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ABSTRACT 

The small-signal a.c. response of systems with two blocking electrodes, or one blocking and 
one ohmic electrode, subject to an external steady voltage bias is examined. The electrolyte is 
.unsupported and may contain one or two mobile charge carrier species. The small-signal 
response displays features which are readily associated with the redistribution of charge within 
the system caused by the external bias and the injection of charge into a system with one non- 
blocking electrode. A procedure is given for approximating the small-signal response of a sys- 
tem containing many Debye lengths from the small-signal response of a thinner system. In a 
addition to describing the impedance and admittance of an initially fiat-band system subiect 
to an external bias, the results obtained are also applicable to a limiting case of an unbiased 
system with intrinsic space charge (Frenkel) layers. An equivalent circuit is found which usu- 
ally provides an adequate approximate representation of the system response, and the physi- 
cal interpretation of the circuit parameters is discussed. 

(I) INTRODUCTION 

Most  theore t ica l  t r e a tmen t s  o f  the electrical  response  o f  e l ec t rode /ma te r i a l /  
e l ec t rode  systems (in which  the  e lec t rodes  are metal l ic  and the  mater ia l  is a 
s e m i c o n d u c t o r  or  ionic c o n d u c t o r )  are based u p o n  a ma themat i ca l  m o d e l  in 
which the  t r anspor t  o f  charge t h rough  the  mater ia l  is governed b y  a set  o f  
c oup l e d  non- l inear  d i f ferent ia l  equa t ions ,  subjec t  to  b o u n d a r y  cond i t ions  which 
charac ter ize  the  mate r i a l / e l ec t rode  in terface .  F r o m  the  s t andpo in t  o f  solving 
the  equa t ions  o f  the  mode l ,  the  general  p r o b l e m  of  sys tem response  to  electr ical  
pe r tu rba t ions  may  be divided in to  th ree  separate  cases: the  s teady s ta te ,  small 
d isp lacements  f r o m  a s teady s ta te  ( the small-signal case),  and large d i sp lacements  
f r om s teady state  condi t ions  ( the large-signal case). In sys tems wi th  at  least one  
c om ple t e ly  b locking  e lec t rode ,  the  s teady-s ta te  character is t ics  can o f t en  be 
expressed  in closed analyt ical  f o r m  [1 - -5 ] .  The small-signal p rob lem,  for  which  
the equa t ions  o f  the  mode l  may  be l inearized,  is amenable  to  exac t  analyt ical  
t r e a t m e n t  unde r  s o m e w h a t  b roader ,  t hough  still ra ther  restr ic t ive cond i t ions  
[6 ,7] .  In general,  however ,  analysis o f  the  s teady  state,  small- or  large signal 
cases requires  the  so lu t ion  o f  the  re levant  equa t ions  b y  a p p r o x i m a t e  numer ica l  
me thods ,  and qui te  a n u m b e r  o f  papers  deal ing wi th  numer ica l  t echn iques  m a y  
be f o u n d  in the  r ecen t  e lec t rochemica l  [8--1.1] and s e m i c o n d u c t o r  l i t e ra ture  
[12 - -16 ] .  
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In recent work [7],  the present authors obtained exact expressions for the 
response of  an electrode/material /electrode system to small a.c. perturbations,  
provided that the system is flat-band (i.e. is unbiased and lacks intrinsic space 
charge layers), contains no more species of  mobile charge (as in an unsuppor ted  
electrolyte),  and has bulk generation/recombination and electrode adsorption/  
reaction processes which meet  well defined bu t  fairly general criteria. Not  infre- 
quently,  however, measurements of  small-signal response are made both  at zero 
and at finite biasing potentials [17--21] .  Further,  although it can be hoped that  
in many cases intrinsic space charge layers can be neglected, the probable pre- 
sence of  a static space charge layer at an interface, even one with a blocking elec- 
trode, should be taken into account  in a comprehensive theoretical t reatment.  
In the present work we have employed numerical techniques to examine the 
small-signal response of  systems subject to a steady d.c. bias. Some of  the 
results obtained are also pert inent  to limiting instances of unbiased systems 
with intrinsic space charge layers. In addition to discussing the method  em- 
ployed and presenting the results obtained, we shall consider below a possible 
method for fitting experimental data to our numerical results. 

For clarity this paper is divided into sections. In Section II the basic equations 
of  the model  are summarized in both  conventional and normalized form. A brief 
discussion of  the steady state characteristics which enter into the small-signal cal- 
culation is given in Section III. In Section IV the equations determining small- 
signal response are obtained and the method of  numerical solution is discussed. 
In Section V we consider the small-signal response of  systems with a single block- 
ing electrode and a reversible ohmic electrode. In addition to characterizing 
such systems in themselves, the results obtained here allow us to formulate accu- 
rate small-signal response results for systems with many (>100)  Debye  lengths 
between two blocking electrodes and which either (a) are subject to a d.c. bias 
or (b) have intrinsic space charge layers in the equilibrium state. The impedance 
and admittance of thinner systems with two blocking electrodes are examined 
in Section VI. In Section VII we examine the utility of  the results obtained here 
in the interpretation of  experimental data. A final Section provides a summary 
and indicates possible directions for future work. 

