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ABSTRACT 

The small-signal steady-state response around the point of  zero charge of an electrode/ 
material system is examined for an unsupported electrolyte (material) with two species of 
charge carrier of arbitrary mobilities and valence numbers and with arbitrary intrinsic/ex- 
trinsic conduction character, taking full account of bulk, electrode reaction, sequential ad- 
sorption, and diffusion processes. The exact solution of the transport equations of  the prob- 
lem for generalized Chang-Jaff~ single-point boundary conditions is compared with the re- 
sponses of a variety of  plausible equivalent circuits, using a complex least squares fitting 
technique. A hierarchical circuit is found which closely reproduces the exact results when 
charge of one sign is completely blocked without adsorption, except for some of the cases 
in which diffusion and reaction effects interfere with eacl~ other. The circuit is composed of 
frequency-independent lumped capacitances and resistances separately identified with bulk, 
reaction, and adsorption/reaction processes and a single, finite-length, Warburg-like impedance 
for diffusion effects. Relations between the circuit elements and microscopic electrode/mate- 
rial parameters are found and apply irrespective of the time-frequency overlap between bulk, 
reaction, and adsorption processes. It is also found that the reaction and adsorption resis- 
tances and the adsorption capacitance are all strongly interrelated. The circuit may be used 
with simultaneous non-linear least squares fitting of the real and imaginary parts of  experi- 
mental impedance data to obtain estimates of the values of circuit elements and thus of the 
values of the microscopic parameters characterizing the electrode/material system. 

The relationship of small-signal response for overpotential-dependent electrode kinetics 
to that obtained for Chang-Jaff~ boundary conditions is then considered. The reaction resis- 
tance and adsorption capacitance are found to be formally identical for Butler-Volmer (or 
Butler-Volmer-like) and Chang-Jaff~ conditions. In the d.c. limit these quantities are un- 
changed, for the boundary conditions just mentioned, when a supporting electrolyte is added. 
A transformation of variables method is described which permits one to determine the small- 
signal impedance of an electrode/material system with general overpotential-dependent first- 
order electrode reaction kinetics from a compact-layer model for the small-signal overpoten- 
tial and the small-signal response obtained for Chang-Jaff~ boundary conditions. Exact im- 
pedance results are given for the case of a single species of mobile charge carrier. Analysis of 
this case indicates that the overpotential dependence of the boundary conditions has negli- 
gible effect on the small-signal response unless the cell is of microscopic thickness or the 
Debye length is comparable to the compact layer thickness and the electrode reaction is 
slow. 

• 1 Work supported by U.S. National Science Foundation (Grant No. DMR 75-10739). 
-2 In honour of the 60th birthday of Benjamin G. Levich. 
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(I) INTRODUCTION 

The nature of  heterogeneous charge transfer processes is one of  the central 
problems of  electrochemical theory.  Although notable contributions in this area 
have been made by Levich [1] and others [2],  our understanding of all but  the 
simplest charge transfer processes remains far from complete.  On the experi- 
mental side, a crucial problem is how best to isolate the kinetics of  electrode re- 
actions from the sum of processes manifest in experimental measurements. In 
aqueous electrochemistry, the introduction of an indifferent or supporting elec- 
trolyte permits some separation of  bulk and electrode processes. The unsupport- 
ed case is, however, of  intrinsic interest as well, and is the only accessible experi- 
mental situation when dealing with solid electrolytes, such as the fl-aluminas and 
the silver halides, and with fused salts and oxides. Theoretical results for the elec- 
trical response of  unsupported systems will be more and more needed as interest 
in the electrochemistry of  the solid and molten states grows. The availability of  
such results will help to eliminate the practice often followed in the past of  ana- 
lyzing the response of  unsupported systems with theoretical expressions derived 
for supported conditions. 

Here, we shall be particularly concerned with the small-signal a.c. response to 
be expected when electrode reaction and adsorption effects [3--7] are present, 
and to a lesser extent,  when diffusion effects are also significant. As Levich has 
pointed out  [8],  most  electrode reactions involve an adsorption step. The results 
discussed here apply particularly to unsupported systems but  will be compared 
in detail with the supported case. They have been derived for a small perturbing 
potential applied to an electrode/material system which is flat-band (zero elec- 
trode charge) in equilibrium. 

Most derivations of  the small-signal impedance of unsupported systems have 
employed the Chang-Jaff~ boundary  conditions [9],  generalized when necessary 
for arbitrary valences of  mobile charge [10].  Such boundary conditions involve 
the deviations in concentration of the mobile species at the plane of  closest ap- 
proach to the electrode from their equilibrium values. When ionic size is neglect- 
ed, this plane is usually taken to be that of the effective electrode surface. On 
the other hand, much of  the theory of  electrode kinetics and most experimental 
analysis of  supported situations involve the overpotential,  7, which is taken to 
be either the potential difference between an electrode and the bulk of  the mate- 
rial in a non-equilibrium situation minus any such potential difference under 
equilibrium conditions, or the fraction of this drop which falls across the com- 
pact part  of the double layer. We shall be particularly concerned with the com- 
patibility and distinguishability of  these two approaches in the case of  small- 
signal response. In particular, it seems surprising that although the general ex- 
pressions for the Warburg impedance differ appreciably for supported and un- 
supported conditions [11,12] ,  those for the reaction resistance, RR (sometimes 
denoted Ro ), are essentially the same in the two cases [12,13].  Since single- 
point  boundary conditions, such as the Chang-Jaff~ ones, have some advantages 
for calculations in unsupported cases over those which involve two or more posi- 
tions, as do those involving 77, we shall also be concerned with relating the small- 
signal response for ~7-dependent boundary  conditions to that  obtained in the 
Chang-Jaff~ case. 
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The work which follows is divided into two main parts. The first (sections II 
through IV) will present and analyze results derived from the exact solution, 
assuming Chang-Jaff~ boundary conditions, for the small-signal impedance of  a 
cell with identical plane-parallel electrodes separated by a distance I. The cell 
material may exhibit  intrinsic or extrinsic conduct ion with positive and nega- 
tive charges of  arbitrary mobilities, gp and Pn, but  usually with equal valence 
numbers: Zp = Zn --- ze. In addition it will often be assumed for simplicity that 
neutral intrinsic centers are completely dissociated, as are any extrinsic centers 
present. Some results for Zn ¢ Zp and incomplete intrinsic dissociation have been 
given elsewhere [10,12--17].  In this first part, the most appropriate approxi- 
mate equivalent circuits will be established, and specific expressions will be pre- 
sented relating circuit elements to more basic material/electrode parameters 
such as mobilities, reaction rate constants, etc. To the degree that  such approxi- 
mate equivalent circuits are adequate,  they allow one to bypass the very compli- 
cated exact solution of the governing equations of  the problem and to character- 
ize material/electrode systems by fitting impedance-frequency data to an approx- 
imate equivalent circuit, thus obtaining estimates for circuit element values, and 
finally using these values and the known connecting equations to obtain the de- 
sired basic characterization parameters [ 12,15--18].  In the second, more basic 
part of  this paper (sections V--IX), we shall be concerned with the relationship 
of the Chang-Jaff~ boundary conditions to more general expressions for the rate 
of electrode reactions. We shall examine the extent  to which equivalent circuit 
elements are independent  of the precise form of boundary  conditions, and of 
the presence or absence of a supporting electrolyte. We shall also indicate a pro- 
cedure by which the exact solution obtained with Chang~laff~ boundary  condi- 
tions can be modified to yield the small-signal impedance appropriate to over- 
potential-dependent boundary  conditions. The formal results obtained in this 
part should aid in identifying experimental situations most  sensitive to the over- 
potential, and should, eventually, lead to the formulation of  useful equivalent 
circuits for such circumstances. 

(II) GENERAL CIRCUITS AND SYMBOLS 

All real systems are distributed in space. Therefore one cannot  expect  to find 
an equivalent circuit involving only lumped-constant,  f requency-independent  
elements which exactly duplicates even the small-signal impedance of such a sys- 
tem. The circuit of Fig. l a  can, however,  represent any small-signal impedance 
since Ci and Ri are frequency dependent  [10,12].  The elements independent  of  
frequency are the resistances R D and R E ,  and Cg = e/4~l,  the geometric capaci- 
tance, where I is the distance between plane parallel electrodes and e the  dielec- 
tric constant  of  the electrolyte material. All circuit elements will be given for 
unit electrode area. 

C l e a r l y  R D is the d.c., or zero frequency limiting resistance of the system. 
Further, the solution for the small-signal impedance [ 10] involves an  Ri(¢o  ) 
which goes to zero as co -~ oo. Thus the parallel combination of  R D and R E must 
be the high-frequency limiting resistance, R~ ,  the bulk or solution resistance of  
the system. Let V D ~ R D  1 , GE -- RE 1, and G~ - R :  1. The branch of  the circuit 
of Fig. l a  containing RE must be purely capacitive in the limit of  low frequen- 
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Fig. 1. Two general types of equivalent circuits whose impedances may be made to agree at 
all frequencies with that following from small-signal theory. 

cies. On the other  hand, one can represent general small-signal system response 
in a significantly different  way by means of  the circuit of  Fig. lb .  Here the 
branch containing R~ must be purely resistive in the limit of  low frequencies, 
and we must have R D = R~ + Zs0, where the subscript zero denotes the low-fre- 
quency limit. Secondly,  of  course when ¢o -~ ~o, Zs -~ Z ~  = 0. Further ,  on com- 
paring the two circuits one notes that  Z~(¢o) = Zi(¢o) in the R D = oo, complete ly  
blocking situation. 

A very complicated expression for Zi(co) has been given [10] which follows 
from the exact  solution of  the small-signal equations governing conduct ion  
processes with Chang-Jaff~ boundary  conditions in the full dissociation situa- 
tion. Some aspects of  the more general solution applicable when dissociation 
may be incomplete  [15--18] and when specific adsorption effects are present 
[16,19,20] have also been discussed. Similar exact  expressions for Z~ in these 
situations have also been found;  here we shall be mainly concerned with approxi- 
mating Z~ as well as possible by an equivalent circuit whose circuit elements can 
be related to basic material /electrode parameters. 

