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ABSTRACT

Some problems of analyzing small-signal impedance data on solids or
liquids are discussed. A method of using ordinary nonlinear least squares
fitting procedures with minor modification to fit at the same time real and
imaginary functions of the same set of unknown parameters to complex
data is described in detail. This method of complex least squares fitting, which
has several advantages over previous approaches, is illustrated by fitting
equivalent circuit impedances to some polycrystalline g-alumina impedance
data and to synthetic impedance and admittance data calculated from a theo-
retical model of the response of homogeneous material with completely
blocking electrodes. When different physical processes yield response in over-
lapping frequency regions so that the different processes lead to some melding
of effects in an impedance plane representation, interpretation of equivalent
circuit parameters becomes difficult even when the degree of fit of the model
to the data is excellent. In particular, low frequency extrapolation in the im-
pedance plane to obtain an estimate of bulk resistance, R,, in an overlapping
completely blocking situation can yield estimates of R, with very large errors.
A method is described of avoiding such errors for both conventional and
complex least squares estimation. In essence, one must find and fit the unique
equivalent circuit whose elements remain related by invariant formulas to
underlying microscopic parameters of the material/electrode system no matter
what the degree of phenomena overlap.
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Small-signal a~-c impedance measurements are gain-
ing in popularity as a technique for characterizing liq-
uid and solid electrolytes and other materials. Analysis
of small-signal data can almost always yield estimates
of bulk conductivity of new materials free from the
electrode polarization effects which plague steady-state
d-¢ measurements. Under favorable conditions, de-
tailed analysis of impedance data for homogeneous
materials in terms of an appropriate model of the elec-
trode/material system can also yield accurate estimates
of microscopic parameters: mobilities, dielectric con-
stant, electrode reaction rate constants, etc, which
characterize interface and bulk behavior of the system
(1-3). Even for polycrystalline materials, such as the
usual form of the superionic conductor B-alumina,
proper analysis may lead to valuable information
about electrode reactions and intergrain and intragrain
properties.

In order to carry out a meaningful analysis of imped-
ance or admittance data, one must compare them with
an analyti¢ expression for the measured quantity, a
function of frequency which ~generally depends on
several frequency-independent parameters. Optimum
characterization of the system requires that one be able
to relate the gross parameters of the analytical fitting
model to the microscopic parameters of interest. Some-
times, however, in the absence of a sufficiently detailed
model one must be satisfied, at least for a while, with
estimates of the gross parameter values, since they,
and the form of the impedance expression, at least
provide a concise means of representing the data. The
dependence of the gross parameters, determined from
several data sets, on experimental variables such as
temperature may then lead to valuable insights.

It is conventional, and very desirable when possible,
to approximate the analytical model of the system by
an equivalent electrical circuit, preferably one which
offers a useful compromise between simplicity and ac-
curacy. It is desirable, for instance, that the equivalent
circuit include-as few frequency-dependent elements,
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such as Warburg (diffusion) impedances (1, 3), as pos-
sible. Although the basic analysis method described
and illustrated herein does not require equivalent cir-
cuit representation, but only an analytical expression
of the model, equivalent circuits can often clarify
model behavior by clearly identifying separate phe-
nomena which may be significant in quite different
frequency ranges. Thus, most of the subsequent anal-
ysis herein will employ equivalent circuit representa-
tion. Figure 1 is a diagram which illustrates some of
the important elements in the characterization process.

Once one has obtained impedance-frequency data.
there are three reasonable things one can do. One can
plot the impedance, Z, and/or admittance, Y, as a para-
metric function of frequency in the complex plane
(e.g., Re(Z) along the abscissa and —Im(Z) along the
ordinate axis); one can analyze the data to obtain gross
and possibly even microscopic parameters; and one can
convert the data to a complex effective dielectric con-
stant, e*efr, and consider its frequency dependence, loss
tangent, and high and low frequency limiting values.
The first two approaches are often desirable; the third
may not be. Whenever a system involves inhomo-
geneities and phase boundaries (e.g., homogeneous ma-
terial and electrodes or polycrystalline material with
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Fig. 1. Block diagram of possible system characterization ele-
ments and interactions.
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or without electrodes), there is a good possibility that
these inhomogeneities and phase boundaries may con-
tribute appreciably to the small-signal electrical re-
sponse of the system. The derivation of an effective
dielectric constant for the whole system is then un-
desirable since dielectric constant is properly defined
in terms of an average over a possibly small but mac-
roscopic region of a homogeneous material. Thus, the
derivation of a complex dielectric constant and con-
struction of the corresponding Cole-Cole (4) plot is
appropriate for a dipolar dielectric with no mobile
charge and thus no. electrode space-charge or reaction
effects, but both are inappropriate when mobile charge
is present and electrode and/or grain boundary proc-
esses may be important. In this latter case, however,
it has been found that plotting the analog of the Cole-
Cole diagram, the impedance and/or possibly the ad-
mittance, in the complex plane is almost always in-
structive and useful (1, 3,5, 6).

Perhaps the most subtle and difficult aspect of im-
pedance data analysis is the development of an ade-
quate analytical model. Some aspects of the general
problem of discriminating between several models (i.e.,
picking the most appropriate one) have been discussed
elsewhere (7). One possible model (to be denoted
model A) which may be appropriate for the small-
signal response over a considerable range of conditions
is based on the exact solution of the appropriate
transport, continuity, and boundary-condition equa-
tions for instrinsic-extrinsic conduction and possible
electrode reactions and adsorption (2, 8). It is particu-
larly pertinent for conduction by ions and/or vacancies
and interstitials. Some of its predictions for a simple
situation are used later in this work to illustrate the
analysis method described herein and to demonstrate
some pitfalls in interpretation.

The present paper deals primarily with data analysis
when an analytical model is available, rather than
with the much more difficult problem of finding the
best model. Given the model (expressed, say, as an
equivalent circuit), how can one best find meaningful
estimates of its parameters? One approach, recently
employed by de Levie and Vukadin (9), involves a
sequence of extrapolations and subtractions. As these
authors point out, however, the extrapolation-subtrac-
tion method inevitably tends to accumulate (estima-
tion) errors in the last-determined parameters, and it
yields no estimates of parameter or fitting uncertain-
ties. It would, therefore, be valuable to have a method
that avoids these weaknesses. Such a method is de-
scribed and illustrated below.

