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ABSTRACT 

Some problems of analyzing smal l -s ignal  impedance  da ta  on solids or 
l iquids are discussed. A method of using ord inary  nonl inear  least  squares 
fitting procedures  with minor  modification to fit at  the same t ime real and 
imaginary  functions of the same set of unknown paramete r s  to complex 
da ta  is described in detail .  This method of complex least  squares fitting, which 
has severa l  advantages  over p~'evious approaches,  is i l lus t ra ted  by fitting 
equivalent  circuit  impedances to some polycrys ta l l ine  p -a lumina  impedance 
da ta  and to synthet ic  impedance and admit tance  da ta  calculated from a theo-  
ret ical  model  of the response of homogeneous mate r ia l  wi th  complete ly  
blocking electrodes. When different physical  processes yield response in over-  
lapping f requency regions so that  the different  processes lead to some melding 
of effects in an impedance  plane representat ion,  in t e rp re ta t ion  of equivalent  
circuit  pa ramete r s  becomes difficult even when the degree of fit of the  model  
to the data  is excellent.  In par t icular ,  low frequency ex t rapola t ion  in the im-  
pedance plane to obtain an es t imate  of bulk  resistance, R~, in an over lapping 
complete ly  blocking si tuat ion can yield es t imates  of R= with  very  large  errors.  
A method is descr ibed of avoiding such errors  for both convent ional  and 
complex least  Squares est imation.  In essence, one must  find and fit the unique 
equivalent  circuit  whose elements  r emain  re la ted  by  invar ian t  formulas  to 
under ly ing  microscopic pa ramete r s  of the ma te r i a l / e l ec t rode  sys tem no ma t t e r  
what  the degree of phenomena overlap.  

Smal l - s igna l  a -c  impedance  measurements  are gain-  
ing in popu la r i ty  as a technique for character iz ing l iq-  
uid and solid e lect rolytes  and other  mater ials .  Analys is  
of smal l -s ignal  data can almost  a lways  yield es t imates  
of bulk  conduct ivi ty  of new mater ia l s  free from the 
electrode polar izat ion effects which plague s teady-s ta te  
d-c  measurements .  Under  favorable  conditions, d e -  
t a i l e d  analysis  of impedance  da ta  for homogeneous 
mater ia l s  in terms of an appropr ia te  model  of the elec-  
t r ode /ma te r i a l  system can also yield accurate  est imates 
of microscopic parameters :  mobil i t ies,  dielectr ic  con- 
stant, e lect rode react ion ra te  constants, etc., which 
character ize  interface and bu lk  behavior  of the system 
(1-3). Even for  polycrys ta l l ine  mater ials ,  such as the 
usual  form of the superionic conductor  fl-alumina, 
p roper  analysis  may  lead  to va luable  informat ion  
about  e lectrode react ions and in te rgra in  and in t ragra in  
propert ies.  

In o rder  to ca r ry  Out a meaningful  analysis  of imped -  
ance or admi t tance  data, one must  compare  them with  
an analyt ic  expression for the measured  quantity~ a 
function of f requency which genera l ly  depends on 
several  f r equency- independen t  parameters .  Opt imum 
character izat ion of the sys tem requires  that  one be able 
to re la te  the  gross pa rame te r s  of the  analy t ica l  fitting 
model  to the microscopi'c pa rame te r s  of interest .  Some-  
times, however ,  in the absence of a sufficiently deta i led 
model  one must  be satisfied, at least  for a while,  wi th  
es t imates  of the gross pa r ame te r  values,  since they, 
and the form of the  impedance  expression,  at  leas t  
provide  a concise means of represent ing  the data. The 
dependence  of the gross parameters ,  de te rmined  f rom 
several  da ta  sets, on exper imenta l  var iables  such a s  
t empera tu re  may  then lead to va luable  insights. 

I t  is conventional ,  and very  des i rable  when possible, 
to approx imate  the analy t ica l  model  of the system by 
an equivalent  e lectr ical  circuit,  p r e f e r ab ly  one which  
offers a useful compromise  be tween  s impl ic i ty  and ac-  
curacy. I t  is desirable,  for  instance, tha t  the  equiva lent  
circuit  inc lude-as  few f requency-dependen t  elements,  
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such as Warburg  (diffusion) impedances  (1, 3), as pos-  
sible. Al though the basic analysis  method  descr ibed 
and i l lus t ra ted  here in  does not  requi re  equivalent  c i r -  
cuit  representat ion,  but  only an analyt ica l  expression 
of the model, equiva lent  circuits can often c lar i fy  
model  behavior  by  clear ly  ident i fy ing separa te  phe -  
nomena which may  be significant in quite different  
f requency ranges. Thus, most of the subsequent  ana l -  
ysis here in  will  employ equiva lent  circuit  r ep resen ta -  
tion. F igure  1 is a d iagram which i l lus t ra tes  some of 
the impor tan t  e lements  in the charac ter iza t ion  process. 

Once one has obtained impedance- f requency  data, 
there  a re  three  reasonable  things one can do. One can 
plot the impedance,  Z, and /o r  admit tance,  Y, as a p a r a -  
metr ic  function of f requency in the complex plane 
(e.g., Re(Z)  along the abscissa and - - I m ( Z )  along the 
ord ina te  axis) ; one can analyze the data to obtain gross 
and possibly even microscopic parameters ;  and one can 
convert  the da ta  to a complex effective dielectr ic  con- 
stant,  ~*e~f, and consider  its f requency dependence,  loss 
tangent ,  and high and low f requency l imit ing values. 
The first two approaches are often desirable;  the th i rd  
may not be. Whenever  a system involves inhomo-  
geneit ies and phase boundar ies  (e.g., homogeneous ma-  
te r ia l  and electrodes or po lycrys ta l l ine  mate r ia l  wi th  
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Fig. 1. Block diagram of possible system characterization ele- 
ments and interactions. 
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or without  electrodes), there is a good possibility that  
these inhomogeneit ies and phase boundaries  may con- 
t r ibute  appreciably to the smal l -s ignal  electrical re-  
sponse of the system. The der ivat ion of an effective 
dielectric constant for the whofe system is then un -  
desirable since dielectric constant  is properly defined 
in terms of an average over a possibly small but  mac-  
roscopic region of a homogeneous material .  Thus, the 
derivat ion of a complex dielectric constant  and con- 
struct ion of the corresponding Cole-Cole (4) plot is 
appropriate for a dipolar dielectric with no mobile 
charge and thus no electrode space-charge or reaction 
effects, but  both are inappropriate  when mobile charge 
is present  and electrode and /or  grain boundary  proc- 
esses may be important .  In  this lat ter  case, however, 
it has been found that  plott ing the analog of the Cole- 
Cole diagram, the impedance and /or  possibly the ad- 
mittance, in  the complex plane is almost always in-  
structive and useful (1, 3, 5, 6). 

Perhaps the most subtle and difficult aspect of im- 
pedance data analysis is the development  of an ade- 
quate analytical  model. Some aspects of the general  
problem of discr iminat ing be tween several models (i.e., 
picking the most appropriate one) have been discussed 
elsewhere (7). One possible model (to be denoted 
model A) which may be appropriate for the small-  
signal response over a considerable range of conditions 
is based on the exact solution of the appropriate 
transport,  continuity,  and boundary-condi t ion  equa-  
tions for instr insic-extr insic  conduction and possible 
electrode reactions and adsorption (2, 8). It is par t icu-  
lar ly  per t inent  for conduction by ions and /or  vacancies 
and interstitials.  Some of its predictions for a simple 
situation are used later  in this work to i l lustrate  the 
analysis method described herein  and to demonstrate  
some pitfalls in  interpretat ion.  