Let  us consider G~ in more detail. Let  Pe and ne be the unper turbed  bulk val- 
ues of  the positive and negative charge concentrations.  Then G~ - Gn + Gp, 
where G n - (e/l)(znPnne), Gp =- (e/l)(zppppe),  and e is the pro ton  charge. It  will 
be useful in the following discussion to define ~z - Zn/Zp, ~rn~ =-- Pn/Pp, n -- n Jn i ,  

-'= P e / P i ,  "fie ~ fl'm (n/J ~ ), and 7r~ = 7rz(~//Y ). Here, n i and Pi are intrinsic bulk con- 
centrations in the absence of  extrinsic centers; z , n i  = Zppi from bulk electro- 
neutrali ty;  and for both  small and full dissociation of  intrinsic centers and full 
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dissociat ion of  extr insic  ones, ~ ~- ~ + × and/~ ---- ~ - -X,  where  ¢ = (1 + 12) 1/2. 
The  quan t i t y  × is (h~ D - - N A ) / ( Z n n  i + Z p P i )  and is a measure  o f  the  relat ive 
a m o u n t  o f  extr insic  conduc t ion ,  h ~  D and N A  are the  concen t r a t i ons  o f  ionized 
d o n o r  and accep to r  extr insic  centers ,  and the  material  is thus  intrinsic (or  com- 
pensa ted)  when  X = 0. 

In o rder  to  subsume many  results in one,  it will o f t en  be conven ien t  to  deal 
with normal ized  variables [10] .  We normal ize  resistances with R~ and capaci- 
tances with Cg and d e n o t e  such normal iza t ion  by  the  subscr ipt  " N " .  T h e n  for  
example ,  RRN -- R R / R ~ .  The  cor responding  t ime cons tan t  is R~ Cg - TD, the  
dielectr ic  re laxa t ion  t ime.  I t  will be e m p l o y e d  to  normal ize  o the r  t ime cons tan ts  
and to  def ine  the normal ized  f r e q u e n c y  ~2 - WrD. Most  processes o f  p resen t  
interest  occu r  in the  range ~2 ~ 1. We may  n o w  write G p N  ---- Gp/G~ = [1 + (Gn/  
Gp)] - 1  = (1 + 7re) - 1  ------ 6p. Similarly GnN -- (1 + ~ e l )  - 1  -- en and en + ep -- 1. I t  
will also be useful  to  def ine  5p = (1 + 7r~) - 1  and 5 n - (1 + ~ - 1 ) - 1 .  

Thus  far we have deal t  with Cg and R~ ,  c o m m o n  to  all c o n d u c t i o n  problems.  
While R D and R E a r e  general f r e q u e n c y - i n d e p e n d e n t  e lements ,  one  m u s t  intro- 
duce  b o u n d a r y  condi t ions  character iz ing the  mate r i a l / e l ec t rode  in te r face  in 
order  to  evaluate them.  The  Chang-Jaff6 b o u n d a r y  condi t ions  involve [9 ,10]  
the dimensionless  b o u n d a r y  paramete rs  rn and rp which are real and f r equency-  
i ndependen t  when  e lec t rode  reac t ions  occur  w i th o u t  the  f o r m a t i o n  o f  an ad- 
sorbed in te rmed ia te  species. I f  rn = 0, the  mobi le  negative charges are comple t e ly  
b locked  (no reac t ion) ,  while if r n = oo the  reac t ion  occurs  ins tan taneous ly .  

I t  has been  f o u n d  [19 ,21]  tha t  the  f o r m a t i o n  of  adsorbed  in te rmedia tes ,  say 
f r om the  negative carrier,  can be i nco rpo ra t ed  in the  governing equa t ions  and 
thei r  so lu t ion  by  making the  re levant  r -pa ramete r  co m p lex  and f r e q u e n c y  de- 

* In the  simplest  case (see la ter  discussion),  on ly  a single penden t ,  e.g., rn -* rn. 
adsorp t ion  in ternal  re laxa t ion  t ime,  rn~ or  Tpa, occurs  fo r  each adsorbed  species, 

* takes  on  the  real values rno at  co = 0 and the  c om plex  b o u n d a r y  pa rame te r  rn 
and rn~ for  co -* oo. In the  absence o f  adsorp t ion ,  rn0 = rn~ - r , ,  real and  fre- 
quency  independen t .  The  effect ive  he t e rogeneous  reac t ion  rates associated wi th  
rn0 and rn~ are kn0 - (Dn/l)r,o and kn~ - (Dn/l)rwo. Here  Dn is the  d i f fus ion  co- 
ef f ic ient  o f  the  negative mobi le  charge carriers, and we assume the  adequacy  o f  
the Einstein re la t ion Dn = ( kT /e zn )p , ,  where  k is Bo l t zmann ' s  cons t an t  and T is 
the absolute  t empera tu re .  Similar re la t ions app ly  for  the  posit ive carriers.  No te  
tha t  when  r .~ = rp~, fo r  example ,  k ,~  is n o t  necessari ly equal  to  kp~ ; instead 
knoo = ( D n / D p ) k p ~  , o r  knoo = f f z l f f m k p ~  . 

We ma y  n o w  write  general express ions  for  RDN and REN. Le t  gno = 1 + (rno/2),  
gpo -- 1 + (rpo/2), and g~ - 6ngpo + epgno. T h en  one  finds [10 ,13]  

R D N  = g n o g p o /  (gnogpo - -  gso) 

= [en{1 + (2/rno)} -1  + ep{1 + (2/rpo } -1]  - 1  (1) 

and 

R E N  = gnogpo/gso = [ ( e n / g n o )  + (ep/gpo) ] - 1  (2) 

The  i m p o r t a n t  quan t i t y  ZsNO - R D N  - -  1 m ay  be wr i t t en  

Zsso -- RDN --  1 = (REN --  1) - 1  = gso/(gnogpo - -gso)  

= [1 + (enrpo/2) + (6prno/2)]/[(enrno/2) + (eprpo/2) + (rnorpo/4)] (3) 
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Fig. 2. The equivalent  circuit  of  Fig. l a  in normal ized and dissected form. Normal ized  resis- 
tances, not  conductances  are shown. 

It is now illuminating to present the circuit of Fig. l a  in normalized form, in- 
volving ZTN --= Z T / R = ,  the normalized total impedance. Figure 2 shows the cir- 
cuit in terms of  normalized capacitances and resistances. Here, where the results 
apply to two identical electrodes, we have divided the 2/enrno term of eqn. (1) 
into two equal parts, with each part  representing a sort of  low-frequency-limit- 
ing normalized reaction-adsorption resistance for a single material/electrode inter- 
face. As we shall see later, however, R~/enrno is not  the ordinary single-electrode 
reaction resistance which follows from the analysis, Note that  since R=/en  -- 
G-~ 1 - Rn, R ~ / e p  = G~ 1 - Rp, and Gp + Gn = G¢¢, R D reduces to just R~ ,  as it 
should, when rn0 = %0 = ~o. For this condition, RE = o%and the un-normalized 
circuit then reduces to Cg and R~ in parallel. Alternatively, when rno = %o = 0, 
RD _- 0% and R E = R= in this completely blocking situation. The circuit of  Fig. 2 
is one way of  showing directly the degree to which positive and negative mobile 
charges may be associated with separate resistive elements and current paths. 
Thus for example, in un-normalized terms the path involving the resistance R~-  
[e~ 1 + (2/enrno)] may be written Rn[1 + (2/r~o)], involving only quantities asso- 
ciated with the negative carriers. 

(III) SOME SPECIFIC CIRCUITS 

We shall here limit our consideration of  specific adsorption to those situations 
characterized by a single internal relaxation time for each species (see section 
Vb), and define normalized adsorption relaxation times ~pa - Tpa/TD and ~a  - 
TnJrD. Full specification of  a given normalized system (in the absence of  recom- 
bination) then requires, in general, values of  the parameters: (%~, %o; rn~, rn0; 
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~pa, ~na; 7Tin, fl'z; X, M). Here M - l / 2 L D  and the Debye length L D is 

L D - [ e k T / 4  7re2(Z2ne + Z2pe] 1/2 (4) 

An exact solution for this rather general case has been obtained and will be 
published subsequently.  Now, for simplicity, in sections III and IV we shall take 
* = 0 so that  rp~, %0, and ~pa are  zero. Then, positive carriers are blocked with- rp 

out  adsorption and reaction and adsorption processes involve only the negative 
carriers. In addition, we shall assume that  zn = Zp ~- ze so that  uz = 1 and n i = 
Pi - ci. For a material /electrode system of  this kind, we now need specify only 
(rn~, rno, ~ ,  7rm, X, M) values. This nota t ion will be employed subsequently 
to characterize the systems discussed. 

For r* = 0, we immediately find from eqns. (1) and (3), 

RDN ---- en 1 [1 + (2/rno)] (5) 

and 

ZsN O =- RDN -- 1 = ( 2 / e , r . 0 ) +  (ep/en) = (2 / enrno )  + ~r~ 1 

= ( 2 / e , r n ~ )  + [2(e ,~r ,~ ,~) / (enr ,~) (e ,?no)]  + ~r~ -1 (6) 

where rr~ -- r,~ --  r,0. The reason for dissecting ZsN0 into three separate terms 
will shortly become apparent.  No separation of ZsNO into a simple sum of two 
or three (normalized) resistances seems possible when rp0 is non-zero. On the 
other  hand, when rpo = 0 but  rp~ and ~m are arbitrary, a separation of  the form 
of eqns. (5) and (6) remains possible. 