Complex Least Squares

When an analytic expression of a model is available,
whether expressed in equivalent circuit form or not, it
seems natural to consider least squares fitting of the
impedance or admittance data to the impedance or
admittance of the selected model in order to obtain
estimates of the model parameter values. Several good
nonlinear least squares (NLS) computer programs are
availabe which allow fitting of real data to the model
y = f(x), with or without weighting of Y; measured
values. Some generalized NLS programs also allow
weighting of X; data values as well (10, 11). Impedance
data and analytic expressions are of the form Z(w) =
Re[Z] + iIm(Z) = u(w) + iv(w). Clearly, u(w) and
v (w) will be different functions of » but will generally
both involve some or all of the same parameters. When
complex data have been fitted by least squares in the
past, the real u(vw) and v(e) functions have usually
been fitted separately using Re(Z) and Im(Z) data,
respectively. The result of the two independent fit-
tings is then two separate sets of different parameter
value estimates.

Although the above type of fitting may be useful, it
is not a simultaneous (consistent) least squares fitting
of all the data, yielding one set of parameter estimates
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determined by all the available data taken together.
Therefore, it is desirable to fit the real and imaginary
parts of measured impedance to the analytical form of
a model or circuit simultaneously. The only published
approach of this kind known to the authors is that of
Sheppard, Jordan, and Grant (12,13). We have found,
however, that the readily available generalized NLS
fitting programs of Powell and Macdonald (10) and
Britt and Luecke (11) may be modified very simply to
allow fitting of complex data to complex functions.
These modified programs seem preferable to the ap-
proach outlined by Sheppard (13).

To do complex least squares fitting with the above
programs it is unnecessary to use the full theoretical
analysis of Britt and Luecke, which involves an arbi-
trary number of different variables, any of which can
be weighted, and which has not been embodied in an
actual computer program in complete generality. For
typical impedance or admittance data, the measured
real and imaginary parts are generally uncertain, and
the individual data values may need weighting to ob-
tain the most significant statistical parameter estimates.
But the frequency, f or w, is generally measured so ac-
curately that its uncertanities are negligible. It can
then be identified with the x variable, assumed known
exactly, in y = f(x) real NLS fitting. Now fitting of
complex data, Z(«), can be simply reduced, as follows,
to real fitting of the usual y; = f(x) = f(w,4;) model
form. Here i = 1, 2, ..., n designates the n complex
(double-valued) data points and the n real frequencies,

and j = 1, 2, ..., m denotes the m real parameters, A;.
Let us define y, as a composite variable with k =
1, 2,...,2n For k = 1ton, let Y = Re[Z(w)], and

for k = n 4+ 1 to 2n, let Yy, = Im[Z (wx—n)], Where
Re[Z] and Im[Z] are the real and imaginary measured
values of Z. Now, define the analytic fitting model for
impedance as. Zp (0345 = u(w,d;) + w(epd;). The
actual analytical separation of the complex Z;, function
into real and imaginary parts is unnecessary; only
numerical separation by the computer is needed. Thus,
we let u = Re(Z,,) and v = Im(Z,,) be either analyti-
cal or numerical real and imaginary parts of Z,, and
let yx = u(wr,d;) for k = 1 to n, and yx = v (wk—nd;)
for k = n + 1 to 2n. Fitting of complex data then just
involves the ordinary, real NLS fitting of the real,
composite Y data (k = 1 to 2n) to the real, composite
yr model (here made up sequentially of the real and
imaginary parts of the original complex model). Notice
that, unlike ordinary real NLS, one is using different
fitting models for the two major parts of the data. This
leads to no difficulty in fitting. Since the sum of squares
which is minimized by the procedure, is for unity
weighting

2n n
S = 2 [V — w2 = 2 [(aRy)2 + (aL)?]
k=1 i=1

where AR; and Al; are the real and imaginary fitting
residuals, it is evident that we are minimizing the sum
of squares of the s; = [(aR;)2 + (aI;)?2]'/2, themselves
the distances in the complex plane between a theo-
retical point and a measured data point, just as desired.
Further, as we shall illustrate later, weighting of the
(Y — 9r)? squared residuals may be introduced in the
usual way. It is also worth noting that the NLS pro-
grams of Ref. (10) and (11) require no analytical ex-
pressions for function derivatives, a substantial bless-
ing when the model expression is complicated.

The above kind of fitting yields parameter value
estimates, estimates of their uncertainties, and an
estimate of the standard deviation of fit, s;. If the data
determine some parameter values less precisely than
others, this is immediately obvious. Further, sf may be
used to discriminate between various different possible
models or equivalent circuits. We suggest that in the
past the absence of such a s¢ estimate has led to a
proliferation of apparently different equivalent cir-
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cuits not justified by the data themselves. Proper pro-
cedure should generally involve choosing that circuit
or model which is best justified microscopically and
which yields a minimum or at least acceptably small s¢.

Experimental Data: Fitting and Discussion

As an example of complex least squares fitting, we
shall analyze the data (private communication) of
Hooper, McGeehin, and Hughes (14) on polycrystalline
g-alumina with silver electrodes. The 38°C data con-
sist of twelve admittance values spanning the range
from 1 kHz to 2 MHz. The corresponding impedance
plane plot is shown in Fig. 2. Hooper et al. analyzed
their data by the extrapolation method using a model
equivalent to the three-time-constant Voigt circuit
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Fig. 2. Impedance plane plot of data (14) for polycrystalline
B-aluming at 38°C. Experimental points, least squares line.
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Fig. 3. Possible equivalent circuits for homogencous and poly-
crystalline material/electrode systems.
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(5,6) of Fig. 3a with C; = 0 and R = «. Before con-
sidering a model for least squares fitting and specific
fitting results, it is useful to discuss the circuits of Fig.
3 briefly.