(II) GENERAL EQUATIONS 

We consider a homogeneous slab of  material, a single crystal or homogeneous 
solution, of  length l, extending between two plane-parallel electrodes. We 
neglect possible edge and magnetic field effects and consider an effectively one- 
dimensional system. All subsequent  analysis will deal with a unit  cross-sectional 
area of  this system. The material is assumed to contain a single species of  posi- 
tive mobile charge carrier and a single species of  negative mobile charge carrier. 
The concentrations of  these species will be denoted p ( x )  and n(x), respectively. 
Symbols not  defined here have their conventional meanings and are found in 
previous work on large-signal transient response [ 5]. The flux densities of  the 
two charge species are assumed to obey the Nernst-Planck equations: 

Op 
Jp = p p p E  - -  Dp Ox (1) 
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and 

an 
,In = - - ~ n n E  - -  Dn  ~-~ (2) 

It will he assumed throughout  this work that  the charge mobilities,/% and #n, 
and diffusion coefficients, Dp and Dn, are field and concentrat ion independent  
and that the diffusion Coefficients ~ are related to the mobflities through the famil- 
iar Einstein relations, Dp = ( # p k B / z p e )  and  D n = ( # n k B / z n e ) .  

The behavior of  the system is further determined by Poisson's equat ion 

aE 47re 
- (z~p - -  z n n  + Po) (3) 

~X e 

when P0 is the density of immobile background charge, if any is present; by the 
equations of continui ty 

~P ~ --~JP (4) 
0t 0x 

and 

On = 0 J  n (5) 
at ax 

and by the Maxwell equation 

e 0E 
I = z p e J ,  - - Z n e J  n + 4-~ 0-x (6) 

We shall consider the left-hand electrode to be at a potential Va with respect to 
the right-hand electrode and thus will require that  

1/2 
V a = f E dx (7) 

For maximum generality it is desirable to employ a set of  normalized, dimen- 
sionless variables. In this work  we shall make use of  the same normalization as in 
our previous paper on the numerical simulation of  electrical response [ 5], and 
we only mention the major features of  the normalization here. Positions are nor- 
malized with respect to  the bulk Debye  length, 

LD = [ 6kBO /4?re2(Z2nne + Z~pe)] 1/2 (8) 

and the total normalized distance be tween electrodes is denoted as 2M, where 
M - l / 2 L  D. For systems in which only one species is mobile a more natural unit  
of length is 

LDI -- [ekBO/47re2z~cm] */2 (9) 

where zm and cm are the charge and concentrat ion of  the single mobile species. 
In the present work, however, the normalized half-length of  the material will he 
given as M, rather than M~ = l /2LD~ , to facilitate comparisons with the two- 
mobile case. The electrostatic potential  is normalized with respect to  the ther- 
mal voltage, V* = V / ( k B O / e ) .  T h e  applied potential, Va, is considered to lie in 
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the small-signal regime when [V~a [ < <  1. For  convenience of  reference we give 
the normalized forms of  eqns. (1)--(7) below: 

aP 
J~p = zpPE*  - -  i)--X (10) 

aN 
= - - znNE*  - -  - -  (11) 

aX : 

~E* 
aX - 6 p P  - -  6 n N  - -  ~ ( 1 2 )  

Xp a P _  a ~  (13) 
aT aX 

aN a J* (14) 
aZ 

aE* 
/*  ---- CpJ~p - - e n ~  n -b ---~ ( 1 5 )  

M 

= f E* dZ (16) 
--M 

In discussing small-signal response we shall fol low the normalization conventions 
established in our earlier analytic work [6,7].  We shall thus normalize angular 
frequency ¢~ with the dielectric relaxation time, ~ -- WTD, impedance with the 
limiting high frequency resistance of  the system, ZN -- Z / R ~ ,  and capacitance 
with the geometric capacitance of  the system, CN =- C/Cg. 

(III)  STEADY STATE 

We shall here adopt  the condensed notat ion (PL, PR, M,  7rm, V~s) to designate 
the normalized parameters of  a given system subject to a given steady applied 
potential difference. Here PL = 0 if the left-hand electrode blocks the flow of  
positive and negative mobile carriers and PL = ~ if the left-hand electrode is 
ohmic to the mobile carriers (i.e. allows infinitely rapid charge transfer and pre- 
serves the equilibrium bulk value of  the charge carrier concentration),  The param- 
eter PR denotes the corresponding property of  the right-hand electrode. We shall 
not  in this work treat systems in which an electrode is partially polarizable or is 
blocking to only one species of  charge carrier. As defined above, M is one-half 
the distance between the electrodes, expressed in units of  L D .  The quanti ty  ~rm - 
Pn/Pp denotes the ratio of  the charge carrier mobilities. Finally, V*s is the nor- 
malized static potential of  the left  hand electrode with respect  to the right hand 
electrode. 