When diffusional effects are negligible, a condit ion which obtains when 
?r e ~ 102 or so [16,20],  and the real and imaginary parts of  ZT*(C~) ---- Re(ZT) -- 
i Im(ZT) for the (rn~, rno, ~ ,  ~r~, ×, M) case are plot ted as parametric functions 
of f requency in the complex plane, one obtains curves of  the form shown in Fig. 
3a. Since adsorption is a form of  electrode reaction and is associated with charge 
transfer, even though direct current  flow may be completely blocked, it has been 
designated " A / R "  in Fig. 3, while reaction alone is designated "R" .  Similarly 
"B "  denotes bulk response associated with R~ and Cg in parallel. The arrows in- 
dicate the direction of increasing frequency.  When rn~ = r.o - r . ,  no A/R effects 
occur. When r ~  ¢ rno, such effects lead to semicircles in the various positions 
shown. Expressions relating r ~ ,  r,o, and ~,~ to more fundamental  properties of  
the system have been presented elsewhere [16,20] and will be discussed in later 
sections. Usually r,0 may be expected to be positive; it cannot  fall in the  range 
--2 ~ rno ~ 0, however, since any such value would cause the overall R D to be 
negative, an unstable situation. When rno > r,~ > 0, it is clear that  the response 
must involve inductive or negative resistance and capacitance elements even 
though R D > 0. Impedance plane curves of  this form have of ten been found 
experimentally [6,22].  

We shall soon demonstrate  that  the u j1  contr ibut ion to RDN is associated 
with diffusion effects. The bulk semicircle in the complex ZT*N plane contributes 
a normalized resistance of  unity to RDN. Therefore,  any quant i ty  in RDN much 
smaller than uni ty  may safely be neglected. Thus, the curves of Fig. 3a, which 
show no diffusion effects, are appropriate for  7r e ~ 102, or, equivalently, ~ ~ 100- 
(~ - -  ×)/(¢ + ×). On the other  hand, those in Fig. 3b involve a non-negligible 



278 

z; 

- " i  
rno = 0 

(a) 

z; 
AIR 

O R~ R D 

(b) 

Fig. 3. Complex plane plots of Z~ for the r~ = 0, loosely coupled (rn~, rno, ~na, rrm, X, 21,/) 
s i tuat ion with (a) 7r e > 10 2, enrn~  ~ 1 and various values of rn0; (b) rr e --~ 1, e n r n ~  ~- 0.8 
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Fig. 4. Possible equivalent  circuits which include reaction (a--f) and adsorpt ion-react ion 
(b--f) effects. Appropria te  when bulk and reaction effects are well separated in t ime and 
frequency.  
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diffusion contribution, marked "D"  in the Figure, for which 7re ~- 1. Curves of 
just this complicated type have actually been observed under some conditions 
[22]. In general, the diffusion arc need not  occur at lowest frequencies; it can, 
in fact appear between the bulk and reaction semicircles, between reaction and 
adsorption ones, or at the low frequency side of the adsorption semicircle [16]. 

It has been found that,  exclusive of diffusion effects, exact impedance results 
* = 0 case by Voigt-type circuits of frequen- may be very well represented in the rp 

cy-independent elements, such as those in Fig. 4a and b. Figure 4a is appropriate 
when adsorption is absent (rn~ = r,0), while 4b applies when it is present. Fur- 
ther, when bulk and reaction effects and reaction and adsorption effects are 
well separated in time or frequency (loosely coupled case), it turns out  that  R1 
and C1 may be identified with R~ and Cg, R2 and C2 with the reaction circuit 
elements R R and CR, and R 3 and C 3 with the A/R elements R A and CA, respec- 
tively. Expressions relating these quantities to more basic material/electrode pa- 
rameters have already been obtained [13,16] for the Voigt-type circuit of Fig. 
4b. When coupling is not  weak, these relations are no longer accurate for this 
circuit, however, and are then not  useful in determining basic material/electrode 
parameters from experimental data. 

Therefore, we decided to investigate the usefulness, in the above sense, of 
the five circuits shown in Fig. 4b--f, all of which may be made to exhibit  the 
same ZT(CO) for all ¢o if the elements are properly interrelated. Most earlier 
authors who have suggested circuits of this form have ignored C1 - Cg and 
taken R1 as the bulk or solution resistance. Possible dangers in this approach 
have been discussed elsewhere [18] in the small M (e.g. M <  102) case, one 
where bulk-reaction separation is poor. The circuit of Fig. 4c was apparently 
first proposed by Cole in the present context  [23] and was later suggested by 
others [6]. Several authors [6,7] have proposed essentially the Fig. 4d circuit. 
In order to compare the utility of these circuits we simultaneously fi t ted the 
real and imaginary parts of ZTN (~2) "da ta"  by a special non-linear least squares 
method [18], obtaining a standard deviation sf for the overall fit and estimates 
of circuit element parameter values and their standard deviations. Loose and 
close coupled reaction-adsorption situations of both the r,~ > r,o > 0 and 
r.o > rn~ > 0 types were considered; system input parameter values used here 
and later are summarized in Table 1. The 7rm = 1020 values are computer  approx- 
imations to ~ .  

T A B L E  1 

Values o f  ( rn¢~  , rn0 , ~na, ffm, X, M) used in f i t t ing e x p e r i m e n t s  

Sys tem iden t i f i ca t ion  rnoo rno ~na 7fm X M 

A 1 0.5 10 l °  1020 0 x/2 × 106 

B 1 0.5 109 1020 0 , / 2  x 108 

C 2 4 1011 1020 0 5 × 104 
D 2 4 1011 1020 0 5 × 109 

E 0 0 - -  1 0 3 
F 2 2 - -  1020 0 105 

G 2 2 - -  1020 0 1 
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TABLE 2 

Relations between normalized circuit parameters and material/electrode characterization 
properties 
They are only applicable for circuit (b) when reaction and adsorption effects are well sepa- 
rated in time and frequency 

Cir- R2N C2N R3N C3N or L3N R3N • C3N 
cult or 
(Fig. L3N/R3N 
4) 

(b), 2/enrn= r e + enrnoo 2 enrnm/(enrnoo )(enrn0 ) }na(enrn ~ )2/(2 enrnm ) }na(rn=/rno ) 
(d) 

(c) 2/enrno~ r e + enrn~o --2/enrnm --2 ~na/enrnm ~na 

(f) 2/enrnO re + enrnc¢ 2/enrnm ~na(enrnm)/2 ~na 

(e) 2/enrnO r e + enrno~ --2 enrnm/(enrn~o )(enrn0 ) --2 ~na(enrnm)/(enrnO) 2 ~na(rn~/rno) 

These and other fitting experiments made it possible to determine how the 
various circuit elements depend on the input parameters or functions of such 
parameters. These results, shown in normalized form in Table 2 for the five 
circuits, are particularly appropriate for M > 10 2, where R1N ~ R~N ------ 1 and 
C1N -- C ~  -= 1. The quanti ty re - (Me)ctnh(Me), where Me - l/2 LDe , appearing 
in the expression for C2N in Table 2 depends on the effective mobilities of posi- 
tive and negative charges and may be well approximated by r - (M)ctnh(M) 
when ~m -* co and appreciable intrinsic recombination is present or, in the ab- 
sence of recombination, when ~e << re. On the other hand, with little or no re- 
combination, appreciable M, and ~r e > 10 re, Me is well approximated by M~ 112 

in the present (%* = 0, r*) situation. Since for rz = 1, n e = ~Ci,  Pe = PCi,  and 
6n -- ~/(~ 4/~) = 0.5 + (×/2 ¢), one finds that  

M ~  1/2 =- Mn -- l / 2 L D n  =- (l/2)[ekT/4 7r(eze)2ne] - 1 / 2  (7) 

which involves the effective Debye length LDe = LDn appropriate for negative 
charges alone mobile. Thus when Me ~ MS~/2, C2N is primarily associated with 
the more mobile negative charge carriers in a (r* = 0, r*) situation. Incidentally, 
when × = 0 and ~e = rm ~ M, it has been found that  the reaction arc is a slightly 
depressed semicircle, one with its center below the real axis [13]. The use of  
the frequency-independent parameters RR and CR is then a poorer approxima- 
tion, one which may be improved by means of  a distribution-of-relaxation-times 
approach [16]. 

The fitting experiments showed, as expected, that  for a given system all five 
circuit fits yielded the same s~, one representative of a very good fit. Further, 
for loosely coupled conditions (cases A and C), all circuit fits (including that  of 
4b) yielded parameter-value estimates in good agreement with those given by 
the expressions in Table 2. This was not  the case, however, for the Voigt-type 
circuit (b) fits under close coupling conditions. Table 3 summarizes results for 
R2N for the four systems, comparing circuit (b) and (d) predictions. Similar 
results were found for the other parameter comparisons. The number of signifi- 
cant figures shown for the R2N values are consistent with the estimated values 
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of parameter standard deviations derived from the fit. Fits were carried out in 
double precision arithmetic on an IBM 370-155 computer. Note that  sf tends to 
increase with decreasing M. 

Circuit (b), which has been employed extensively in the past [13,15--18,20], 
is less useful for characterization than the other circuits. Since all four others 
yield results in agreement with the expressions of Table 2, independent  of  the 
closeness of reaction-adsorption coupling, one is faced with the choice of which 
one of them to use as a standard. Note that  when rn~ ~ rno ~ 0, SO tha t  rnm ~ 0, 
circuits (c) and (e) involve negative values of L3 and R3, while when rno >rn~ > 0, 
it is circuits (b), (d), and (f) which involve negative values of C3 and R 3. One 
perhaps plausible choice which entirely avoids negative values would be to use 
circuit (d) for r ,~ />  0 and circuit (c) for r~m < 0. They both reduce to circuit 
(a) when r~m = 0. Note that  circuit (c), for example, is impractical when rno = 0 
since the R 2 a n d  R 3 of this circuit are then equal and opposite, and the system 
must be purely capacitative in the limit of low frequencies, leading to fitting 
difficulties. If circuit (c) is restricted to r~_~ ~ 0 situations, this particular diffi- 
culty does not  arise but a conceptual one does. As there is no provision for a 
magnetic field in the present one dimensional model [ 10], the introduction of 
an inductance in an equivalent circuit is not  as readily rationalized as that  of  a 
resistance or capacitance. This alternative is rendered even less attractive by the 
fact that  the inductance required is often enormous, suggesting extensive storage 
of energy in a magnetic field. Our normalization is such that  the un-normalized 
L 3 corresponding to L3N of Table 2 is L 3 ~ TDR~L3N = 2 7 D R ~ / ( - - e n r n m )  = 
2 R~T~/(--enr,m).  For systems C and D, where rnm = --2, L3N from Table 2 is 
1011. Even for T D = 10 -8  S and R~ = 1 Ft, L 3 is then 103 H. For L3N = 105 and 
the same values of T D and R~, L3 is a mH, and values obtained from experiment- 
al data will generally be larger. When r~m < 0, it seems preferable to consider 
that  adsorption leads to negative resistance and negative capacitance contribu- 
tions to the total impedance, rather than to a large positive inductance. There- 
fore, in subsequent work, we shall employ circuit (d), or a generalization of  it, 
for all values of r ~ .  

