analyze 
data on zirconia-yttria by admittance plane methods. He found 
only two connected semicircles but omitted any parallel capaci­
tance across one of his three resistances. This omitted capaci­
tance can be identified as C to good approximation. Since there 
is always some geometric capgcitance in any real situation, it 
should properly not have been omitted. At suf~iciently high 
frequencies, it leads to a semicircle in the ZTN plane or a ver­
tical line in the YT~ plane. Bauerle's data dlQ not extent to 
high enough frequencles to show this effect. 

In almost all SCP cases of interest, the time constant 
TD = RooC will be appreciably shorter than other time constants 
present ~n the system. Furthermore, in most cases, C will also 
be much smaller than other capacitances present. Undgr these 
conditions, the parallel combination of C and R may be placed 
in series with the rest of the circuit toga highOOdegree of ap­
proximation. For the special Cases A and B already discussed in 
connection with Fig. 3, the rest of the circuit may be well 
approximated by another resistance and capacitance in series, 
yielding an N = Z Voigt-model circuit. Finally, whenever one 
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wishes to fit impedance/admittance data to a theoretical model, 
it will be a good idea to do such fitting using generalized least 
squares, a technique which allows both the real and imaginary 
parts of the data to be statistically weighted in determining 
parameter estimates and tceir uncertainties 6 1 • 

4. Detailed Results for a Homogeneous Material 

Over the years since 1952 there has been considerable work 
devoted to the solution of the equations of Section II for the 
small-signal ac situation with various simplifications and ide­
alizations (e.g., 21, 22, 54-56, 59, 62-64). Here, I shall dis­
cuss recent work22 , SS , S6 which essentially subsumes most earlier 
results. Consider an intrinsic-conduction material, initially 
without recombination, and with identical plane, parallel elec­
trodes. Further, V is taken zero, no specific adsorption effectsn 
are included, and tfie finite size of charge carriers is neglected. 
To define such a system as far as its normalized impedance is 
concerned, one may use the following parameters: (r, r ; n , n ; 
0, M). Here TI = ~ /~ , TI = Z /z , and the zer~ deg~te~ inrrin~ 
sic conduction~ BegauEe or sy~et¥y (r , r ; n- , n- ; 0, M) de­
fines the same normalized situation. n p m z 

It is found that the exact equivalent circuit of Fig. 3 can 
usually be well approximated by the N = 3 circuit of Fig. 4. Here 
R = Roo and C3 = C ; R2 and C2 can generally be taken frequency­3independent, and Ri ana C1 must be taken frequency-dependent in 
part of the frequency range SS , S6 . Insofar as time constants may 
be defined for the three subcircuits, one usually finds 
Tl » T2 » T3 = TD· 

Figure 5 shows the simple frequency response for CpN = Cp/C 
found with completely blocking, equal mobility, and equal valenc~ 

c, 
Approximate equivalent circuit following from detailed 
SCP theor y 2 2 . R and C are generally frequency de­

l l
pendent. 

Fig. 4. 



Fig. 5. Normalized parallel capacitance vs normalized frequency 
for complete blocking and several values of M = t/2LD2• 

For M » 1, the usual case, the total low-frequency-limiting 
capacitance, CpO' which follows from Eq. (32), is 

(32) 
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Figure 6 gives some results for another limiting case. Here 
Z2 = 0, and, in general, 

2 ~ 2 ~ -1
ZlN ~ [TIm(inbM ) ctnh(inbM )] , 

-1 -1 -1
where b = 0 0 / S S ,0 = (1 + 7T ) ,0 = (1 + 7T) ,S = 

-1 _In p n p n _lz p z n 
(1 + 7T ) ,and S = (1 + 7T) • This approximate expression 
for Zl: ho1ds 5 6 whgn r = 0 for any TI and TI , not just the unity 
values of Fig. 6. Notg th:§/~he n deWendenc~ in Fig. 6 invo1~2s 
appreciable regions with n rather than the conventional n 
behavior apparent in Fig. 5. In the intermediate frequency range, 
where the ctnh function is unity, ZlN reduces to an ordinary dif­
fusional Warburg impedance. Such an impedance must be modified 
as above, however, for a finite length of material, since as 
n ~ 0, there will eventually be less than one diffusion length 
available in t. 

