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An exact, small-signal theory of the impedance of an electrode/material/electrode system under quite
general conditions is presented. The system, assumed flat band, consists of a slab of material between two
identical plane-parallel electrodes. The material may be a nondegenerate electronic semiconductor or an
ionic conductor. Solid ionic conductors considered are Schottky and Frenkel defect materials, possibly
containing neutral defect pairs and/or aliovalent impurities, and fast ion conductors such as Na-8-
alumina. Liquid ionic conductors treated include unsupported strong, weak or potential electrolytes, and
possibly fused salts and oxides. Both intrinsic and extrinsic conduction conditions are included, with a
single species of negative mobile charge of arbitrary valence and mobility and a single species of positive
mobile charge of arbitrary valence and mobility assumed present. Intrinsic and extrinsic equilibrium and
dynamic generation and recombination processes are taken into account. The boundary conditions
employed permit the charge carriers to react directly at the electrode, to be adsorbed without reaction, or
to react after the formation of an adsorbed intermediate. The general solution and various simplified
special cases are discussed in detail. The general solution in the form presented here is sufficiently simple
that it can be used without approximation as the fitting function in a newly developed weighted nonlinear
least squares fitting procedure which treats simultaneously the real and imaginary parts of a complex
function such as impedance. A discussion is presented showing how fitting parameter estimates thus
derived from experimental data may be used to obtain a set of basic physical parameters characterizing
the experimental electrode/material system. Finally, the physical interpretation and significance of many

of the basic parameters is discussed in detail.

I. INTRODUCTION

Since the early theoretical work of Jaffé on ac space-
charge polarization in solids and liquids,"? there has
been considerable interest in the ac properties of such
materials, both in the further development of theory
and in the theoretical interpretation of experimental re-
sults (for recent reviews, see Refs, 3 and 4), Com-
parison of theory and experiment has sometimes allowed
nearly unambiguous identification and interpretation of
the physical processes operative in the experimental
system, but too often has yielded only meagre agree-
ment between prediction and observation and thus con-
tributed little to our understanding of the system re-
sponse. Two reasons may be given for such disappoint-
ing results: The theory may be too idealized and thus
may not adequately include the effects of some important
processes, and/or the procedures used in confronting
theory and experiment may be too inflexible and limiting,
especially when theoretical results are very complicated
and may involve numerous parameters whose values
need to be estimated. The present work should at least
partly remedy these deficiences in a number of cases.

Although the purpose of an experiment may sometimes
only be to find how a given experimental system re-
sponds to a given stimulus, perhaps with the thought of
eventually using the stimulus—response relationship in
a particular application, one is often more concerned
with deducing as many properties of the system as pos-
sible from the observed effects. In other words, we
often wish to characterize the initially unknown (black
box) system as completely as possible, thereby deducing
something about its “color” and other structure. Here,
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we shall be concerned with nondestructive electrical
stimulus and response. A relevant block diagram is
shown in Fig. 1. System characterization, as defined
here, involves the estimation of values of all param-
eters entering the theory, thus making quantitative

the specific model considered. Each distinct physical
process may involve one or more parameters, and the
theory becomes most transparent when each parameter
can be associated with a single distinct physical process.
Although the equivalent circuit step shown in the dia-
gram is not essential to the electrical characterization
process, it can often be helpful in showing the intercon-
nection of the separate processes which may be present.

In selecting a model for extensive analysis, one must
compromise between the desire to include the known or
conjectured characteristics of the widest possible range
of systems and the need to keep the mathematical formu-
lation tractable and the results comprehensible, Among
the factors which must be decided at the outset are: (i)

Material
System

I 1

Experiment

Equivalent
Circuit

System
ICharacterization

Plausible
Mode!l

FIG. 1. Block diagram for characterization of a material
system.
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the geometry of the system, (ii) the number of distinct
species present, (iii) the charge and (iv) the mobility

of each species, (v) the number of homogeneous chemi-
cal reactions which occur between the different species,
(vi) the stoichiometry and kinetics of each such reaction,
and (vii) the stoichiometry and kinetics of each electrode
(heterogeneous) reaction.

Here, as in most of the earlier work on space-charge
polarization, we consider solid or liquid materials
between plane, parallel, identical electrodes separated
by a distance [, and make the usual one-dimensional ap-
proximations. ® Much of the earlier theoretical work
dealt with a single species of possibly mobile negative
charge and a single species of possibly mobile positive
charge which were not allowed to combine with each oth-
er or with fixed centers. In many intrinsic-conduction
situations, however, generation and recombination (G/
R) of charge carriers is known to occur and the neglect
of such processes is undesirable. Even in cases of ex-
trinsic conduction it is not always appropriate to assume
full dissociation of neutral donor and acceptor centers.
Although a treatment of an intrinsic—extrinsic space-
charge problem has appeared, 8 it ignores dynamic G/R
effects.

The model adopted in the present work is defined by
the equations of Sec. II. Its principal novel feature is
the inclusion of intrinsic and extrinsic G/R processes.
The equations provide for one positive and one negative
species, each of arbitrary mobility, which may combine
with each other (reversibly) to form a neutral intrin-
sic center. In addition, neutral donor and acceptor cen-
ters may dissociate to form immobile impurity ions and
mobile charged species identical to the positive and
negative species arising from neutral center dissociation.
In general, there are then four distinct charged species
present: two immobile ones of valence numbers z,=z,
and z,=z,, and two possibly mobile ones, also of valence
numbers 2, and z,, Although such a situation is limited
and does not, for example, allow mixed electronic and
ionic conduction with mobile electronic and ionic species
of the same sign, it is still sufficiently broad to include
many systems of experimental interest. There are also
three distinct immobile neutral species possibly present:
neutral intrinsic, donor, and acceptor centers. While
provision for diffusion of neutral species is desirable
for some applications, it results in a quantum jump in
mathematical complexity and is not attempted here.

In Secs. III and IV we discuss respectively the exact
equilibrium and small-signal ac solutions of the general
model presented in Sec, II. While the equilibrium prop-
erties and small-signal response are essentially inde-
pendent problems, their treatment ina single, consistent
notation is clearly desirable. In Sec. V we discuss pro-
cedures for fitting the theoretical results obtained to
experimental data and the physical significance of the
model parameters in relation to different classes of
materials. A very brief summary of this latter discus-
sion is appropriate here as a preface to the formal de-
velopment of the model.

The present treatment can be applied, either directly
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or in one of its limiting forms, to solid materials such
as single crystals showing intrinsic or extrinsic conduc-
tion, including conventional semiconductors and solid
electrolytes, e.g., Si, AgCl, and 8-alumina, to liguid
materials such as unsupported electrolyte solutions,
e.g., in the cell Agl AgNOy(aq)| Ag, and perhaps to fused
salts and oxides. The physical and chemical insights
that one has concerning the material of interest should
guide the processes of data fitting and parameter inter-
pretation. In some cases all of the model parameters
should correspond to physical properties of the material.
In other cases it will be appropriate to use a limiting
form of the general model withfewer parameters, Other
materials may be well described if one assigns a single
model parameter one value in the equilibrium treatment
and another in small-signal response. In yet other
cases, for which the generally accepted physical model
does not completely agree with that adopted here, the
equations governing small-signal response are, to

good approximation, isomorphic to those of the present
model, Finally, for some other systems the results
presented here may provide a convenient means of pa-
rameterizing the data even though the physical signifi-
cance of some or all of the parameters remains obscure.

Because the continuity and transport equations which
govern the motion of charges in a solid or liquid are
nonlinear, an exact analytic solution of the equations
can only be obtained in the limiting case of small per-
turbation from the simplest equilibrium case, that
where there are initially no electric fields present. Lin-
earization of the equations then allows one to obtain an
exact, small-signal solution for current as a function
of applied potential difference or vice versa. All exact
ac solutions of the equations obtained thus far are of this
type. The solution is most conveniently expressed in
terms of the total input impedance (or admittance) of the
system, Z,, as a function of frequency. Note that such
solutions formally apply for ac signals of amplitude
small compared to kT/e applied around equilibrium,
here the point of zero electrode charge. The quality &
is the Boltzmann constant, 7 the absolute temperature,
and e the proton charge.

Thus far, all exact, small-signal ac solutions for the
impedance have ignored the possible presence of a com-
pact layer next to each electrode arising from the finite
size of the charge carriers. This approximation is of
no consequence for electronic conduction but may lead
to significant inaccuracies under some conditions when
the charge carriers are ions or lattice vacancies. Re-
cently, however, a treatment has been given which shows
how solutions which ignore this effect may be corrected
for it.” Such correction has been explicitly considered
for an intrinsic, no-recombination situation with charge
of only one sign mobile. The existence of the general
correction procedure makes it still worthwhile to be con-
cerned with solutions which ignore inner layer effects
and then to correct such solutions for these effects in
cases where they become important, Thus, the present
work will ignore finite size of carriers, takethe reaction
plane identical to the effective electrode surface plane,
-and employ the Chang-Jaffé boundary conditions®® ap-
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FIG, 2. Two general equivalent circuits used to represent the
electrical response of a general linear system.

propriate for small-signal response with no inner layer.
Situations where full linearization is inapplicable will

be investigated in future work using computer simula-
tion techniques, Such situations include those in which
intrinsic Frenkel diffuse double layers® are present near
the electrodes, perhaps associated with surface states
or specific ionic adsorption, and/or where a steady di-
rect current passes through the material as well as a
small-signal alternating current.

Although small-signal ac solutions of the present type
are formally limited to small perturbations about flat-
band equilibrium, a sitvation not often found experimen-
tally, they are nevertheless valuable because they fre-
quently seem to apply appreciably beyond these restric-
tions and because much more can be learned from their
exact analytic forms, than from purely numerical solu-
tions. They may also be used to obtain estimates, by
comparison, of the accuracy of numerical solutions for
those situations where such comparison can be made,

The present results differ from earlier ones in being
both simpler and yet more general. They are more
general because they include static and dynamic G/R
effects for both intrinsic and extrinsic centers and be-
cause they may include as well incremental specific
adsorption or surface state occupancy.

Most of the earlier work has been aimed at calculating
the impedance Z, which appears in the general equiva-
lent circuit of Fig. 2(a). This circuit can represent any
linear-system small -signal response because the circuit
elements C,(w) and R,(w) are, in general, arbitrary
functions of frequency. Here w is the radial frequency
of the applied ac signal. The virtue of this circuit is
that it explicitly separates out the limiting zero-fre-
quency resistance Rp and the high-frequency limiting
resistance R, the parallel combination of Rp and Rg.
But this form of circuit requires that Z,(w) involve no
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w =0 dc path since all such paths are subsumed in £,
This requirement leads to very appreciable complexity
in the specific form of Z; which follows from the exact
solution of the pertinent differential equations of the
problem even in the absence of dynamic G/R and ad-
sorption effects, In particular, the resulting form of
Z; includes several difficult-to-eliminate differences
between frequency-independent quantities which must
formally cancel in order to ensure that all dc paths are
accounted for by R,. These differences occur at several
levels in the hierarchy of equations which define Z,(w)
and must be completely eliminated in order to allow ac-
curate computer evaluation of Z,(w) to be carried out.

The above difficulty is not encountered when one cal-
culates the Z, of Fig. 2(b) instead of Z,. Note that Z,
includes all the response of the system except that as-
sociated with bulk behavior, that which involves R, and

C,=¢/4xl, the geometric capacitance of the system.

Here € is the bulk dielectric constant of the material
between electrodes separated by the distance 7, and
here and elsewhere all circuit impedances and circuit
elements will always be given for unit electrode area.
It is clear from the form of the Fig. 2(b) circuit that the
zero-frequency limiting value of the real part of the
total circuit impedance is Re(Zp,) =R, + Re(Z,,), where
a subscript zero denotes a w—0 limit. It further turns
out that Re(Zy) = Z, for situations of the present type.
There are in this case no differences between large
frequency-independent quantities which must be com-
pletely cancelled to obtain Re(Z,,) exactly; thus the ex-
plicit form of Z (w) is appreciably simpler than that of
Z(w). The present work is therefore concerned only
with the calculation of Z (w).

Finally, it has recently been found that several exact
relations can be used to simplify very substantially the
form of Z(w) which follows from the direct solution of
the equations of the problem. The final resulting ex-
pression for Z (w) is much less hierarchal than the orig-
inal one and is simple enough to be almost transparent
in its implications. This simplicity is of great impor-
tance. A solution has now been found that includes the
five main processes: Charge separation near an inter-
face, adsorption-desorption, charge transfer at an
electrode, mass transport (diffusion effects), and in-
trinsic—extrinsic G/R, and yet is simple enough that it
may be economically used in a least squares comparison
of theory and data.

A method of complex nonlinear least squares fitting
has recently been developed which fits both real and
imaginary parts of complex data simultaneously.9 In
addition, the resulting squared residuals may be arbi-
trarily weighted. Because of the availability of a simple
enough solution to be used in such least squares fitting,
one need be much less concerned with obtaining an exact
or approximate equivalent circuit to represent the sys-
tem response. Although approximate equivalent cir-
cuits will be employed where they are helpful in inter-
preting the response, one can now obtain parameter
value estimates for the electrode-material system by
direct fitting of the exact theoretical result for the total
impedance, Zr, to impedance data with no approximate
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intermediate steps. The fitting procedure yields not only
parameter-value estimates but estimates of their stan-
dard deviations and of that for the entire fit. The re-
mainder of the present work is concerned with the appli-
cable equations of the rather general model described
above and their equilibrium and smalli-signal solutions.
Most mathematical details appear in the appendices.

Il. GENERAL EQUATIONS

Consider a homogeneous material containing a con-
centration »n of possibly mobile negative charge and a
concentration p of possibly mobile positive charge. No-
tation will be considerably simplified if subscripts used
to distinguish quantities associated with positive or neg-
ative species are taken as 1 or 2, respectively. Thus,
e.g., the valence number and mobility of the positive
species will be denoted by z; and u, rather than by z, and
K, as in previous work. The material is also taken to
contain, before any dissociation takes place, the im-
mobile, neutiral intrinsic, acceptor, and donor center
concentrations, N9, N, and N}, respectively. After
arbitrary amounts of dissociation have occurred, the
resulting neutral concentrations are N;, N4, and Ny,
and the immobile charged concentrations are N3 and
Np3. The valence numbers of the latter quantities are
zy and z,, respectively.