The blocking-electrode steady state conditions are given by eqns. (10)--(12) 
and (16), with ~ = ~ = 0. When no current flows, the steady state is one  of  
thermal equilibrium. We have previously given [5] a t reatment  of  the steady 
state for the case of  two blocking electrodes based on the earlier analytic work 
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of Jaff~ [1] and Macdonald [2--4]. Only minor modifications of this t reatment  
are required to deal with the case in which one of  the electrodes is completely 
blocking and the other is reversible to one or both of the charge carrier species. 

The solution of the steady-state equations requires the evaluation of  three 
integration constants in the general case in which both charge species are mobile; 
only two constants are required when only one species of charge is mobile. The 
requirement that  the total potential drop across the system has the desired value 
provides one equation for the evaluation of these constants. A second (and third, 
if needed) equation is provided by the following consideration: if both elec- 
trodes are blocking to a given mobile species then the total amount  of that  spe- 
cies is conserved. If one of the electrodes is reversible to  that  species then the 
electrochemical potential of the species must be constant  throughout  the sys- 
tem. 

It will be convenient to separate our discussion of the general (PL, ,OR, M, ~m, 
V~as) case into a t reatment  of  two-mobile systems, for which 0 < ~rrn < o% and a 
separate t reatment  of  the one-mobile situation in which ~r m = 0 or ~rn = oo. We 
restrict our study of the two-mobile case to systems in which there is no net  im- 
mobile background charge. The general two-mobile case, with non-zero immo- 
bile charge density falls logically between the two-mobile and one-mobile situa- 
tions considered here. 

We first deal with the (0, 0, M, ~rm, V~s} two-mobile situation, for which it is 
convenient to let the potentials of the left and right electrodes be ~ / 2  and 
- - V ' s ~ 2  , respectively, and to let the system extend form X = --M to X = M. Then 
for zp = Zn = 1 and in the absence of generation or recombination of the charge 
carriers, the steady state electrostatic potential, electric field, and charge carrier 
concentrations are given by [5] 

dn(XC~ n,  ~:) -- (1 -- ~:2)l/:sn(XCo in,  ~) (17) 
V* = In dn(XC~n, k:) + (1 -- g2)l/2sn(XC~n, h:) 

E* = [4C0(1 -- ~::)]ln 
cn(XC~n, ~) (18) 

P = C0e -v* (19) 

and 

N = Coe v* (20) 

where sn, cn and dn are Jacobian elliptic functions [22]. The constant  Co and 
the modulus ~ must be chosen so that  the total amount  of each charge species is 
conserved and V* takes on its proper values at the electrodes. An algorithm for 
this purpose was given in our previous paper [ 5]. 

We next  consider the (0, ~ ,  M, urn, V~as) two-mobile case. Here it is more con- 
venient to take the potential of the left-hand electrode as V~as and that  of the 
right-hand electrode as zero, and to let the system extend from X = --2M to X = 
0. Then for the same material the steady state distributions are given by 

V* = In dn(X/2, h:) -- (1 - -  ~ : : ) l /~sn (X/2 ,  K) (21) 
dn(X/2, ~) + (1 - -  t~2) l / : sn (X/2 ,  K) 
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E* = [4(1 -- ~)2],/2 (22) 
cn(X/2, K) 

P = e -v* (23) 

and 

N = e V* (24) 

Here the modulus ~ is determined by the requirement that  V* = V~s at the left 
electrode. 

It should be noted that  the expressions given above for V* and E* are not  
valid if the minimum value of the field, E*(X = 0) in both cases, is greater than 
2C~o/2 for two blocking electrodes or greater than 2 for one blocking and one 
reversible electrode. This situation is primarily of interest for systems of very 
small M and need not  concern us further in this work. 

The steady state differential capacitance, 

dq (25) 
C d = dVas 

is also of  interest in regard to biased small-signal response. Here q is the magni- 
tude of the charge on the blocking electrode and Va~ is the (unnormalized) 
applied potential difference. Cd may be calculated from the dependence of the 
electric field at a blocking electrode upon Vas. In the case of  two blocking elec- 
trodes, this calculation requires the iterative determination of the constants Co 
and ~ in eqn. (18). In the case of  one blocking and one ohmic electrode, how- 
ever, the modulus ~ is very nearly uni ty for M <~ V~a~, :and after a number  of 
approximations one obtains the result, 

CdN ~ Cd/Cg ~- 2M ctnh(M) cosh(V~/2) (26) 

We now consider the (0, 0, M, ~m, V~) one-mobile case, taking 7rm = ~ and 
V~s > 0 for definiteness. As shown by Macdonald [3] the requirements of 
charge carrier conservation may be met, in the absence of generation/recombina- 
tion by letting 

n = exp(V*) (27) 

and setting the potential of the left electrode as V~ -- ~d and the potential of 
the right electrode as --~d where 