conditions. Here Fig. 4 reduces to an N = 2 Voigt model with 
Zl = 0, R2 = 00, and C2 = MC = C , just the ordinary diffuse 
layer capacitance for two l§yers

Oin 
series. Somewhat similar re­

sults are obtained when r = r ~ 0 55 ' 56 . Note that these re­
sults are an example of CEse A~ reduction discussed in Section 
IV-2. 

172 
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Fig. 6.	 Normalized parallel capacitance vs normalized frequency 
for (r ,r ) = (0,00) boundary conditions and several M 
values~ n 

2/3)CCpO ~ (8 8 M ~ (M/12)C ,	 (33)n p	 g 0 

where the second form applies when 7T = 1. Notice that for large 
M, CpO/C may greatly exceed unity. zThis large capacitance is 
connecte8 with diffusion in a restricted space (x = 0 to i) and 
is extensive, directly proportional to i! It is of especial in­
terest, both for its size and its genesis. Earlier work59 , 6 3 
shows conclusively that for M » 1, CpO is not primarily asso­
ciated with stored space charge in the material when rand r 
are very different. It is a diffusional rather than aPSCP ca~aci­
tance, is sometimes called a pseudocapacitance, and is associated 
with the energy stored in the chemical reaction which occurs at 
the electrode when r or r is not zer0 6 5 • When r = r ~ 0, on 
the other hand, therg are ~till reactions present Eut n8 diffusion­
related delay which can lead to diffusion capacitance 56 • 

Figure 7 shows some more complicated results which can appear 
when 0 ~ r ~ Here g = 1 + (r /2). The different values of00. 

7T are use8 to give grea~er separa~ion between some of the curves, 
bUt the possible effect of 7T , which has of course a limited 
range, is much smaller than zthat of rand 7T. Note that n-m 

regions occur with values of m = 2, l?S, 1, ~nd 0.5, all slopes 
which are frequently encountered experimentally. When r > 0 as p 



* Figure 8 shows the general form of the ZTN impedance plane 
plot following from the present theor y SS , S6 . The various arcs 
can be of any size relative to each other and all three do not 
necessarily show up simultaneously. Arc 1, which occurs at the 

10- 2 

J. ROSS MACDONALD 

10- 4 

SLOPE:-2 -;~ 
\ 

10- 610-8 

n 
10-10 10-12 10-14 

Normalized parallel capacitance vs normalized frequency 
for several (O,r ) situations. -­

n 

-8 4(O,rni 10 ,4; 0,10 ) 
4··················(0,2; 1,1 iO,10) 

8 4----(0, 2;10 ,0.25;0,10 ) 

10-16 

10
5 

10 

107 

102 

174 

Fig. 7. 

well, all intermediate slopes from m = 0 to 1.5 are also pos­
sib1e SS• Generally, most measurable structure occurs in the 
curves when there is a large difference in mobilities and the more 
mobile species is much more strongly blocked than the other. 
Accurate capacitance measurements over a wide frequency range can 
be made in this ~ » ~ case but not when RE » ~. 