It will be assumed in the present work that recombi-
nation of charged entities to form either a neutral in-
trinsic center or a neutral acceptor or donor atom oc-
curs by a simple bimolecular, mass action process.
Many other recombination modes are of course possible;
some have been described by Sah'® for electrons and
holes in semiconductors. The bimolecular rate law is
employed here for simplicity; because it is usually an
excellent approximation for donors and acceptors; and
because one of us has shown'' that for small deviations
from equilibrium it can provide an adequate description
of a wide variety of other recombination and trapping
processes. Thus, this assumption often represents only
a negligible or small specialization away from general
recombination and trapping mechanisms., Whenever full
dissociation occurs (i.e,, no recombination), the form
of the recombination rate law is of course immaterial,
and the ratio m,=2,/z, will then be taken as arbitrary.
On the other hand, when some recombination occurs, 7,
will be taken as unity throughout this work, thus en-
suring the applicability of the simple bimolecular rate
law and consequently avoiding the need to consider com-
binations of sequential and/or instantaneous n-body re-
combinations with »>2,

In the following work, we shall make the usual as-
sumptions that dielectric constant, diffusion coefficients
D,, and mobilities are all position and field independent.
In addition, the Einstein relation, D;=(kT/e)(u,/z,) with
7=1,2, will be assumed applicable. Let us consider a
one-dimensional system and define the faradaic currents
I and I, and the total current (position-independent) /.

In addition, take the average (or macro) potential as V,
with 8V/3x =—E, where E is the electric field at position
x, measured from the left electrode.

The current equations may now be written as®

1617

24 3
Ij=— (zlem)[p ™ +(kT/ez,) 35] , 1)
Iz=(226“2)["n J‘F(kT/ezz) —a—;]’ (2)
and
I=I,+1 (i) a4 @)
Thtie= 47/ dtox *
The continuity equations are®™!?
aN
a_t{ ==k Ny +ky,np, (4)
aN )
_aié=_kA!NA+kArNAP, (5)
9Np .
Tt-=_kD£ND +kD7NDn, (6)
9 dNr N 8l
% _ _9Nr 9Na _1)_1, -
ot at 9t \z,e/ 9x

and

ooy (1) ok ®

Bt 8t 8f \zye)ox

Here the subscripts g and 7 stand for generation and re-
combination. Finally, Poisson’s equation becomes
8%y (4119

Pyn Ak T)(zlp—zzn+z2NL—z1N;). (9)

In the above equations, all concentrations are generally

time and space dependent, A list of sub and superscript
and symbol definitions is included at the end of this pa-

per.

Boundary conditions are needed in order to solve the
above set of equations. The generalized Chang-Jaffé
boundary conditions*® which will be used here may be
written as

Iip=-zieky(pr = p,), (10)

Iig =zyeky(pr - p.) , (11)

Ly =zgky(ny —n,), (12)
and

Lyp =~ zpeky(ng - n,), (13)

where the subscripts L, R, and e designate left, right,
and bulk equilibrium values. Thus, [j; is the instan-
taneous value of the component of faradaic current I, at
the right electrode, where the value of p is pr. The
quantities k; and &, are values of the effective hetero-
geneous reaction rates (evaluated at the point of zero
electrode charge) associated with electrode reactions
of the p and n carriers, respectively. In most previous
work in this field they have been normalized to yield the
dimensionless boundary parameters »;=(I/D,)k,,j=1, 2.
Here, we shall employ the more convenient choices p,
=7,/2=(1/2)(k;/D;). As we shall see later, k; and p, will
be complex and frequency dependent when specific ad-
sorption is present. "'*** For convenience take V =0
and Vg =V,, the total potential difference applied to the
system. It appears that an exact solution of the above
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set of equations can only be obtained (for V, # 0} if they
are linearized. Let V, =V, +V e’ and expand all
potentials, currents, and concentrations in the general
form Y =Yy+ Y.’ where higher-order terms are ne-
glected in the expansions and in all products such as
p(dV/5x). Here the subscript i stands for incremental,
The present small-signal ac solution around the point of
zero charge for flat-band conditions requires that V =0
and thus Vy(x) =0. Inaddition, one musthave |V ;| <<kT/e,
ensuring that | Y; ! << |Y,lwhenever Y4#0.

{1l. EQUILIBRIUM CONDITIONS

In the present flat-band solution, all static quantities,
such as py and »ny, have their equilibrium values. Thus,
bo=p. and ny=n,, independent of position. Even the solu-
tion of the system equations for equilibrium conditions
yields rather complex results when three different G/R
processes may be simultaneously operative. The calcu-
lation of the equilibrium values of py and #, is carried
out in Appendix A for various cases of interest. Note
that in the most general extrinsic case, quintic equations
in ny and py appear, while simpler situations yield cubics
or quadratics.

As mentioned in Appendix A, it is convenient to nor-
malize extrinsic concentrations with intrinsic ones,
yielding the normalized quantities 7, and pg. Once #q
and py have been obtained using the equations of Appen-
dix A, a number of further useful derived quantities may
be defined. Let

G,=R1=G,+G,, (14)
where

Gy=(e/z;;910), (15)
and v19=pg, ¥20=7¢. Further define

Tn= /By, T,=1,(0/Po), (16)

€,2G,/G =(1+732?, (17

m,=25/21, Vféﬁg(ﬁo/io) s (18)

8,=(1+my2i)yt, (19)

X;=8,/€; ¢=0.5(7g+py), (20)

a=0 A +0,05, DEAA,, (21)
and

CENyg =Ny, d= A+, (22)

The general Debye length is
Lp=[ekT/4re(zipy+2ing)]*/ 2. (23)

An important derived quantity is M=(;/2)/L,, When 2,
=2,=2,, Lp/Ly=¢""/% where L, is the intrinsic Debye
length for this case.

IV. STEADY-STATE ac RESULTS

For maximum generality, the present solution will be
given in normalized form. Let impedances and resis-
tances be normalized with R., capacitances with C,, and
w with Tp=R.C,, so that Q=w7p. Most of the processes
of interest in the present work occur for Q21. Denote

J. R. Macdonald and D. R. Franceschetti: Small-signal ac response

the above normalization by a subscript “N.” Then Z,y
=Zr/R,. Innormalized form, the relation between Z,
and Z, consistent with the Fig, 2(b) circuit is

77 1+Z$N

Zpy= —s
™14+ Z) (24)

Since Re(Z yg) =Z yo, it follows that Zryg=1+Z 4, But
this quantity, the normalized 2 —~ 0 resistance, must
equal Rpy, where Rp appears in Fig, 2(a)., Earlier
work™® yields the following expression for Rpy,

3 €
Rpy= {1—<Lf 2

-1
von 1+o£é] ’ (25)
where pjp and pyy are the Q-0 values of the dimension-
less boundary parameters p; and p,. These latter quan-
tities are frequency independent in the absence of spe-
cific adsorption. Note that, unlike R..,, R, is not an
equilibrium bulk property of the material but depends
on the boundary conditions. It is independent of G/R
parameters as it should be (but see discussion at the
end of Appendix B). When py,=0, so that there is no
Q—~0 Faradaic current of positive carriers, the result
for Z yo= Reyo= Rpy — 1 simplifies appreciably and be-
comes

Zgyo=mt+ (e 2020) {26)

(p10=0)
since m,=¢€, /€,

The small-signal equations are obtained, as mentioned
above, by separating all quantities into static and incre-
mental terms as in ¥ =Y, +Y,e“*, linearizing, separat-
ing out incremental terms, and cancelling ¢*** factors.
Results are summarized in Appendix B. The cardinal
result is the following irreducible expression (B34),

hs + YMN

Y EZ-I =
sN sN gs+Ns,

27)
whose terms are given explicitly in Eqs. (B35), (B36),
(B37’), and (B43)-(B48). The admittance has thus been
found in terms of the basic [a;,} elements (Appendix B.I),
its eigenvalues 9§, iQ, and a few other simple quantities
such as ¢;,

Although this Y, result, in its full generality, is still
not trivially simple, it is, nevertheless, sufficiently
uncomplicated that it can readily be employed as a fitting
function in nonlinear, complex least squares data fit-
ting. ’ In the most general case, the normalized expres-
sion for Y,y involves the following parameters: (a)M,
T, T, and ¢ related to the specific species present;

() P10, P1=y E1, aNd P2g, P2e, §2, 2SSociated with the
boundary conditions; and (¢) NS, N3 A, Aa, Ap, &5,
£,, and £, associated with the three G/R processes
possibly present in the bulk material (see Appendices

A and B). In almost all practical cases, not all of these
parameters must be determined from the fitting, how-
ever. Thus, for an intrinsic situation with the positively
charged mobile species completely blocked, calculation
of Y,y involves M, 7,, Py Pzes 245 Ar, and &; for in-
complete dissociation and M, 7., T,, P20, P2e, and &,,
for complete dissociation. For a similar pure donor-
type extrinsic conduction situation with full donor dis-
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Z, Z.

Z, Zq

FIG. 3. General equivalent circuit used to represent the
impedance Z of Fig, 2(b).

sociation and no specific adsorption, the parameters
reqUired are M! Tes Tyy ¢, P20 =Pz, N(l’), AI: and ‘EI-

There are two important checks on the correctness of
Eq. (27) which are worth mentioning. First, since the
assignment of 93 indices is arbitrary, the solution should
be invariant tothe transformation 82~6Z, 82—6% v, ~v,,
Y2~7v1; and £y =15, t,~1;. It is indeed found to be in-
variant. Second, since the solution is normalized, it
should be independently invariant to the interchange of
positive and negative species. This translates to in-
variance against the 1-2, 2~ 1 index transformation
for such quantities as €, p,, and a,,. Again proper
invariance is found,

The Eq. (27) admittance result leads to the general
equivalent circuit of Fig, 3. Although there are in-
finitely many ways Eq. (27) may be analyzed to yield
this general circuit, the choices

Zn=gsZun s (28)

Zyy Egs/hs, (29)

Zw=N,Zyy, (30)
and

Zyw=N,/hg, (31)
where Z = ,}N, seem appropriate and possibly simplest.

In the following, specific expressions for these quantities
and Y,y will be considered for various illustrative, sim-
plified cases. The following results do not, however,
by any means exhaust the possibilities of the general
Eq. (27) expression for system response, Further pos-
sibilities will be explored in later work.

A. Ohmic conditions

Here p; =~ and the Z’s of Eqs. (28)-(31) all go to
zero except Z,y which is finite. Thus in this simplest
case, Z,y =0 and Zpy =3~ = (1+iQ)™! from Eq. (24). As
expected, only bulk circuit elements contribute to the
impedance here.

B. Completely blocking conditions
In this case p; =0, iz, =0, and g,=1. Therefore, Z,y
=Z,y=° and Z =22Ns Q1 +N,)Z‘,’m, which becomes, us-~
ing (B37'), (which yields N, =¢, here), and (B43),
SO (i E72) P CH P )12
i (07 = 03) t1 8y + (6] —u )t — (63 —ud)ty]
(32)

0
Zgy
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This result cannot be further simplified in the general
G/R case, and the necessary 685 values must be calcu-
lated from (B20) or (B23).

Further simplification is, however, easy in the
special case #;=0,7m,=7,=7,=7,=1. Thenu,=1, ay
=0.5+i2(1+0.5f), a;,,=~0.5+0.5iQf;, and it follows
from (B20) that 8% =y and 62=:Q2(1 +f;). Equation (32)
then yields just ¥ 1y =iQ¢,/ = G2/9) (MVY) coth(MVY)
—1]. Let »=(M)coth(M) and consider the series de-
composition, Z% =Rg.y +(EQCs.y)™. Then for Q «1,
one finds Rgyy ~ Rgayo=(r = 2)/2(r = 1) and Cg,y =~ Cseno
=y =1, in agreement with earlier Z,y results for the
same case which did nof include dynamic recombina-
tion, &% Although intrinsic G/R effects appear in 62
here through the f;, they cancel out of ¥Jy in this case.
This result is to be expected in this symmetrical, com-
pletely blocking, equal mobility and equal valence num-
ber situation. It is clear, however, that extrinsic and
intrinsic G/R can strongly affect the general Zg,v of Eq.
(32).

C. Equal boundary parameters

Here take p; =p;=p, and note that p,~p,, g,~2,=1+p.»
and i ~p,(1+p,). Then

_ Pell+pe) + Yyu
Yon = (1 0+, (33)
Again in the #;=0, 7,=7,=71,=7,=1 case, this result
simplifies greatly and becomes

_ 05+ [iQt1(pe +¥2) +¥pevs)
3

Y
¥ Pet¥2

(34)

where £; and v, involve the specific 6,’s given in Sec.
IV.B. It is clear that even in this p, =p, case, explicit
G/R effects will appear. Also, remember that if spe-
cific adsorption is present, p, will be frequency depen-
dent.