~d = V~s -- ln(V~as/[ 1 -- exp(--V~a~)]~ (28) 

The electric field is then given as a function of V~a~ by 

E* = [Co + exp(V*) -- 1 -- V*] 1/: (29) 

where Co is a constant  chosen so that  

v*~-v* 
2M = f [dV/E*(V*)] (30) 

-y~, 
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Once co is determined, one may readily evaluate n, E*, and 

v s-v  
X = f [ d V * / E * ( V * ) ] - - M  (31) 

V* 

for any value of V* between --~d and V~ s --  ~d- 
It is a simple matter  to modify  this procedure to deal with the (0, ~ ,  M, ~o, 

V~ s) and (0% 0, M, o% V~) cases. We first note  that  for ~ > 0, since only nega- 
tive charges are mobile, the (0, o% M, oo, V~a~) system will exhibit  a deplet ion of  
the mobile charges near the blocking electrode while the (¢¢, 0, M, oo, V~) system 
will show an accumulation of  mobile charge at its blocking electrode. For  V~s < 
0 the space charge regions will have the opposite character. We will consider 
explicitly only the I~s > 0 cases. For the (0, ~ ,  M, oo, V~s) situation we p lace  
the ohmic electrode at X = 0 and the blocking electrode at X = --2M while for 
the (0% 0, M, o% V~a~) system we place the ohmic electrode at X = 0 and the 
blocking electrode at X = 2M. The electrostatic field is given by eqn. (25) in 
both  cases and Co is determined by  

v *  s 

2M = f [dV*/E*(V* )] (32) 
0 

for the (0, o% M, co, V~) situation and by  

0 
2M = f [dV*/E*(V*)] (33) 

--Ya* s 
in the (0% 0, M, 0% V~) case. Further  

V* 
X = f [dV*/E*(V*)] (34) 

0 

in the former instance and 

0 
X = f [dV*/E*(V*)] (35) 

V*-- V~s 

in the latter. 
In the one-mobile cases considered here and for M > >  1 and M >~ V~a s, the 

quanti ty Co appearing in eqn. (25) is much smaller than the absolute value of  
V~a~. Under these conditions one may neglect Co in evaluating the electric field, 
and thus the charge, at the electrode, and it is then possible to obtain an analytic 
approximation for the differential capacitance. In the two blocking-electrode 
(0, 0, M, oo, V~as) case the appropriate expression is 

[V~a ~ -- 1 + exp(--V~as)] [1 -- (1 + V~as)exp(--V~s)]M 
CdN = (36) 

V  s[1 - -  i - -  - -  1 - - l n  
V•as }1/2 

1 - 
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Far simpler results are obtained when one of the electrodes is ohmic. One has 

I exp(--V:~) -- I lM 
CaN = [exp(_V~s ) _ 1 -- V~] ' n  (37) 

in the (0, 0% M, ~ ,  V~) and 

I exp(V~ s)  - -  1 IM 
CdN---- [exp(V:as)-  1 + V:s] 1/2 (38) 

in the (0% 0, M, 0% V:~s) situation. 
In closing our discussion of the steady state it should he noted that  the steady 

state results obtained for systems with an ohmic electrode apply as well if the 
ohmic electrode is replaced by a reversible electrode (PL, PR < ~o), provided that  
the electrode maintains the bulk equilibrium value of  the charge carrier concen- 
trations. The small-signal response of such a system will, however, depend on 
the rate constants for the electrode reaction. 

(IV) SMALL-SIGNAL EQUATIONS 

We now assume that  the potential difference V~ applied to the system consists 
of  a steady state part  and a small sinusoidal perturbation, 

V~a-- TV~as + V:ale  i ~ T  (39) 

Similarly, we decompose each of the independent  variables appearing in eqns. 
(8)--(14) into steady state and sinusoidal components:  P = Ps + P1 ei~tT, E* = 
E s + E~e i~T, and so on, where the steady state components  are given for the 
appropriate V:~ s by the methods of Section III. On inserting these forms into 
eqns. (8)--(14), dropping terms quadratic in the sinusoidal components  and 
using the steady state conditions to eliminate terms involving the steady state 
components  only, we obtain a set of  equations for P1, N1, E~, ~ 1 ,  ~nl, I~ and 
V~I which are [6] 

1 = zpPsE; + ZpP1E~ -- - ~ j  

J~nl = [-I'-znNsE; - - z n N ,  E; - -  aNl!l 
a x J  k 

aE~ 
a X  - ~pP1 - -  ~nN1 

(40) 

(41) 

(42) 

aX 
(43) 

i~,-~nN 1 = _ a ~ n l  
aX 

(44) 

I~ = e p J ~ p  1 - -  enJ*nl + i~2E~ (45) 
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and 