It has been shown2 1 , SS, S6 , 6 3 , 6 4 that when the dimensionless 
quantities r ~nd/or r n are neither zero nor infinite, they may be 
related to h~terogeneous reaction rate constants, ~ .• The result 
is ~. = (D./i)r., where i = P or n. Since~. is as~ociated with 
an eIectroae re~ction, it cannot depend on ~~ Thus, both rand 
r must be proportional to i when they are neither zero norPin­
f~nite and are associated with thermally activated reaction rates 
or surface recombination rates. 
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Fig. 8. Typical form of normalized impedance plane plot following 
from detailed SCP theory without recombination. 

lowest frequencies, arises from the 21 of Fig. 4 and is associated 
with diffusion. The 45° region is that where conventional infinite­
length Warburg response is well approximated. In the present nor­
malized form, the size of arc 1 is inde~endent of £ and depends 
primarily on ~. With z; rather than ZTN plotting, the arc 1 size 
will be direct!y propor t IonaL to £ since R ex: £. 
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The central arc arises from 22 and is associated with finite 
electrode reaction rates; it is usually very well approximated by 
a semicircle with CZN ~ M and R2N ~ 2/(E r + E r). When either 
E r or E r is inf1nite, R2N = 0 and nonrgactignParc appears. 
wReR r =PrP ~ 0 or r = 0, r «1 + TI , arc 1 does not appear or 
may bentoo EmaIl tomEasure. nThisisaWN=2situation.anillus­

tration of Case AZ discussed earlier. In normalized form, the 
size of arc 2 is lnversely proportional to £ through rand/or r , 
but in unnormalized form it is essentially independentnof £ and p 
involves circuit elements associated only with the interphase­
electrode region. Finally, arc 3, which again is an excellent 
semicircle, arises from bulk effects, involves Rand C only, is 
independent of £ in normalized form with a height of O.S, and its 
size is directly proportional to £ for unnormalized conditions. 
Note that its peak occurs at n = WTn = 1. 

Arc 2 is not always found to be a perfect semicircle with its 
center on the real axis, as demonstrated by Fig. 9. When TIm ~ M, 

(rp,rni 7Tm,1Tzi 0, M) 

M» 1 
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Up to this point the discussion has been limited to full 
dissociation results (k l = k2 = 0). Some work has been pub­
lished which deals with generation-recombination (GR) effects 
when only one charged species is mobile 6 6 , but unpublished work 
in progress yields particularly interesting results in the 
r ~ r two-mobile case (TI neither zero nor infinite). Consider 
tRe M Y> 1 situation with ~l and k

2 
non-zero. Two new ~rrameters 

describing geminate GR are A = kl,k2c and ~ = (k2c i) lTD' 
where (k2c i)-1 is the effective recombinationrtime. It turns 

the resulting arc may be quite well approximated by a depressed 
semicircle, one with its center below the real axis. Many ex­
perimental data lead to depressed semicircles of this kind, al­
though the depression is often greater than that apparent here, 
the maximum found thus far for the present theory. Figure 10 
shows a situation where arc 1 is much larger than the other arcs 
and the effect of variable M is examined. Experiment frequently 
yields curves which approximate some of those shown in Fig. 10, 
although the available experimental frequency range usually does 
not allow all three arcs to be completely covered. Even cover­
age of parts of several arcs may allow analysis of the data to 
yield estimates of mobilities, boundary parameters, etc 5 6 , how­
ever. In the*usual M » 1 case, it is generally wise to con­
str~ct both ZTN and YTN complex plane plots when initially ana­
lyz1ng data. 

o.af~ I I I I I I I \ I 

1.0 1.2 1.4 1.6 1.8 0 2.2 2.4 2.6 2.8 3.0 

~l Re(ZTN) 

Fig. 9. Normalized impedance plane plot showing calculated arc 2, 
arising from slow electrode reaction, for several TI , 

TI values. m 
z 



Fig. 10. Calculated normalized impedance plane plot for several 
values of M. Arc 1 not shown completely. 
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where z is the common value of z and z. For c i = N, the ca­
pacitan~e involves noncombining pgsitivePand negative charges 
each of bulk concentration N, just as expected. But when c. « N, 
the capacitance is twice as large! Note that it is then faf 
larger than the value calculated conventionally with c. replacing