(IV) AN IMPROVED EQUIVALENT CIRCUIT 

We have seen that  the circuit of Fig. 4d provides, in general, an exceptionally 
good fit in the unsupported cases considered. We have not,  however, examined 
systems in which diffusion effects are significant, or in which bulk and reaction 
effects are not  well separated. For these situations a more general circuit is need- 
ed. The one proposed in Fig. 5 is an elaboration of that  of Fig. lb ,  using part of 
4d. Note that  it carries over unchanged the R and A/R parts of the Fig. 4d cir- 
cuit and adds an impedance ZD to account for diffusion effects. With ZD = 0, 
the circuit is of a continued fraction or hierarchical (ladder network} form rather 
than the mixed form of the Fig. 4d circuit. Further, in view of  the preceding dis- 
cussion, we can now specifically identify the Ri, Ci(i = 1, 2, 3) elements in terms 
of bulk, reaction, and adsorption/reaction processes, hopefully even for arbitrary 
coupling conditions (arbitrary overlap of processes in time and frequency). Fin- 
ally, because of its hierarchical form, the present circuit ensures, in accordance 
with both observation and the exact theoretical results, that  bulk effects occur at 
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Fig. 5. Most appropriate equivalent circuit accounting for bulk, reaction, adsorption, and 
diffusion .effects. 

higher frequencies than reaction effects, and reaction effects at higher frequen- 
cies than adsorption effects. In this section we investigate the applicability of  
this circuit and discuss its elements. 

De Levie and Vukadin [24] have proposed a cixcuit somewhat  similar to that  
of Fig. 5 for a thin-membrane conduct ion problem. The similarity may be mis- 
leading, however, since their model  differs in a number  of  respects from ours. 
Theirs involves a single species of  ionic charge present within the membrane,  and 
an excess of indifferent electrolyte outside the membrane. They also assume, in 
effect, that  reaction and adsorption processes are independent,  requiring the 
existence of  separate pre-reaction and pre-adsorption sites. In the present work, 
on the other hand, only a single type  of pre-reaction site is required since an ad- 
sorption-reaction sequence is assumed. One may have reaction wi thout  adsorp- 
tion effects but  adsorption, if it occurs, forms part of  the overall sequence  of  
electrode reaction. As the results of  Table 2 show, the reaction and adsorption 
resistances and the adsorption capacitance are then closely coupled through 
their dependences on rn~ and rn0. 

Since the present model, with two species of  mobile charge carrier within the 
electrolyte, must accommodate  diffusion effects even in the absence of  reaction 
and adsorption (ohmic or completely blocking (rn~ = rn0 = 0) conditions), ZD 
must, for the present case, be placed as shown in Fig. 5 and not  in series with 
R R or  R A . Previous work [13,15,16,25] has suggested that  it is often a good ap- 
proximation to express ZD as a finite-length Warburg impedance of  the form 

ZD N ~ 7re I [ tanh( i~bM 2 )1/2/(i~bM2)l/2] (8) 

where b -- ~inSp/ene p and thus depends, as does 1re, on both  ~m and ×. It will be 
noted on comparison with eqn. (5) or (6) that  the relation R D N  --  1 + RRN + 
RAN + ZDN 0 is exactly satisfied when the expressions for RRN and RAN given 
in Table 2 for circuit 4d are employed along with that  which follows from (8) 
for ZDNO. It  is found that the present form of ZDN is particularly applicable 
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when 7r e is of the order of 10 -2  or larger and when M is appreciable, s a y M > >  102. 
Its deficiencies outside of these regions, and, hopefully an improved expression 
for ZDN itself, will be discussed elsewhere. 

The quantities R~ and C~g I are extensive, while the foregoing expressions for 
R a N  , CRN , RAN , and CAN indicate that  their non-normalized forms are intensive 
as they should be since they are associated only with electrode-interphase regions. 
On the other hand, ZD is intensive when the tanh term is essentially uni ty  (ordi- 
nary infinite-length Warburg response) and extensive for sufficiently small ~2. It 
is worthwhile to examine the un-normalized forms of the intensive quantities, 
given for a single electrode/material interface, in some detail. We shall denote 
such one-electrode quantities with a subscript 1. We obtain 

RR1 = 0.5 R R N R ~  = (moo Gn) -1 = ( k T / e z e ) / ( e Z e n e k n ~ )  

= ( R T / F z e ) / ( F z e n e k n ~  o ) (9) 

and 

RA1 = 0.5 RANR~¢ = R n ( r n  1 - -  rn~  ) = [ k T / ( e Z e ) 2 n e ]  [knO 1 -- kn  1 ] (10) 

where R is the gas constant, F the Faraday constant, and n e must be expressed 
in mol cm -3  in the last equation of (9). Equation (10) and the structure of 
Fig. 5 show that  reaction and adsorption processes are interrelated: the adsorp- 
tion path involves the reaction path even when rn0 = 0, for which RA = oo and 
one has a completely blocking pure adsorption case. This is why we have de- 
noted the adsorption process by A/R instead of A. The quanti ty (RR1 + RA1) = 
R ~ / e n r n o  is the total low frequency limiting resistance arising from adsorption 
and reaction processes at a single electrode/material interface, in agreement with 
the normalized quantities (enr~o) -1 shown in Fig. 2. 

As we shall verify shortly, the appropriate expression for CRN for the circuit 
of Fig. 5 turns out to be slightly different from that  given in Table 2 for C2N. 
The applicable expression for the present rz = 1 situation with two identical 
plane parallel electrodes is 

CRN ---- re -- 1 (11) 

The intensive part of this expression is just (CRN + 1) = re, in exact agreement 
(for M e = M) with early calculations of the differential capacitance in a simple 
two-electrode situation [26]. For a single electrode and Me > 3, the un-normal- 
ized form of this intensive quanti ty becomes 

2(CRN + 1)Cg = 2 Cgre ~ e/4 ~LDe (12) 

where LDe, the effective Debye length, involves the concentrations of those 
charges which are mobile in the frequency region where the reactance of  CRN 
is significant. The quanti ty in (12) is thus just the appropriate diffuse double 
layer capacitance associated with a single electrode for the relevant situation. 
Finally, we may express the un-normalized adsorption capacitance associated 
with a single electrode/material interface as 

CA, ~- 2 CANCg = ( ~ n a C g ) ( e n r 2 ~ / r n m )  

= (rn~/rnm )(rnarn~ Vn) = ( k n ~ / k n m ) ( r n a / R R 1 )  

= ( k 2 n ~ / k n m ) ( e z J k T ) ( e z e n e ) T n a  (13) 
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where kn~ -- kn~ -- kn0. Note that  CA1 = oo and the CA, RA branch of the cir- 
cuit of Fig. 5 is shorted out whenever kn~ = oo or kn~ = kn0. There are thus no 
adsorption effects when the reaction rate is infinite or when it is real and fre- 
quency independent. 

Numerous fittings, covering a wide range of M and other input parameters, 
have been carried out  in order to compare the Fig. 4d and Fig. 5 circuits in nor- 
malized form. First, R1N and C1N in 4d and R ~  s and CgN were allowed to be 
free parameters. Next, we fixed C1N and CgN at their theoretically expected 
values of uni ty and let R1N and R ~  s remain free. Finally, the results were com- 
pared with those obtained when all these quantities were fixed at unity.  Al- 
though the fits with more free parameters led to smaller values of st, they also 
led to estimates of C2N ~- CRN (Fig. 4d) and CRN (Fig. 5) less accurate than 
those obtained with the normalized bulk parameters fixed at unity.  Therefore, 
subsequent fitting was carried out  with the fixed values R ~ N  = 1 arid CgN = 1, 
in direct agreement with Fig. 5. 

It was found that  sf values obtained with the 4d circuit were always apprecia- 
bly larger than those found using the Fig. 5 circuit, no matter  what the value of 
M and degree of bulk-reaction overlap. Thus parameter estimates obtained from 
the Fig. 5 circuit were always more accurate than those obtained from 4d fits. 
A comparison of fits for these two circuits is presented for CRN in Table 4 for 
five of the system inputs specified in Table 1. Other parameter comparisons 
were similar. The + terms are estimated parameter standard deviation values ob- 
tained as part of the complex least squares fits. It  will be noted, on comparison 
of values of CaN from fitting and those calculated from CaN = re + enrn~ (Fig. 
4d circuit) and CRN = re - -  1 (Fig. 5 circuit), that  for several of these fits the 
estimated parameter standard deviation values were orders of magnitude larger 
than they should have been [18]. All fitting results support the conclusion that  
the Fig. 5 circuit is superior to that  of Fig. 4d and should be used in preference 
to it. 