D. No extrinsic effects and 7, =m, =1

In this case, the 93 and a,,, are again given by the re-
sults in Sec. IV.B. Thus, N,=t,, Y%y =iQty,/¥, and
one finds ¥,y =(p, ¢~ )iQt, +9¢,], where p,=0.5(p;+ps).
Thus

v . = 010207108 (py +75) +¥0,7,)]
¥ pa+'y2

) (35)

which of course reduces to (34) when p; =p,=p,. In the
Q~0limit, ¥+ 1; 50 Reyo=(pae+1)/(P10020+0s), Where
P0=0.5(p1p+pg). The p;~0 limit can be readily taken
in (35); that for p,~= yields Y,y =20, +7,+iQ™Y%,, a
result, when p; =0 as well, of the same apparent form
as one found earlier in the p; =0, p, == case without any
G/R effects.'®!" Here, however, intrinsic G/R appears
through the v, term which involves 8, and thus f,. Only
when A;—%, so that f,=0 (the full dissociation case,
which is particularly appropriate for solutions of strong
electrolytes), is the Z,y following from the present Y.y
result consistent with the earlier no-recombination one.
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E. One-mobile situation

Consider the situation where 1, ~=, i,e., u;~0,
te>0. Then7m,~, €;,~+0, €= 1, =2, A, =05, A,
=<, and A, ~48,. Inaddition, h,—p,(1+p,), &~ (1 +py),
a3 =~®, ay,~°, A=< and B-~, We shall assume
that the y, ~ 0 limit dominates the Q-0 one; that is,
that one cannot reach frequencies so low that signifi-
cant finite motion of positive charges is possible in a

half cycle. Then it turns out that

6]~ (36)
and

85~ (A/4B)~qv, (37)

where the complex quantity ¢ is

= A14, + 200,56,k '
1 Ay +200,6,h, (38)

When A;—~<, h;~0 and q becomes just 4,, involving ex-
trinsic G/R only (see, however, Appendix A, II, 2b),

It follows from the above that in the general one-
mobile case, y;—~*, N,—¢;—~>, and Yyy—=, Thus,
Zw—0, ZbN”pzly ZcN-'Ns/YMAH and Z;y ~~, There-
fore,

YsN = YcN = lim (YMN/tI) . (39)
Fo—>
The limit is readily evaluated and yields
Yon =i® 7ty +ps, (40)

with intrinsic and extrinsic G/R processes being entirely
expressed through the g in #,. In the intrinsic case with
m,=1 and thus 6,=0.5, ¢ reduces to

2 +A[+i9£1 .

9= 1+ A +i0E]’ (41)

this ¢ and the Y., following from (40) are in agreement
with earlier work for this case.® In this work, which
included no specific adsorption, approximate equivalent
circuits and transient response results were also dis-
cussed but were only found useful for p, <M/£;, a po-
tentially serious limitation on p,. In further work, an
approximate solution nearly equivalent to Eq. (40) was
presented which included intrinsic G/R, fully dissociated
extrinsic behavior, and specific adsorption. ™' The
use of the exact Eqs. (38) and (40) in complex least
squares fitting eliminates the need for any approxima-
tions even in the most complicated case which includes
extrinsic conduction, three kinds of dynamic G/R pro-
cesses, and specific adsorption.

In the fully dissociated pure intrinsic situation, we
need not assume 7,=1, and ¢ reduces to just 6,=(1
+7.)™ here. Then the M6, term which appears in ¢,
becomes (MVS,)(1+iQ)}/2. But MV3,=(1/2) 4ne®2iny/
€kT)V/2=(1/2L,,) = M,, where L,, is the appropriate
Debye length when only negative charges are mobile.

In this case we see that the iQy~'t, term of (40) is the
same as the i, equal mobility, completely blocking
result of Sec. IV.B except for the appearance of M0,
=M, ' ? here and M8, =Mp'/? there. The mobility dif-
ference thus only appears through the change in .

J. R. Macdonald and D. R. Franceschetti: Small-signal ac response

It is now of interest to see how Y4 and Y, may be
expressed and interpreted in the specific adsorption
situation in which p, is given by Eq. (B38) and may be
complex. Equation (40) may be rewritten as

1 /
Zoy =, (40"
Qi+~
P2
and p;' developed in a continued fraction as well, One
obtains

Zw= 1 » (40")
Yoy +
Roy + v, L
7 Ryy
where
You= 1Q(ta/¢) s (42)
Roy=psa s (43)
Yoy =iQCay = iUE20020/P2m) » (44)
Ryn=05,/020020 5 (45)
and
Pem=P2e ~P2o - {46)

It follows from the above that Z y,=R yo =Ry + Ry =po,
in agreement with (B49) in this case. Note that p,, may
be positive or negative, leading to possible negative
resistances and capacitances, &7

The equation connecting Zry and Z_y may also be
written in continued fraction form as follows

Zpym e (24)
Yty vt Zey
where
Yy =iwCy/G., =iwC, /G, =iQCy=iQ, (47)
and
R;y=R;/R.=R.y=1. (48)

Thus when Eqgs. (24’) and (40”) are combined, one ob-
tains a six-section. continued fraction form of Z,,. Al-
though the general Z,, expression of Eq. (27) may also
be developed into a continued fraction, insufficient sim-
plification occurs to make this approach worthwhile in
the general case,

It will be noted that the full continued fraction ob-
tained in the present case involves only frequency-in-
dependent circuit elements, except for that which is
associated with ¥Y,y. We have

(Yon/i2) = C ()

_ M[g(1+i9)]'/?coth{M[q(1 +iR)]* 2} -1 (40)
- 1+iQ :

In the general case when N 3# 0, g will be essentially
frequency independent (g = o) when Q<< £;'A;, &' (A,
+pg), and £3(Az+ 7g). The most stringent condition is
likely to be the first, since though &; is usually of the
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FIG. 4, Two approximate equivalent circuits for Z, when
T.=%. (a) Voigt-type -equivalent circuit representing Zr when
time constants are all well separated; (b) Ladder network rep-
resentation of Z; appropriate for any time constant separation.

order of unity for ionic charge carriers, it may be as
large as 10* in some electronic situations,'® and for
solids A; may be even smaller than 107 at room tem-
perature. Certainly these conditions will usually also
imply @ <<1. Let »y = (MVqq)coth(MVgq,). Then for
sufficiently small Q, (Y,y/iQ) = 79— 1=Cyyy. In this
low-frequency region, Zry may be entirely expressed
by an equivalent circuit of frequency-independent ele-
ments. This circuit is of the form of a finite ladder
network,

In earlier work for the present case with extrinsic
centers fully dissociated or absent,4 the Voigt-type
equivalent circuit of Fig. 4(a) was found applicable for
©<1, but the relations between its elements and quanti-
ties such as M, pyy, and p,. were not found invariant
to the magnitude of these quantities except when all time
constants differed by a factor of 10% or more from each
other. The circuit of Fig. 4({b), which is a ladder net-
work, was then found heuristically” and for Q<1 is
properly invariant when we identify the present C;=C,,
Rl ER«-; C20 = (70 = l)CgE CR; RZE Rm/pam ERR, c3
= (£3,052/P2m)Cs=C4 and Ry=(p2,/P20P2-)R-=R4. Here
the subscripts “R” and “A” stand for reaction and ad-
sorption. The present work shows explicitly under what
conditions the Fig. 4(b) circuit is a good approximation
with the frequency-independent element values defined
above. The exact equivalent circuit is just that of Fig.
4(b) with Cg replaced by the frequency-dependent ele-
ment Cy(w)=(Yon/iQ)C,= (Y, /iw). Note that in the fully
dissociated intrinsic case when A;= and %;=0, ¢q¢=0,
and Cpy =(M,) coth(M,)- 1.

We can write Yy =Z7y=Gpy +iQCpy, where Gpy
=R3y. It follows from the exact, hierarchal ladder net-
work circuit that for -0,

1621

Rpyo=Rryo=1+Ray +Ray =1+03, (49)

and

Ray+Ryy \? ( Ray )2
= C
Cemo 1+(1+RM+R3N) Conot\To Ry + Ry

=1+ (1 +pgo) [ (rg = 1) + £2,02m) - (50)
In the intrinsic case Eq. (41) leads to »y=M,[(A;+2)/
(Ar+ D] 2cothiM, [ (A, +2)/(A;+1)]Y 2}, For A, << 1, g
becomes just »= (M) coth(M) since M,V2 =M here; thus,
the immobile charges have been effectively mobilized
as far as the low frequency capacitance is concerned.
When A;>> 1, on the other hand, v, =(M,)coth(M,;) and
only the mobile negative charges play a role in the ca-
pacitance,

An expression equivalent to Eq. (50) has been pre-
sented earlier for the fully dissociated intrinsic case
without adsorptions' ¥ and a slightly less general equa-
tion for the same situation appeared even earlier.? In
the intrinsic, completely blocking situation, Cpyo=Cgry
+1 =7y, exactly the appropriate normalized diffuse dou-
ble layer capacitance. 2 Comparisons have already been
published of the present reaction resistance R,= Ry with
that found in supported electrolyte cases'®? and with
that to be expected when the compact layer is accounted
for.” Since complex impedance plane plots and discus-
sion have already been presented of the response of the
system for intrinsic, fully dissociated conditions with
adsorption,*™!® no further such results will be given
here. The detailed effects of both intrinsic and extrinsic
G/R processes on the impedance-plane semicircles
found in the absence of these processes will be pre-
sented in later work.

F. Partially ohmic conditions [p,| <o, p, = o
For these conditions, one finds
Z .y =€19/115(P1aty + Pyyty) ,

Zyw=¢€/(&+py) =, +€ py] ™,

(51)
(52)
and Z,y =Z, =0. Here I;,= (8% - 62!, We can now write
You =My €701 +(€59) 15(Praty + Paty)
=Y+ €101 +(€19) 1o [Praty + (Pop — €9133)t5 ]

Ayt + Byt
- -1 b1+ Dpla
_"872+€1 pl"'[w(e%_a?) ], (53)
where
A, = €5P 1, =163+ ay — a5y) +10€11(65 - ay,)
="e(612. ~-U, —iakea) +7:Q€'1-1(9§ = azz) ’ (54)

and
B,= €Il[Pz).z - <z¢(9f - 922’)]
=7, 903 +i00F - m uf, - €7{A  + (€, +iN, 1], (55)

The term 7,7, has been introduced in (53) because it does
not disappear as Q0 and, in fact, corresponds closely
to a similar term appearing in Y,y for supported-elec-
trolyte conditions without recombination.!” Since the
term in square brackets in Eq. (53) approaches zero as
Q—-0, 7,7, is evidently a first approximation to the pres-
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1622 J. R. Macdonald and D. R. Franceschetti: Small-signal ac response

ent more complicated unsupporied response in the p, =0
situation, ¥ %7

Further simplification of the present form of Yy is
possible if one restricts  to small enough values that
62 is well approximated by only the first term of Eq.
(B23). Then!|Al<«<I|2BI? leading to 0= Q<«<[lull/1b,
+u, fi!] and 63=iQ{(b,/u,) + f], usually much less than
unity. Retaining terms to first order in § only (see Ap-
pendix C), one finds that the expressions for 4, and B,
simplify appreciably to A, = iQu iA%, and B, =iQm,(C.
+15 b0 — 1)=0Q[1 +€7 o — 1) —ugAl], where c,=2,,
~X,. To the same order in Q, p; =Py +i2£3,01m and
0% — 03200 +iQu, p+dgp — 2u5 b g — fro), Where u,, is de-
fined in Appendix C. These results allow Eq. (53) to be
rewritten in approximate form for the present Q range.

In the fully dissociated intrinsic regime, where 7,
=7,, the above results simplify even more. Let us
consider the p, =0, p,~*=, or (0,«) situation only here.
Then 05=4Qb, A,=iQ), and B,=iQn,(c +b-1)=iQ(l
- )\f). In order to retain only first-order © terms in
(53), we take 8% - 82=u o, which becomes unity in the
present case. Thus (53) reduces to

Yow=mye+iQ A3t + (1 =2D12,].

R (53")
Now to first order, 62=1+{Qa here, Q#,= Q(» - 1),
equal to QCpry in the present two-mobile case, and Q/¢,

=0(Q?)~0. Thus,
Yoy =my,+iSi(r-1)

= (1, MViQb ) coth(MViQD ) +iAE[ (M) coth(M) - 1],
(53")

where we have approximated v, by (M) coth(M), adequate
for <« a™?, which is consistent with the |A|<< |2BI?
condition in this case.

The above results show that the approximate equiva-
lent circuit of the Z, part of the system in the present
low frequency range is just a finite-length Warburg im-
pedance, Zy,=R, /7y, in parallel with a frequency-in-
dependent capacitance, Cpy=ACgyC,=[(1+7,)/(1
+1)2(r - 1)C,, equal to [(1+7,)/(1+7,)]%r - 1)C, in the
present fully-dissociated intrinsic situation. When 7,
=m,=1,(Cpy +C,) is thus just the usual diffuse double
layer capacitance. On the other hand, when 7,>1, so
that the species which is not blocked at the electrode is
far more mobile than the other, Cpy > Cg. But note
that in this case, |Z,lwill be small and may even be
negligible (unmeasurable) compared to R..

The normalized impedance Z,y leads to a typical
finite-length Warburg arc when plotted parametrically
as a function of © in the complex (normalized) imped-
ance plane. #'*# [tg peak, of normalized height
0.41777}, occurs at ©=0,=2,53(bM?)"!. Our present
results are formally restricted to  <<b™, where here
b=(m,+2+7;")/4 and will thus be large when 7, <1, the
case where Z, dominates the total impedance. Actually,
one finds that the present approximation for Y,y is rea-
sonably good even for Q2 b, The reason is that 6%=iQ
exactly when n,=7,=1 and thus b=1. It is therefore of
interest to ask how much —-Im(Zyy) has declined from
its peak when Q has increased from @, to say 2.53/b.

When {2 increases by a factor of M? —Im(Z,y) de-
creases by approximately M to roughly 0.4/w,M. If 7,
<« M'l, this can still be appreciably greater than unity.
Thus, we see that when 7, <1, so Warburg effects are
dominant, even the present simple approximate solu-
tion will apply for 0= Q= Q, and, in addition, over the
potentially wide range of Q,= Q2% b™ when M> 1, the
usual situation,

In summary, the unsupported case, because of its
Poisson-equation coupling between positive and negative
charges, leads to modified finite Warburg response,
including a parallel capacitance which is nearly equal to
the diffuse double layer capacitance, vC,, for n,=7,=1
and is as small as (» -~ 1)C, /4 for m,=1, 7, < 1.