1 

out for TI = 1 that (c./N) = A/(l + A), where (c./N) is the dis­
sociationZratio; thus for small dissociation A ~l(c./N), and 
when A ~ 00, c. ~ N, full dissociation. 1 

1 

in agreement with Eq. (33) when A ~ 00. This expression may be re­
written as 

First, consider the low-frequency-limiting value of the par­
allel c~pacitan:e, CpO = C + Cia. In ~he general situa~ion 
(r , r , TI , TI , 0, M) takg r - 0, r - 1, TI «1, TI - 1, and 
M ~> l~ TWen ~ne finds that ~he domiRant par~ of CpO Is 
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(2N	 - C.). Evidently, not only does c. «N GR make it possible 
for	 all1centers of bulk concentration ~ to contribute to CpO' but 
it adds a further factor of two increase, probably related to the 
dynamics of GR itself. It is physically plausible to expect all 
originally neutral centers to contribute since the zero-frequency 
limit of the capacitance allows sufficient time for every neutral 
center to eventually dissociate and the resulting charges separate 
in the applied field. 

GR also leads to interesting results in the non-zero Q range. 
One often finds a new Z;N complex-plane are, located between arcs 
1 and 2 or 2 and 3 of Flg. 8. There are then four arcs possible. 
An example w~3re all fou~ appear with E~asonable separ~tion is 
(0, 10; 4xlO , 1; 0, 10 ) with A = 10 and ~ = 4xlO. The 
maximum values of Im(ZTN) are found to be about 58, 50, 23, and 
0.5, as Q increases, for the diffusion, GR, reaction, and bulk 
arcs, respectively. Not all four arcs appear well separated un­
der many conditions; in particular, the GR and reaction ones fre­
quently meld together. 

When (r ,r ) = (0,00), there is no reaction arc, and the GR 
arc turns ou~ tg be a semicircle without depression when TI ~ ~ 1. 
This semicircle is an insta~Ie of Case B discussed above~ rOn2,
the	 other hand when ~ »TI , the GR arc may be of virtually the 
same shape as the finlte-Wa¥burg diffusion arc. The possibility 
of confusion between these two arcs thus arises but can be re­
solved from their different dependencies on length, £. The size 
of the unnormalized GR arc is independent of £, as it should be. 
Data which include even a part of the GR arc should allow the GR 
parameters to be estimated. 

Finally, it is worth noting that when the Langevin6 7 , 6 8 dif ­
fusion-limited theory for k2 is used to evaluate ~ , one finds 
~ = 1, not a well-known result. While it is, in fact, reasonable 
t6 expect that the shortest recombination time would be Tn' when 
the mean free path of a charge carrier is large compared to the 
range of its screened Coulomb potential, one might expect that ~ 

could be much greater than unity. Lax 6 8 has discussed a situati6n 
where electrons are the major charge carriers and finds that the 
Langevin k2 is much larger than experimentally observed values. 
To the degree that this may also be the case in solids with ionic/ 
vacancy charge carriers, one needs to examine ~ > 1 effects there 
as well as those for ~ = 1. r 

r 
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DISCUSSION 

ARMSTRONG : In superionic conductors the Debye length 
is often less than a typical atomic size, which suggests 
that your theories are not directly applicable in this 
case. 

MACDONALD : To some degree this conclusion is doubtless 
true. Instead of an ordinary diffuse double layer exten­
ding over many crystal planes being present, the double 
layer capacitance may be a sort of inner-layer capaci­
tance associated with charge in the plane immediately 
next to the electrode. Although this would effect the 
d.l. capacitance which arises in my theory, it should 
not necessarily have a large effect on the reaction, 
diffusion and recombinaison terms in the theory. It seems 
likely that most of the results of my theory would still 
be applicable, perhaps with a very large value of 
M(=e/2LD) inserted in appropriate parts of the theory. 

WAGNER : Would you please provide us with a physical 
picture of the capacitance and/or pseudocapacitance for 
a (0,0) completely blocking and (00,0) partially blocking 
electrodes ? 