(V) BASIC EQUATIONS AND GENERALIZED BOUNDARY CONDITIONS 

(a) In the absence o f  specific adsorption 

Although the preceding discussion has been concerned with a symmetrical 
cell constructed with two identical non-ohmic electrodes, it will be simpler in 
discussing the effects of different boundary conditions to treat a cell with a 
single non-ohmic electrode. We thus consider a simple, one-dimensional cell 
(an idealized half-cell) with electrodes at x = 0 and x = lh + d, where the left 
electrode is taken to be ohmic for all carriers, while the right electrode is some- 
what polarizable. The electrolyte is treated as continuous from x = 0 to x = la, 
which includes the diffuse part of the double layer at the polarizable electrode, 
while the behavior of the compact part of  the double layer, of width d, will be 
incorporated in the boundary conditions. Within the former region, the funda- 
mental quantities: concentrations p and n, faradaic currents Ip and In, total cur- 
rent I, and (macro) potential V are assumed to obey the familiar equations [10]: 

ap = -_11 (14) 
8t Zpe 8x 
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On 1 a I  n 
a t  - zne  a x  (15) 

__ a V p p k T  ap ) 
Ip = z p e  PPP ax  Zpe ~ (16) 

_ p  a V p n k T  On)  
I n = z n e  n n ~  ~ Zne ~ (17) 

0 2 V  = __ 4___~ (I - - I p  - - I n )  (18) 
a t a x  e 

and 

a2V 4 7re 
ax--- Y = - -  ~ (Zpp - -  Znn + ZnlWD - -  Z p N ~ )  (19) 

where e is the dielectric constant and (znSYD - - Z p N ~ )  is the time independent,  
uniform background charge due to the presence of extrinsic centers, assumed to 
be fully ionized. 

The boundary conditions appropriate to the ohmic electrode are p(0) -- Pe 
and n(0) = ne, and the ohmic electrode is fixed at the zero of  potential,  V(0) = 
0. Let V(lh) = ~, the zeta potential [27], and V(lh + d)  = Vah, the total applied 
potential. As in the preceding discussion, the cell is taken to be flat-band at 
open circuit, so that  ~" = 0 when no current is flowing and no external bias has 
been applied. We define the overpotential as ~ ~ Vah -- ~', the potential drop 
across the compact part of the double layer, and will use the term overpotential 
exclusively in this sense throughout  the remainder of this work. ~ is defined as 
a difference of macropotentials; it is reasonable to expect that  the difference in 
micropotentials which enters into microscopic models of the charge transfer and 
adsorption processes [28,29] can, to satisfactory approximation, be related to 
the difference in macropotentials, at least under small-signal conditions. 

Before we present boundary conditions for p and n at the polarizable elec- 
trode, the consequences of which will be treated in detail in the following sec- 
tions, we consider a more general class of electrode reactions, those of  the form 

r .~  o + n e -  (20) 

which occur in a single step. Here r and o indicate reduced and oxidized species, 
of charges qr and  qo = qr + he,  respectively, and e -  denotes an electron trans- 
ferred to or from the electrode. The reaction rate v is usually taken to be of the 
form 

V = k l C r f 1 0 7 )  - -  k 2 C o f 2 0 7 )  (21) 

where fl and f2 are specified functions of the overpotential ~?, with fl (0) = 
f2(O) = 1; kl  and k 2 are rate constants for the forward (oxidation) and reverse 
(reduction) reactions; and c r and c o are the concentrations of species r and o at 
their planes of closest approach to the electrode/electrolyte interface. If both r 
and o are mobile charged species in the electrolyte, the faradaic currents I r and 
Io of the species r and o in the vicinity of the electrode are given by I r = qrV, Io = 
--qoV, while the faradaic current, i~, of electrons into the electrode is if = - -nev .  
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At equilibrium v = 0 and necessarily klc~e = k2Coe, where cre and Co~ are the 
equilibrium concentrations. The quanti ty i o - - - nek l c re  = - -nek2coe is the ex- 
change current, the current to the electrode due to the forward reaction alone 
at equilibrium, equal to the current from the electrode due to the reverse reac- 
tion alone. 

The present small-signal exact solution has been derived [10] for a single mo- 
bile species of positive charge and a single mobile species of negative charge. 
Thus it does not  apply, in its present form, when p or n is oxidized or reduced 
at the electrode to form yet  another charged species mobile in the electrolyte. 
It does apply to two important  special cases of eqn. (20), that  in which the prod- 
uct of the electrode reaction (the oxidized or reduced form of the carrier) passes 
into the electrode at constant concentration (as in the case of a parent-metal 
electrode), and that  in which the product  of the electrode reaction is held in 
solution at constant concentration (as in gas evolution at constant partial pres- 
sure). In the former case, the net charge transferred to the electrode (ion plus 
electrons) is equal to the charge on the carrier before reaction, and the faradaic 
current in the compact double layer may be viewed as consisting of the original 
carriers. In the latter case, the product species must be neutral (since the con- 
centration of a single charged species cannot be externally controlled), and the 
faradaic current of electrons in the compact double layer is equal to the faradaic 
current of the reactant species at its plane of closest approach to the electrode. 

For those situations just enumerated to which the present small-signal exact 
t reatment applies, we assume the most general overpotential-dependent bound- 
ary conditions that  we need deal with to be of the form 

IpR = Z p e [ k p P R f l p ( W )  - -  kpPef2p(~) ]  (22) 

and 

I,m = ---Zne[knnR f ln (~)  - -  knn~f2~(r~)] (23) 

where the subscript " R "  designates a quanti ty evaluated at x = lh, assumed to 
be the common plane of closest approach to the electrode for both carriers. 
Here the constant concentrations of the product  species have been expressed in 
terms of the equilibrium concentrations of the mobile charges. The above bound- 
ary conditions encompass the simple Butler-Volmer relations [ 30], 

IpR = Zpe [kpPR exp (--apZpeT?/k T}  - -  kpp~ exp{(1 -- ap)Zperl/k T} ] (24) 

Inn = - -Zne[knnR  exp{anZne~?/kT}  - -  knn~ exp{--(1 -- an)Zne~?/kT } ] (25) 

where ap and an are transfer coefficients, which formally reduce to the Chang- 
Jaffd boundary conditions [9,10], 

IpR = Zpekp (PR - -  P~) (26) 

and 

I,m = - - Z n e k n ( n R  - -  ne)  (27) 

when r~ is taken to be zero. 
For small-signal a.c. response one defines p - p~ + Pl  exp(ic0t), n --- n¢ + nl 

exp(icot), V - V1 exp(icot), Ip - Ipl exp(icot), In - In1 exp(icot), I --/1 exp(icot) 
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and obtains f rom the con t inuum equat ions  (14)--(19),  

i c o p l -  --1 d/p1 
Zpe dx (28) 

1 d/~l 
icon1 = - -  (29) 

Zne d x  

(--p dVI' p p k T d P l )  (30) 
Ipl = zpe "P~ dx Zpe dx 

(-- dVl p~kT~xl ) Inl = Zne  Unne ~ ÷ - -  
Zne  

(31) 

dV1 --4 
ico --dx - e (I1 - - Ip l  --I~1) (32) 

and 

d2V1 _ --4 7re 
dx 2 e (Zppl - - z~n l )  (33) 

It should be no ted  tha t  the ~ -~ 0 limits o f  (28)--(33) are exact ly  the  small- 
signal s teady-state d.c. forms of  (14)--(19). On defining Vah - Va~ exp(i~ot), 

- f l  exp(icot), and r~ = HI exp(icot), Taylor  expanding the  f 's in (22) and (23) 
about  77 = 0, and dropping non-linear terms, one obtains small-signal bounda ry  
condi t ions  which may  be wri t ten  in the form 

IplR = Zpe[kpPlR + (zpeT?ffkT)Tppe] (34) 

and 

/nlR = '--z~e[knnlR + (zneTh/kT)Tnne] 

where 

krk  [Idfl.l _ Idf i 1 
7p - z,epe [ . \-~-] o \ d~ ] 0J 

krkn [(df,n  1 
7n - Znen'----e k~,-d~] o - \ d~7 ]oJ 

(35) 

(36) 

(37) 

and a subscript zero aff ixed to a derivative indicates tha t  i t  is to  be evaluated at  
equilibrium. Thus defined,  7p and 7n have the same dimensions as the rate con- 
stants kp and kn. For  the  special Butler-Volmer case, eqns. (24) and (25), 7p = 
--kp and % = kn, while for  Chang-Jaff~ condi t ions,  eqns. (26) and (27), 7p = 7n = 0. 

I t  should finally be no ted  tha t  the  small-signal response of  a symmetr ica l  cell 
of  length l + 2 d wi th  two identical  electrodes is equal to  t ha t  of  two  half-cells 
of  length I/2 + d with their  ohmic electrodes connected ,  provided tha t  there is 
no generat ion or recombina t ion  of  charge carriers, and the  cell is f la t-band at  
equilibrium. To see tha t  this is so we consider the symmetr ica l  cell to  be centered 
at x = 0 and take V1(--l/2 - -d )  = --Val/2 and Vl( l /2  + d) = Val/2, where  Va = 
Val exp(icot) is the potent ia l  drop across the  entire cell. The small-signal bound- 
ary condi t ions  at  the r ight-hand electrode,  eqns. (34) and (35), and the  corre- 
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sponding conditions at the left electrode may then be written 

Ip1(l/2) = z p e ( k p p l  (//2) + 7pZpepe [(Val/2) -- Yl (//2)]/kT} 

In1 (//2) = --Zne{knn 1 (//2) + ~'nznene [(Val/2) -- 111(//2)]/k T} 

Ipl (--l /2) = --Zpe( k p p l  (-- l /2)  + ~'pZpePe[ ( - -Va l /2 )  - - Y l ( - - l / 2 ) ] / k T }  

In1(-- l /2 ) = z n e ( k n n l ( - - l / 2  ) + ~ [ n Z n e n e [ ( - - V a l / 2 ) -  V l ( - - l / 2 ) ] / k T  } 

(38) 

(39) 

(40) 

(41) 

where the overpotentials at both electrodes have been expressed as potential  dif- 
ferences. Now, if (pl(x),  nl(x), Vl(X), Ipl(x), Inl(X), I1} denotes the solution of  
the small-signal equations (28)--(33) satisfying the boundary condit ions (38)-- 
(41), one may readily verify that  {--pl(--x) , --nl(--x) ,  --Vl(- '-x), Ip l ( - -x) ,  Inl- 
(---X), I 1 } satisfy the same equations and boundary conditions. Thus Pl,  nx, and 
111 are odd functions of  x, so t ha tp l (0 )  = nl(0) = VI(0) = 0, equivalent to the 
boundary conditions assumed at x = 0 (the ohmic electrode) for the half-cell. 
The impedance of  the symmetrical cell is --V~I/I1, twice that  of the half-cell. 