G. Low frequency limiting quantities

The general results can be appreciably simplified in
the very low frequency region. Expand all quantities of
interest to first order in £ so that for the general quan-
tity ¥, Y(Q)=Y,+iQY;+..., Expressions for the -0
and first-order parts of all quantities of interest are
summarized in Appendix C. From Eq. (27) we may
write

Yon= Yoo +iQY =G o +iQCn

hso+ Qs + Yiyng)

= - . 56)
gso+lQ(gsf+‘st) (
It follows that G yo=R g =hy/g 40 and
Cyxo =g;clj [gso(llsf + YMNf) - hso(gsf +st)] 4 (57)

Since Ryyo=Rpy=1+Ryo=(gs0+50)/ g0 and (g0 +F50)
=g1082, it follows that Rryg =g10820 250 =[(€1010/810)
+(€,020/820)]7", in agreement with Eq. (25). It is worth
noting that the physical requirement that R;,, must not
involve dynamic G/R effects is satisfied by this result.

The simplification of Eq. (57) using the results of Ap-
pendix C is much more complicated. First, let us form
the final desired Cpy,. Figure 2b and/or the first part
of Eq. (50) with Ryy =R yg, Cay =Cyyo, Ray =0, and Cyy
=0 yields

Cpwo=1+ ——~——gc’”°
PO [ 1+ Gsm)]
-1+ £20Cano - éﬁs_]‘lﬂi
(gs0+hso) (Z10820)
=1+Cqpo+Cayo+Cono. (58)

The contribution from specific adsorption, C,yo, turns
out to be

Cano= (gmgzo)-z(gso hgp — Rg08 )
= (gmgzo)-z [Elggogla 01m+€zgf052apzm] . (59)
This reduces in the pjy =p;. =0 case to just
CaNO '_‘g;(z) [€2£2ap2m] . (60)

Note that C,yo may be very much larger than unity for
£,,>> 1, i.e., slow adsorption.

It follows from Egs. (57) and (58) that we may write
Cano= (2108200 %A1 10, (61)

J. Chem. Phys., Vol. 68, No. 4, 15 February 1978

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. R. Macdonald and D. R. Franceschetti: Small-signal ac response 1623

and

Cono=(810820) Aty (62)
where

Ar=gol1+2% (010B26M 020 + P20 B 1o a10)]

15850l L +%g0(P10220M¢20 + P20 210210
~ hgo[#8(A 107010 + Aagheze) = 1], (63)

and

Ay=gyo(hg — p10P20) = Hgp =€1€2(020 — P10)° - (64)

After considerable tedious algebra, A; may be rewritten
in simplified form as

Ay =810830+Ua5(Pao = P10)(8208T0 — 210830 - (63')
Thus, finally one has

Corno = (g10820) (A1)l7, - 1], (61)
where

¥o=(M04) coth(M8 ), (65)
and 015= (u,)'/%. In addition, one finds
Cono=(2108 0) (€162 M?/3) (2o = p10)* (b boo +fro) . (62')

Since €4€,0=8,8,, the expressions for Cgyq and C,y, do
not depend on €, and thus are alsc independent of the
py’s.

The above results do not apply in the one-mobile (r,,
- ) situation, which has been treated separately in Sec.
IV.E. On the other hand, if 7, (and thus 7,) is very
large but not infinite, then the Sec. IV.E results will
apply for Qr,> 1 and the present ones for Qm,<<1. For
very large m,, the latter condition may be difficult to
achieve experimentally. Let us now consider expres-
sions for Cpy, in various simplifying cases.

1. M—0

Here C,yo remains unchanged and Cgyo and C, 4 both
become proportional to M? and thus go to zero. Only
the geometric and adsorption contributions to Cpyo re-
main.

2. P10=P20=Peg aNd P10 =P =Pee
In this case C,yy reduces to

Caxno =ge'g0gm[515m+€z§za] s (66)

where p,,=p,. —0q0 20nd g19 =22 =8,. Note that Cyy—~0
when p,,,~ 0, but it is not zero when p,0=0,p,.#0. We
also obtain for the present situation

Cavo=g55(re = 1), (67)
and
Cyyo=0. (68)
3. p2p— >
For this condition, one finds
Cano= €181551aP1m - (69)
The other contributions reduce to

Cewo "gx-ca)(“;tz) Afo) (re=1), (70)

and
Cyyo—810(€1€, M2/3) U3t bo + fro) - (71)

These expressions are consistent with those that follow
for Cyyo from the results of Sec. IV.F.

4. No adsorption, no dynamic G/R

In this case, C,yo=0, and one need only set A, to &,
and %=1 in Egs. {63') and (61’) to obtain Cgyy, and u,
=1, byy=0 in Eq. (62') to obtain C,p5y. Further, here
pPp=pjand v, reduces to ». The results agree with
those found earlier for this situation.®

5. G/R effects

To what degree can the presence of dynamic G/R af-
fect Cpyo? First, we see that C,yq is independent of
dynamic G/R parameters. It does depend, however, on
equilibrium G/R through its dependence on ¢, and thus
on ip/Po.

Second, Cgy, is independent of the intrinsic G/R
parameter fj, but does depend on A?o/uf,o, ratios which
cannot exceed unity even in the extreme extrinsic situa-
tion where ky and/or h, may themselves exceed unity.
The main effect of extrinsic G/R on Cgy, will thus be in
7,, where (#,0)'/? may itself possibly be considerably
larger than unity.

The C,y, contribution depends on both extrinsic and
intrinsic G/R processes, but u§ b= [A158,0/ (A1
+A,0))(8/88,) cannot exceed (5/5,5;) = (€,€,)™" times the
smaller of A4 and Ay, since the hy are always = 0.
Since, however, A, and A, will generally be less than
two, )b, will not usually be much larger than b, its
limit in the absence of extrinsic G/R processes. For
example, for the numerical values mentioned in Ap-
pendix A,I1.2, b= 8,167 and %, 56,,=9.154. On the other
hand, the f1,=2¢6b/A,; term may greatly exceed b in the
usual A;<<1 case.® Then for intrinsic conduction, ¢
=1, 6;=0.5, and C,yo=[(pzo - p10)/g10820] L (M2/12)(1
+2A7")]. This result can be rewritten, with M=M,, as

Cywo =[(on - 010)/g10g20]z(lz/48)

X (8me?2’c o/ kT)(1+2A7Y). (72)

But, on introducing the relation A;'=N%-1, one finds
that the quantity c;o{1 +2A;") becomes just (2N = ¢,).
For full dissociation this quantity reduces to just N‘,’, as
it should. For A, <1, however, it becomes 2N, twice
as large!

Now f;~0 when (Q£,)%+A%>b%, In this frequency re-
gion, where  <<1 may still be possible, the effective
L, and M, will involve just ¢, since there will be in-
sufficient time in a half cycle for intrinsic G/R to con-
tribute to the capacitance. In this region, the effective
C,y capacitance may be expected to be proportional to
just cgg, as in Eq. {72) with A;~=, Butas -0, C,yq
involves (2N 9 ~cp,), larger than cy by the factor 2A7
+1, usually > 1. The increase arises because as Q-0
there is time near the peak of a half cycle for virtually
all neutral intrinsic centers to dissociate and for the
resulting charges to move appreciably and contribute
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to C,ye. Thus, the presence of intrinsic G/R, almost
always to be expected in solids, can greatly increase
Cpyo over the value one might calculate using the equi-
librium c;, but not properly accounting for the dynamic
effects of G/R.® A somewhat similar enhancement ef-
fect was later noted in a trapping-G/R situation, ®® Here,
however, we have shown how extrinsic and extrinsic G/R
effects can together lead to very appreciable enhance-
ment,

It is finally worth noting that when M>>1, the usual
situation, C,yq will be much larger than Cgy, provided
P2 and pyg are not zero or nearly equal. When these
conditions don’t apply, C,yo will also usually be much
larger than C,y, as well, but it should be noted that
Cano can be the larger, even for M> 1, for a sufficiently
slow adsorption process (which, of course, forces one
to extend Q measurements to the very small © region in
order to achieve capacitance results independent of ©).
It is evident that in general Cpy, can exceed the diffuse
double layer value of # primarily because of possible
contributions from C,yo and C,yg.

The effects of dynamic G/R are of particular interest
in the one-mobile case where G/R can effectively mobi-
lize immobile charges as far as capacitance is concerned.
Equation (40) shows that when adsorption is absent C,y,
=ty0=79—1 in this case. Here 7, involves MVq, [see Eq.
(38)], where

Ay AEQ + 2¢5!52z_¢ °h[0

73
Ay +2¢5818,h4 (73)

o=
The pure intrinsic limit results have already been dis-
cussed in Sec. IV.E.

For simplicity let us consider a donor-type extrinsic
case for which Ay <<A,. Then u,= Ay and Eq. (73) re-
duces to o= 4,y [For the specific illustrative situation
mentioned in Appendix A.IL 2, A;;=0.1542, Ay
21,483, and g, turns out to be about 1.599, essentially
equal to %, in this case where the k;y terms in g; domi-
nate.] For M> 1, C oo = 7= MVqo= MVAy, a quantity
which may be written as

MVA,= [4n(ez,)2(n, +po) 0/ (ng + po)}(1 + hyg) /€ RTT 2
=[{4n(ez,)/ekTHn}H{1 + [Azﬁg/(l\z + ;10)2]}]1/2

=M,[1 +{Azﬁg/(Az+ﬁo)z}]”z- (74)
Thus, we may write
(MVBy /M) =[ e/ 2){1 (AN /(Dg+o)? 2. (75)
Now when A, ==, 7~ N, provided N3> 1. Then Eq.

(75) yields just [N3/2]!/2 and the concentration which
appears in the capacitance for this fully dissociated
situation is ng= NJ, as it should be in the one-mobile
case. On the other hand, when 7y> A, and thus 7, < N3,
the concentration appearing in the Debye length and in
C,no becomes ng(1 +(A, N3 /73)], again showing some ex-
trinsic G/R enhancement, For the numerical case men-
tioned above, the situation is intermediate since there
A,=1and n,=2.889. Using the value N3=10, one finds
that the factor A, N3/(A,+7)? is about 0.661, by no
means negligible compared to unity,
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V. DATA FITTING AND PARAMETER
INTERPRETATION

If one wishes to test the applicability of the present
theory of small-signal ac response to available Z,(w)
or Y;(w) data, the first most appropriate step is to fit
the theory to the data using a nonlinear least squares
fitting procedure for complex data.® This procedure
allows independent weighting of the individual real and
imaginary squared residuals; such weighting can take
account of the varying estimated uncertainties of real
and imaginary measured values. Fitting of both Z, and
corresponding Y, data will usually yield somewhat dif-
ferent parameter value estimates and estimates of the
uncertainties of these quantities when the data contain
errors. With adequate weighting, any such differences
should be within statistical error (two or three standard
deviations), however, provided the theory is indeed
applicable. Since not all processes included in the the-
ory may occur in the material under investigation, and
since the available frequency range may not yield data
influenced by all of the processes actually present, the
fitting procedure allows any of the parameters of the
theory to be held fixed. Thus, for an intrinsic material,
one would set the N to zero and could set the A, and §,
to any nonzero values,

In the first part of this section, the transformations
from the complete fitting parameters of the theory to
more basic ones characterizing the material-electrode
system will be summarized, while the second part will
deal with the interpretation and applicability of the latter
set for various situations. Although all transformations
will be given, one should remember that in all but the
most general case, not all of them will be used for a
single fitting.

It is assumed that the separation length, /, and ef-
fective area, A, of plane-parallel, identical electrodes
are known from independent measurements. Using a
least squares set of parameter values derived from the
fit of Z; or Y, data, one may then calculate the follow-
ing quantities. First convert the fitting results for R,
and C, to their present unit area forms. One can im-
mediately obtain 1,=R.C, and € =(4nl)C,. If C, is in
pF/em? and I in ¢cm, then €= 11,294IC,. When the high-
est available w is <« T;,l, so C, cannot be well estimated,
it will often be sufficient to calculate it if an independent
value for € is known. Then an estimate of 7, can be ob-
tained.

The quantities 7,, 2z;, and z, are not fitting parameters
of the theory, although 7, and 7, are. If the fitting yields
any significant G/R parameters, we automatically set
7,=1, and complete analysis of the results then requires
independent knowledge (or an estimate) of z,=2z;=2,. In
the complete dissociation case, on the other hand, one
needs to know z, and 2, in the general situation but only
z, Or z, in the fully dissociated pure intrinsic case since
then m,=m, and a value of 7, will be available from the
fitting. These are not usually serious restrictions since
one will often know the valence numbers of the mobile
charges in a material of interest.

Let us write G,=RZ=(e/1)D,, where D,=(2;i1p9
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+Z51aMy). When R, is in the ohm ¢m? and concentra-
tions and mobilities are in units of cm™ CGS units, one
has D,= 6.242% 10“’(lG_,) Next, from the fitting value
of M, we can form L% = (I/2M)*= (¢kT/4re’D,), where
D, = (2} py+ 23my). It follows that D, =5, 715><104€(T/
300)(M/1)®. But D, may be rewritten as z}py(1 + ;)

= 2imy[1+73'). I we now calculate €;, 5;, and ), from
the fitting values of 7, and 7,;, we can write py= mz]zD,,,
ny= 6925°Dy, and (po/no):ﬂr;lﬁz. When these results are
used in the expression for D,, one finds (D,/D,)= (23! 1155,
+27'1148(). Since 7,7, =m,m,, it follows that u;
=2;);'(D,/D,). Note also that (ng+ pg)=2;’D, when
m,=1. From these results we may immediately
form w,=u,/K, and D, =(kT/e)(u;/2;). Now since p,
Pje, and £;, are fitting parameters associated with elec-
trode adsorption/reaction processes, one can form the
following more basic quantities from their estimates:
kso=(2Dy/Dpj0, kyo=(2D;/1)p;w, and 74, =Tpk,. These
quantities are, of course, independent of homogeneous
G/R conditions.