First, it has been shown using the exact model A
results that the Fig. 3a circuit, which involves no War-
burg elements, is appropriate for a homogeneous mate-
rial when either the positive or the negative mobile
species has a much higher mobility than the other, and
pertinent time constants are separated from each other
by factors of a hundred or more (2, 6). In this loosely
coupled case, one can then identify Ry and Cy with, re-
spectively, R,, the unperturbed bulk resistance of the
material, and C,, its geometric capacitance, which is,
per unit area, ¢/4nl. Here ¢ is the bulk dielectric con-
stant and 1 the electrode separation. In addition, Rg
and C; may be identified with the electrode reaction
resistance Ry and capacitance Cg, and R3 and Cs with
an adsorption resistance Rx and capacitance Ca. It is
assumed that the reaction and adsorption processes, if
present, involve the high mobility species with the one
of opposite charge completely blocked at the electrodes.
The reaction capacitance Cg is often found to be very
nearly the double layer capacitance, Cqi, of two diffuse
space charge layers in series, one from each electrode
for identical plane parallel electrodes. Some of the pos-
sibilities following from the above are summarized in
rows A-D of Table I. Note that complete blocking can
occur with either Ry or Rz open circuited. Recent work
(2) has demonstrated that for the same high mobility-
ratio situation discussed above, the circuit of Fig. 3b
applies exceptionally well for any ratios of the time
constants, i.e., for strong as well as weak coupling of
the phenomena. It is therefore preferable to that of
Fig. 3a for homogeneous material. Note that for loose
coupling both circuits lead to three distinct, joined
semicircles when impedance is plotted in the complex
plane (1,6). When a resistance is infinite, the cor-~
responding semicircle has infinite radius.

Rows E and F apply to situations involving poly-
crystalline material between plane, parallel electrodes.
It is assumed that the circuit of Fig. 3a is still formally
applicable for such material. The bulk properties of all
individual grains or crystallites contribute directly to
give the over-all effective R, and Cg. Because of differ~
ing grain sizes and orientations, one often finds, when
measurements can be extended to sufficiently high fre-
quencies, that the bulk semicircle in the complex im-~
pedance plane is displaced downward so that its center
lies below the real axis, The Rgr, Cr subcircuit, if
present, may again be identified with electrode reac-
tion/double layer effects, averaged over crystallites
near the electrodes. One frequently finds nearly com-
plete blocking again, as in system E. Farrington (15)
has pointed out that adsorbed H2O or Hy may be ex-

pected to reduce the range over which complete block~

ing behavior occurs in Na-g-alumina with platinum
electrodes. Finally, Rgs and Cgp are the over-all grain
boundary resistance and capacitance associated with
the contacts between all individual grains. As usual,
one expects R, « 1}, Cg « 171, and Ry and Cg inde-
pendent of I, as expected for interface-related quan-
tities. Experiment often suggests that Rgs o« I and

Table I. Identification of the R;, C; elements of a 6-element
Voigt circuit for various systems with loose coupling. Rows
A-D apply for homogeneous material and E and F for
polycrystalline material.

Subeircuit 1 Subcircuit 2 Subcireuit 3

Sys-

tem R: Ci Ry C2 Ry Cs
A Rwo Cg 0 Ca1 — —
B Re Ce Rz Cr=Ca — —_
[o] Rw Ce Rr Crz=Ca1 ) Ca
D Rw Ce Rg Cr == Ca Ra Ca
E Re Ce @ Cr Rgp Cen
F Rw Ce Re Cr Rgn Cog
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Cgs « 1~1, showing these elements to exhibit bulk
dependence, as one might perhaps expect for a large
number of crystallites arranged in a series-parallel
connection with series connections dominating. Here
again, one would expect that the grain-boundary semi-
circle in the impedance plane would be displaced
downward more often than not because of the dis-
tributed nature of the causes leading to the over-all
behavior. Of course, when a semicircle is displaced, it
cannot be represented adequately by means of fre-
quency-independent elements such as the Rgp and Cgs
of rows E and F. A more complicated contribution to
the total impedance expression must then be employed
[e.g., see Ref. (6)], but again one whose parameters
can best be estimated by complex least squares fitting.

Some preliminary computer modeling of the elec-
trical properties of grains in series has been carried
out by Armstrong, Dickinson, and Willis (16). It in-
volves blocking electrodes, does not show downward
displacement of semicircles, and the results appear to
be representable by the circuit of row E. Further dis-
cussion of grain boundary and intragrain effects in
polycrystalline g-alumina has been presented by Pow-
ers and Mitoff (17) and by Will (18). Powers and
Mitoff give an equivalent circuit which agrees with
that of row F except with Cg neglected and (implicitly)
with little or no electrode blocking effects, so that
Rr ~ 0. Although specific adsorption at an electrode
has not been incorporated in the circuits for systems
E and F, it may sometimes be of importance and may
even be the dominant process leading to nearly com-
plete blocking behavior. Displaced semicircles and
nonideal blocking and Warburg-like behavior have
been recently reported for polycrystalline lithium sili-
cates and aluminosilicates (19).

The analysis of displaced semicircles and nonideal
Warburg-like data behavior in Ref. (19) employs an
admittance or impedance function which can be repre-
sented by an equivalent circuit with frequency-de-
pendent elements. Unfortunately, this particular ap-
proach, which corresponds closely to that of Jonscher
in the dielectric area (20), was long ago shown to in-
volve an impedance function associated with a physi-
cally nonrealizable system (21). The particular im-
pedance functions used in Ref. (19) and (20) may,
nevertheless, be useful empirical fitting functions if not
pushed beyond their limits. On the other hand, other,
somewhat empirical impedance functions have been
proposed (6) which are associated with physically
realizable systems, involve frequency-dependent cir-
cuit elements, and may be used to represent displaced
semicircles and nonideal Warburg behavior. Although
they may be formally interpreted in terms of distribu-
tions of relaxation times, they are not derived from a
detailed microscopic theory of system response and,
like all such semiempirical approaches, do not allow
direct interpretation of impedance function parameters
in terms of specific material parameters such as mo-
bilities, reaction rates, ete. Until a theory which di-
rectly leads to nonideal behavior becomes available,
circuit element characterization can only be adequately
carried out for experiments which yield semicircles
with little or no displacement and diffusional response
close to ideal, finite-length Warburg behavior (2, 3, 6).