The present  paper deals pr imar i ly  with data analysis 
when an analytical  model is available, ra ther  than 
with the much more difficult problem of finding the 
best model. Given the model (expressed, say, as an 
equivalent  circuit),  how can one best find meaningful  
estimates of its parameters?  One approach, recent ly  
employed by de Levie and Vukadin  (9), involves a 
sequence of extrapolations and subtractions. As these 
authors point  out, however, the ext rapola t ion-subtrac-  
t ion method inevi tably  tends to accumulate  (est ima- 
tion) errors in  the las t -de termined parameters,  and it 
yields no estimates of parameter  or fitting uncer ta in -  
ties. It would, therefore, be valuable to have a method 
that avoids these weaknesses. Such a method is de- 
scribed and i l lustrated below. 

Complex Least Squares 
When an analytic expression of a model is available, 

whether  expressed in equivalent  circuit form or not, it  
seems na tu ra l  to consider least squares fitting of the 
impedance or admit tance data to the impedance or 
admit tance of the selected model in order to obtain 
estimates of the model parameter  values. Several  good 
nonl inear  least squares (NLS) computer programs are 
availabe which allow fitting of real data to the model 
y ---- f (x ) ,  with or without weighting of Yi measured 
values. Some generalized NLS programs also allow 
weighting of X~ data values as well (10, 11). Impedance 
data and analytic expressions are of the form Z(~)  = 
Re[Z] -5 i Im(Z)  - u(~)  -5 iv(w).  Clearly, u(~)  and 
v (w) will be different functions of ~ but  will general ly 
both involve some or all of the same parameters.  When 
complex data have been fitted by least squares in the 
past, the real u(~)  and v(~)  functions have usual ly  
been fitted separately using Re(Z)  and Im(Z)  data, 
respectively. The result  of the two independent  fit- 
tings is then two separate sets of different parameter  
value estimates. 

Al though the above type of fitting may be useful, it 
is not a s imultaneous (consistent) least squares fitting 
of all the data, yielding one set of parameter  estimates 
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determined by all the available data taken together. 
Therefore, it is desirable to fit the real and imaginary  
parts of measured impedance to the analytical  form of 
a model or circuit s imultaneously.  The only publ ished 
approach of this k ind known to the authors is that of 
Sheppard, Jordan, and Grant  (12, 13). We have found, 
however, that the readily avai lable generalized NLS 
fitting programs of Powell  and Macdonald (10) and 
Britt  and Luecke (11) may  be modified very  simply to 
allow fitting of complex data to complex functions. 
These modified programs seem preferable  to the ap- 
proach outl ined by Sheppard (13). 

To do complex least squares :fitting wi th  the above 
programs it is unnecessary to use the full  theoretical 
analysis of Britt  and Luecke, which involves an  arbi-  
t rary  number  of different variables, any  of which can 
be weighted, and which has not been embodied in  an 
actual computer program in  complete generality. For  
typical impedance or admit tance data, the measured 
real and imaginary  parts are general ly  uncertain,  and 
the individual  data values may need weighting to ob- 
tain the most significant statistical parameter  estimates. 
But the frequency, f or ~, is general ly measured so ac- 
curately that  its Uncertanities are negligible. It  can 
then be identified with the x variable,  assumed known 
exactly, in  y ---- ](x)  real NLS fitting. Now fitting of 
complex data, Z (~,), can be simp]y reduced, as follows, 
to real fitting of the usual  Yi = ] (x )  -- f(~i, Aj) model 
form. Here i ---- 1, 2 . . . .  , n designates the n complex 
(double-valued)  data points and the n real frequencies, 
and j ----- 1, 2, . . . .  m denotes the m real parameters,  Aj. 
Let us define Yk as a composite variable  wi th  k -- 
1, 2 . . . .  , 2n. For k ---- 1 to n, let Yk -- Re[Z(~k)] ,  and 
for k ~- n -5 1 to 2n, let Yk ---- I m [ Z ( ~ k - n ) ] ,  where 
Re[Z] and Im[Z] are the real and imaginary  measured 
values of Z. Now, define the analytic fitting model for 
impedance a s  Zm(~i, Aj) =- u(~i,Aj) -~ i v ( ~ , A j ) .  The 
actual analytical  separation of the complex Zm function 
into real and imaginary  parts is unnecessary;  only 
numerical  separation by the computer is needed. Thus, 
we let u = Re(Zm) and v - Im(Zm) be either analy t i -  
cal or numerical  real and imaginary  parts of Zm, and 
let Yk ~ u(~k,Aj) for k ---- 1 to n, and Yk -- v(~,k-n, Aj)  
for k ---- n -5 1 to 2n. Fi t t ing of complex data then just  
involves the ordinary, real NLS fitting of the real, 
composite Y~ data (k -- 1 to 2n) to the real, composite 
yl~ model (here made up sequent ia l ly  of the real and 
imaginary  parts of the original complex model).  Notice 
that, unl ike ordinary real NLS, one is using different 
fitting models for the two major  parts of the data. This 
leads to no difficulty in fitting. Since the sum of squares 
which is minimized by the procedure, is for un i ty  
weighting 

S =  - w [ Y ~ - - y ~ ]  2 =  [(•  (• 2] 
k = l  i=l 

where ~Ri and ~Ii are the real and imaginary  fitting 
residuals, it is evident  that we are minimizing the sum 
of squares of the s~ -- [(~R~) 2 -5 (5I~)2] 1/2, t~hemselves 
the distances in  the complex plane between a theo- 
retical point and a measured data point, just  as desired. 
Further,  as we shall i l lustrate  later, weighting of the 
(Yk -- Yk)2 squared residuals may be introduced in the 

usual  way. It is also worth not ing that the NLS pro-  
grams of Ref. (10) and (11) require no analytical  ex-  
pressions for function derivatives, a substant ia l  bless- 
ing when the model expression is complicated. 

The above kind of fitting yields parameter  value 
estimates, estimates of their  uncertainties,  and an  
estimate of the s tandard deviation of fit, sf. If the data 
determine some parameter  values less precisely than 
others, this is immediate ly  obvious. Further ,  sf may  be 
used to discr iminate  between various different possible 
models or equivalent  circuits. We suggest that in  the 
past the absence of such a sf estimate has led to a 
proliferat ion of apparent ly  different equivalent  cir- 
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cults not justified by  the da ta  themselves.  P roper  p ro-  
cedure should genera l ly  involve choosing that  circuit  
or model  which is best  just if ied microscopical ly  and 
which yields a min imum or at least  acceptably  small  sf. 

Experimental  Data:  Fi t t ing and Discussion 
As an example  of complex least  squares fitting, we 

shall  analyze the  da ta  (pr iva te  communicat ion)  of 
Hooper, McGeehin, and Hughes (14) on polycrys ta l l ine  
~-a lumina  wi th  s i lver  electrodes.  The 38~ da ta  con- 
sist of twelve  admi t tance  values  spanning the range 
f rom 1 kHz to 2 MHz. The corresponding impedance  
plane plot  is shown in Fig. 2. Hooper  et al. analyzed 
the i r  da ta  by  the ex t rapo la t ion  method  using a model  
equiva lent  to the  th ree - t ime-cons t an t  u  circuit  
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Fig. 2. Impedance plane plot of data (14) for polycrystolline 
E-alumina at 38~ Experimental points, least squares line. 
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Fig. 3. Possible equivalent circuits for homogeneous and poly- 
crystalline material/electrode systems. 