(b ) In  the presence o f  specific adsorpt ion 

We shall also consider the case in which one of  the carriers (taken to  be n for 
definiteness) is adsorbed at the electrode with possible charge transfer 

n -+ P + z l e -  (42) 

and where the adsorbed species F may further react to form species c, 

F -+ c + z 2 e -  (43) 

The corresponding kinetic equations are taken to be 

I~,~ = ---Znevl(nR, F, c, ~7) (44) 

dP 
dt = Vl(nR' l-~' C, 7) - -  v2(nR, P, C, ?7) (45) 

and 

dc 
d~- = v2(nR, F, c, r~) (46) 

where v2 is set equal to zero if no c is formed (simple specific adsorption),  and 
(46) is deleted if c is held constant. 

The small-signal impedance associated with the reaction sequence of  eqns. 
(42) and (43) has been studied by Armstrong and Henderson [7] and by Mac- 
donald [19],  while the special case of  simple specific adsorption has been studied 
by L~nyi [21] and by Macdonald and Jacobs [20].  The system considered by 
Armstrong and Henderson differs in a number  of  respects from that treated by 
the latter authors. Armstrong and Henderson consider the case in which c is a 
mobile species in the electrolyte,  for which c in (44)--(46) must be designated 
ca and dc /d t  in (46) should be replaced by --IcR/(Zn - - Z l  --Z2). A high concen- 
tration of  supporting electrolyte is implicitly assumed, so that  vl and v2 may be 
expanded in terms of  F and 77 alone (provided that the diffusion of  n and c to 
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the electrode is sufficiently rapid), and the faradaic current is set equal to 

if = - -z  l ev l  - -  z2ev2 (47) 

(in the present notation).  The quanti ty  if is clearly the faradaic current of  elec- 
trons into the electrode. Under the assumption of a fully supported system it 
may be argued that if is then also the total faradaic current of n's, c's, and sup- 
porting ions in the electrolyte near the electrode, since these ions will move to 
offset the build-up of  charge on the electrode and in the adsorption plane. 
Armstrong and Henderson, and later, Armstrong et al. [31] further treat  situa- 
tions in which diffusion is slow, in which F is mobile in the electrolyte,  and in 
which c flows into the electrode, but  in each case fully supported conditions are 
assumed. 

The exact small-signal impedance derived by Macdonald [10] for the unsup- 
ported case may readily be generalized to include the reaction sequence n -+ F -~ c, 
provided that c does not  pass into the electrolyte,  except perhaps as a neutral 
species held at constant  concentration. As was the case in our discussion of  the 
one-step redox reaction, eqn. (20), this requirement arises because the exact 
solution was obtained for a single mobile positive species and a single mobile 
negative species. As we mentioned in section II, the generalization involves the 
introduction of a complex, frequency-dependent  rate constant,  first suggested 
by Lfinyi [21],  further developed by Macdonald [19] and Macdonald and 
Jacobs [ 20],  and even further generalized in the present work. 

In the small-signal a.c. case, with F = F e + [ ' 1  exp(kot)  and c = c~ + c I exp- 
(i¢ot), eqns. (44)--(46) become, after Taylor series expansion and some rearrange- 
menU, 

/ n l R  = --z.eLtS n )0 +  ar]0 \ ac /o  c, + t a n / o '  

(1 + iCOTF)P1 =--arnTFnlR - - ( ~ F c ~ ' F C l -  C~F~ITF~ 1 

(1 + icorc)cl = --~¢nrcnl~ - -  ~¢rrcF1 -- ~¢,rcrh 

where arn = @@2--v l ) /anR)o ,  a r c -  ( a ( v 2 - - v l ) / a C ) o ,  a r ,  -~ @ @ 2 - -  vl)p)rl)o,  
c~cn = -- (av2/ani~)o,  ~cr - --@vz/aF)0, ~c, - - -@v2/ar l )o ,  

r r  1 -  ( ~ ( v ~ v l ) ) o  

and 

(48) 

(49) 

(5o) 

~avul (52) 
r C l - - \ a c / 0  

If (49) and (50) are used to eliminate F 1 and c I from (48), one obtains an ex- 
pression for the boundary condition (44) of  the form 

/nlR = - - -zne[k*(co)nlR + (znerh/kT)'),*~(co)ne] (53) 

where k* and ~,* are complex,  f requency-dependent  rate constants. If  r h = 0, 
the boundary  condition reduces to the Chang-Jaff~ form (27). Expressions for 
k* and 7"  will not  be given here for the case in which both  cl and F1 are non- 

(51) 
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zero; however, it should be noted that k* and 7* then involve the two relaxation 
times r r  and re and are expected to lead to more complex equivalent circuits 
than in the single-time-constant case. For the simple case treated by Macdonald 
[19] in which c is held constant,  one obtains 

L\anldo tal~/o e r , r r  + lcol-g~Rlor  /(1 + icorr) 

-= [kno + i~OTrkn~]/(1 + icorr) (54) 

and 

7~*(¢°) = (kT/znene)  L~ ~1] o - -  13F]o  a r , r r +  ico XO~l/o r /(1 + 

-=- [TnO+ iCOrrTn~]/(1 + icorr) (55) 

The quanti ty %, defined in section II may thus be set equal to f r .  The expression 
for k* originally obta ined by Macdonald [19] was based on the assumption 
Into = if (47), valid only in certain special cases, and is superseded by the more 
general (54). Complex rate constants for simple adsorption (v2 = 0) are obtained 
by eliminating the derivatives of  v2 from arn, a t , ,  and T r. It then follows from 
(54) and (55) that kno = 7nO = 0. 

Thus far, we have not  placed any restrictions on vl and v2 aside from the func- 
tional dependencies indicated in (44)--(46). We note here that a logical extension 
of the Butler-Volmer relation (25) to the reaction sequence n -+ I" ~ c, with c 
held at constant concentration, is given by 

vl = f l l (nR,  F) exp(/71XlZnerl/kT} --  f12(nR, r )  exp{--(1--[Jl))tlznerl/kT} (56) 

v2 = fro(F) exp{/72X2znelT/kT} - - f22(F)  exp{--(1 --/72)X.-,z,.,elT/kT} (57) 

where/71 and/72 are transfer coefficients for the two steps of  the reaction se- 
quence and the coefficients X1 and ),2 are determined by the details of  the ad- 
sorption and reaction mechanisms. Since c is assumed to be a neutral species, or 
one that  passes into the electrode, the total charge transferred to the electrode in 
the reaction sequence is - z n e ,  and it is most consistent with the original Butler- 
Volmer relation (25) to have 7tl + 7t2 = 1. If  the only charged species which 
move during the sequence are electrons, one has Xl = Z l /Z ,  and X,> = z2/z,_. As 
was stated earlier, discreteness effects, associated with the micropotential,  have 
been omit ted from the present discussion. To some extent,  these effects might 
be subsumed into the present t reatment  by altering the values of 7tl and X2. 

For illustrative purposes, in subsequent sections we shall give particular atten- 
tion to simple specific adsorption, for which v2 = 0, and shall set Xl = 1 in that  
case. According to the microscopic model usually employed in derivations of  
the Butler-Volmer equation [ 30], the latter assumption is most appropriate 
when P is a neutral species or when the plane of centroids of  the adsorbed ions 
is essentially coincident with the effective electrode surface plane. As a special 
case of  simple specific adsorption we shall focus on a Langmuir type  isotherm 
[33],  obtained by setting 

fll(nR, [') = k ~ l n R  [1 - -  ( F / F m a x )  ] (58) 
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and 

f12(na, F) = kn~2F/Fm~x (59) 

where Fm~x is the number  of  adsorption sites per unit area. In the Langmuir 
case we then have from (51), (54), and (55), kn~ = 7n~ = knal[1 -- (F~/Fmax)] 
and Tna ---~ T F ---- Pe/knalne, where F e is the value of F at equilibrium. 

(VI) STEADY-STATE, SMALL-SIGNAL D.C. 

In this section we examine the effect of  a supporting electrolyte and the 
choice of  boundary conditions on the d.c. (co -+ 0) circuit parameters. We as- 
sume ions of a supporting electrolyte may be present and blocked at the elec- 
trodes, as well as the ions of interest which obey eqns. (14)--(19) and the bound- 
ary conditions (22) and (23), or (44)--(46). We first obtain an expression for the 
small-signal d.c. resistance in the absence of  specific adsorption. By formally 
integrating the small-signal Nernst-Planck equations (30) and (31), with constant 
Ipl and In1, one obtains 

--zpePe~'l Ipl/h (60) 
k T  ppkT  R 1 R  --  

a n d  

znene~l Inllh (61) 
n l R  --  k T  pnkT 

The substi tution of  eqns. (60) and (61) into the small-signal boundary  condi- 
tions (34) and (35) yields 

Ipl = "--z2e2pppe(kp~l -- 7p~?l)/(ppkT + z,elh kp) (62) 

and 

Inl = --z2e2pnne(kn~l + 7n~?l)/(PnkT + znelh kn) (63) 

Evaluating 1/RD1 = --d(Ipl + Inl)/dVahl, equal to the integral resistance at zero 
bias, and making use of  the identity 

dVah 1 + dYah ~ -= I (64) 

one obtains 

1 d~'l 
RD1 = Z2pe2pPPe[(kP + 7p) dVah 1 7p] / (ppkT  + zpelh) 

d~l + 
+ z2e2pnne[(kn -- 7n) ~ 7n]/(Pn k T  + Znelh) (65) 

The concentrat ion of  supporting electrolyte enters into (65) only through d~'l/ 
dV~hl, which is largest in the unsupported case (for given ne and pe) and de- 
creases as the support  concentration increases. From (65) it then follows that 
the d.c. resistance will be independent  of the concentrat ion of  the supporting 
electrolyte if (a) the quanti ty multiplying d~'l/dV~hl vanishes, as is the case if 
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the Butler-Volmer boundary conditions, eqns. (24) and (25), are appropriate 
[32],  or (b) if the overpotential is taken to be zero so that  d~l/dVahl -- 1, in 
which case the Butler-Volmer conditions reduce to the Chang-Jaff~ forms (26) 
and (27). In both these situations, one obtains, regardless of  the concentrat ion 
of  supporting electrolyte: 

RD1 = [(Rbp + -R0p) -1  + (Rbn + -R0n)-l] -1  (66) 

where Rbp - lh/ppPeZ,e and Rbn ---- lh/PnneZne are the bulk resistances associated 
with the positive and negative carriers, respectively, and Rop =- k T / k p p e z 2 e  2 and 
Ron - kT /knn~z~e  2 are the charge transfer, or reaction, resistances for the posi- 
tive and negative carriers, respectively, at the single polarizable electrode. 