When intrinsic dissociation is incomplete, one cannot
use the three quantities ¢, A;, and §; which appear in
f1 as separate fitting parameters because to do so would
overparametrize the model.* These quantities enter -
the fitting equations directly only through f; [see Eq.
(B16)]and thus cannot all be taken as independent., In-
stead, rewrite (f;/2b) in terms of two separate fitting
parameters as (G; +iQS;)™, where G,=(A;/¢)=(2k;,/
k(o +po)™ and S;=(&,/¢)=2/[7pkp, (o +py)]. These
new parameters thus differ from A; and §; only in ex-
trinsic situations. The above results now allow us to
form the estimates k5, =G,/75S; and k;, =22%/(75S;D,).

Now in the general intrinsic-extrinsic case, what
other free fitting parameters must be used in addition
to those already discussed above? In order to evaluate
the %; we need the parameters Ay, £;, N,, and 7 and p,,
as shown by Eq. (B6). Again we must be careful to use
no more parameters than absolutely necessary. First,
since py=m,m;'%,, which becomes p, =1r;1710 in the present
m,=1 situation, one may eliminate p,. Now the

electroneutrality condition [Eq. (A8)] may be written
in normalized form as no -bo=(1 =1 Mg =Npo =N 7
=[ A N/ (Mg +70)] — [ Ay NY /(Ay +7317p)], an implicit rela—
tion for #iy. When values of A;, N9, and 7, are available
(either initial, local, or final values associated with the
least squares fitting), the above equation may be readily
solved for #; by Newton-Raphson iteration. Values of
71p obtained in this fashion may then be used in each step
of the separate iterative least squares procedure, which
requires evaluation of the %; for each step. From the
final fitting values of A;, &, NY and the final calculated
value of 7y, which has been constrained to be consistent
with the electroneutrality relation, one may then obtain
the estlmated values: c o =ny/7p, A,—k,,/k,,cm, £
=(Tpkr,cr), Tr=Tpky, Nl cro(l+A7Y), Ny= klr'”ol’o/
Bre, T5= Tngn kyy = (TJCID) , Ryg= j/Tj; and Nj Cton
In addition, one may form 7y pg = w,lng and compare the
estimate thus obtained with unity (see later discussion
in this section), Note that in the incompletely disso-
ciated, pure intrinsic case N}=0 and n, is fixed at unity
and is thus not a free fitting parameter. In this situa-
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tion, no iteration is required to obtain 7, since 7 =py=1.
None is required in the complete compensation situation
either, where again 7,=1 and for 0s A; <1 (equilibrium
conditions), the situation cannot be distinguished from
pure intrinsic conduction,

When either h, or k, is nonzero, #, may still be ob-
tained from data fitting as above, but it is no longer
needed when %,=0, either because N =0 or because A,
-, Now when 2,=0 and f,#0, one can still obtain &,
2., ng, Po, and p, from the fitting as above. But the
N°’s are now no longer free fitting parameters. To
proceed one may first obtain an estimate of (N3 - NY)
from the calculated values of #5 and pq using Eq. (A8’)
with tilde normalization removed. This estimate will
approximate zero in the N;=0 intrinsic case where 7,
=po=Cr. Then this result may be subsituted into (A29)
or (A29’) in unnormalized form to obtain an equation
connecting ¢, and N5 or ¢, and N9, If either N5 or
NY is zero, often a good approximation in a strong ex-
trinsic case, an estimate of ¢;; may then be calculated
together with the estimate of whichever of N or N% is
nonzero. Finally, estimates of A;, &;, 7y, N‘}, and Ny,
may be calculated as above. If N% and N} are simul-
taneously nonzero and significant, independent knowledge
of one of them or of ¢;, will be required to complete the
calculation of the more basic parameters in this case.

Finally, when f;=0 as well as k;=0, fitting yields
estimates of ny, py, and p; if z; and 2z, are known. The
electroneutrality condition here yields (zz D 2y N9)
= (2319 — 21 pp), SO that if again one of N or N is zero,
an estimate of the other may be obtained. One may then
use Eq. (Al12) or (A13) to obtain an estimate of N, In
the more realistic fully dissociated, pure intrinsic case,
the free fitting parameter 7, =7, may be used to elimi-
nate either z; or z, when the other is known. In this
case, =13 po=n,=n7p; and (A12) and (A13) yield N9
= (mz,) g = (mz,) .

The above results show that when the necessary va-
lence numbers are known, one can usually obtain values
of all remaining basic characterization parameters from
fitting results. They fall into three groups: firste, 7p,
s, Dy, Cro, Mg, po, N9, and N for the basic material;
second, the heterogeneous electrode-reaction rate con-
stants k;, k;., and 7,; and finally the intrinsic-extrin-
sic conduction G/R homogeneous rate constants Trs By,
k!b LED k!r’ and klz'

It is now appropriate to comment on the physical
significance of the basic parameters in general and in
relation to particular electrode/material systems. The
complex, frequency-dependent, electrode reaction rate
constant k,=k}(w) = (ks +iwT 0ks)/ (1 +iwT,,) Was intro-
duced'®™"® in order to generalize the Chang~Jaffé bound-
ary conditions (10)-(13) to cases in which the electrode
reaction of the charged species Y; involves the formation
of an absorbed intermediate species I'; with the possible
transfer of electrons (¢7) to the electrode in the adsorp-
tion step. The introduction of #%{w) in the form given
above allows one to treat the first-order adsorption-re-
action sequence:

Y,=T;+z2,e", (76)
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T;=Ci+z5e, (77)

where the concentration of C; is held constant and C;
does not pass into the electrolyte unless it is a neutral
species. The sequence is then characterized by the re-
laxation time 7y, given by

T}l = [M]
¢ olr,]  Jo’
where v, is the rate of formation of I'; from ¥, and v
is the rate of formation of C, from I';. For the impor-
tant special case of simple {pure) specific adsorption in
which I'; does not react further to form C;, one sets
v, =0.

(78)

On replacing real k;’s in Egs. (10)-(13) by &¥(w), one
ensures the proper relationship between the small-signal
current and the concentration of each charge carrier
when adsorption occurs. A derivation of the Chang-
Jaffé boundary conditions with complex rate constants
was given by us in a recent paper’ which also considered
the case in which the concentration of C; was allowed to
vary. In that work we also discussed compact layer ef-
fects on the rate of adsorption/reaction and indicated
how the results obtained for Chang-Jaffé boundary con-
ditions could be corrected for overpotential effects.

The complex rate constant formalism also offers an
approach to the trapping of electrons or holes in surface
states at an electrode/semiconductor junction. To treat
this case one must set z; =2, =0 and regard I'; as the
(electronic) charge carrier trapped in the surface state
and C; as the charge carrier in the electrode.

Taken at face value, the G/R equations (4)-(6) de-
scribe the unimolecular dissociation of neutral entities
and the bimolecular association of charged species. In-
troducing the equilibrium constants K; =k /ky, = AfCpo,
Ky=ky,/ka,= Aycro, and Kp=kp,/kp, = ApCrg, We may
write the equilibrium expressions (see Appendix A),

nopo=K; Ny, (79)

NaoPo=Ka Ny, (80)
and

Npong=KpNpg. (81)

In some materials it may be more appropriate to use the
solubility product expression

nopo =C3o (82)

(also treated in Appendix A) which may be viewed as a
limiting case of Eq. (79). The fact that the equilibrium
expressions (79)-(81) apply in a particular material
does not, however, guarantee that the original rate equa-
tions (4)—(6) are valid. One of us has found,!! neverthe-
less, that when the equilibrium concentrations are gov-
erned by (79)—(81) or (82), (80), and (81), and G/R ki-
netics are governed by one of several different sets of
rate laws, the simple expressions (4)—(6) provide an
adequate description of G/R under small-signal condi-
tions provided proper interpretation is made of the rate
constants k., kp,, Bag Ray, kpg and kp, and of quan-
tities derived from them appearing in the system re-
sponse function.
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When the rate equations (4)-(6) apply, the times 7, and
7; admit of direct physical interpretation, In intrinsic
material at equilibrium both generalization and recombi-
nation processes occur continuously at the rate k;,c%,.
The average lifetime of a charge carrier is thus the con-
centration ¢y, divided by this rate, or 7,= (k). In
weakly extrinsic material (N} < ¢ ) formation and disso-
ciation of the neutral impurities occur at the rate
ks, Ncro. Thus 7,= (k;cp)™" is the average lifetime of
an ionized impurity center in the limit N‘}-—O. The re-
sults we have obtained for systems with arbitrary ex-
trinsic character are concisely expressed in terms of
the carrier and ionized impurity lifetimes of the in-
trinsic or weakly extrinsic material. The relationship
of these lifetimes to other definitions of charge carrier
lifetime has recently been discussed by one of us. !

We now consider the equilibrium and dynamic G/R
properties of different classes of materials and examine
first the case of electronic semiconductors. It is well
known that in semiconductors the equilibrium concentra-
tions of charge carriers and of neutral and ionized im-
purities are governed by the Fermi level, which is itself
determined by the properties of the intrinsic material
and the concentration and properties of the impurities.
In terms of the Fermi level E one has®

n0=Nc3’1/2[(EF—EC)/kT], (83)

po=N,Fy,,l(E, ~Eg)/RT], (84)

Npo=Npogp exp[(E, - Er-E,)/kT], (85)
and

Nio=Nygiexpl(E,+Ep-E,)/kT], (86)

where E, and E, are the energies of the conduction band
bottom and valence band maximum; N, and N, are the
corresponding effective densities of electron and hole
states; gp and g4 are the degeneracies of the donor and
acceptor levels; and E, and E, are the donor and accep-
tor energies. Here

€l/24¢

=9.-1/2
F1olw)= 2 1+exp(e - x)

(87)

is a Fermi integral.

Since the current equations (1) and (2), and thus the
treatment of this paper, are only valid for nondegenerate
semiconductors, in which the Fermi level lies in the
band gap several 2T away from the valence and conduc-
tion bands, we restrict our consideration to this case.

In the approximation Fy,,(x) ~exp{x), valid for nonde-
generate materials, one has

nopo =N, N, expl(E, - E,)/kT] =ciy (88)

Nopo=IN,g% exp(- E,/kT)| Ny, (89)
and

Npone=[N g7 exp(- E, /ET)] Ny . (90)

Numerical computations using (83)—(86) for representa-
tive systems suggest that (88)—(90) are valid to within a
few percent as long as E, is at least 327 away from the
valence and conduction bands. Equations (89) and (90)
correspond directly to (80) and (81) and permit direct
identification of K, and Kj.
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One of us has recently found®® that somewhat better
approximations to the exact results (83)—(86) under non-
degenerate conditions are given by the expressions

nopo=2"" expl (E, - Ec)/kT][l\7 - ”o][ﬁv ~pol, (91)
Niopo=2"%"%g7 exp(- Ea/kT)NAD[Nv—pO] , (92)
Npong=2""%g7 exp(~E, /kT)NDO[ﬁc_nO]s (93)

where I:Ivs 2%/2N, and N,=2%/?N,. These expressions all
correspond to charge transfer reactions of the form

A+BZ A +B". (94)

Although the expressions (91)—(93) offer some theoreti-
cal insight into equilibrium in semiconductors, the
simpler expressions (88)—(90) should suffice for many
experimental situations.

In semiconductors, intrinsic and extrinsic G/R may
occur by photon-assisted, phonon-assisted, or Auger-
like mechanisms.*% n addition, intrinsic G/R may
occur by the sequential trapping of electrons and holes
(Shockley—Read” mechanism). One of us has recently
shown'! that under small-signal conditions intrinsic
G/R in semiconductors may often be described by a
limiting form of Eq. (14) while extrinsic G/R may fre-
quently be described by Eqs. (5) and (6), even though the
rate laws applicable under more general conditions are
of a different form. In that work it was concludedthat
A;=0 and A;> 0 were appropriate assumptions in the
semiconductor case, It is plausible, however, that a
small finite value of A; might sometimes provide a bet-
ter fit to the data over the accessible frequency range
and that 2 more detailed theoretical treatment might
provide a meaningful physical interpretation for a non-
zero value of A;. G/R phenomena in semiconductors
have been the subject of numerous studies, and it has
been found that electron and hole lifetimes vary con-
siderably from one material to another.® These re-
sults indicate that £; may take on values ranging from
much smaller than unity to much larger than unity in
various semiconductors. ***1®

It is often possible to characterize solid ionic conduc-
tors as materials with Schottky disorder, materials
with Frenkel disorder, or disordered-sublattice mate-
rials (fast ionic conductors).® We first consider mate-
rials with Schottky disorder, of which the alkali halides
are the most prominent and well studied examples. For
concreteness we assume the material to have chemical
formula MX and to consider of singly charged cations
and anions. Schottky disorder is the presence of cation
and anion vacancies (V{ and Vg in the notation of Krdger
and Vink®®) which function as the charge carriers N~ and
P*, respectively. The equilibrium concentrations of
free charge carriers are governedby an expression of
the solubility product form?3!3;

nopo=K, . (95)

Here, and throughout the discussion below, we neglect
those effects of interaction among the charged species
which would require the introduction of activity coeffi-
cients® in expressions such as (95). This idealization
is often well justified and simplifies the present discus-
sion considerably.
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In general, at thermal equilibrium there will also be
present bound complexes of oppositely charged carriers
which may be denoted (NP)!, withi=1,2,... indicating
the different possible geometrical arrangements of the
vacancy pairs. ***% Here we shall assume that all such
bound complexes may be well approximated as neutral
and immobile. We neglect the relaxation of their multi-
polar response to the electric field; an effect seldom
significant in the 2 &1 region of greatest interest in the
present work. One may, of course, relate the equilib-
rium concentration of each type of bound complex to
that of the free carriers as

[VP)! 1o =K T'nypo, (96)

thus formally expressing the equilibrium between the
bound complexes and the free carriers., Summing over
i, one obtains the expression

LWNP))y =K t'nopo, (97)
which permits us to identify Ny as [ (NP)],.