(5, 6) of Fig. 3a wi th  C1 ---- 0 and R2 = ~ .  Before con- 
s ider ing a model  for least  squares fitt ing and specific 
fitting results,  it  is useful  to discuss the circuits of Fig. 
3 briefly. 

First ,  it  has been  shown using the exact  model  A 
results  that  the  Fig. 3a circuit,  which involves no War -  
burg  elements,  is appropr ia te  for a homogeneous mate -  
r ial  when e i ther  the posi t ive or  the  negat ive  mobile  
species has a much higher  mobi l i ty  than  the other, and 
per t inen t  t ime constants are  separa ted  from each other  
by  factors of a hundred  or more (2, 6). In this loosely 
coupled case, one can then  ident i fy  R1 and C1 with, r e -  
spectively,  R~, the unpe r tu rbed  bu lk  resistance of the  
mater ia l ,  and Cg, its geometr ic  capacitance,  which is, 
per  uni t  area, ~/4~1. Here e is the bu lk  dielectr ic  con- 
stant  and l the e lectrode separat ion.  In  addition, R2 
and C2 may  be identif ied wi th  the electrode react ion 
resistance RR and capaci tance Cm and R8 and Ca wi th  
an adsorpt ion resistance RA and capaci tance CA. It  is 
assumed that  the react ion and adsorpt ion  processes, if 
present ,  involve the high mobi l i ty  sl:ecies wi th  the one 
of opposite charge complete ly  blocked at the electrodes.  
The react ion capaci tance CR is often found to be very  
nea r ly  the double l ayer  capacitance,  Cdl, of two diffuse 
space charge layers  in series, one f rom each electrode 
for ident ical  p lane para l l e l  electrodes.  Some of the pos-  
sibil i t ies fol lowing from the above are summar ized  in 
rows A-D o5 Table I. Note tha t  complete  blocking can 
occur wi th  e i ther  R2 or R3 open circuited.  Recent  work  
(2) has demons t ra ted  that  for  the same h igh  mobi l i ty -  
rat io s i tuat ion discussed above, the circuit  of Fig. 3b 
applies except iona l ly  well  for any  rat ios of the t ime 
constants, i.e., for s trong as wel l  as weak  coupling of 
the phenomena.  It is therefore  p re fe rab le  to tha t  of 
Fig. 3a for homogeneous mater ia l .  Note that  for loose 
coupling both circuits lead to three  distinct,  jo ined 
semicircles when impedance  is p lo t ted  in the complex 
p lane  (1, 6). When  a resistance is infinite, the cor-  
responding semicircle has infinite radius.  

Rows E and F apply  to s i tuat ions invoic ing po ly -  
crys ta l l ine  mate r ia l  be tween  plane,  pa ra l l e l  electrodes. 
I t  is assumed that  the circuit  of Fig. 3a is st i l l  fo rmal ly  
appl icable  for such mater ia l .  The bu lk  proper t ies  of al l  
ind iv idua l  grains or crys ta l l i tes  contr ibute  d i rec t ly  to 
give the over -a l l  effective R.  and Cg. Because of differ-  
ing gra in  sizes and orientat ions,  one often finds, when  
measurements  can be ex tended  to sufficiently high f re -  
quencies, that  the  bu lk  semicircle  in the complex im-  
pedance p lane  is displaced downward  so that  i ts  center  
lies be low the real  axis. The RR, Ca subcircuit ,  if 
present ,  may  again be identified with  e lect rode reac-  
t ion /double  l ayer  effects, averaged  over crystal l i tes  
near  the electrodes.  One f requent ly  finds nea r ly  com- 
plete  blocking again, as in system E. Fa r r ing ton  (15) 
has pointed out that  adsorbed  H20 or He may  be ex-  
pec ted  to reduce the range over  which complete  b lock-  
ing behavior  occurs in Na- f l -a lumina  with  p la t inum 
electrodes. Final ly ,  RGB and CaB are  the over -a l l  gra in  
boundary  resistance and capaci tance associated wi th  
the contacts be tween  al l  ind iv idua l  gra ins .  As usual,  
one expects  R~ cc P, Cg o: l -x,  and RR and CR inde-  
pendent  of l, as expected for  in te r face - re la t ed  quan-  
tities. Exper imen t  often suggests that  RGB CC l x and 

Table I. Identification of the R~, Ci elements of a 6-element 
Voigt circuit for various systems with loose coupling. Rows 

A-D apply for homogeneous material and E and F for 
polycrystalline material. 

Subcircuit  1 Subcireui t  2 Subcircui t  3 
S y ~  
t e m  Rx Cx R~ C2 P~ C~ 

A R | Cg oo Cdl - -  - -  
B R | C~ R a  Ca  ~ Ca l - -  
C R .  C ,  R a  Ca _--~ Cd I ~ CA 
D R .  C~ RR Ca  --~ Call RA Cs 
E R - C~ ~ Ca  RoB Cos 
F R | C, Ra Ca Ros C~B 
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CGB r 1-1, showing these elements to exhibit  bulk  
dependence, as one might  perhaps expect for a large 
n u m b e r  of crystall i tes arranged in a series-parallel  
connection with series connections dominating.  Here 
again, one would expect that  the g ra in -boundary  semi-  
circle in  the impedance plane would be displaced 
downward more often than not because of the dis- 
t r ibuted na ture  of the causes leading to the over-al l  
behavior. Of course, when  a semicircle is displaced, it 
cannot be represented adequately by means of fre-  
quency- independent  elements such as the RGB and CoB 
of rows E and F. A more complicated contr ibut ion to 
the total impedance expression must  then be employed 
[e.g., see Ref. (6)],  but  again one whose parameters  
can best be estimated by complex least squares fitting. 

Some pre l iminary  computer  modeling of the elec- 
trical properties of grains in series has been carried 
out by Armstrong,  Dickinson, and Willis (16). It in -  
volves blocking electrodes, does not  show downward 
displacement of semicircles, and the results appear to 
be representable  by the circuit of row E. Fur ther  dis- 
cussion of grain boundary  and in t ragra in  effects in  
polycrystal l ine p-a lumina  has been presented by Pow- 
ers and Mitoff (17) and by Will (18). Powers and 
Mitoff give an equivalent  circuit which agrees with 
that of row F except with Cg neglected and (implicit ly) 
with li t t le or no electrode blocking effects, so that  
RR ~ 0. Although specific adsorption at an electrode 
has not been incorporated in  the circuits for systems 
E and F, it may sometimes be of importance and may 
even be the dominant  process leading to near ly  com- 
plete blocking behavior. Displaced semicircles and 
nonideal  blocking and Warburg- l ike  behavior  have 
been recent ly reported for polycrystal l ine l i th ium sili- 
cates and aluminosilicates (19). 

The analysis of displaced semicircles and nonideal  
Warburg- l ike  data behavior  in Ref. (19) employs an 
admit tance or impedance funct ion which can be repre-  
sented by an equivalent  circuit with f requency-de-  
pendent  elements. Unfortunately,  this par t icular  ap- 
proach, which corresponds closely to t h a t  of Jonscher  
in  the dielectric area (20), was long ago shown to in -  
volve an impedance funct ion associated with a physi-  
cally nonreal izable  system (21). The par t icular  im-  
pedance functions used in  Ref. (19) and (20) may, 
nevertheless,  be useful empirical  fitting functions if not 
pushed beyond their limits. On the other hand, other, 
somewhat empirical impedance functions have been 
proposed (6) which are associated with physically 
realizable systems, involve f requency-dependent  cir- 
cuit elements, and may be used to represent  displaced 
semicircles and nonideal  Warburg  behavior. Although 
they may be formally interpreted in terms of dis t r ibu-  
tions of relaxat ion times, they are not derived from a 
detailed microscopic theory of system response and, 
like all such semiempirical  approaches, do not allow 
direct in terpre ta t ion of impedance function parameters  
in  terms of specific mater ia l  parameters  such as mo-  
bilities, reaction rates, etc. Unti l  a theory which di- 
rectly leads to nonideal  behavior becomes available, 
circuit e lement  characterization can only be adequately 
carried out for experiments  which yield semicircles 
with l i t t le or no displacement and diffusional response 
close to ideal, f ini te- length Warburg  behavior  (2, 3, 6). 