The results just obtained may readily be compared with those of  the  pre- 
ceding discussion. The extensive quantities Rbp and Run when normalized with 
R :~  = R~-~ + R~-~ are respectively e~ -1 and e~ 1; the same quantities appear in 
eqn. (1) for RDN and in Fig. 2. Since we have assumed no adsorption of  the 
carriers kn~ = k~o - kn, and Ron is simply the reaction resistance for negative 
carriers, RR1, given in eqn. (9). R o ,  is, by analogy, the reaction resistance for 
positive carriers. 

The identity of  the charge transfer or reaction resistance as derived from the 
Chang-Jafffi conditions with that  obtained from the Butler-Volmer relations 
(with the same rate constants kp and kn) has been noted by Macdonald [13].  
If one assumes that the Butler-Volmer expressions correctly describe the  physical 
situation, the coincidence of  results may be seen to arise from a "cancellation of  
errors" in neglecting the overpotential, which makes ~'1 too  large by ~1, in turn 
makingpR1 too small by ZpeTh /kT  and nal  too  large by Zne~71/kT, with the 
result that  IpR1 and Ir~l computed  from the Chang-Jaff~ expressions and the 
" incorrect"  P m  and nR1 are identical with IpR1 and I~a~l computed  from the 
correct PR1 and nR1. Although the Butler-Volmer expressions are usually con- 
sidered to be correct on theoretical and experimental grounds, an argument 
similar to the preceding could be advanced assuming the Chang-Jaff~ relations 
to be more physically correct. Experimental determination of  the small-signal 
d.c. resistance thus does not, in itself, distinguish between the two sets of  bound- 
ary conditions. 

A similar coincidence is found when one of  the carriers (n assumed) is specific- 
ally adsorbed at the electrode. We consider only simple specific adsorption, so 
that I~1 = 0 in the steady state and n may then be assumed to obey Boltzmann 
statistics. Setting InlR = 0 in (48) and solving for 1~1 with cl = 0, yields 

F 1 = ( n ~ z n e / k T ) [ k n ~ l  + 3'n~Th ]Tr (67) 

where use has been made of  the symbols defined in (51), (54) and (55). The ad- 
sorption capacitance, CA1 = Zne d [ ' l / d V a h l  is thus given by 

CA1 = (n~z~e2/kT)[ (kn~ --3 'n~)  ~ + 3'n~ ] r r  (68) 

As was the case with the half-cell resistance, CA1 will be independent  o f  the con- 
centration of  the supporting electrolyte if either the quanti ty multiplying d~'l/ 
dV,  hl or the overpotential is taken as zero. The former condition requires kn~ = 
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7n~, the latter condition, 7n~ = 0. In either case, one obtains 

_ n e z 2 e  2 
CA1 k T  kn~ Tr (69) 

a result previously obtained by Macdonald [13], and in full agreement with eqn. 
(13) as applied to pure specific adsorption. The formal equivalence of the kn~ = 
"~noo ---- 0 (generalized Chang-Jaff6) case results from the same sort of "cancella- 
tion of errors" as discussed in connection with RD1 for non-adsorbed carriers. 
For 7n~ = 0 one has a larger concentration, nR1 , and a compensatingly smaller 
reaction probability than for 7n~ = kn~. 

The Butler-Volmer-like form (56) for Vl, with X1 = 1, leads to 7n~ = kn~ pro- 
vided that  

[lOfl,  __ 1 ] (70) f l l ( n e ,  r0)  = f12(ne, r e )  = ne 0 \ann/oJ 

as is the case when f n  is proportional to n R and f12 is independent of it. This 
requirement is met  by such simple functions as (58) and (59), which give the 
Langmuir-type isotherm. In this case 

CA1 = ( z2e2 /kT) (r  Jrma~)[1 -- (re/rma~)] (71) 

It should finally be noted that  eqn. (69) becomes 

---z2e2ne (~Vl~ /~U__I ~ z 2 e 2 n e  ( ~ F )  (72) 
CA1-  k ~  \ a n n ] o / \ a F ]  o -  k T  ~ ~1=o 

when expressed in terms of derivatives. Essentially the latter form was used by 
de Levie and Vukadin [ 24] in connection with specific adsorption at a mem- 
brane surface. 

(VII) SMALL-SIGNAL A.C. RESPONSE 

We have seen that  in the small-signal d.c. case the d.c. resistance RD1 and the 
adsorption capacitance CA1, obtained assuming Butler-Volmer boundary condi- 
tions, were identical with those obtained from the Chang-Jaff6 conditions. This 
observation suggests that  a frequency-dependent correction might be introduced 
into the exact small-signal response obtained for an unsupported system obeying 
Chang-Jaff6 boundary conditions to yield the small-signal response appropriate 
to more general boundary conditions. In this section we shall show tha t  such a 
correction can in general be found for the overpotential-dependent boundary 
conditions (34) and (35) with real or complex rate constants and that  the small- 
signal admittance may be expressed as a sum of the admittance calculated for 
Chang-Jaff~ boundary conditions and a correction dependent on 771, the small- 
signal overpotential. In the following sections 71 and the admittance correction 
will be evaluated for a simple model. 

We begin by assuming that  a transformed set of fundamental  quantities (indi- 
cated by a circumflex) may be defined: Pl - Pl  + (TpZpe~lpe/kTkp)Sp(x, co); 
ft 1 -- n I + ( ~ n Z n e ~ l n e / k T k n ) S n ( X  , 09); ~r 1 - V 1 + ?71Sv(X, ¢o); I ,  =- Ip + ( O ~ I / L D ) S I p  
(x, co); In - In + (o~I/LD )S~ (x, co); and I =- I + (o~ffLD)SI(W), such tha t  the 
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boundary conditions (34) and (35) or (53) assume the Chang-Jaff6 forms 

/ p lR  = ZpekpI)lR (73) 

and 

[nlR = --znekn nlR ( 7 4 )  

where kn and kp may be complex (if specific adsorption occurs), and the small- 
signal equations (28)--(33) are satisfied by the circumflexed variables. In the 
preceding, o -- (PeppZp + nePnZn)e is the bulk conductivity of  the electrolyte 
and L D the Debye length. Straightforward substi tution reveals that the dimen- 
sionless correction factors Sp, Sn, etc. must then satisfy the differential equations 

dx = --icoTDPpSpSp/LD (75) 

dSi n 
dx = icoTDPn~nSn/LD (76) 

Sip =--epLD[~~ + Vp ~ ]  (77) 

S,n = --enLD I~---- ~n 1 ~n - -  ( 7 8 )  

dSv 
d x  - (SI  - -  SIp " -  8In)/(icoTDLD) (79) 

and 

d2Sv 
d x  2 [ppSpSp - -  Pn~nSn]/L 2 ( 8 0 )  

where rp -= 7p/kp, rn - 7n/kn, and the dielectric relaxation time TD and the fac- 
tors 6p, 6n, ep, and en were defined in section II. 

Six boundary conditions are required to completely specify a solution. These 
are taken to be Sp(O, co) = Sn(0 , co) = Sv(0, co) = 0, and Sv(lh, co) = 1, Si_(lh, co) 
= (LD~'pep/Dp.)[S2(lh, co) --~ 1] ,  and Sin(/h, co) = ( L d T n e n / D n ) [ l  - - S n ( l h ,  co~]. 
so that  V a h  1 = V l ( l h )  - -  VI(0), and the ohmic and general boundary  con- 
ditions at the left and right electrodes transform into ohmic and Chang- 
Jaffd boundary conditions, respectively. The admittance Y1 - Z11 of the half- 
cell for the general boundary conditions becomes 

Y1 = Ycj1 + Ynl (81) 

where YcJ1 is the admittance calculated from the Chang-Jaffd boundary  condi- 
tions and 

Y,71 - 07718I/LD Yahl (82) 

Evaluation of  71, making possible the evaluation of  Y~I, will be considered in 
the next  section. 