In g-alumina one expects to find many mobile Na+
ions moving against a background of essentially im-
mobile negative charges. Thus the circuits of Fig. 3 are
possibly applicable for single crystal material and, with
the interpretations given in rows E and F of Table I,
are worth considering for polycrystalline material as
well. The data of Hooper et al. do not extend to high
enough frequencies to allow an estimate to be made of
C;i == Cg It may be taken in the least squares fitting
as fixed, indifferently, at 0 or at the value calculated
from known values of area, ¢ and I. As mentioned,
Hooper et al. (implicitly) took C; = 0, Rs = 0, and
identified Ry and R, (but including a tortuosity factor),
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Cy with Cq, and Rz and Cs with Rge and Cgs, essen-
tially row E of Table I with C; = 0. Since the Rgs, Cgn
semicircle in Fig. 2 is not completely distinct from
the Cg rise at low frequencies, it is not clear that the
processes are well enough separated that the Fig. 3a
circuit should necessarily be used in preference to one
like Fig. 3b in interpreting the data (see later discus-
sion). Thus, it is of interest to try fitting the data in
impedance form to both the Fig. 3a circuit and that of
Fig. 3b. In the latter case, since element identification
is uncertain for polycrystalline data (especially where
no experiments with different s have been carried
out), we shall beg the question by letting Cy~ 0, R, -
R, Cr— C2, RrR— Ry, Cp~ C3, and Ra - Rz = .
The Fig. 3 impedance expressions for fitting are then

Z(w) = Ry 4 (iwC2) 71 4+ [Rs/(1 4+ iwR3C3)] [1]

for Fig. 3a, and
1 4+ iwR2C3
Z(w) =R : 2
@ =Rkt G T oy ey

for Fig. 3b. Fitting results yield s = 15.98Q for both
fits, carried out with the fixed values C; = 0 and with
Ry = oo for the first and Rs = oo for the second. For
Fig. 3a, one finds By =— (96.5 = 7.1)Q, Ca = (0.07734 =
0.00048) «f, Ra = (2484 = 9.3)Q, and C3 = (0.0208 =+
0.0020) pf. Results for the Fig. 3b circuit were Ry =
(96.5 = 7.1)Q, Ry = (400.2 = 9.3)0, Cs = (0.0164 =+
0.0020) uf, and C; = (0.06093 -+ 0.00048) uf. If some of
the fitting conclusions discussed in the next section
apply to the present situation where different processes
are not well separated in frequency, the Fig. 3b circuit
element values may be more meaningful than the Fig,
3a ones. We shall nof, however, pursue this subject
further here.

The solid line in Fig. 2 has been drawn from the re-
sults of these fittings. It is because both circuits can,
with proper element choices, represent the same im-
pedance at all frequencies, as discussed in the next
section, that fittings with them yield the same re-
siduals and s¢ values. The R; element, which is cer-
tainly the bulk resistance with crystallite-orientation
tortuosity effects included, as stated by Hooper et al.,
leads to a 38°C effective conductivity of about 0.00072
Q1 em~! using (private communication) -4 =< 0.44
cem? and 1 == 0.3 em.

While it seems reasonable to identify the Rz and Cj3
elements of Fig. 3a with Rgs and Cgp, it is clear that Cq
cannot be an ordinary diffuse double layer capacitance.
Here Cp ~ 0.176 uf/cm? on a unit electrode area basis,
a value very much smaller than would be expected if
diffuse double layer theory applied to this very high
Na+t concentration situation. But diffuse layer theory
ignores the finite size of charge carriers and discrete-
ness of charge effects. Because of these effects there is
a limit to how large the interfacial capacitance (with-
out adsorption) can be (2, 22, 23), although the limit is
much larger than the above value of C.. While it is
clear that Cq is associated with the blocking character
of the material/electrode interface, it is not clear from
the present results whether it is an ordinary interface
capacitance or is associated with pure specific adsorp-
tion (i.e., Ry ~ co in Fig. 3b).

It will be noted that the low frequency points in Fig.
2 do not fall exactly on a vertical line. There are sev-
eral sources which may lead to such a result, among
which are surface roughness (16), specific adsorption
(24), recombination (25), and large (but not too large)
differences between the mobilities of mobile positive
and negative species (1). Although a better fit of the
data could be achieved were some of these effects in-
cluded, possibly with the Rgg, Cep circuit also replaced
by one with a distribution of time constants (6), we
are here more interested in demonstrating a fitting
method and discussing the interpretation of the results
than in trying to find the best model for the phenom-
ena. In the next section, we consider in further detail
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some simple fitting models for homogeneous materials
and interpretation of fitting results when synthetic data
are employed.

Theoretical “Data:” Fitting and Discussion

Theoretical model.—Some useful conclusions about
fitting approaches and parameter interpretation can be
developed by consideration and fitting of “data” de-
rived theoretically from a known model. For present
purposes it will be sufficient to use the model A already
mentioned in its simplest form: an intrinsic situation
where positive and negative charges have equal va-
lences, ze, and mobilities, wu.; both are completely
blocked at the electrodes; and there is no adsorption.
Then R, (per unit area) becomes 1/ (ezeucci), where c;
is the common equilibrium value of the positive and
negative charge concentrations, and the Debye length
Ly reduces to [ekT/8nc;(eze)2]1/2. It will be convenient
to deal with normalized quantities. Let vp = R,Cg, the
dielectric relaxation time, 0 = wtp, a normalized fre-
quency, and M = 1/2Lp. Further, normalize impedances
and resistances with R, and capacitances with Cg. Such
normalization will be denoted by a subscript “N”. In
most experimental situations of interest for small-

signal impedance measurements, Q “land M >> 1.
<

For the situation défined above, the normalized total
impedance of the system turns out to be (1)

1+4i0
Zon = — M (1 4 ig) 1 — i 4 in)yi] !
i0(1 4+ i)
= Rgn + (iQCgn) 71 [31

where v = M(1 4+ iQ)2¢tnh[M (1 4 iQ)1/2).The pres-
ence of (1 4+ i1Q)1/2 and the ctnh function are indica-
tions of the distributed nature of the system, consonant
with the fact that all real systems are distributed. Their
presence also means that no equivalent circuit made
up only of frequency-independent circuit elements can
represent the impedance of the system exactly. We
shall, however, investigate the adequacy of such fre-
quency-independent circuit approximations. Note that
in normalized form, the model depends only on the
single parameter M. Let us use a subscript zero to de-
note the limit © — 0. Then one finds (8) that Rsno =
14+ {[r — 2 4+ {(M)esch(M)}2]/2(r — 1)2} and Csno
=1 — 1, where yio = r = (M)ctnh(M). For M >> 1,
Rgno = 1 4 (2M) ! ~ 1. The total low frequency-
limiting normalized parallel capacitance is Cpno =
Csno + Cen = 7. This result reduces to just the or-
dinary specific diffuse double layer capacitance for two
double layers in series, one near each of the two iden-
tical electrodes, Cpo = ¢/8aLp, for M >> 1.