In  f l-alumina one expects to find many  mobile Na + 
ions moving against  a background of essentially im-  
mobile negative charges. Thus the circuits of Fig. 3 are 
possibly applicable for single crystal mater ia l  and, with 
the interpretat ions  given in  rows E and F of Table I, 
are worth considering for polyerystal l ine mater ial  as 
well. The data of Hooper et al. do not extend to high 
enough frequencies to allow an estimate to be made of 
C1 ~ Cg. It  may be taken in the least squares fitting 
as fixed, indifferently, at 0 or at the value calculated 
from known values of area, e, and l. As mentioned,  
Hooper et al. (implicit ly) took C1 ----- 0, R2 ~ r and 
identified R1 and R~ (but  including a tortuosity factor),  
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C2 with Cdl, and R8 and C3 with ROB and COB, essen- 
t ial ly row E of Table I with C~ =: 0. Since the ROB, CGB 
semicircle in  Fig. 2 is not completely distinct from 
the CR rise at low frequencies, it is not clear that  the 
processes are well enough separated that  the Fig. 3a 
circuit should necessarily be used in  preference to one 
like Fig. 3b in in terpre t ing the data (see la ter  discus- 
sion). Thus, it is of interest  to t ry fitting the data in  
impedance form to both the Fig. 3a circuit and that of 
Fig. 3b. In  the lat ter  case, since e lement  identification 
is uncer ta in  for polycrystal l ine data (especially where 
no experiments  with different ~'s have been carried 
out),  we shall beg the question by let t ing Cg -~ 0, R| 
R1, CR --> C2, RR ~ R2, CA ~ C3, ahd RA --> R3 -~ ~ .  

The Fig. 3 impedance expressions for fitting are then 

Z(~) ---- R~ q- (i~C2)-1 _.}_ [ R J ( 1  + i~R3C3)] [1] 

for Fig. 3a, and 
1 + ioJR2C~ 

Z(~) = R~ + [2] 
(i~) [C~ + C2(1 + ixR2C3) ] 

for Fig. 3b. Fi t t ing results yield sf ---- 15.98~ for both 
fits, carried out with the fixed values C1 -= 0 and with 
R2---- ~ for the first a n d R 3  = ~ for the second. For 
Fig. 3a, one finds R1 : (96.5 _+ 7.1)a2, C2 : (0.07734 ___ 
0.00048)~f, Rz : (248.4 __+ 9.3)~, and C3 ---- (0.0208 ___ 
0.0020)~f. Results for the Fig. 3b circuit were R1 -- 
(96.5 ~ 7.1)s R2 ---- (400.2 • 9.3)~, C2 ---- (0.0164 ___ 
0.0020)#f, and C~ ---- (0.06093 ___ 0.00048)~f. If some of 
the fitting conclusions discussed in  the next  section 
apply to the present  s i tuat ion where different processes 
are not well separated in frequency, the Fig. 3b circuit 
e lement  values may be more meaningfu l  than the Fig. 
3a ones. We shall not, however, pursue this subject  
fur ther  here. 

The solid l ine in Fig. 2 has been drawn from the re-  
sults of these fittings. It is because both circuits can, 
with proper element  choices, represent  the same im-  
pedance at all frequencies, as discussed in the next  
section, that fittings with them yield the same re-  
siduals and sf values. The R, element, which is cer- 
ta inly the bulk  resistance with crystal l i te-or ientat ion 
tortuosity effects included, as stated by Hooper et al., 
leads to a 38~ effective conductivi ty of about 0.00072 
a -1 cm -~ using (private communicat ion)  A ~ 0.44 
cm 2 and 1 ~ 0.3 cm. 

While it seems reasonable to identify the R3 and C~ 
elements of Fig. 3a with ROB and CGB, it iS clear that C~ 
cannot be an ordinary diffuse double layer capacitance. 
Here C~ ~ 0.176 #f/cm 2 on a uni t  electrode area basis, 
a value very much smaller  than would be expected if 
diffuse double layer theory applied to this very high 
Na + concentrat ion situation. But diffuse layer theory 
ignores the finite size of charge carriers and discrete- 
ness of charge effects. Because of these effects there is 
a l imit  to how large the interfacial  capacitance (with-  
out adsorption) can be (2, 22, 23), al though the l imit  is 
much larger than the above value of C2. While it is 
clear that C2 is associated with the blocking character 
of the mater ia l /e lectrode interface, it is not clear from 
the present results whether  it  is an ordinary interface 
capacitance or is associated with pure specific adsorp- 
tion (i.e., RA ~ ~ in Fig. 3b). 

It will  be noted that the low frequency points in  Fig. 
2 do not fall exactly on a vertical line. There are sev- 
eral sources which may lead to such a result, among 
which are surface roughness (16), specific adsorption 
(24), recombinat ion (25), and large (but  not too large) 
differences between the mobilities of mobile positive 
and negative species (1). Although a bet ter  fit of the 
data could be achieved were some of these effects in -  
cluded, possibly with the RGB, COB circuit also replaced 
by one with a distr ibution of t ime constants (6), we 
are here more interested in  demonstra t ing a fitting 
method and discussing the in terpre ta t ion of the results 
than in t rying to find the best model for the phenom-  
ena. In  the next  section, we consider in fur ther  detail 
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some simple fitting models for homogeneous materials  
and in terpre ta t ion of fitting results when synthetic data 
are employed. 

T h e o r e t i c a l  " D a t a : "  F i t t ing  and Discussion 
Theoretical modeL- -Some  useful conclusions about 

fitting approaches and parameter  in terpre ta t ion can be 
developed by consideration and fitting of "data" de- 
rived theoretically from a known model. For present  
purposes it will  be sufficient to use the model A already 
ment ioned in its simplest form: an intr insic s i tuat ion 
where positive and negative chagges have equal va-  
lences, ze, and mobilities, ~e; both are completely 
blocked at the electrodes; and there is no adsorption. 
Then Re (per uni t  area) becomes 1/(eZe~eCi), where ci 
is the common equi l ibr ium value of the positive and 
negative charge concentrations, and the Debye length 
LD reduces to [ekT/8xc~(eze)2] 1/2. It  will be convenient  
to deal with normalized quantities. Let ~D -- R=Cg, the 
dielectric relaxat ion time, a ~- WTD, a normalized fre-  
quency, and M -- I/2LD. Further ,  normalize impedances 
and resistances with R= and capacitances with Cg. Such 
normalizat ion will be denoted by a subscript "N". In  
most exper imental  situations of interest  for small-  

signal impedance measurements,  ~2 ~ 1 and M > >  1. 
For the si tuation defined above, the normalized total 

impedance of the system turns  out to be (1) 

i + i12~, 
ZTN -- -- (I + h2) -i -- [/12(I + i12) 71] -i 

i n (1  + in)7~ 

---- RSN -~ (i~CsN) - I  [3] 