M 

V~a 1 = f E~ dX (46) 
--M 

Of primary importance in small-signal response is the system impedance, in nor- 
malized form Z N - V~ax/(2M~), and its admittance YN - ZN'. These are most 
easily evaluated by assuming a fixed value for I~, which is spatially invariant in 
one dimension [23], solving eqns. (40)--(45) for El, and then evaluating V~a I 
from eqn. (46). Since the differential equations for the perturbation components 
are linear, and our primary goal is to evaluate ZN and YN, one may choose any 
value for I;. We set ~ = 1. Analytic solution of eqns. (40)--(45) is possible only 
in the "flat-band" case, in which Ps, Ns and E s have constant values. In seeking a 
numerical solution it is highly desirable to first eliminate as many independent 
variables as possible from the equations. On combining eqns. (43) and (44) with 
(40) and (41) and eliminating ~rpl , ~nl and P,, one obtains the following two 
coupled equations. 

dE; 
d2E~ _ (epZp6pp s + enZn6pNs)E; + epzpE s - ~  + ({~pZp6 n + enZn6p)E*N 1 e.p d X  2 

d N ,  
+ (en~ p - -  ep~n)  - ~ -  + i~2E~ -- 1 

and 

i~2XnN, = ~ znNsE~ + znNIE* + - - ~  

(47) 

(48) 

Solution of  these equations requires a total of  four boundary conditions. The 
most natural formulation of  boundary conditions for a completely blocking elec: 
trode is that  ~ = ~ = 0 at the electrode surface. For use with eqns. (47) and 
(48) one has, from eqns. {41) and {45), 

znNsE~ + znN1E.  + dN1 = 0 (49) 
d X  

and 

i~-~E~ = I, = 1 (50) 

at a blocking electrode. The most natural boundary conditions for an ohmic 
electrode are obtained from the requirement that  the charge carrier concentra- 
tions have their bulk equilibrium values at such as electrode. In normalized units 
one must have P = 1/Zp and N = 1/Zn, which in turn require that  dE~/dX = 0 at 
the electrode. The latter two conditions on N and E, are suitable for use with 
eqns. (47) and (48). 

It is advisable to treat the one-mobile case separately. With ~m = ~ ,  for exam- 
ple, one obtains the single equation 

d2E~ - enZnSnNsE~ - -  enznE* - - ~  + i~25,E;  - -  6 ,  (51) en d X  ~ 
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which may be solved subject to the boundary  condit ions i~E~ = 1 at a blocking 
electrode and dE~/dX = 0 at an ohmic electrode. 

For numerical t reatment,  eqns. (47) and (48) or (51) and the corresponding 
boundary conditions were separated into real and imaginary parts and the result- 
ing equations solved with the aid of  POST, a package of  F O R T R A N  subroutines 
for the numerical solution of  partial and ordinary differential equations, written 
by Schryer [24].  POST solves ordinary differential equations in one spatial 
dimension using Galerkin's method with a basis set of B-spline functions [25]. 
The latter are defined with respect to a set of  spatial mesh points provided by 
the user and are polynomials between the mesh points. We have discussed the 
selection of B-spline order and spatial mesh in our previous paper [5] and have 
followed the same general procedure in this work,  using splines of order four  
and a symmetrical spatial mesh of 2N~ + 1 points with the n-th and (N~ -- 1)-th 
interval of  the mesh given by  

M [ e x p ( n A - -  A)] [ exp(A--  1)] 

For M = 10 we set A = 0.25 and found satisfactory results with 12 <~ Nzx ~< 17. 
Once the POST program finds a B-spline representation of  E~ (X), it is integrated 
to yield ~al and thus ZN, using programs found in the POST subroutine library 
[261. 

(v) ONE BLOCKING ELECTRODE 

Before examining specific small-signal results in detail, we should take note of  
a number  of  general and rigorous conclusions that follow from the form of  the 
fundamental  equations (1)--(7). It follows from the behavior of  these equations 
(with zn = Zp and P0 = 0) under the interchange of  charge carrier species, left- 
hand and right-hand boundary conditions, and reversal of  the biasing potential 
that  the small-signal response obtained in the general (PL, PR, M, ~r m, V's) case 

* - I  * also applies in the (PR, PL, M, 7I'm, --Vas), (PR, PL, M, 7rm, --  Vas), and (PL, PR, 
M ,  - 1  * ~m,--Va~) situations. A less obvious conclusion, obtained in earlier work [27],  
is that  the normalized impedance ZN and admittance YN of a (0, ~ ,  M, ~m, 0) 
system are the same as the corresponding quantities for a (0, 0, 2M, ~rm, 0) sys- 
tem, which are known in exact analytic form. 