Circuits and curves.—For the present system, the cir-
cuits of Fig: 3a and 3b reduce, respectively, to essen-
tially those of Fig. 4a and 4c. We shall investigate the

Ci p#Ci
—— —A—
R uCz KR
(a) (b)
(o vC
i — (C1+Ca)
o—— $—0 = o
o _2
Cz R2 1 4 R2
(c) (d)

Fig. 4. Lumped-constant equivalent circuits with equal imped.
ances when circuit (a) values are used to form u = Cy/(Cy - Co)
and circuit (c) values are employed to form » = (Cy -+ C2)/Ca.

J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY

July 1977

applicability of these circuits and the identity of their
elements by NLS fitting of exact “data” calculated from
the Eg. [3] model to the approximate models repre-~
sented by these equivalent circuits. Although the Fig.
4a circuit has been widely employed for liquid, and to
some extent, solid electrolyte situations, it will prove
less directly applicable than that of Fig. 4c for the pres-
ent homogeneous-material situation. Circuits 4a and 4c¢
are degenerate forms of more complex equivalent cir-
cuits known as Voigt and Maxwell circuits, respec-
tively (5, 6). The equality signs in Fig. 4 indicate that
these cireuits may be made to exhibit exactly the same
impedance at all frequencies provided element values
are chosen appropriately, as shown in the figure. Thus
for example, the circuit of Fig. 4b will have the same
impedance as that of 4a if the 4b element values are
related, as shown, to those in 4a through the quantity
1, which involves a ratio of 4a capacitance values.

Before considering detailed NLS fitting results, it is
of interest to examine impedance and admittance plane
plots following from Eg. [3]. Thus Fig. 5 and 6 show
complex impedance and admittance plane plots of
Zyy and Yrn = Zon~! as parametric functions of Q for
several M values. As is conventional, we have actually
plotted Zrn* = Re[Zrn] — iIm[Zpx] in the (normal-
ized) impedance plane. The (0,0; 1,1; 0,M) designation
on the figures specifies completely blocking electrodes,
equal valence numbers and mobilities, and no extrinsic
conduction character. For M >> 102, Fig. 5 shows that
there is present a semicircle, which is associated (in
unnormalized form) with the bulk parameters C; and
R, and a well-distinguished vertical line, associated

with the double layer capacitance. When M g 10, how-

ever, the bulk semicircle and the diffuse layer line be-
gin to meld together since the frequency ranges where
they occur approach each other more and more as M
decreases. Qualitatively similar behavior occurs for
the admittance plane results, but the semicircle there
involves R, and the double layer capacitance, and the
vertical line is associated with Cg.

Were we to use NLS fitting of exact “data” derived
from Eq. [3] to the Eq. [3] model itself, one would of
course obtain a fit whose accuracy would be limited
only by computer round-off error, and would also ob-

T T ' T T
1.6 : -
(0,0:1,1;0,M) [i
|
B , _
|
I
1.2 i _
1
£ )
- : : AA MQ:I —
= ' ‘
- } |
Zos- ! -
e M=3 |
-t |
| oY
T 10/ 4
! ~—M= 0
0.4 o 30 .
M=100 _l
0.0 1 [ 1 ( 1 [
0.0 0.4 0.8 1.2
Re(ZTN)

Fig. 5. Complex impedance plane plot of normalized impedance
for the (0,0; 1,1; O,M) situation.



Vol. 124, No. 7

! I ! [

1.6 —

(0,0;1,1,0,M)

L2 | .
— L % Q=1 n
2
> M=3 1
=~ 3
0.8 ]
o8,

10 e M= ]
B Jay
X

0.4 MQ =1 30 _

+—M =100

0.0 0.4 0.8 1.2

Re ( YTn)

Fig. 6. Complex admittance plane plot of normalized admittance
for the (0,0; 1,1; 0,M) situation,

tain a similarly accurate estimate of the single param-
eter M. In many experimental situations, however, one
either does not have a good analytic model for fitting
or finds that the appropriate analytic model is too com-
plicated for direct least squares fitting (i.e., model A in
full generality). Thus one often finds an equivalent
circuit approach to be useful.

Conventional analysis.—Although there is only one
parameter, M, in the Zrny of Eq. [3], there are three
things which we want to determine from Zrn(Q) as
accurately as possible. These are the normalized geo-
metric capacitance and bulk resistance, both unity with
present normalization, and M or 7. If they can be well
determined, we are assured that a similar procedure
applied to unnormalized Zr(w) data will yield good
values of Cg, R,, and Cpo. Since there are three distinct
circuit elements in the circuits of Fig. 4a and 4c, one
might expect that these elements could be related
rather simply to Cg, R,, and Cpo, which are themselves
expressed in terms of microscopic parameters. Con-
sider first the usual extrapolation method applied to
curves like those in Fig. 5 and 6. There is clearly no
problem in obtaining estimates of Cg R., and a fre-
quency-independent double layer capacitance, say Ca,
from results such as those in Fig. 5 or 6 when M >>
102, Then R, (here R,y = 1) may: be obtained directly
from the real-axis intercept of the vertical line in Fig.
5, Cq from the capacitative reactance of a point on the
line, and Cg from a point on the semicircle. Similarly,
in Fig. 6, G, (or G,n = 1 here) occurs at the real axis
intercept of the vertical line, Cg may be derived from
the reactance on the line, and Cy; from a point on the
admittance-plane semicircle,

Unfortunately, the situation is not so clear for rela-
tively small M. Some authors have nevertheless used
the extrapolation to the real axis of the asymptote of a
curve such as that for M = 3 or 10 in Fig. 5 to obtain
an estimate for R,. An extrapolation of this kind ap-
pears, for example, in Ref. (19). As Fig. 5 shows, such
extrapolation can yield an R, estimate incorrect by a
factor of two or more for the present situation. In Fig.
6, on the other hand, all curves approach the Re(YTn)
= 1 line asymptotically, but this is by no means clear
from that portion of the M = 3 curve shown, which
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might correspond to as much of an experimental curve
as could be measured conveniently in a specific in-
stance.