w'here 71 = M(1 + i~) l /2c tnh[M(1 + il2)l/2).The pres-  
ence of (1 + i~) 1/2 and the ctnh funct ion are indica- 
tions of the distr ibuted na ture  of the system, consonant 
with the fact that all real systems are distributed. Their  
presence also means that  no equivalent  circuit made 
up only of f requency- independent  circuit elements can 
represent  the impedance of the system exactly. We 
shall, however, investigate the adequacy of such fre-  
quency- independent  circuit approximations.  Note that 
in  normalized form, the model depends only on the 
single parameter  M. Let us use a subscript zero to de- 
note the l imit  ~2 --> 0. Then one finds (8) that  RSNO : 
1 + {[r -- 2 + { ( M ) c s c h ( M ) } 2 ] / 2 ( r  -- 1) 2 } and CsNo 
= r -- 1, where 710 -- r -- (M)c tnh (M) .  For M > >  1, 
RSNO ~ 1 -~- ( 2 M ) - I  _~ 1. The total low f requency-  
l imit ing normalized parallel  capacitance is CPNO -- 
CSNO + Cg~ ---- r. This result  reduces to just  the or- 
d inary  specific diffuse double layer  capacitance for two 
double layers in series, one near  each of the two iden-  
tical electrodes, Cpo = e/8~LD, for M > >  1. 

Circuits and curves . - -For  the present  system, the cir-  
cuits of Fig: 3a and 3b reduce, respectively, to essen- 
t ial ly those of Fig. 4a and 4c. We shall investigate the 

Z Ci /.,.Ci ~. 

c ! ; - - - l l - -o  = o ~ s 
I 

RI FC2 /~-2R I 
Ca) (b) 

CI 

o L o; 
C2 R2 

(c) 

vCi 
II 

v-ZR2 
(d) 

Fig. 4. Lumped-constant equivalent circuits with equal imped- 
ances when circuit (a) values are used to form # ----- C2/(C1 4- C2) 
and circuit (c) values are employed to form v ~ (Ct ~ C2)/C2. 

applicabili ty of these circuits and the ident i ty  of their  
elements by NLS fitting of exact "data" calculated from 
the Eq. [3] model to the approximate models repre-  
sented by these equivalent  circuits. Although the Fig. 
4a circuit has been widely employed for liquid, and to 
some extent, solid electrolyte situations, it will  prove 
less directly applicable than that  of Fig. 4c for the pres- 
ent homogeneous-mater ia l  situation. Circuits 4a and 4c 
are degenerate forms of more complex equivalent  cir-  
cuits known as Voigt and Maxwell  circuits, respec- 
t ively (5, 6). The equali ty signs in Fig. 4 indicate that 
these circuits may be made to exhibit  exactly the same 
impedance at all frequencies provided element  values 
are chosen appropriately, as shown in the figure. Thus 
for example, the circuit of Fig. 4b will have the same 
impedance as that  of 4a if the 4b element  values are 
related, as shown, to those in  4a through the quant i ty  
#, which involves a ratio of 4a capacitance values. 

Before considering detailed NLS fitting results, it is 
of interest  to examine impedance and admit tance plane 
plots following from Eq. [3]. Thus Fig. 5 and 6 show 
complex impedance and admit tance plane plots of 
ZTN and TY-TN --~ ZTN--1 a s  parametr ic  functions of Q for 
several M values. As is conventional,  we have actually 
p l o t t e d  g I N *  = Re[ZTN] -- iIm[ZTN] in  the (normal-  
ized) impedance plane. The (0,0; 1,1; 0,M) designation 
on the figures specifies completely blocking electrodes, 
equal valence numbers  and mobilities, and no extrinsic 
conduction character. For M > >  102, Fig. 5 shows that  
there is present  a semicircle, which is associated (in 
unnormal ized  form) with the bulk  parameters  Cg and 
R=, and a wel l -dis t inguished vertical  line, associated 

with the double layer  capacitance. When M ~ 10, how- 
ever, the bulk  semicircle and the diffuse layer  l ine be-  
gin to meld together since the frequency ranges where 
they occur approach each other more and more as M 
decreases. Quali tat ively similar behavior  occurs for 
the admit tance plane results, but  the semicircle there 
involves R~ and the double layer  capacitance, and the 
vertical l ine is associated with Cg. 

Were we to use NLS fitting of exact "data" derived 
from Eq. [3] to the Eq. [3] model itself, one would of 
course obtain a fit whose accuracy would be l imited 
only by computer  round-off error, and would also ob- 

' I ' I 
1 . 6 -  

(0,0; 1,1; O,M) 

1 . 2 -  

' IE I 

'--Y Jl 
�9 

R e l Z T N )  

M~=I  

I 

~ M = 0 0  

~ M = I O 0  

o.c ~ I ~ ( I 
0.0 0.4 0.8 1.2 

Fig. 5. Complex impedance plane plot of normalized impedance 
for the (0,0; 1,1; O,M) situation. 
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Fig. 6. Complex admittance plane plot of normalized admittance 
for the (0,0; 1,1; O,M) situation. 

tain a s imilar ly accurate estimate of the single pa ram-  
eter M. In  m a n y  exper imental  situations, however, one 
either does not have a good analytic model for fitting 
or finds that the appropriate analytic model is too com- 
plicated for direct least squares fitting (i.e., model A in  
full general i ty) .  Thus one often finds an equivalent  
circuit approach to be useful. 

Conventional analysis.--Although there is only one 
parameter ,  M, in the ZTN of Eq. [3], there are three 
things which we want  to determine from ZTN(~) as 
accurately as possible. These are the normalized geo- 
metric capacitance and bulk resistance, both uni ty  with 
present  normalization,  and M or r. If they can be well 
determined,  we are assured that a similar procedure 
applied to unnormal ized ZT(~) data wil! yield good 
values of Cg, R~, and CPo. Since there are three distinct 
circuit elements in  the circuits of Fig. 4a and 4c, one 
might  expect that these elements could be related 
ra ther  s imply to Cg, R~, and CPo, which are themselves 
expressed in  terms of microscopic parameters.  Con- 
sider first the usual  extrapolat ion method applied to 
curves l ike those in Fig. 5 and 6. There is clearly no 
problem in  obtaining estimates of Cg, R~, and a fre-  
quency- independent  double layer  capacitance, say Cdl, 
from results such as those in Fig. 5 or 6 when  M > >  
102. Then R~ (here R ~  _~ 1) m a y b e  obtained directly 
from the real-axis  intercept  of the vertical  l ine in Fig. 
5, Ca1 from the capacitative reactance of a point  on the 
line, and Cg from a point  on the semicircle. Similarly, 
in  Fig. 6, G~ (or G| ~- 1 here) occurs at the real axis 
intercept  of the vertical line, Cg may be derived from 
the reactance on the line, and Cdl from a point on the 
admit tance-plane  semicircle. 

Unfortunately~ the si tuation is not so clear for re la-  
t ively small M. Some authors have nevertheless used 
the extrapolat ion to the real axis of the asymptote of a 
curve such as that for M = 3 or 10 in Fig. 5 to obtain 
an estimate for R~. An extrapolat ion of this kind ap- 
pears, for example, in  Ref. (19) .  As Fig. 5 shows, such 
extrapolat ion can yield an R~ estimate incorrect by a 
factor of two or more for the present  situation. In  Fig. 
6, on the other hand, all curves approach the Re(YTN) 

1 l ine asymptotically, but  this is by no means clear 
from that portion of the M ---- 3 curve shown, which 
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might  correspond to as much of an exper imental  curve 
as could be measured convenient ly  in  a specific in -  
stance. 