Although we have been speaking in terms of  an externally applied steady 
state potential difference, the results presented here will also be relevant to sys- 
tems in which a space charge (Frenkel [28] ) layer is formed at the blocking elec- 
t rode in the absence of  an applied steady biasing potential difference. Frenkel 
layers will be present if there is a difference in the chemical potential of  the 
mobile charge species between the electrode/material  interface and the bulk of  
the material, even if the flow of  charge from the interface into the electrode is 
completely blocked [29].  In the absence of  external bias the net  charge distri- 
buted through the material will be balanced by an opposite  charge on the ma- 
terial surface. If one neglects the potential drop across the surface layer and 
assumes that the interchange of  mobile charges be tween the surface layer and 
the remainder of  the material is extremely slow, then the response obtained for 



593 

the (0, o% M, win, ~aa~) case of  an initially flat-band (V~ = 0) system applies as 
well when there is a Frenkel layer with diffusion potential ~ and the applied 
static potential difference is V~ s --  ~d- In subsequent  papers, the present rather 
stringent idealization of  the surface layer will be relaxed, and the more general 
case will be treated. 

Small-signal response calculations were performed for the (0, ~o, 10, ~m, V~s) 
situation, i.e. systems of  normalized half-length 10 with one ohmic electrode 
and one blocking electrode. With the exception of  membrane systems, this is 
perhaps approaching the lower limit of M for systems of  experimental interest; 
for pure crystalline KC1, in which the charge carriers are Schot tky  defects, an 
M = 10 system at 800 K would be about  0.6 mm thick. The impedance and 
admittance results obtained for M = 10, however,  display the qualitative features 
to be expected in systems of  M <~ 100 and, as will be shown below, can be used 
to construct  accurate approximations to the impedance and admittance of  larger 
systems. 

Calculations were performed for three values of  the mobil i ty ratio, ~r m = 1, 5, 
~ ,  and for several values of  the applied steady bias, V~a ~ = 0, +-2.5, +5.0, +-7.5. The 
results are shown as Nyquist  or Cole-Cole type  plots in the impedance and admit- 
tance planes in Figs. 1--3. The impedance plane plot  for ~rm = 1 is given in Fig. 
la.  As noted  earlier, the curve for the V~ -- 0, unbiased, case is precisely the 
result for the (0, 0, 20, 1, 0) case, for which the exact  expression is known. Since 
the mobili ty ratio is unity,  the small-signal response depends on the absolute 
value of  the bias potential and not  on its sign. As I V~as I increases, the semicircu- 
lar port ion of  the curve becomes more complete,  an effect  which can be attri- 
buted  to the net  injection of  charge into the system through the ohmic electrode, 
reducing the local Debye length. Also, as I V~sl increases, the vertical port ion of  
the plot (which represents the low frequency response) develops a bend prior to 
approaching its vertical asymptote  at RN0. This non-vertical, roughly linear por- 
tion of  the curve might be at t r ibuted to a diffusion-like effect  associated with a 
net excess of  one charge carrier species over the other, an interpretation sup- 
por ted by the absence of  a similar feature in the one-mobile case (see below). In 
the corresponding admittance plane plot  (Fig. l b )  the low-frequency behavior 
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is represented by the semicircular portion, which becomes deformed as I V~as I 
increases. At high frequencies, the response is essentially capacitative, as shown 
by the nearly straight-line vertical portions of the curves. The vertical asymp- 
totes occur at GN®, the limiting high frequency conductance,  which is uni ty  at 
V~s = 0 as required by the normalization chosen and increases with I V*s ], reflect- 
ing the net  injection of  mobile charge into the system. 

The impedance plane plot for 7rm = ~ is given in Fig. 2a. In contrast  to the 
lrm = 1 case, here the system response depends on the sign of  V:s as well as its 
magnitude. As V~,s increases f rom V:~ = 0, the semicircular port ion of the plot  is 
seen to become more complete,  reflecting the injection of the mobile negative 
charge, which accumulates at the blocking electrode. As V~,~ decreases below 
zero the semicircular portion of  the plot is diminished, reflecting the extraction 
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Fig. 3. Impedance (a) and admittance (b) plane plots for (0, ~, 10, 5, V:s ) systems. 
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of charge carriers from the system and the formation of a depletion layer at the 
blocking electrode. Accumulation and depletion effects dominate the admittance 
plot  (Fig. 2b) as well. In particular it should be noted  that  the vertical asymp- 
tote,  GNu, increases as V~,s and the total amount  of  charge in the system increase. 

The impedance plane plot for 7rm = 5 is given in Fig. 3a. The situation here is 
somewhat  more complicated than in the equal-mobility or one-mobile cases, 
resulting in part from the combinat ion of  diffusion-like effects [27,30,31] asso- 
ciated with charge species of  different mobilities (even in the unbiased flat-band 
case) and the consequences of  charge injection into the system. All of  the curves 
eventually approach vertical asymptotes  as ~2 -* 0 at Re(ZN) ~ RNO. The com- 
plexity of  the present case is reflected in the behavior of  RNO which is not  a 
monotonic  function of V~as but  reaches a minimum near V~as = 2.5. One feature 
of  the plot  which is readily understood,  however,  is the extent  of  the semicircu- 
lar component ,  which markedly approaches a complete  semicircle for positive 
values of  V~as, corresponding to the injection of  the more mobile carrier into the 
system. The admittance plane plot  for 7rm = 5 is given in Fig. 3b. We immediately 
note  that  the semicircular region becomes more complete  as V~as increases from 
zero, while as V~as decreases from zero this region develops additional structure 
at low frequencies. The vertical asymptote  GN~ takes on its minimum value near 
V~a~ = --2.5. The slow increase of  GN~ as ~aas is decreased below this value appar- 
ently occurs because the net  increase in concentrat ion of  the less mobile carrier 
as V~,~ decreases eventually outweighs the depletion of the more mobile carrier, 
resulting in an increase in the overall conductance of  the system. 