The determination of R, from the real axis intercept
of a vertical line associated with completely blocking
electrode behavior corresponds to estimating R, from
low frequency experimental data since the impedance-
plane vertical line occurs at the lowest frequencies of
measurement. Alternatively, unlike such low frequency
extrapolation, the determination of G, from the real
axis intercept of a vertical straight line in the admit-
tance plane corresponds to high frequency extrapola-
tion, and is in keeping with the o — oo subscript of
G., the only conductance one expects to. remain sig-
nificant at sufficiently high frequencies. Similarly, Ca
is estimated by a low frequency extrapolation of Zy
data and Cg by a high frequency extrapolation of Yr

. data. Although it is indeed much more common in lig-

uid electrolyte work to obtain an R, estimate from high
rather than from low frequency extrapolation, Rais-
trick, Ho, and Huggins (19) have pointed out that for
solid electrolytes practical frequency-range limitations
often require R, estimation by low frequency extrapo-
lation (as in Fig. 5) for results obtained at low tem-
peratures. We shall shortly demonstrate how such an
estimate, which may differ appreciably from the true
R,, may be transformed to obtain a much more ap-
propriate estimate of R,.

Comparison of the shapes of the Fig. 2 curve for
B-alumina and that for M = 3 of Fig. § shows con-,
siderable likeness. Since we have already seen that an
extrapolation of the Fig. 5 M = 3 vertical asymptote
to the real axis yields R,n =~ 0.5 instead of the correct
unity value, it is reasonable to conclude that in the
case of Fig. 2, which also displays overlapping of phe-
nomena, similar extrapolation may again lead to con-
siderable error. Whenever this error cannot be reduced
by high frequency extrapolation (because such data
are lacking), it turns out, nevertheless, that it can be
reduced by proper interpretation, But, as we shall see,
NLS fitting of an appropriate model will always yield
the most significant estimates of parameter values.

NLS analysis.—The theoretical “exact data,” calcu-
lated with double precision on an IBM 370-155 com-
puter from Eq. [3] for M = 10%, 30, and 3, consisted of
25 complex Zrx or Yrn values and 25 O values. The Q
values were uniformly distributed in log O and cov-
ered 1075 = Q0 = 10 for M = 10¢ and 102 = 0 = 10
for M = 30 and 3. The data were fitted to the models
of circuits of Fig. 4a and 4c

Zrx = [Rin/ (1 + 1QRINC1N) 14 (10C2n) —1 [4]
and
Zrx = [iQ{Cin + Con(1 4 iQR2nCan) 13171 [5]

respectively, with double-precision arithmetic using
the present complex NLS method.

Results of fitting exact Zrn ‘“‘data” to the Eq. [5]
model for Zrn are shown in the first line of Table II
for each M value. The second line presents the results
of fitting exact Yrn = Zrn—! “data” to the Y follow-
ing from Eq. [5]. If we identify Cin as an estimator of
Cgn = 1, Rony as the Rsno defined earlier, and Coy as
Csno, then the expected values of these quantities are
as shown in the third line for each M choice. It is evi-
dent that these identifications are reasonable.

The + quantities shown in the table are estimated
relative standard deviations of the parameters. Had the
circuit model been exactly appropriate for the data,
the relative standard deviations would have arisen only
from round-off error and would have been of the order
of 10—12 or less in the present calculations. The larger
values apparent here are a measure of the inexactness
of the circuits employed. The larger M, clearly the
better the lumped-constant approximations are to the
actual distributed system. If one judged from the over-
all estimated standard deviation of the fit, s, one might
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Table 1. Fitting of unweighted (0,0; 1,1; 0,M) “data” to the circuit of Fig. 4c. For each M value: first line
Zy fitting; second line Ypn = Zyn ™1 fitting; third line expected value
Standard
deviation
M of fit, st Cin Ran Cax
104 6.6 x 10-7 1.000009 (1 =+ 7.1 x 10-7) 1.0000498 (1 1.5 x 10-7) 9.999000 x 10% (155 x 10-9)
6.0 x 10-° 1.000002 (1 ‘1._" 4.9 x 10-7) %(0)8[())85457 (1+=1.3 x 10-8) 39%%9000 X 108 (1 2= 6.6 x 10-2)
30 2.9 x 10+ 1.00295 (1= 2.2 x 10~4) 1:01669 (1X=8.0 x 10-5) 28.9965 (1= 5.9 x 10-5)
2.3 x 10-8 1.060076 (1 ill 5 X 10~4) 11(?113326(1 £ 5.3 x 10-¢) 53.9759 (1*=1.8 x 10-8)
— 1]
3 7.2 X 10+ 1.0128 (1 =7.2 x 10-4) 1.1500 (1 £8.1 x 10-¢) 2.0021 (1= 3.6 x 10-4)
9.1 x 10-2 1.0050 (1=£6.2 X 10-¢) 1.1136 (1 % 3.4 X 10-%) 1.9818 (1= 7.9 x 10-2)
—_ 1 1.13603776 2.0149094698

conclude that even for M as small as 3, the lumped-
constant approximation would be adequate except for
the most accurate data. One must, however, consider
the estimated values of the parameters themselves and
must treat all standard deviations shown here with
caution. Since differences between the exact result of
Eg. [3] and the present circuit models are systematic
rather than random in nature, the least squares fitting
residuals will generally show systematic behavior and
will not be randomly distributed. The standard devia-
tions will then generally be poor approximations (usu-
ally too small) although their trends here are certainly
significant.

The results of Table II show that the circuit of Fig.
4c is indeed a good approximate model for the present
system. It is also evident, in accordance with the con-
clusions of conventional analysis discussed above, that
Cix is best estimated from Yy fitting and Ran and Con
from Zry fitting. Although the differences here are as-
sociated with systematic errors, it is likely that the
same conclusions will apply to experimental data
dominated by random rather than systematic errors.

For M < 30, the Table II results show that the pa-

rameter estimates are highly accurate. Even the M = 3
results are likely to be generally adeguate. But how
would one proceed to obtain estimates of M, Cg and
R, if these quantities were unknown and one were
analyzing experimental, unnormalized data? Let us
consider the worst case here, M = 3, and deal with the
present results as actually derived from unnormalized
data, i.e., that for which true M, Cg, and R, values are
3, 1, and 1, respectively, in appropriate units. Assume
further that only the Zrnx = Zr fitting results are avail-
able. Then an estimate of r is 1 4+ (Co/Ci) = 1 +
(2.0021/1.0128) = 2.9768 and the corresponding M esti-
mate is 2.9609, in error by about 1%. The C; = 1.0128
estimate of Cg is also about 1% in error. The above
values of r and M now allow one to calculate Rso,
yielding 1.13708 (instead of the correct 1.13604). Then
an estimate of R, is R, == Ro/Rsgno = 1.15/1.13708 =
1.011, again in error by about 1%. Thus, even in the

extreme high overlap case of M = 3, we are able to
use the circuit Fig. 4c model to obtain desired param-
eters to about 1%.