The determinat ion of R~ from the real axis intercept  
of a vertical l ine associated with completely blocking 
electrode behavior  corresponds to estimating R~ from 
low frequency exper imental  data since the impedance-  
plane vertical line occurs at the lowest frequencies of 
measurement.  Alternat ively,  unl ike  such low frequency 
extrapolation, the determinat ion of G~ from the real 
axis intercept  of a vertical straight l ine in the admit-  
tance plane corresponds to high frequency extrapola-  
tion, and is in keeping with the ~ -> ~ subscript of 
G~, the only conductance one expects t o  remain  sig- 
nificant at sufficiently high frequencies. Similarly,  Cdl 
is estimated by a low frequency extrapolat ion of ZT 
data and Cg by a high frequency extrapolat ion of YT 
data. Although it is indeed much more common in  l iq-  
uid electrolyte work to obtain an R~ estimate from high 
ra ther  than from low frequency extrapolation, Rais- 
trick, Ho, and Huggins (19) have pointed out that  for 
solid electrolytes practical f requency-range  l imitat ions 
often require R~ estimation by low frequency extrapo- 
lat ion (as in Fig. 5) for results obtained at low tem- 
peratures. We shall shortly demonstrate  how such an 
estimate, which may differ appreciably from the true 
R~, may be t ransformed to obtain a much more ap- 
propriate estimate of R~. 

Comparison of the shapes of the Fig. 2 curve for 
B-alumina and that for M -= 3 of Fig. 5 shows c o n -  
siderable likeness. Since we have already seen that  an 
extrapolat ion of the Fig. 5 M = 3 vertical asymptote 
to the real axis yields R~N ~ 0.5 instead of the correct 
uni ty  value, it is reasonable to conclude that in  the 
case of ]~ig. 2, which also displays overlapping of phe- 
nomena, similar extrapolat ion may again lead to con- 
siderable error. Whenever  this error cannot be reduced 
by high frequency extrapolat ion (because such data 
are lacking),  it turns out, nevertheless, that it can be 
reduced by proper interpretat ion.  But,' as we shall see, 
NLS fitting of an appropriate model will always yield 
the most significant estimates of :parameter values. 

NLS analysis.--The theoretical "exact data," calcu- 
lated with double precision on an IBM 370-155 com- 
puter  from Eq. [3] for M : 104, 30, and 3, consisted of 
25 complex ZTN or YTN values and 25 ~ values. The 
values were uni formly  distr ibuted in  log ~ and cov- 
ered 10 -5 ~ ~ ~ 10 for M ---- 104 and 10 -2 -~ ~ ~ 10 
for M = 30 and  3. The data were fitted to the models 
of circuits of Fig. 4a and 4c 

ZTN : [R1N/(1 -~ iaR1NCtN)]+ (i~'~C2N)-1 [4] 
and 

ZTN = [iI2{C1N + C2N(1 ~- /~QR2NC2N) -1}]-1 [5] 

respectively, with double-precision ari thmetic using 
the present  complex NLS method. 

Results of fitting exact ZTN "data" to the Eq. [5] 
model for ZTN are shown in the first l ine of Table  II  
for each M value. The second line presents the results 
of fitting exact YTN ~ ZTN -1 "data" to the YTN follow- 
ing from Eq. [5]. If we identify C1N as an estimator of 
CgN : 1, R2N as the RsNo defined earlier, and C2N as 
CsNo, then the expected values of these quanti t ies are 
as shown in the third l ine for each M choice. It  is evi- 
dent  that these identifications are reasonable. 

The ___ quanti t ies shown in  the table are estimated 
relative s tandard deviations of the parameters.  Had the 
circuit model been exactly appropriate for the data, 
the relat ive s tandard deviations would have arisen only 
from round-off error and would have been of the order 
of 10 -12 or less in  the present  calculations. The larger 
values apparent  here are a measure of the inexactness 
of the circuits employed. The larger  M, clearly the 
better  the lumped-cons tant  approximations are to the 
actual distr ibuted system. If one judged from the oVer- 
all estimated s tandard deviat ion of the fit, sf, one might  
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Table II. Fitting of unweighted (0,0; 1,1; 0,M) "data" to the circuit of Fig. 4c. For each M value: first line 
ZTN fitting; second line YTN = ZTN - z  fitting; third line expected value 

S t a n d a r d  
d e v i a t i o n  

M of fit, sf C1N / ~  C , s  

I0 ~ 6.6 x 10 -7 1.000009 (I • 7.1 x 10 -7) 1.0000498 (I ~- 1.5 x 10 -7) 9.999000 x i0 ~ (I • 5.5 • i0 -~) 
6.0 x 10-8 1.000002 ( 1 -  4.9 x 10 -7) 1.0000457 (1 ~ 1.3 x 10-8) 9.999000 x 103 ( 1 -  6.6 x 10-8) 

1 1.00005 9999 
30 2.9 • 10-* 1.00295 (1"4"2.2 x 10-*) 1.01669 (1-----8.0 X i0 -s) 26.9965 ( 1 +  5.9 X 10 -~ 

2.3 x I0 -a 1.00076 (1 -- 1.5 X 10-*) 1.01396 (1 +--- 5.3 • 10-*) 28.9759 (1 + 1.8 X 10 -s) 
- -  1 1.0166468 29 

3 7.2 x I0-' 1.0128 (I  -~ 7.2 X I0-*) 1.1500 (I-----8.1 X !0-*) 2.0021 (I + 3.6 X i0-') 
9.1 x 10 -8 1.0050 (1-----6.2 X i0 -~) 1.1136 (I---+ 3.4 x 10-8) 1.9818 (1"+'7.9 X 10 4) 

1 1.13603776 2.0149094698 

conclude that  even for M as small  as 3, the lumped-  
constant approximation would be adequate except for 
the most accurate data. One must, however, consider 
the estimated values of the parameters  themselves and 
must  treat  all s tandard deviations shown here with 
caution. Since differences between the exact result  of 
Eq. [3] and the present  circuit models are systematic 
ra ther  than random in nature,  the least squares fitting 
residuals will general ly show systematic behavior and 
will not be randomly  distributed. The s tandard devia-  
tions will then general ly  be poor approximations (usu-  
ally too small) al though their  trends here are certainly 
significant. 

The results of Table II  show that  the circuit of Fig. 
4c is indeed a good approximate model for the present  
system. It is also evident, in accordance with the con- 
clusions of conventional  analysis discussed above, that 
C1N is best estimated from YTN fitting and R2N and C2N 
from ZTN fitting. Al though the differences here are as- 
sociated with systematic errors, it is l ikely that  the 
same conclusions will  apply to exper imental  data 
dominated by random rather  than  systematic errors. 

For M ~ 30, the Table II results show that the pa-  
rameter  estimates are highly accurate. Even the M ---- 3 
results are l ikely to be general ly adequate. But how 
would one proceed to obtain estimates of M, Cg, and 
R~ if these quanti t ies were u n k n o w n  and one were 
analyzing experimental ,  unnormal ized  data? Let us 
consider the worst case here, M = 3, and deal with the 
present results as actually derived from unnormal ized 
data, i.e., that  for which true M, C~, and R~ values are 
3, 1, and 1, respectively, in appropriate units. Assume 
further  that only the ZTN -'> ZT fitting results are avai l -  
able. Then an estimate of r is 1 + (C2/C1) = 1 -}- 
(2.0921/1.0128) ~ 2.9768 and the corresponding M esti- 
mate is 2.9609, in  error by about 1%. The C1 ~- 1.0128 
estimate of Cg is also about 1% in  error. The above 
values of r and M now allow one to calculate RsNo, 
yielding 1.13708 (instead of the correct 1.13604). Then 
an estimate of R| is R~ _~ R2/RsNo -~- 1.15/1.13708 
1.011, again in error by about 1%. Thus, even in  the 

extreme high overlap case of M -- 3, we are able to 
use the circuit Fig. 4c model to obtain desired param-  
eters to about 1%. 