Schottky defect materials, MX, often contain aliova-
lent impurities R%*or Y% which can take the place of the
M and X~ ions in the crystal lattice to form Ry and Y%
centers which we may treat as ionized donor and accep-
tor centers, D* and A", respectively. These centers
may also form bound complexes (DN)! and (AP)! whose
concentrations at equilibrium are governed by the mass
action expressions

[(@ON)]=K5, Ny, (08)
and

[(AP)'] =K, Napo. (99)
Summing over i, one obtains the expressions

[ON)]=KF Ny, (100)
and

[(AP)]=K 3N po, (101)

where [(DN)] and [(AP)] denote the total concentration

of (DN) and (AP) complexes. Identifying [(DN)] and
[(AP)] as Ny, and N4, we see that the position of equilib-
rium in Schottky defect materials is determined by ex-
pressions of the familiar forms (82), (80), and (81).

The nonequilibrium kinetics of a Schottky defect ma-
terial with aliovalent impurities can in principle be
quite complicated if any of the neutral complexes, (NP),
(DN), or (AP) exist in more than one form (structure).
One might then have to consider not only the rates of
association and dissociation of the neutral centers but
also the rates at which their structures change from
one form to another. In the foregoing treatment it has
been assumed in effect that only one form of each neu-
tral species is of significance in dynamic space charge
phenomena—a logical first approximation to the more
complicated case, In Appendix B we indicate how the
present treatment may be generalized to include more
than one form of each neutral center and identify some
conditions under which only a single form of each com-
plex need be considered.

An apparently paradoxical aspect of the Schottky defect
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case is that while the concentration of neutral centers
{(NP)] does not enter into the equilibrium condition, it
does enter into the treatment of dynamical G/R. Since
a cation and an anion vacancy may be created by trans-
porting a cation and an anion to the macroscopic crystal
surface (or to a grain boundary or line imperfection),

1y and pg are determined by the requirement of thermo-
dynamic equilibrium between the crystal interior and its
surface. For a single crystal of moderate size and
negligibly low dislocation density, diffusion of vacancies
to and from the surface will be exceedingly slow com-
pared to the longest experimentally practical period of
the ac measurements. One is then justified in using the
solubility product expression (82) in the equilibrium case
and using Eq. (4) in the dynamic treatment with N, iden-
tified as [(NP)]. (One sets A;=0 in the treatment of Ap-
pendix A but not in the expressions of Appendix B.) An
innovation which might prove useful for Schottky defect
materials, particularly those with a significant number
of grain boundaries or dislocation loops, is to consider
kre in Eq. (4) to be a complex frequency-dependent
quantity of the form &}, =iQ&,, ky,./(1 +iQ&;,), where the
parameter §;, reflects the geometry and state of imper-
fection of the crystal.

Estimates of the recombination rate constants can be
obtained from the Langevin®® theory of recombination
which applies when the charge carrier mean free paths
are much smaller than e®/ekT.'*3** From this theory
one has

By, =4m{i, + K ,)2.e/€, (102)

ka,=4Tu,2,e/€, (103)
and

kp, =4mi, 2, e/€; (104)

and thus £, =7,7g+po, Ep=rg+Typo, and &' =&+ &7
=€, 7t (1+77)). Determination of these parameters by
the fitting of experimental data provides a test of the
applicability of the Langevin theory to such materials.

In materials with Frenkel disorder, cation vacancies
(Va) function as N~ while cation interstitials (M;) func-
tion as P*. The mass action law for the concentrations
of free charge carriers is®

nopo =K Mill Vi,

where [Mi‘,{] is the concentration of cations on normal
cation sites and [ V3] is the concentration of unoccupied
interstitial sites. There will also be bound complexes
(NP)! present at equilibrium with each type of complex
satisfying an equilibrium law

LVP) o = (KD ML V5o -

Combination of the two expressions yields a relation of
the form of Eq. (96) where, in the present case, X,
=K}K%. Summing over the various types of bound com-
plexes then again leads to Eq. (97), an expression of the
equilibrium constant form (79).

(105)

(106)

Frenkel defect materials may also contain aliovalent
impurities R** or Y?" occupying lattice sites which we
may identify as D* and A~. Bound complexes (DN)! and
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(AP)! will also in general be present and will obey the
same mass action laws (98)—(101) as in the Schottky
case. For the usual situation of small defect concentra-
tions, it is reasonable to replace (105) by the simpler
solubility product form

nopo=Kp (107)

and to solve (107), (100), and (101) simultaneously to
determine the equilibrium concentration.

The nonequilibrium kinetics of Frenkel defect mate-
rials may, as in the Schottky defect case, be compli-
cated by the existence of different structural forms of
the neutral complexes. An additional complication in
the Frenkel case is that a pair of defects may be created
spontaneously by the displacement of a cation from its
normal lattice position. If it is assumed that this pro-
cess effectively results in the generation of free charge
carriers, one would replace the term 8N,/3¢ in Eqs. (7)
and (8) by

BNL
( Py ) =k (np —ngpo),
eff

which is consistent with the approximation of Eq. (107)
and requires A; =0 in expressions for the dynamic sys-
tem response. Neutral acceptor and donor complexes
would be treated as in Eqs. (5) and (6). A more general
treatment, which allows for changes in the structure of
neutral complexes and formation and dissociation of the
unperturbed lattice, is illustrated in the latter part of
Appendix B,

(108)

Disordered-sublattice materials such as aAgl,
RbAg,l;, and Na-B-alumina are characterized by the
existence of one or more mobile cations per unit cell.
Although it would thus seem that the electrical response
of such systems is intrinsically a many-body problem,
it is sometimes® % assumed that the current equation (1)
may be applied in such materials, and it is then not un-
reasonable to hope that the present treatment may be
applicable, at the least as a convenient means of param-
eterizing the data. We shall not discuss these materials
in detail here, but will point out that in nonstoichiomet-
ric materials such as the 8-aluminas the presence of
charge centers compensating the excess or deficit of
mobile cations requires some thought to be given to the
possible existence of G/R effects.

We now briefly consider conducting liquid materials.
The present treatment is directly applicable to fully
dissociated intrinsic materials such as unsupported
solutions of strong electrolytes. It should also be use-
ful for solutions of weak electrolytes, especially when
ion pairs diffuse slowly compared to the free ions. G/R
in solutions of potential electrolytes (e.g., agueous
acetic acid) may be described by the neutral-center
dissociation/association expression (4). Saturated
solutions of nearly insoluble salts [e.g., AgCl(aqg)]
would be treated in a manner analogous to Schottky de-
fect materials. Finally, the present results may prove
useful in parameterizing measurements made on fused
salts and oxides, and if so, may aid in the development
of physical models for these materials, In Table I we
summarize the A, values appropriate to equilibrium and
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TABLE I. Summary of A; values appropriate for intrinsic
G /R from structureless neutral centers, See Appendix B for

Bulk equilibrium; static; w =0 limit

N o= O

discussion of G/R involving “structured” neutral centers. porA

Conduction Equilibrium Dynamic norD

type conditions conditions 0 (- % limit

Electronic Ar=0 Ar=0

Schottky Defect Ap=0 A;>0 B. Major superscripts

Frenkel Defect Apm0 0 Limit of a quantity when p; =0; limit of concentration
Fast Ion A1 before any dissociation

Ionic (strong + Indicates an ionized donor

electrolyte) b=~ — Indicates an ionized acceptor

Ionic (saturated
solution of nearly
insoluble salt) Ap=0 Ap>0

~ Normalization with »n;, p;, or ¢,

C. Major symbols in text
Ionic (solution of . fe i :
potential electro- A number in parenthesis indicates the equation where
lyte) Ar>0 the symbol is first used or defined.
Ionic (fused salt a 82 +8;2,,(21)

id Ap>0
or oxide) 7> a;, (B10)-(B13)

b, b, M, (21); AR, (B26)
¢y Co AZ - R1; (22)’ hea - )\el

dynamic conditions based on the discussion of this sec-

tion. dyd, M)y, (22); N0+ )y, (B27)
LIST OF SYMBOLS e Protonic charge
A. Maijor subscripts Jr 2¢bh;, (B16)
a Applied; average; adsorption fs  (85-65)/(85~ay), (B33)
¢ Compensation g l+py
e Equilibrium; extrinsic; equality g 1+p,,(B36)
f First order in Q. See Appendix C. h; (B6)
g Generation hy D1P2+€1p1+€3p,, (B3Y)
i Incremental; index for different configurations of a e (Ar+i9E)7, (B5)
neutral complex k  Boltzmann constant; rate constant
joj=1,2 k; Electrode reaction rate constants, (10)-(13)
kB k=1, 2, and k#j Eyq, ky, Acceptor and donor generation and recombination
n Negative rate constants. k&, =k,,, ky,=kp,, etc.
» Positive ky,, B, Intrinsic center generation and recombination

rate coustants.
Recombination
!  Separation distance of plane, parallel electrodes

s Series; 1~2,2~1 symmetry
n  Concentration of mobile negative charges
A Acceptor; adsorption
p Concentration of mobile positive charges
D Donor
g (38)
I Intrinsic
L Lett v (M)coth(M); Previous 7,=7,=2py,7,=7,=2p,
e
Ye (Mvueo)coth(M\‘ueo), (65)
N Normalization: Ry=R/R,,Cy=C/C,
re (MvVgq)coth(MVgqg)
P Parallel
aralle t; v,-1, (B29)
R Right; reaction u, Bj+4, (B27)
T Total v 1+ AN = iopg)
W Warburg x Distance measured from left electrode
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Yio Y=Po Y= z, v}
Z; z1=z,; 2=z,. Valence numbers of mobile charges z, vi
A 4(ay1as — ay,a,), (B19), (B24) Z, Y37, Total input impedance
Ay (59 Zy R /m,7,
A; (63),(64) s (M8,)coth(M9,), ((B28)
B (ay, +ay), (B18), (B25) 5, (1+7,7¥)%, (19)
B, (59) €  Bulk dielectric constant
C, «</4mnl, Geometric capacitance for unit electrode €,  (1+m>@¥t (17
area
C4 (£3,05 /P2m)C,. Absorption capacitance for 7, ~ %  (B20)
Cow N -1)C, i" Zf// i’
TR A

Cr  (rp—1)C,. Reaction capacitance for 7,~=
Uy  Wq=H,; Bay=4,. Mobilities

g; Tj/TD: (BB)
gja Tja /TD, (B38)
& T//7p, (BT)

D, (21p1P0+2 3k 270)

Dy (2ipo+23ng)

D, (kT/e)(n,/z;). Diffusion coefficients
G. (/12111 po +Raika 70}, (14)

L, (07-6)" o Tpliio/po); (16)

L, (23). Debye length 7, WG /bo), (18)

Lp, (ekT/4m(ez,)ng)'/? Ty Mo/l

L, Intrinsic-conduction Debye length for z;=2,=2, Ty Z4/2y

M (/)Ly} p; (1/2)(k,/D,), (B38). Complex electrode reaction
parameters -

M, (1/2)L7

M, (1/2)L3, pp  (1/2)(ks/D))

Pjew (l/z)(kjm/D])
ps  (€1p2+€;p0y), (B36)

7;  (Rycr0)™. Acceptor and donor relaxation times

N  Intrinsic, donor, or acceptor concentration
N, (B37),(B37)

N, N;. Acceptor concentration

. Adsorption relaxation times
N; N,. Donor concentration

T R,C,. Dielectric relaxation time
P, (B47) ° ¢

T k. Ccp)”l. Intrinsic center relaxation time
sz (B48) I ( Iy ID)

0.5 +7
R,y {p2,/P20P3-)R.. Adsorption resistance for -« ¢ o + o)

Rp Zpg=R.+Z,(25). Low frequency limiting re- 1+i9
sistance w  Radial frequency
Rp p;LR.. Reaction resistance for m,~ A, 8,1+hy), (B14)
R, G2} High frequency limiting bulk resistance Ay Ry /Rycp
T  Absolute temperature Ar R /kpCro
;  (B46) 2  wrp. Normalized frequency

Yo Zoy, (27), (B34)
Yy Yﬂm + Y}m, (B43)

Yry Z37%, (24). Total normalized input admittance

APPENDIX A: EQUILIBRIUM SOLUTIONS

We consider, for concreteness, chemical species N
and P which combine to form an intrinsic neutral cen-

Zw 2.2 yn, (28) ter. Letny=[N%"]and py=[P*1"]. To retain maximum
7 /h., (29) generality in the limiting fully dissociated case we do

o Es/Nss not at first require 7,=2,/z, to be unity. In general, the
Z.y N,Zyuy, (30) dissociation of an intrinsic center may be written
Z,y N,/hg, (31) (NZIPHZ)M:: mlzy N %2" 4z, PA1Y) | (A1)
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where z;m and z,m must be integers. Thus m is con-
strained to be an integer divided by the greatest com-
mon factor of z; and z,. Similarly, if we set N p, =[ D**]
and N 3, =[A4%"], where D and A are donor and acceptor

species, we have
(DN)= D#2" 4 N =2~ (A2)
and
(AP)= A%~ pa1* (A3)

Conservation of particle number and charge then lead to

Np=N% =Ny, (A4)

Npo=N% =Ny, (A5)

n0=mz,(Ng—Nm)+N;0, (AB)
and

Po=mzy(N7—Npo) +N 3. (A7)

In addition, the electroneutrality condition following from
Eq. (9) of the text is

z4(pg (A8)

consistent with the above relations. Although Eq. (A1)
deals with a more general situation than does Eq. (4),

the latter will only be used when 7,=1, In this case of
incomplete dissociation and simple bimolecular recom-

—N3o) =2,5(ng - Npg),

bination, it is physically reasonable to take mz;=maz,
as unity, In addition, Eqs. (4)—(6) of the text become,
for equilibrium conditions,

kN =k nobo, (A9)

FagNag=kar NaoPo, (A10)
and

kpeNpo =kp, Npong . (A11)

. Full dissociation of all centers

Here, Nypy=Npa=N,3=0. Equations (AB) and (A7) re-
duce to

ng=mz NJ+NJ (A12)

and
po=mz;Nj+N§, (A13)

where m must be determined from the stoichiometry of
intrinsic-center dissociation (Eq. Al),

1. Partial dissociation

1. Intrinsic conduction

Designate the intrinsic concentrations n, and p, as
7y and pro. Then Eq. (A8) yields 2z, p,0=2,71;,. When
T,=1, iy =pre=Cp, where this common value then satis-
fies

cro=N3=Np. (A14)
Let us now define
Ar=kp/kp Cro, (A15)

a quantity determining the amount of equilibrium disso-
ciation, In addition, define the recombination parame-
ter

1631

leE ker?/kIg (AIG)
and the dissociation ratio
Di=cr/Ni=(1+A79)1. (A17)

AsD;~0, A;~0, and R;~~, Similarly, as full disso-
ciation is approached, D;~1, A;~«, and R;~0. We
shall use A; as a main parameter of the solution.