Although the impedance and admittance plane plots provide a convenient  and 
often highly instructive summary of  the system response, the comple te  specifica- 
tion of  the response requires that  the components  of  Z N or YN be determined as 
functions of  frequency. We focus here on the admittance and set 

YN -- GpN + i~CpN (53) 

in the conventional manner. We note  first that  the limiting values of  GpN are zero 
as ~2 -~ 0 and GpN~ as ~ -~ 0% while the corresponding limits of  CpN are CdN = 
CpNO and C~N --= CpN~ ---- 1, respectively. 

(o)  ' ! ' I ( b ) '  I ~ I 

l ~ (0'¢°' lO' l' V ~ ) . . ~  lO~ ( O'~' lO' I' ve~ 

: / , I I . . . .  

i0 -4 10-3 10 -2 i0 -l lO-a 10-3 i0-2 i0 -I 

Fig. 4. Frequency dependence of admittance components (eqn. 53) for (0, - ,  10, I ,  V~as) sys- 
tems. 
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The quantities GpN and CpN are shown in Fig. 4 for the Irn~ = 1 case. As noted 
earlier, the system response depends only on the absolute value of  V~s when the 
charge carrier mobilities are equal. The GpN(~2) and CpN(~2) curves have the 
same general form for V~s ¢ 0 as they do in the flat-band case, with some addi- 
tional structure becoming apparent at high values of  I V~s I. Similar qualitative 
behavior is observed in Fig. 5 for the ~m = ¢¢, one-mobile case, with very little 
change in the form of  the curves as V~s is varied. Here, however, the results for 
accumulation and depletion situations are indeed well separated, as is expected 
in the one-mobile case. 

In Fig. 6 the quantities GpN and CpN are shown for the ~r~ = 5 case. Since in 
two-mobile systems the differential capacitance CaN is independent o f  the mo- 
bility ratio we find that the CpN curves for V~ and - - V ~  converge as ~2 -+ 0. As 
~2 increases the mobility ratio becomes an important factor in determining the 
system response, with the high-frequency behavior of  GpN and CpN acquiring 
some of  the character of  the one-mobile case. 
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It  is sometimes also of interest to examine the components  of the system 
impedance 

ZN - RsN -- i(~2CsN)-' (54) 

as functions of  frequency.  Plots of  R,N and CsN as functions of  ~ are given in 
Fig. 7 for the ~m = 1 case. These curves, and the results for other  values of  ~m, 
not  shown, reveal that  RsN is far less dependent  upon frequency or on V~s than 
is GpN, while CsN displays a slightly more complex dependence on frequency 
than does CpN. 

The small-signal response results which have been obtained for M = 10 systems 
with one ohmic electrode may, within certain limitations, be combined with 
other information to provide highly accurate approximations to the small-signal 
response of  larger systems. We expect,  for instance, that  the impedance of  a (0, 
o% M, ~rm, V~s) system with M > 10 will be well approximated by  the sum of 
the impedance of  an (0, = ,  10, 7rm, V~,) system and the impedance of  an (0% 0% 
M -  10, ~m, ~aas) system (which is known from the exact small-signal t reatment  
of  the flat, band case) as long as V~ <~ 10, so that  the space charge region which 
forms at the blocking electrode is almost entirely localized within the 20 Debye 
lengths nearest the blocking electrode. Similarly one might approximate the 
response of  a (0, 0, M, 7rm, V~) two-mobile system by  a series combinat ion of  a 
(0, oo, I0, 7/'m, V~/2) system, a (co, o% M -- 20, ~m, 0) system and a (0% 0, i0, 
~m, V~/2) system (the latter equivalent to a (0, ~o, 10, ~m, --V~s/2) system). 
Here it is required that M be sufficiently large (M >~ 10 V~a~) that the depletion of 
charge from the central region of the material can be neglected and, as before, 
that V~ be sufficiently small (V~s < 20). A one-mobile system satisfying the 
above conditions may be treated as in the two-mobile case, provided that account 
is taken of the unsymmetrical distribution of the steady state potential drop, 
as in the discussion of eqn. (24). 
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As an illustration of this approximate approach, we examine the response of 
a (0, 0, 1000, 1, V~,) system. If we let ZN(pL , PR, M, ?rm, V~as) denote the nor- 
malized impedance of a system with the indicated parameters we may write 

ZN(0, 0, 1000, 1, W~s) = 0.01ZN(0, =, 10, 1, W~,/2) + 0.98ZN(=¢, ~¢, 980, 1, 0) 

+ 0.01ZN(0, 0% 10, 1 , - - V ' J 2 )  (55) 

with the numerical factors required by the normalization which has been 
adopted. The central, or bulk, term has a particularly simple form, since 

ZN( ~, ~ ,M,  7rm, 0) = (1 + iI2)-' (56) 

The real part of the bulk contribution will in general dominate the real part of 
the resultant ZN. The imaginary part of ZN will, however, be dominated by the 
two outer, or interface terms for ~2 ~< 1. The impedance and admittance plane 
plots for this M = 1000 case show only a slight dependence on V*s. Nevertheless, 
when the separate components of ZN or YN are examined, considerable variation 
with V~ is found, as is seen in Fig. 8 for GpN and CpN. 