Now what happens if exact gIN "data" is fitted to 
the circuit Fig. 4a model, Eq. [4] ? Some results are 
shown in  Table III. Notice that the sf values are ex- 
actly the same as the corresponding ZTN results in  
Table II, showing that  both circuits can fit the "data" 
to the same degree. But it is evident  that  C1N here is 
an appreciably poorer estimate of CgN -- 1 than the C1N 
of Table II and that RIN, par t icular ly  for small  M, is 
a very poor estimate of either RSNO or R~N ---- 1. On 
the other hand, C2N iS evident ly  a bet ter  estimate of 
C~No ---- r here than is the C2N of Table II of r -- I. 
Finally,  it is grat ifying to note that  when  the pa ram-  
eter estimates of Table III, associated with the Fig. 
4a circuit, are t ransformed (by the relations shown 
in Fig. 4) to parameter  values per ta ining to the Fig. 
4c circuit, one obtains exactly (within round off) the 
values shown in  Table II for all M choices. 

These results and conclusions suggest that  best es- 
t imates of M, Cg, and R| might be obtained using a C1 
estimate obtained from admittance data fitting of the 
Fig. 4c circuit, a Re estimate from impedance fitting of 
the Fig. 4c circuit, and a C2 estimate either from im- 
pedance fitting of the Fig. 4a circuit or by t ransforma-  
t ion of the Fig. 4c impedance fitting results to yield 
a Fig. 4a C2 estimate. For most purposes, however, ZTN 
fitting to the Fig. 4c circuit should be sufficient. 

In the present synthetic data situation, we know for 
the Fig. 4c circuit that CIN, which represents CgN ---- 1, 
should be unity. Table IV presents some results ob- 
tained when C1N is constrained to remain  un i ty  during 
NLS fitting. The first three lines in the table, for un -  
weighted (i.e., unity,  weighted) residuals, show that  
fixing CIN has increased sf values and most of the 
parameter  relative s tandard deviations bu t  has gen-  
erally improved the R2N and C2N estimates appreciably. 
Moral: use a priori informat ion when available. 

In some cases, it may be desirable to carry out NLS 
fitting with weightings different from unity.  Consider 

Table III. Fitting of unweighted (0,0; 1,1; 0,M) ZTN "data" to the circuit of Fig. 4a 

S t a n d a r d  
d e v i a t i o n  

M of fit, s~ C1N R~ Cs~ 

I ~  6.6 x 10 -7 1.0001092 (I • 7.1 x 10 -~) 0.9998498 (I • 1.5 • 10 -7) 
30 2.9 x 10 -t 1.03764 (1+---2.3 • 10 -~) 0.94985 (1-t 7.8 X 10 -~) 

3 7.2 X 10- '  1.5253 (1 - -  1.1 x 10 -8) 0.5071 (1 • 3.6 X 10 -4) 

L00000000 • 10~ (1~--- 5.5 • 10 -s)  
29.9s  ( 1 ~- 5.7 x 10 -~) 

3.01490 ( 1 ~  1.4 x 10 -e)  

Table IV. Fitting of (0,0; 1,1; 0,M) Z T N  "data" to the Fig. 4c circuit with CIN fixed at unity 

W e i g h t i n g  S t a n d a r d  
uncertainty, d e v i a t i o n  

M ~ of fit, sf /G~ C,~ 

lO t 1 1.4 • 10-8 1.0000498 (1 • 3.1 • 10 4) 9.999000 • 10 ~ (1-----1.2 • 10-') 
30 1 6.2 • i0-' 1.0165 (1 ----- 1.6 • IO -~) 28.998 (I  + 1.3 x i0 -~) 
3 1 2.0 x 10 -8 1.135 (I "4- 9.8 x 10 4 )  2.01485 (1 + 5.9 X I0 -5) 

[ x I 1.0 x 10 -~ 1.130 (1 + 2.9 x 10-8) 2.015 (1 ----- 3.6 x 10 -~) 
I X [-I 1.2 X 10-8 1.141 (1 "+" 9.6 X 10 -4) 2.01490 (1 • 1.5 X 10-8) 
I x  I -~ 9.0 x 10 -~ 1.1488 (I • 9.6 x I0 -~) 2.0149093 (I ~-6.9 • 10-8) 
I x I-' 7.7 • i0 "~ 1.149005 ( i  -- 2.4 x i0 -v) 2.014909468 (I • 1.4 x 10 -z~) 
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a da tum value x, say the real or imaginary  part  of an 
impedance. Let ~z be the estimated uncer ta in ty  of a 
given x value. Then the appropriate weighting of the 
squared residual corresponding to this value of x be- 
comes Wx ~- ~x -2. One might  know, for example, that 
small values of x are more uncer ta in  than large values 
because of l imitat ions in resolution of measur ing tech- 
niques, etc. Then, one might take, as a first approxima-  
tion, ~x ---- alx] -1, where a is a constant. Then  w~ 
a-2x 2, and residuals associated with larger x values 
are thus more heavily weighted than those associated 
with smaller  x. The last four lines of Table IV show 
nonun i ty  weighting results for M ---- 3. One notices 
that !x[ weighting is worse than uni ty  weighting and 
that  as weighting progressively emphasizes larger val-  
ues, R2N estimates degrade and C2N ones improve. This 
t rend is not surpris ing since at low 12 values the con- 
t r ibut ion of C2N dominates the expression for ZTN in 
the present  completely blocking situation. Although 
such extreme weighting as ~ ---- Ix[ -4 will be inap-  
propriate for actual exper imental  data, it has here 
allowed us to estimate CSNO correct to eight or n ine  
decimal places. For  exper imental  situations Ixl -'/~, or 
possibly Ix 1-1, weighting may sometimes be useful. 

As we have ment ioned earlier, it is often impossible 
or inconvenient  to carry out impedance measurements  
to sufficiently high frequencies to cover most of the 
bulk-effect semicircle. Here we have indeed done so 
by extending the data to ~ : 10 (~,nax ---- 10/TD). Sep- 
arate fittings with 12max < 10 have shown, in fact, that  
for the present  system, parameter  estimates are im-  
proved if, say,  12max ~ 0.1 ra ther  tha~ 1 or 10. The 
choice 12m~ ---- 0.1 is a high enough (normalized) fre- 
quency that C~N may still be rel iably estimated, but  
it  extends less far into the region where the dis tr ibuted 
na tu re  of the system (not represented by our equiv-  
alent  circuits),  appearing through (1 + /a)'/2, is more 
important .  

In concluding this section, we suggest that in com- 
pletely blocking situations the complex NLS fitting 
of impedance data, extending uP to perhaps ~max ' ~  

(10~D)--1, to the circuit of Fig. 4c is most appropriate 
for general  purpose work. Further ,  several weightings 
different from uni ty  should be tried for the above 
fitting in order to find the weight ing(s)  which yield (s) 
m i n i m u m  estimated s tandard deviations of the several 
parameters  of interest. Even in  nonblocking situations, 
such weighting invest igat ion should often prove useful. 