Now what happens if exact Zry “data” is fitted to
the circuit Fig. 4a model, Eq. [4]? Some results are
shown in Table III. Notice that the s¢ values are ex-
actly the same as the corresponding Zrn results in
Table II, showing that both circuits can fit the “data”
to the same degree. But it is evident that Civ here is
an appreciably poorer estimate of Cgn = 1 than the Ciy
of Table 1I and that Rin, particularly for small M, is
a very poor estimate of either Rgno or R,y = 1. On
the other hand, Con is evidently a better estimate of
Cpno = 7 here than is the Coy of Table Il of r — 1.
Finally, it is gratifying to note that when the param-
eter estimates of Table III, associated with the Fig.
4a circuit, are transformed (by the relations shown
in Fig. 4) to parameter values pertaining to the Fig.
4c circuit, one obtains exactly (within round off) the
values shown in Table II for all M choices.

These results and conclusions suggest that best es-
timates of M, Cg, and R, might be obtained using a C;
estimate obtained from admittance data fitting of the
Fig. 4c circuit, a Ry estimate from impedance fitting of
the Fig. 4c circuit, and a C; estimate either from im-
pedance fitting of the Fig. 4a circuit or by transforma-
tion of the Fig. 4c impedance fitting results to yield
a Fig. 4a Cg estimate. For most purposes, however, Ztn
fitting to the Fig. 4c circuit should be sufficient.

In the present synthetic data situation, we know for
the Fig. 4c circuit that Cin, which represents Cgn = 1,
should be unity. Table IV presents some results ob-
tained when Ciy is constrained to remain unity during
NLS fitting. The first three lines in the table, for un-
weighted (i.e., unity, weighted) residuals, show that
fixing Ci;x has increased st values and most of the
parameter relative standard deviations but has gen-
erally improved the Roy and Cay estimates appreciably.
Moral: use a priori information when available.

In some cases, it may be desirable to carry out NLS
fitting with weightings different from unity. Consider

Table lI1. Fitting of unweighted (0,0; 1,1; 0,M) ZTxn “data” to the circuit of Fig. 4a

Standard
deviation
M of fit, st Cin Ruv Cax
104 6.6 x 10-7 1 0001092 (171 x 10-%) 0.9998498 (1= 1.5 x 10-7) 1.00000000 x 10¢ (1 =55 x 10-8)
30 2.9 x 10—+ 1.03764 {1 =23 x 10~%) 0.94985 (1 i78 X 10-%) 28,9945 (1 =5.7 x 10-%)
3 7.2 X 10+ 1.5253 (1 * 1.1 x 10-3) 0.5071 (1 %= 3.6 X 10-%) 3.01490 (114 x 10-5)
Table 1V. Fitting of (0,0; 1,1; 0,M) ZTx "dota” to the Fig. 4c circuit with C1x fixed at unity
Weighting Standard
uncertainty, deviation
M ox of fit, st Rax Can
104 1 1.4 x 10-¢ 1.0000498 (1 =+ 3.1 x 10-7) 9.999000 x 108 (1 * 1.2 X 10-7)
30 1 6.2 X 10—+ 1.0165 (1= 1.6 x 10-4) 998 (1= 1.3 X 10%)
3 1 2.0 x 10-8 1.135 (1 £ 9.8 x 10~) 2.01485 (1 =59 x 10-5)
[x] 1.0 x 10-2 1.130 (1 %29 x 10-3) 2.015 (1 *= 3.6 x 10-%)
|2 [ 1.2 x 10-8 1.141 (1 9.6 X 10-4) 2,01490 (1= 1.5 x 10-%)
| x| 9.0 X 10~ 1.1488 (1 = 9.6 x 10-5) 2.0149093 (1 *=6.9 x 10-8)
| |-+ 7.7 x 10~ 1.149005 (1 =2.4 X 107) 2.014909468 (1 = 1.4 x 10-10)
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a datum value x, say the real or imaginary part of an
impedance, Let s, be the estimated uncertainty of a
given x value. Then the appropriate weighting of the
squared residual corresponding to this value of x be-
comes wx = o~ 2 One might know, for example, that
small values of x are more uncertain than large values
because of limitations in resolution of measuring tech-
niques, etc. Then, one might take, as a first approxima-
tion, oy = a|x!~1, where a is a constant. Then w, =
¢~ 2x2, and residuals associated with larger x wvalues
are thus more heavily weighted than those associated
with smaller x. The last four lines of Table IV show
nonunity weighting results for M = 3. One notices
that |x| weighting is worse than unity weighting and
that as weighting progressively emphasizes larger val-
ues, Roy estimates degrade and Can ones improve. This
trend is not surprising since at low Q values the con-
tribution of Cox dominates the expression for Zrty in
the present completely blocking situation. Although
such extreme weighting as ¢, = |x|~4 will be inap-
propriate for actual experimental data, it has here
allowed us to estimate Cgno correct to eight or nine
decimal places. For experimental situations |x|~%, or
possibly |x|~1, weighting may sometimes be useful.

As we have mentioned earlier, it is often impossible
or inconvenient to carry out impedance measurements
to sufficiently high frequencies to cover most of the
bulk-effect semicircle. Here we have indeed done so
by extending the data to & = 10 (wmax = 10/1p). Sep-
arate fittings with Qmax < 10 have shown, in fact, that
for the present system, parameter estimates are im-
proved if, say, Qmax = 0.1 rather than 1 or 10. The
choice Qmax = 0.1 is a high enough (normalized) fre-
quency that Cix may still be reliably estimated, but
it extends less far into the region where the distributed
nature of the system (not represented by our equiv-
alent circuits), appearing through (1 + iQ)*%, is more
important.

In concluding this section, we suggest that in com-
pletely blocking situations the complex NLS fitting
of impedance data, extending up to perhaps wmax ~
(10tp) 1, to the circuit of Fig. 4c is most appropriate
for general purpose work. Further, several weightings
different from unity should be tried for the above
fitting in order to find the weighting (s) which yield (s)
minimum estimated standard deviations of the several
parameters of interest. Even in nonblocking situations,
such weighting investigation should often prove useful.

Effect of length and concentration variation.—The use
of normalized quantities, as in Eq. [3] and Fig. 5 and
6, is helpful in allowing one to subsume many pos-
sible dependencies in one. Real data are initially un-
normalized, however, and it is therefore of interest
to examine how unnormalized impedance/admittance-
plane curves corresponding to the normalized curves
of Fig. 5 and 6 depend on variation of such parameters
as electrode separation length and equilibrium charge
concentration.