MACDONALD: The (0,0) double layer capacitance is often 
taken to be a diffuse (space distributed) space charge 
capacitance arising from the competing effects of elec­
tric field and diffusion. It was originally discussed by 
Gouy and by Chapman. The (00,0) or (0,00) low-frequency 
limiting capacitance is more complicated. It arises when 
a Warburg impedance is limited because the associated 
diffusion length fills the entire space between electro­
des. At sufficiently low frequencies this must happen for 
any finite electrode separation. This low-frequency­
limiting capacitance is not a pure space charge capaci­
tance but is associated with diffusion to an electrode, 
and, in the usual case, with electron transfer there. 

VOINOV : When you represent an interface by a capacitor 
(double layer) in parallel with a resistance (electrode 
reaction) do you imply that in open-circuit the capaci­
tor is not charged ? 

MACDONALD : I only assume the capacitor is charged when 
some potential difference occurs across it. In either 
e v c , or d v c . experiments, potentials are present which 
determine the charge on a given capacitor and, sometimes, 
determine its magnitude as well. 
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BoNANoS : In most experimental situations the system of 
electrodes, interfaces, bulk, grain boundary properties 
etc. are effectively connected in series. What is the 
relevance of the Voight and Maxwell models in such si­
tuations ? 

MACDONALD : The Voigt and Maxwell models are entirely 
equivalent electrically for proper element choices. One 
will generally use the one which a) arises naturally 
from theory and/or b) affords the most transparent ex­
planation of the various physical processes assumed to 
be present. 

HENISCH : How is the contour of the built-in diffusion 
barrier modified by the induced displacement of charge 
carriers in the bulk? 

MACDONALD : The barrier depends on the potential diffe­
rence between bulk and surface. In equilibrium this po­
tential difference is just the diffusion potential VD. 
In other cases, the appropriate potential is (VD+~a) 

where ~a is the electrostatic potential difference. The 
expression for the contour of the barrier, i.e. ~(X) 

(where ~ is the mean electrostatic potential) as a func­
tion of X, is too complicated to give here. In principle, 
it should be possible to eliminate a barrier by the ap­
plication of a potential difference opposite to VD. But 
when one uses symmetric electrodes with a similar or iden­
tical barrier at each, the application of an external po­
ten·tial difference increases the barrier height at one 
electrode and decreases it at the other. Thus there will 
never be a condition where both barriers are simultane­
ously absent. 

HEYNE : Can you clarify what exactly you mean by uncou­
pled? I understand that coupling by Poisson's equation 
is always present. 

MACDONALD : In the supported electrolyte case a large 
concentration of a supporting solute is present. The po­
sitive and negative ions of this fully dissociated salt 
are usually assumed to be completely blocked. In addition, 
the charges of interest (perhaps only partly blocked) are 
present at a much lower concentration. Therefore, the 
field gradient is primarily established by the high con­
centration species, and the low concentration ones are 
largely uncoupled. In other words, a charge in the con­
centration of the low-concentration negative species at 
a given location need not be compensated by a correspon­
ding charge in the concentration of the low-concentration 
positive species. 
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RALEIGH : Could you comment on the relative nature of 
Warburg impedance in supported and unsupported electro­
lytic media? The concept of a Warburg impedance in an 
unsupported medium may be confusing, since it was ori­
ginally derived for field-free diffusion in supported 
electrolytes. 

MACDONALD ~ The Warburg impedance arises at frequencies 
where diffusion to an electrode is the rate limiting 
step. It can therefore appear in either supported or 
unsupported situations, with appropriate differences 
arising from the different effects of Poisson equation 
charge coupling in the two cases. The original deriva­
tion of the Warburg impedance was for a single electrode 
(semi-infinite) situation. All realizable situations in­
volve finite dimensions. Therefore, one would expect the 
finite length Warburg formula to apply in most cases 
rather then the original infinite length one. 