Effect of length and concentration variation.--The use 
of normalized quantities,  as in  Eq. [3] and Fig. 5 and 
6, is helpful in allowing one to subsume many  pos- 
sible dependencies in  one. Real data are ini t ia l ly  un -  
normalized, however, and it is therefore of interest  
to examine how unnormal ized impedance /admi t tance-  
plane curves corresponding to the normalized curves 
of Fig. 5 and 6 depend on variat ion of such parameters  
as electrode separation length and equi l ibr ium charge 
concentration. 

Let us consider two values of length, l~ and 12, and 
two of concentration, cil and ci2. Then one readily finds 
from the equations and definitions above that for I and 
ci var iat ion alone, M2/M1 -~ (12/11) (c~2/Cil)~/~, and 
R~2/R~ : (12//1)(cii/ci2). Fur ther ,  TD2/TD1 : (19/ l l )  0 
(cJc~e). Since ZT - R ~ Z T N  and YT ---- G ~ Y T N ,  it is 
clear that  R~ and G~ determine the scales of the u n -  
normalized ZT and Yw curves, respectively, following 
from ZT~ and YTN, Thus, unnormal ized  curve size may 
be readily obtained from normalized results when R~ 
or G| is known. But complex plane curves are para-  
metric in frequency. Therefore, it  is desirable to in -  
vestigate how frequency points move their  position 
along unnormal ized  curves as such quanti t ies  as l and 
c~ change. Figures 5 and 6 show two points with nor-  
malized frequency a -- 1 and M12 _-- 1. Their  positions 
do not change much unt i l  M is considerably less than 
100. But  suppose we ask how the ~'s involved in 12 -- 
~ must  change as l and c~ change when we restrict  

Table V. Effects of I and ci variation on pertinent quantities 

V a r i a t i o n  ~ = 1 M ~  = 1 

M2/Mx l~_/Ix c~2/cix R~ =/R| G ~ / G  ~1 w~/wx'  ~e/wx 

I0 I0 1 10 0 . i  1 0.I 
1 1O ~ 10 4 I0 e 19 ~ 1O 

1011 ~ I0 i0-~I '~ 10J/2 10 1 
1 0 . I  i0  ~ I0 -a I0 ~ I0 ~ I0 ~ 

I0 i 0  -'~ I0 a i 0  -~ I0 -~ i 0  -~ 

at tent ion to the same two points 12 ----- 1 and M12 _-- 1 
of Pig. 5 and 6. One easily obtains for 12 ---- 1 the 
relation ~2/~1 : (ll/12)O(ci2/cil), and for M12 -- 1 
the result w2/~i ---- (11/12) (c~2/Cil)v2. 

The above relations have been employed to calcu- 
late the specific results of Table V. It shows the ef- 
fects of various I and c~ variations which produce M2/ 
MI ---- I0 and 1. We see, for example, that a 10 times 
increase in I with no change in ci yields unnormalized 
impedance plane curves 10 times larger than the nor- 
malized ones. No change occurs in the w corresponding 
to 12 ---- 1, but  that corresponding to M12 ~ 1 occurs 
at one- ten th  the frequency found for the original 
length. The ~, f requency scale is thus not shifted un i -  
formly by a change of length. On the other hand, when 
I and c~ change in such a way that M remains the same, 
the results of the bottom two lines in  the table show 
that the frequency scale is then uni formly  expanded 
or contracted. 
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The Kinetics of the Magnesium Electrode in 
Thionyl Chloride Solutions 

E. Peled ~ and H. Straze 

Institute of Chemistry, Tel Aviv University, Ramat Aviv, Te~ Aviv, Israel 

ABSTRACT 

The electrochemical behavior of the magnesium electrode in thionyl  chlo- 
ride (TC) solutions was studied. It was found that this electrode is covered 
by a passivating layer  which consists of some insoluble magnesium salt, prob-  
ably MgCle. The properties of this layer  determine the chemical and electro- 
chemical behavior of the electrode in  TC solutions. Magnesium was deposited 
on a nickel cathode from TC solutions containing Mg(FeC14)2. Magnesium 
deposition begins after the nickel cathode is covered by a passivating layer  
(consisting of reduction products of TC) in  which t~g2+ N 1. It  was concluded 
that the rds for the deposit ion-dissolution process of the magnesium electrode 
in  TC solutions is not the e lectron-t ransfer  reaction, but  is instead the migra-  
t ion of the  Mg 2+ ions through a passivating layer  which covers the electrode. 

There has been no report in the l i terature of kinetics 
of the deposit ion-dissolution process for solid mag-  
nesium metal  in nonaqueous solutions. However, many  
papers have been published in the last fifteen years 
on the kinetics of alkali  metals in these media. The 
reason for this is that magnes ium is a much more 
difficult metal  to electrodeposit than are the alkali  met-  
als. Most of the at tempts to electrodeposit magnesium 
from nonaqueous solutions have been unsuccessful (1). 

The only system in which the electrodeposition of 
magnesium is feasible is that of Grignard reagents with 
the addition of boranes in ether solutions (2). 

The electrode kinetics of the alkali  metals in  prop- 
ylene carbonate, dimethyl  sulfoxide, and dimethyl  sul-  
fide is reviewed in Ref. (3-6). Most of the investiga- 
tions deal with the electrochemical behavior of the 
l i th ium electrode. It was found (3-6) that: (i) l i th ium 
metal  is chemically stable in these solutions, (it) film 
formation on the electrode has been detected, (iii) 
trace amounts  of water  induce film formation, and (iv) 
the reaction Li + W e(M) ~ Li has a high exchange 
current  density (1-10 mA cm-2) .  

The ra te -de te rmin ing  step (rds) of the deposition- 
dissolution process for solid alkali metals was assumed 
to be the e lect ron- t ransfer  reaction: M + ~ e (M) ~ M ~ 
with a t ransfer  coefficient (a) of 0.5-0.8 (3-6). Dey (7) 
indicated that  in propylene carbonate solutions the 
l i th ium electrode is covered by a passive film (prob- 
ably Li2CO3) which is formed by the reaction be tween 
l i th ium and propylene carbonate. He concluded that  
this film should be a purely  ionic conductor with the 
Li + being the sole conducting species (tni+ : 1) (7). 
The same conclusion was d rawn (8) for l i th ium elec- 
trode in thionyl  chloride solutions. 

In  this paper the electrochemical behavior  of solid 
magnesium electrode in thionyl  chloride solution w a s  
studied. It  was found that the rds of the deposition- 
dissolution process for magnes ium metal  in thiony! 
chloride (TC) solution is not the e lectron-t ransfer  re-  
action but  is the migrat ion of the magnesium ions 
through a passivating layer  which covers the electrode. 

* Electrochemical Society Active Member. 
Key words: passivating layer, magnesium eleetrodeposition, in- 

organic battery. 

Experimental 
The cell and the electrodes are shown in Fig. 1. The 

three electrodes were made from magnes ium r ibbon 
BDH 99.9%, 0.4 mm thick and 3 m m  wide. The work-  
ing and reference electrodes were parallel  to each 
other and about 5 mm apart. They had an area of 1.4- 
2.5 cm 2. Each electrode was connected by a stainless 
steel connector to a tungsten rod sealed in the glass 
cap. The cell was sealed by a Viton O-ring. Connec- 
tion to the vacuum line was made through a Jobling 
"Rotaflo" valve. The magnes ium electrodes were 

Fig. 1. The electrochemical cell. I ,  Cell cap; 2, tungsten wires; 
3, Viton O-ring; 4, stainless steel connectors; 5, working elec- 
trode; 6, counterelectrode; 7, reference electrode; 8, "Rotaflo" 
valve; 9, connection to vacuum line. 