Let us consider two values of length, I; and 1o, and
two of concentration, ¢;; and c¢;. Then one readily finds
from the equations and definitions above that for | and
¢; variation alone, Ms/M; = (la/l1) (en/ci) %, and
R,2/R, = (/L) (ci/cie). Further, tpe/tp1 = (12/11)°
(ci1/cie). Since Zr = R.Zrx and Yr = G, YN, it is
clear that R, and G, determine the scales of the un-
normalized Zr and Yr curves, respectively, following
from Zrx and Yy, Thus, unnormalized curve size may
be readily obtained from normalized results when R,
or G, is known. But complex plane curves are para-
metric in frequency. Therefore, it is desirable to in-
vestigate how frequency points move their position
along unnormalized curves as such quantities as I and
¢; change. Figures 5 and 6 show two points with nor-
malized frequency Q = 1 and MQ = 1. Their positions
do not change much until M is considerably less than
100. But suppose we ask how the «’s involved in Q =
wtp must change as | and ¢; change when we restrict
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Table V. Effects of | and c; variation on pertinent quantities

Variation =1 MQ2=1
Mo/ My o/ 11 ciz/cii Re 2/Rey Ge2/Geo1 w2/wr w2/ w1
10 10 1 10 0.1 1 0.1
1 102 10-2 102 102 10
101/2 10 10-1/2 101/2 10 1
1 0.1 102 10-3 108 102 102
10 10-2 108 10-3 10-2 10-2

attention to the same two points 0 = 1 and Mg = 1
of Fig. 5 and 6. One easily obtains for 0 = 1 the
relation we/w; = (11/12)%(cie/ci1), and for Mo = 1
the result we/w; = (11/12) (ci2/cit) 2.

The above relations have been employed to calcu-
late the specific results of Table V. It shows the ef-
fects of various I and c¢; variations which produce Mg/
M; = 10 and 1. We see, for example, that a 10 times
increase in I with no change in ¢; yields unnormalized
impedance plane curves 10 times larger than the nor-
malized ones. No change occurs in the w corresponding
to @ = 1, but that corresponding to MQ = 1 occurs
at one-tenth the frequency found for the original
length. The » frequency scale is thus not shifted uni-
formly by a change of length., On the other hand, when
1 and c; change in such a way that M remains the same,
the results of the bottom two lines in the table show
that the frequency scale is then uniformly expanded
or contracted.
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The Kinetics of the Magnesium Electrode in
Thionyl Chloride Solutions

E. Peled* and H. Straze

Institute of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

ABSTRACT

The electrochemical behavior of the magnesium electrode in thionyl chlo-
ride (TC) solutions was studied. It was found that this electrode is covered
by a passivating layer which consists of some insoluble magnesium salt, prob-
ably MgCly. The properties of this layer determine the chemical and electro-
chemical behavior of the electrode in TC solutions. Magnesium was deposited
on a nickel cathode from TC solutions containing Mg(FeCly)s. Magnesium
deposition begins after the nickel cathode is covered by a passivating layer
(consisting of reduction products of TC) in which tygz+ ~ 1. It was concluded
that the rds for the deposition~dissolution process of the magnesium electrode
in TC solutions is not the electron-transfer reaction, but is instead the migra-
tion of the Mg2t ions through a passivating layer which covers the electrode.

There has been no report in the literature of kinetics
of the deposition-dissolution process for solid mag-
nesium metal in nonaqueous solutions. However, many
papers have been published in the last fifteen years
on the kinetics of alkali metals in these media. The
reason for this is that magnesium is a much more
difficult metal to electrodeposit than are the alkali met-
als. Most of the attempts to electrodeposit magnesium
from nonaqueous solutions have been unsuccessful (1).

The only system in which the electrodeposition of
magnesium is feasible is that of Grignard reagents with
the addition of boranes in ether solutions (2).

The electrode kinetics of the alkali metals in prop-
ylene carbonate, dimethyl sulfoxide, and dimethyl sul-
fide is reviewed in Ref. (3-6). Most of the investiga-
tions deal with the electrochemical behavior of the
lithium electrode. It was found (3-6) that: (i) lithium
metal is chemically stable in these solutions, (ii) film
formation on the electrode has been detected, (iii)
trace amounts of water induce film formation, and (iv)
the reaction Li* + e(M) == Li has a high exchange
current density (1-10 mA ¢cm—2),

The rate-determining step (rds) of the deposition-
dissolution process for solid alkali metals was assumed
to be the electron-transfer reaction: M+ + e(M) == M"®
with a transfer coefficient () of 0.5-0.8 (3-6). Dey (7)
indicated that in propylene carbonate solutions the
lithium electrode is covered by a passive film (prob-
ably Li;CO3;) which is formed by the reaction between
lithium and propylene carbonate. He concluded that
this film should be a purely ionic conductor with the
Lit being the sole conducting species (tr;+ = 1) (7).
The same conclusion was drawn (8) for lithium elec-
trode in thionyl chloride solutions.

In this paper the electrochemical behavior of solid
magnesium electrode in thionyl chloride solution was
studied. It was found that the rds of the deposition-
dissolution process for magnesium metal in thionyl
chloride (TC) solution is not the electron-transfer re-
action but is the migration of the magnesium ions
through a passivating layer which covers the electrode.

* Electrochemical Society Active Member.

Key words: passivating layer, magnesium electrodeposition, in-
organic battery.

Experimental

The cell and the electrodes are shown in Fig. 1. The
three electrodes were made from magnesium ribbon
BDH 99.9%, 0.4 mm thick and 3 mm wide. The work-
ing and reference electrodes were parallel to each
other and about 5 mm apart. They had an area of 1.4-
2.5 em2, Each electrode was connected by a stainless
steel connector to a tungsten rod sealed in the glass
cap. The cell was sealed by a Viton O-ring. Connec-
tion to the vacuum line was made through a Jobling
“Rotaflo” valve. The magnesium electrodes were

A

—

Fig. 1. The electrochemical cefl. 1, Cell cap; 2, tungsten wires;
3, Viton O-ring; 4, stainless steel connectors; 5, working elec-
trode; 6, counterelectrode; 7, reference electrode; 8, “Rotaflo”
valve; 9, connection to vacuum line.