It will now be convenient in the general case to intro-
duce the following normalization. Let #y=n,/ny and pg
=po/Pr. Since this is equivalent to normalizing with
Cro in the m,=1 situation, normalize G/R related quan-
tities with c;p. Thus, for example, Nyy=Np/cpy. For
the pure intrinsic situation, #, po— . In general, 7,/
Do=(Pro/nro)ng /bo) =9 /be). Now Eqs (A9) and (A14)
lead for intrinsic conditions to A}' =Ny =(R, +0.25)"/?
-0.5, and A, =(N9-1)", Thus N9 can be obtained from
knowledge of A;. In the above, the ratio (c%/n;ps) has
been set to its m,=1 value of unity. Finally, one also
obtains R, =N% /A, and D, = (¥ 9,

2, Extrinsic conduction-general

We shall first consider the most general situation. To
save space, replace “A” subscripts by 1 and “D” sub-
scripts by 2 and denote either by j(=1,2), Whenever an
equation involving j appears, it should be understood
unless otherwise stated that it represents both the j=1
and the j =2 equations. Further, take N as signifying
Nio for j=1and N3, for j=2. Let

Ay=ky /Ry (A18)

We select A;, A;= Ay, Ay=Ap, N3=NS, and NI=N¢

as the main parameters of the present treatment, Quan-
tities such as R, and D; may be defined analogously to

R; and Dy as needed. The use of R, in the description of
extrinsic G/R in semiconductors is examined in earlier
work by one of us.® With the above definitions, Egs.
(A9)-(A11) become, for 7, =1,

ArNpg=7igpy,
AyNyp=Ni90 ,

(A9')
(A19)

where §,,=py and §,,=7,. On using (A4), (A5), and

(A19), one finds

Nig=0,R%/(A +5,0) . (A20)

Because of the presence of extrms1c G/R, Eq. (A9")
shows that A; no longer equa.ls N3} 105 it is defined by Eq.
(A15). On the other hand, N{ and N? are the same in
both intrinsic and extrmsm s1tuat10ns _Thus even for
extrinsic conduction we can still write N?=14+ A},

Now Egs. (A6), (A7), (A9'), and (A20) yield
Yi0=1+ A1 =51 5x0) +[A1N1/(A1 +350),

where £=2 when j=1 and 1 when j=2. These results
for 7y and pg satisfy Eq. (A8) in normalized form when
7,=1. In order to obtain specific values for 7, and p,
when A;, A,, and N9 values are given, the coupled set
(A21) may be solved by iteration in the general case.
Unfortunately, one finds that convergence is extremely
slow, especially for A, <<1, the usual case for solids.
An alternative is to transform these equations into

(A21)
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separate quintic equations in #, and p, and solve them.
But there is a further and much preferable alternative.
Let us introduce the new variable v=1+ A,‘(l — 79 Po),
not necessarily equal to unity. Then, Eq. (A21) be-
comes a quadratic in 3, involving » as an unknown pa-
rameter. Its formal solution is

- v~ A v = A2 ~
o=(5) | () +ase RO,

particularly useful when A;=v. To avoid the possibility
of the appearance of small differences between large
numbers, a condition which reduces calculation accuracy,
one may apply the general formula

{a22)

FVa+Va+b=b/(x Ya +Va+b) (A23)
to (A22), yielding
- Ay +N9)
- Ay —o\2 ! Rt (A22")
( 5 >+ [( 2 ) +A,(v+N[})]
a result to be used in place of (A22) when A;>v. Now

using (A22) or (A22'), one may form v =1+ A7(1
- P;09p0), With j=1 or 2, yielding an implicit equation
for v itself. Let

f(v)=?} _1+A;1(5’1057k0_ 1) s

We now need only solve f(v) =0 for v =v, by an iterative
procedure such as the Newton-Raphson method, with the
epsilon algorithm® used to speed convergence if neces-
sary. Then to obtain the appropriate values of 7, and 50,
one need only substitute the converged value of v, v,,
into (A22) or (A22’). As an example, for A, =107 A,
=10"%, A,=1, N}=1, and NJ=10, one finds v,
=0.318055264, yielding 7= 2. 88924704 and p,

= 0. 3461345398. Thus, here (7P — 1)=6.819%107%,

Let us now consider simpler special cases.

(A24)

a. Intrinsic limit of extrinsic conduction. When N}
=0 and/or A,;=0, (A22) yields §;)=v. Then the condi-
tion f(v) =0 becomes (v - 1)+ A;'(v* = 1)=0, whose solu-
tion is v=v,=1, The alternate solution v=- 1+A;)
leads to nonphysical (i.e., negative) values of ¥,.

Thus, the extrinsic-intrinsic expressions reduce prop-
erly to the correct ny=py=1 result in the intrinsic lim-
it,

b. Extrinsic conduction—full intrinsic dissociation.
This case involves A;— «, a condition usually asso-
ciated with liquids (e.g., molten salts or strong electro-
lyte solutions) since a crystal composed largely of neu-
tral centers would melt if full intrinsic dissociation
occurred, unless one of the charge carrier species were
effectively immobile. Except in the latter special case,
it would be unphysical to set N$#0 in the present treat-
ment since we have assumed the extrinsic centers to be
immobile, In general, when A;—~«, f(v)=0 becomes
v ~-1=0. Then 7, and p, values may be obtained from
(A22) or (A22') withv =0 =1.

c. Extrinsic conduction—donoys or acceplors pres-
ent. Here either NS =0 and N3>0 or N%>0 and N}=0.
Equations (A21) may then be combined to yield the cubic
(involving the particular j value for which N$>0)

J. R. Macdonald and D. R. Franceschetti: Small-signal ac response

5)%+(A,+A,)§30—[1+A,+A,I:7?,—A,A,]'j}m

=01+ 01489, (A25)

Note that if, for example, N} >0, #%, may be obtained
from the solution of (A25) and p, from (1 + A;)/(A; +7y),
following from (A21). It usually turns out to be simpler,
however, to use the general solution of Sec. A, II. 2 in
these cases.

d. Extrinsic conductwn—full extrinsic dissociation.
Here, A;— < and N,0~N, Again a quadratic must be
solved and Eq. (A23) may again be used. Let

n:= (N3 +N%/2, (A26)
xr= (N3 -N%)/2, (A27)
and
¢r=[(1+0.50,) + Amp+x%]H 2. (A28)
Then one obtains from (A21),
2
-~ NMr +XF
Sl=Xpt oo A
Po=1=Xr* 11050, +65 (429)
for xx<0, and
- v 0
1+ A{1+N2) (A20")

® Xp+0.5A,+¢p

for X;=0. Finally, 7, may be found from the electro-
neutrality condition [Eq. (A8)] in the form

Tl =Po+2Xp . (A8')

e. Complete compensation The compensation condi~
tion is N3p= N3y, leading to 3;p=73 =5, from Eq. (A8)
with 7,=1, and to [ANY/(Ay+5.0)]= [N/ (A + Foo)]
from (A20). The solution of this equation for full ex-
trinsic dissociation is N{=NJ=N!. Equation (A21) then
leads to

. AL\ . e
y005n05p0=—(—12\—’)+[(~21> +1+4,(1 +Ng)] , (A30)
appropriate for A;<1, and
AT O
1+Af(1+Ng) (A30")

3—’00: 2 - 172>
(—1}2‘) + [(—%‘) +1+A,01 +NE)]

appropriate for A;=1. Thus we see that, surprisingly,
only when A, (1+N? <1 does a perfectly compensated
material in which donors and acceptors are fully dis-
sociated exhibit the pure intrinsic concentrations ny=p,
=cso. In fact, for [1+A,(1 +N9]>(0,/2)%, §o=[1+4,(1
+N /2, whlch will be much larger than unity for large
enough N2,

When the extrinsic charges are not fully dissociated,
it turns out that exact compensation requ ires both N g
=NJ=N%and A;=A,= A,. Then j, can be obtained d1-
rectly by solving the cubic following from Eq. (A21) or,
more simply, by solving for v in f(v) =0. Again J, will
generally not be unity_even with perfect compensation.

If N, is set equal to N 20 Without requiring that both N ¢
=N %and A=A, hold one obtains a simple expression
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for y,. But this expression, which is independent of
A;, is inconsistent with that following from Eq. (A21)
in the present case. Thus both N j0 and A, equations
must hold simultaneously for compensation to be exact.
One may therefore conclude that when either donors or
acceptors or both are not fully dissociated, as a practi~
cal matter it will be impossible to achieve perfect com-
pensation even at a single temperature.

1Il. Solubility product equilibrium (A, — 0 limit)

When the charge carrier concentrations obey the solu-
bility product law (82) rather than the intrinsic center
dissociation/association equilibrium expression (A9), a
somewhat different approach is required. Formally, the
present case is the limit of (A9’) as A;~0 and fl?-—w
while A, N%=1, but since Egs. (A6) and (A7) no longer
apply, the procedure of Part II is not generally useful
here. On replacing (A6), (A7) and (A9) by the single
solubility product expression (82), normalizing vari-
ables, and eliminating Njo, one obtains the usuval elec-
troneutrality condition

ApNY
g+ Ap’

~ AAﬁ%

(A31)

=7 —

which may be solved together with #%ypo =1 by conven-
tional iterative techniques.

An interesting special case is that of complete extrin- .

sic dissociation, for which A4~ and Ap—==. In this
situation, specific values of #, and p, may be found using
the above results or from Egs. (A29) or (A29‘) and (A8')
with A, =0, in agreement with expressions presented
earlier® by one of us.

APPENDIX B: SMALL-SIGNAL ac EQUATIONS

I. DERIVATION OF THE [g;,] MATRIX

When one uses the notation of Appendix A, the incre-
mental parts of Eqs. (4)-(9) become

(B1)
(B2)

tWNp == kg Ny + by (nopy +pomy)
iwNy == Rse Ny + k(N5 y 5 +950N 50,
iwy g = =iw(Ny + Ny) + 4y [(= Dy B + (kT /e2,) y}i]
(B3)
and
Ej=(4me/e)z\(p; = N1;) - z5(n; = N3], (B4)

where superseript primes denote differentiation with
respect tox, and j=1,2. Equations (B1) and (B2) may
be rewritten as

Ny =ciohilnopys +pon,y), (B1)
and

Ny==Ni=hy,, (B2')
where

hy= (A, +iQE)7, (B5)

k= (A%{f‘v;m)(fh + inEJ +5’Jo) ’ (B8)
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and Q=wTty. Since k; only involves y, in the 7,=1, par-
tial-dissociation case, ¢y has been used here to define
940 with no loss in generality. The £’s are ratios of re-
laxation times, given by

§1=(1p by, CID)-I':‘TI/TD ’ (B7)

and

£;=(Tpkycr) =7,/1p, (B8)

where 7,=R,C, is the dielectric relaxation time of the
bulk material.

One may now eliminate Ny, N;;, and E} from Eq. (B3)
using (B1’), (B2'), and (B4). Further, Nj, may be elim-
inated using (A20). Now if we let X=x/Lp and Y,;=y,,/
2;v;0, Bq. (B3) may be rewritten as

2
%&i:%[(l +hj)Yj{ - (zk/zj)z(l +hk)(yk0/ij)Yki]

+ GOANAL + 7+ g (0 fe o)} ¥y

+{h1<zk /2)(9a0/C10)}t Vi, (B9)
which can finally be put in the form
d’y
ngi =im Ymi ’ (BQ')

where §=1,2, m=1,2, and the dimensionless [a,m] ma-
trix involves only bulk properties of the material such
as G/R rate constants. [a,m] and its eigenvalues are of

central importance in the calculation of Z;,. Its com-
ponents may be written as

ay =481 +iQR,  +€; 1), (B10)

1= -8, +iQ€, f;, (B11)

an=-A1+10€, f;, (B12)
and

A =08, +iQA +€1 f7), (B13)
where

A;=8,(1+hy), (B14)

Ay=4;/¢;, (B15)
and

f1=2¢bh,;. (B16)

In arriving at these results, 7, was taken unity in all
terms which disappear in the limit of full dissociation.
Thus, since h;~0 as A;~~, we can write, for example,
AN Rng/cr) =X hifig=¢€, f;. Note that in the absence of
extrinsic recombination (k,;=0), A;=5,and A, =},,
Similarly, when intrinsic centers are fully dissociated,
fr=0. The a,, expressions do not, however, assume
Te=1 in the full intrinsic-extrinsic dissociation limit
since 7, appears explicitly in the €; and 5, terms re-
maining in this limit,

Il. EIGENVALUES

Although the expressions for the a,, elements derived
in the last section are far more general than those given
earlier® which neglect dynamic G/R effects, we shall try
to maintain maximum generality by dealing as far as
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possible with the general a,, symbols rather than the
specific expressions given in Eqs. (B10) to (B13). The
eigenvalue equation for [a;,] leads to the 63 eigenvalues
satisfying

05 = (@11 +@2)8% + (@11000 — A13051) =0 (B17)

Root relations immediately yield the useful exact re-
sults

8} +65=ay;+a5=B, (B18)
and

0105 =0a11 Az — arp a5 = A/4. (B19)
Equation (B18) may be rewritten as

(Bf‘an) =- (9§—azz) s (B18")
and

(62 — ayy) =~ (05~ ayy), (B18")

expressions useful in later developments of the present
work.