Solution of  the equations (75)--(80), although straightforward, is rather 
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tedious.  We will res t r ic t  ourselves here  to  the special case pp = 0, so t h a t  on ly  the  
negative carriers are assumed mobi le .  Such materials  may  be t aken  to  be com- 
pletely extr insic,  with × -+ ~ and consequen t ly  6 ,  = e~ = 1, p rovided  L D is t aken  
as LDn. The  cor rec t ion  fac tors  are t hen  given by  

(1 + ifZ)(v~r~ + 2) sinh(Qx)/sinh(Qlh) 
S~ = ~ [ 2  + r~(1 + i~2) + 2igt~l  ] (83) 

(Pnrn + 2)[sinh(Qx)/sinh(QlQ] + (X//h)[rn(1 + igt - -u~)  + 2i~2~1 ] 
Sv = 2 + r~(1 + i~2) + 2i~2~1 (84) 

SI  n = rn(vn - -  1 - -  igt) - -  2ift~/1 + (v, rn + 2)igtQlh [cosh(Qx)/sinh(Olh)] (85) 
(lh/LDn)[2 + rn(1 + iY~) + 2i~t~l]  

and 
(1 + i~2)[r~(v~ --  1 - -  ifZ) - -  2igt3,1] 

$I = (lrJLDn)[2 + rn(1 + i~2) + 2i~2~1 ] ' (86) 

where  Q2___ (1 + i¢OTD)/L~n and ~'1 -- (Q/h) ctnh(Q/h).  
I t  should  be n o t e d  tha t  SI, and thus  Ynl ( for  rh  ¢ 0), do  n o t  vanish in the  d.c. 
l imit  unless v~ = 1, as in the  case for  the But le r -Volmer  equa t ion  (25) and for  
the  But ler-Volmer- l ike  equa t ion  for  specific adsorp t ion  (56) when  the  cond i t ion  
(70) is met .  In such cases the  admi t t ance  co r rec t ion  becomes  

- - o r b i t ( 1  + i ~ )  (rn + 2~h) 
Y~I = /hVam [2 + r~(1 + igt) + 2igZ~,l] (87) 

which may  be expressed in normal ized  f o r m  as 

--~?ligZ(1 + i~2) ( r ,  + 2"h) 

Y•IN = lhVahl [2 + rn(1 + ifZ) + 2igt~/1] 
(88) 

(VIII) A MODEL FOR THE SMALL-SIGNAL OVERPOTEIVFIAL ~71 

We assume tha t  the  po ten t ia l  in the  region be tween  x = lh and x = lh + d obeys  
the re la t ion ( compare  eqn.  32) 

ko d V1 _ 4 7r 
- -  ( I 1  - -  I f l )  ( 8 9 )  dx e 1 

where  el  is a compac t - l aye r  effect ive  dielectr ic  cons t an t  and I n  is the  faradaic 
cur rent ,  consist ing of  ions or e lec t rons  or  bo th .  Upon  in tegra t ion  of  (89)  one  ob- 
talns 

4 r l l d  4 7r ['lh+d 
rh = i¢oe~ + icoel j I~1 dx (90) 

since the  to ta l  cu r ren t  (in one-dimensional  f low) is spatial ly invariant  [34] .  
When no  specific adsorp t ion  occurs,  or  on ly  neut ra l  species are adsorbed ,  or  the  
plane of  cen t ro ids  o f  the  adsorbed ions is essentially co inc iden t  with the  effect ive  
e lec t rode  surface plane,  we may  set If l  = IplR + Into ,  SO tha t  
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4 u d  [I1 - - / p l R  - -  In lR  ] (91) 
' / 7 1  - -  i~e l  

If the currents in eqn. (91) are then expressed in terms of  the transformed vari- 
ables [1, [pi, [ni, and the corresponding correction factors, and eqn. (32) is used 
to relate the transformed currents to d V1/dx, one finds 

771 = ~ 1 / [  1 - -  ( d / i C ° T 1 L D n ) ( S I  - -  SIpR - -  S InR) ]  (92) 

where T1 = e l /4  7to is an effective dielectric relaxation time for the compact  
double layer and 

c a  ~d ~r l l  
~1 - ~ ~--~---]R (93) 

is the overpotential that  would be extrapolated from the computed  electric 
field, --(d V1/dx) to the left of x = lh, taking into account the dielectric constant 
change at x =/h,  with the field throughout  the compact layer assumed constant. 
Equation (92) may be viewed as the application of  a correction to ~1 which com- 
pensates for the original assumption that  the total applied potential falls only 
across the diffuse part of the double layer. For the/ap = 0 case considered in the 
preceding section, we can explicitly write 

[ ( e d ~ [ ( r n V n + 2 + 2 i ~ ) ' Y l + r n ( l + i ~ - - v n ) ] ]  -1 
771 = ~1 1 +\ellh! [2 + r~(1 + i~2) + 2i~2~1 ] (94) 

It should be noted that,  if the half-cell considered here is taken as half of  a sym- 
metrical cell (as in the earlier sections), lh/LDn = U2 LDn -- Mn ,  and LOT D is the 
normalized frequency ~ .  When eqn. (92) is inserted into eqn. (82) an expression 
is obtained for the admittance correction Y,1 in terms of the solutions of eqns. 
(75)--(80). 

The model for 771 presented here is easily extended to more general adsorption 
situations. We take as an example the case n -+ P + z le- ,  considered in section Vb, 
and suppose that  the plane of charge centroids of the adsorbed ions F lies a dis- 
tance fl to the right of  lh. Again, considering only the negative species to be mo- 
bile in the electrolyte, we have I~1 = In lR from x = lh to x = lh + fl and I n  = 
( Z l / Z n ) I n l  R f r o m  X = l h + fi t o  x = l h + d. The adsorption current is carried by elec- 
trons in the latter interval. From eqn. (90), and the definitions of transformed 
currents in section VII, one finds 

4 ~r ( [ l d  - - [ n l R ~ )  
iooel 

771 = (95) 
1 -- ( ico71Lm)-l(Sid -- SL.m~) 

where ~ - fi + (Zl/Zn)(d --fJ). When specific adsorption of charged species occurs, 
771 is not  simply proportional to ~1 as in eqn. (92), and the admittance correction 
Y,1 takes on a somewhat more complicated form. 

(IX) DISCUSSION 

In section VII a method was introduced, based on a transformation of  the 
fundamental  variables: currents, concentrations, and potential, which enables 
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one to relate the small-signal response of an unsupported system with overpoten- 
tial-dependent electrode reaction rates to the response of a similar system obey- 
ing Chang-Jaff6 boundary conditions. The result is most simply expressed as an 
addition Y,1 to the Chang-Jaffd small-signal admittance, Yc~ = Z~_~I. The quan- 
tity Y,1 is proportional to the small-signal overpotential 71, which can be evalu- 
ated from a physical model such as that  presented in the preceding section. 

The t rea tment  given here has been rather formal in nature; investigation of 
systems with particular boundary conditions will be the subject of  for thcoming 
work. To conclude the present discussion we will briefly examine the sensitivity 
of the small-signal response to the choice of boundary conditions. From eqn. 
(81) it follows that  the half-cell small-signal impedance for a given set of  bound- 
ary conditions is Z 1 = Zcj1/(1 + Y~IZcJ1), where Y,1 is determined by the 
boundary conditions of interest. It  is then a simple matter  to show that  the nor- 
malized impedance of a symmetrical cell, ZN, is related to the normalized im- 
pedance ZCJN (denoted ZTN in earlier sections), determined for Chang-Jaff6 
boundary conditions by 

ZN(~ ) = ZCJN(~)/[1 + A(~'~)] (96) 

where A(~t) - YnlN(~2)ZcJN(~2) and YnIN(~2) - R~IY~I(~t). If IA(~)[ << 1 over 
the frequency range accessible to measurement, it will not be possible to distin- 
guish between the chosen overpotential-dependent boundary conditions and the 
Chang-Jaff6 conditions. 

We restrict ourselves here to systems for which eqn. (91) is valid, i.e. to cells 
in which there is no build up of charge within the compact layer except at the 
effective electrode surface and to the pp = 0 case. We may then combine eqns. 
(92), (93), (85), (86) and (82), to write 

( e d ) ~ d V 1 ]  ( l + i ~ ) [ r n ( v n - - l - - i ~ ) - - 2 i ~ 2 v 1  ' 
Yr~IN = ~ \ dx/a [2(1 + i ~ l )  + rn(1 + i~) ]  

[2(1 + i~'-~'~l ) + r~(1 + igZ) 1 (9'/) 

From the exact small-signal solution for pp = 0 and Chang-Jaff~ boundary  con- 
ditions we have 

(dYl t V a h l ( 1  + i~) [ rn  + 2(Qlh)ctnh(Qla)] 
(-~--] R = /h i2  + (1 + i~) rn  + 2 i~(Ql~)ctnh(Qlh)] (98) 

and 

[2 + (1 + i~)rn + 2 i~(Qlh)ctnh(Qlh) ] 
ZCJN = (1 + i~) [ (1  + i~2)rn + 2 i~2(Qlh)ctnh(Qlh)] (99) 

Combining (97), (98) and (99) then leads to the exact expression 

(ed) (I + i~t)(rn + 2V1)[rn(V~-- 1 --i~t)-- 2igt~l ] 
A(~2) = e~hh [rn(1 + i~) + 2i~27X ] [2(1 + i~71) + rn(l + i~)] 

E1 ' 1)  .11 [~-1- + T , ~ -  + r -~  + ~ _] (100) 
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Assume 0 ~< Vn ~< 10 and define M n : lh/LDn. For  M n ~ 1 (a di lute  or th in  
cell), eqn. (100) reduces to the form 

ed [rn(Pn-- 1 -- i[2) -- 2i~2] [ e d  ~--1 
A(~2) 

ellh [(1 + i[2)r n + 2 i ~ ]  _1 + ellh j 
(101) 

and IAI ~ 1 on ly  if (ed/ellh) ~ 1, which is l ikely to occur  on ly  in cells of  
microscopic thickness. At  the o ther  extreme,  M n > >  1 ( thick or concent ra ted  
cell), eqn. (100) reduces to the  form 

[ ed ~ (1 + i~2)(r n + 2Qlh)[rn(P n -  1 -  i[2)--2i[2Qlh] 
A ( ~ )  ~ [e~h] [rn(1 + i~2) + 2i~2Qlh] [2(1 + i~Qlh) + rn(l  + i~ ) ]  

[ ed ~Vnrn(Qlh-- 1 ) + ( 1  + i[2)(rn + 2Qlh}7-1 
× [1 + \61lh] [2(1 + i~Q/h) + rn(1 + i~2)] J 

(102) 

For r n > >  M n (rapid electrode react ion),  it is readily found  tha t  IAI again ap- 
proaches un i ty  only  when  (ed/ellh) ~ 1, which in the  present  case is physical- 
ly unrealizable. On the o ther  hand,  for rn < Mn (slow electrode react ion) and 
[2 ~ rJMn, one finds tha t  IAI m a y  approach un i ty  when the Debye  length be- 
comes comparable  to the compac t  layer thickness so tha t  (ed/ellh) ~ 1. As 
[2 -* 0, IAI approaches a finite value for  non-Butler-Volmer kinetics bu t  
vanishes as expected  in the Butler-Volmer case (vn--- 1). 
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