The solution of (B17) may be written

9%=0,5[B + (- 1)"}(B? - A)*/?] (B20)
It follows that
(B2-A)/2=9%_02, (B21)

The assignment of the 1 and 2 subscripts to the plus and
minus solutions is arbitrary here but the particular
choice above will be maintained throughout. In order to
avoid the possibility of a small difference between large
numbers, Eq. (A23) may be applied to (B20), yielding,
for example, 65=0.54/[B+(B%-A)!/?]. It turns out to
be desirable to reduce this expression even further. To
do so, one may apply the relation

[B+(B*-A)Y¥ = 2By [1+{4/[B+ (B - A)Y/?2)],

(B22)
leading to
A A
a_( £
92‘(43)[“ Br (B =AY ] (B23)
Once 6% is calculated, 62 may be obtained from
92=B-6%, (B18")

When | B/A!>>1, 162/« 1 and 8% approaches B,

When one substitutes Eqs. (B10) to (B13)in (B18) and
(B19), the following results are obtained after simplifi-
cation:

A =4i%(b,+u, f1) , (B24)

B=u,+iQ(d,+ f1), (B25)
where

P=14+iQ, b,=x N, (B26)
and

u, =8+, d,=A 40, (B27)

In the absence of extrinsic recombination (either because
A7l or N (j=1,2) are zero), b,=b,d,=d and u, =1,
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Further, as -0, 9% is proportional to {Q and the limit-
ing value of 62 is a constant (see Appendix C).

In addition to 8%, we shall also need

y;= (M6 ,)coth(Mb ), (B28)

and
ty=v;-1. (B29)

Since M8,~0 as -0, t,~ (M?0%/3) — [ (M®02)?/45] ... in
this limit,

I1l. ADMITTANCE DERIVATION AND
SIMPLIFICATION

The general method of solution of the basic equations
has already been discussed in detail® and need not be
repeated. It leads to the following expression for

You=Yoyip=~ 2Q3/Da-

The formal expression for @, given earlier® is still ap-
plicable when one uses the present more general ex-
pressions for the a,, and remembers that p,sr,/z may
be complex here. The D, term requires minor modifi-
cations, however. First, redefine the earlier ¢, and f;
as follows: c;=C,; and f;= f,;=1+C,;, where as usual,
j and k must always differ. Then

(B30)

Cas= a51(8% = ayy) (B31)

which can be rewritten, using (B18), as C,, =a;,(a,, - 62),
and, using (B17), as a,/(6% - a,,). It follows from the
above results that

Ay Cry==a4Cp,s (B32)

which must replace the §,c,=-J,c; relation used in the
earlier work, a result to which it reduces in the ab-
sence of dynamic G/R effects.

The expression for e,, appearing in D, of the earlier
work, now becomes ¢,=1-C,,—207H,,, where H,=A,

~4,C,. Replace f3=1-cyc, of the earlier analysis by
9% _ 92

fs=1=C,Cp= —-*——192 , (B33)
5 Qe

where a subscript “s” will be employed to indicate quan-
tities independent of the permutation of 1 and 2 sub-
scripts.

Since the desired Y y=~ (1+Z,y), we may now use
(B30) with the corrected D, to obtain, after considerable
algebra,

=D2—2Qs ___h3+YMN

Yow 2Q, g+ N, 7 (834)
where

By=p102+€1p1+€2P2, (B35)

gs=1+p,=1+€1p3+€45py, (B36)
and

N,=f !f; Finll ~fus€)t;. (B37)

In the presence of specific adsorption or surface states,
p; is complex. When adsorbed species either do not
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react further at all (pure adsorption) or subsequently
react to form a neutral species maintained at constant
concentration, only a single adsorption relaxation time,
7,, is involved for each adsorbing species.™* This
simplest situation is the only one which will be ex-
plicitly considered here. Let &;,=7,,/7p. Then

_Pi0+iQEss Dy

= B
Ps= T1vinE,, (B38)

where p;, and p;. are real constants and p; is thus real
and frequency independent when p;=p;e.

The normalized admittance Y, is more complicated.
It can be written as

YMNEGs+z;ijtj, (B39)
where J

G,=M,tt,~N,, (B40)
and

Gu=filewdpn+Crkng,l. (B41)

Here g;=1+py, J;=1-07"Hy, and K, =J;, ~f,,. Finally,

M=1 ‘f;lg; 9;2Hikfkl'

As the above results show, the full result for Yy is
still exceptionally complicated, with several hierarchal
levels. Further simplification is desirable and possible
if one makes extensive use of Eqs. (B17) to (B19) and
(B10) to (B13). After much algebra, M, reduces greatly
and becomes just

(B42)

M=igpt=[1+GQ)" . (B42%)
Similarly, N, reduces to
NsE112[(6f_uew)t1_(eg—uezp)tZ]’ (B37’)

where I;,=(6% -0, The quantity N, +1 is given by the

above expression with £;~v;. Now let
(B43)

) 1
Yun= YMN+YMN,

where Y5 is the completely blocking (p,;=0) limit of
Y. One finds

Yion =G ) Gatrta+ (05 —u 9)t,— (05 —u,d)ty] .

(B44)

Finally, Y},,N may be written

Y}mE(lP'l[m)i; W;t;, (B45)
where

W,= ﬁ PP jm s (B46)

m=

and

P,1=(€1+iﬂ)(9f—a“)+(— 1)’“516112, (B47)

Py=(e, +iQ) (6% - @) + (= 1)!“53021 . (B48)
Since it turns out that as -0, Y,y and N, -0,

7z =80 1+€1pa+€2p10 (B49)

0= =
ks P10P20+€1P10+€2P20°

in agreement with (Rpy — 1) calculated from (25).

IV. TREATMENT OF “STRUCTURED"” INTRINSIC
AND IMPURITY NEUTRAL CENTERS

The present small-signal formalism may readily be
generalized to include the possibility that intrinsic and
extrinsic neutral centers exist in more than one form,
i.e., changes in the structure of the neutral centers can
occur without dissociation which leads to mobile charge
carriers. We will then be able to distinguish between
situations in which these changes will have a significant
effect on small-signal response and those in which they
will not.

To illustrate how the generalization is achieved we
consider a Schottky or Frenkel defect conductor in which
bound charge carrier pairs can exist in two forms, (NP)*
and (NP)®, differing in the separation of the charges,
which take part in the reaction sequence

kIng klg .
lattice = (NP)® = (NP)® = N-+P*,
kro Eray Rry

The rate laws governing N;,=[(NP)?] and N, =[(NP)?] are
thus

(B50)

aN
(_a?I!') =—(k[‘ +k,a,)N,,,+k,,np +k1agNla (B51)
and
aN.
( Btla> == (Rrog + R10)N1s+ Rrap Ny + RroN g0 - (B52)

It has been here assumed that the rate of formation of
(NP)® from the unperturbed lattice is k(N0 — Ny,), an
approximation valid for low imperfection densities. The
ratio ky,, /., is taken to be finite and nonzero and we
set k=0 in the Schottky case.

For small-signal ac conditions we define the incre-
mental quantities Ny, and Ny, by Ny =N, + Ny, expliot)
and Ny, =Ny 0+ Ny, exp(iwt) and write the small-signhal
equations

inIM == (klg + klar)NIM + k!r(nﬂpl) +p0n() + klugNlal s
(B53)
and
(B54)
In the present case it is also necessary to replace Eq.
(B1) by

{wNpy == kyy Ny + Ry, (nopy +pony) ,

TwNpy =~ (Brae + Rro)Npoy + Rray Npyy -

(B1A)

so that Ny, is the net incremental rate at which the charge
carriers recombine. After eliminating N, , and N,

from the above three equations one obtains Eq. (B1’)

with

b= 1 [(1 +8Q&1y = hreTre)(1 + i 1a) — brgg Rrgy TiaThy
i, (L +4Q )X+ iQE,) = FrogkranTraTr ’

(B55)

where 71 = (Rrog+kro)™, 71= (Brp + Eray)™, £1,= 714/ 7p, and
£1,=7T1,/Tp. When only a single step in the reaction se-
quence (B50) is significant on the time scale of a half
cycle of the lowest frequency applied signal, %, reduces
to the form of Eq. (B5). If kyy, kp,,, and k., are all
much smaller than w so that the significant step is the
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formation and dissociation of (NP)?, Eq. (B5) itself
applies. If %, and ky,, are both much larger than w
and %;,, while 25 <w, the significant step is again the
formation and dissociation of (NP)?, but with a quasi-
equilibrium established between (NP)? and (NP)?. In
this ecase the form of Eq. (B5) is again obtained but
with A, replaced by klagklg/[(klag+ Brar)kr,C o) = AN ppo/
(Nrg0+Npo). Finally, for Frenkel defects it is conceiv-
able that kp,,, k4, and kg, all might be much larger
than both w and &y, so that the significant process is
spontaneous defect formation from the unperturbed lat-
tice. In this case one obtains the form of Eq. (B5) with
A; negligible [see discussions following Eq. (108)] and
£, replaced by kr.kr, /TpCrokr Rrarkro.

We illustrate the treatment of extrinsic neutral cen-
ters for the donor case (the acceptor case is precisely
analogous) again assuming two forms of neutral complex
differing in charge separation and consider the reaction
sequence

DNy 2 (DNY 2 DN~ (B56)
kDay kDr

We define A’DaE [(DN)a]’ NDbE [(DN)b]’ and ND E‘NDa +NDb-
Conservation of chemical species ensures that N3 =N,
+N} is constant. When one writes the small-signal
equations governing Np,;, Np,,, and Nj,, and eliminates
the latter two variables, one obtains Eq. {B2’) with
_ ( ADNOD)

hp={ ——=

Ap+nyg

[704(1 = BpgTDs) + Top(1 +iQEp,)]
(79 +1QEp) Tpp(1 + 1QEpy) + Tal + ko Top(Ep = Fiokp)Tp

(B57)

where 75,2 kph, Tpp=(Bpg+kper)™s £ba=Tpa/Tp, and &p,
=7p,/Tp. For kp,, <kp, or for kp, > kp, and kp,,
>> w, this result reduces to the form of Eq. (B6).

V. INTRINSIC G/R EFFECTS AT Q=0

Examination of Egs. (B1’), (B2’), and (B9) indicates
that when ik, vanishes in the -0 limit, intrinsic
G/R effects are absent in this limiting case. If A, is
set equal to zero in (B5), as may be appropriate for
electronic semiconductors'! and in simple models for
Frenkel defect materials (see Sec. V), iQh; remains
nonzero as 2 ~0, and intrinsic G/R effects will be pres~
ent and will be reflected in the values of Rpyg and Cpyg.
From the more general treatment of the last section we
have as Q-0

Erokrg,bi’

s B58)
klagklg +k10(k1g+k1uf) (

iQhy~

an expression which vanishes if k,,=0. A simple physi-
cal interpretation may be given for these results: If
intrinsic charge carrier recombination leads only to the
formation of neutral centers, G/R effects will be absent
for Q=0 since the concentration of the neutral centers
must be constant in the Q =0 steady state. If however
the charge carriers can in effect annihilate each other
(either directly or after forming bound complexes), as
is the case for electron-hole and vacancy-interstitial
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recombination, this process can occur at a nonzero rate
even under dc steady-state conditions.

APPENDIX C: EXPANSION TO FIRST ORDER
IN Q

Here we list quantities expanded to first order in Q,
i.e., Y(Q)=Y,+iQY,---, as Y: Y, ¥Y;. Where first-
order terms are not needed, only Q-0 values will be
given.

Pt P03 £50Pim

Psi (€1p20+€2p10); (€102 +€2P1y)

gt (L+pj)s oy

gt (1+pg); oy

Ry (p1oPzo+ €1P10+€2020); L 014(€1 +020) +02p(€5 +010)]
Ry LGNS /(A 4950025 L= Eshyo /(A +550)]

hpp AT =RN-1; -0

frt 29bAYY 29bhy,

i Bal+hy); 8y,

Ugt  (Ayg+Ag0); (Byp+Dg)

ud: Ugp; (oo +Ues)

Aot €580 My,

ot BioBa/€1€s; (Byghap+ Dol )/ €16,

€ot (Roao = Aer0); (Mozp = Aety)

det oo+ Noz); o1y +Xoap)

ayt Byo; (Byp+N,50+€, o)

Qi — B (€4 fr0— By

A: 05 4(bgo+2%e0 f1o)

B: g (uef+d30+f10)

(A/4B): 0; (75 beo + fro)

0% ttog; [thog 1B 10 Xo10 + Do Xoz0)]

83 05 (g3 beo+ fro)

(62 ~uh):
(62 —u ):
q: Equation (73)

8y: @; (gf)f/z‘/u_eo

0,: Equal real and imaginary terms in-
volving V&
coth(Y,+iQY,):  coth(Y,); - ¥, csch’(Y,)

yi:  (M6y,) coth(M8y,); M8, [coth(Mé,,)
— (M8,4) csch®(M8 )]

e 1, (M 2/3)(11;(1) b0+ fro)
ti: [(MOy) coth(M8yy) - 1}; vy

. -l 2
0’ u90€1€20e0

. 4=t
_ueO, ueo beO+fIO - (ue() +uef)

£y 0; va

Pyt 0; #75Ak0 Aero

Dast €y us5A g0 ltte0+ €505 — Aopo)]
+€ 4t g5 = fro)
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(63 —a;)):

. ) -l
(€, +iQ)(0F — a;5): € ;8405 UspByoXopo+€5(Byy = €, fro)

R
Bos a0 Bpo(Ropo = Xoge) +Bpp ~ €, fro

(€ +IR)(0 — ;) €843 “;(IJAno[ueo+€n(7‘eko‘7\eJo)]
+Ek(Akf—€kfIO)

. P |
Wi 05 ugp (P10Baotezn +P208108e10)

Wai  t,0(€1p10+€2020); %ool€1P1g+€2P2p)
o
+ ,Z; P sl220 Ajo{“eo +€;(Ag50 - Aexo)}

+€ ;(ugp — fro))

. . 42 2
N 0; u.0€1€5C.0T10 +72f
o . .
Y MN - 09 t10
1 -1
Yoyun: 0 ugo(Wigtig+ Wygtsy)

0; (1 +u;éW1f)t10 +u;éW20 tzf
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