(VI) TWO BLOCKING ELECTRODES 

We deal in this Section with the (0, 0, M, ~m, V~s) case, and in particular with 
systems in which M is too small for the approximate analysis of the preceding 
Section to be applicable. Small-signal response calculations were performed for 
the (0, 0, 10, 7rm, Wa s) situation with ~m = 1, 5, ~,  as in the previous Section, 
and for V~s = 0, -+5, +10, -+15, and -+20. Since both electrodes are completely 
blocking in the present case, the system response depends only on the absolute 
value of V~. Impedance and admittance plane plots are given in Figs. 9--11. 
Although the curves shown in these Figures resemble those of the previous Sec- 
tion in having a semicircular portion and in approaching a vertical asymptote, 
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Fig. 8. Frequency dependence of admittance components (eqn. 53) for (0, 0, 1000, 1, V~as) 
systems, obtained from eqn. (55). 
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the curves presented for the two-mobile  systems in Figs. 9 and 11 differ in two 
qualitatively important respects from the corresponding cases in the previous 
Section. In contrast to the curves obtained for two-mobile  systems with one 
ohmic electrode, the radius of  the semicircular portion of  the present curves is 
strongly influenced by V~s. This behavior reflects a significant depletion of  
charge carrier density from the central portion of  the system in the steady state 
which causes the overall resistance of  the system to increase with ] ~ i  and the 
conductance to decrease correspondingly. It then fol lows that the semicircular 
part of  the impedance curves will increase in radius while the semicircular por- 
tion of  the admittance curves decreases in radius for two-mobile  systems. For 
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the one-mobile system studied there is negligible deplet ion of  charge carrier den- 
sity in the center of  the system and the impedance and admittance curves (Fig. 
10) are dominated by the depletion layer which forms at one electrode (compare 
Fig. 2). The absence of additional features in the vertical portions of  the impe- 
dance curves of  the two-mobile system is the second important  difference 
between the present results and those of  the previous Section and is consistent 
with the interpretation of  these features as resulting from the injection of  charge 
into the system, which is, of  course, forbidden when both  electrodes are block- 
ing. 

Rather than presenting graphs of  GpN and CpN, or RsN and CsN for the sys- 
tems studies in this Section we note  that  since the impedance and admittance 
results for V~ s ¢ 0 are qualitatively quite similar to those obtained in the exactly 
soluble V~s = 0 case, it should be possible to summarize the present results quite 
concisely through the use of  one of  the forms of  equivalent circuit found appli- 
cable in the V*s = 0 case. This possibility is examined in the following section. 

(VII) EQUIVALENT CIRCUITS AND DATA ANALYSIS 

The primary requirements for an equivalent circuit to fit the data obtained in 
the preceding two Sections are that  it include no path open to current  f low at 

= 0; that  it contain a resistive element to allow faradaic current  within the 
material at non-zero frequency; and that it include some Warburg-like element 
to allow for the effects of  arbitrary mobili ty ratio. The simplest circuit meeting 
these requirements is that given in Fig. 12, which is a simplified form of  a cir- 
cuit used in earlier work [27].  This circuit includes a finite-length Warburg im- 
pedance of  the form 

ZDN = ZDo[tanh(i~H2)l/2/(i~H2) 1/2] (57) 

as well as the geometric capacitance C1, bulk resistance R1 and diffuse layer capa- 
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citance C2. The Warburg impedance (57) is equivalent to a distributed transmis- 
sion line of length H (in normalized units) terminated by a short [30,31,33]. 

An a t tempt  was made to determine the best values of the four parameters RI, 
C2, ZDO, and H which best described the impedance and admittance results for 
each of  the systems and bias conditions studied, using a non-linear least squares 
procedure for the fitting of complex data [32]. In the present work the data 
were taken at evenly spaced values in log ~t and were weighted equally. The 
quanti ty C1 was held equal to uni ty  in the fit to be reported here; permitting C1 
to vary along with the other parameters produced little improvement  in the fit. 
Representative fitting results for system impedance,  ZN, are given in Table 2, 
including the estimated uncertainties in the parameters and the estimated stan- 
dard deviation of the overall fit. Since the equivalent circuit provides only an 
approximation to the exact result and may deviate from it more in one fre- 
quency range than another, the estimated uncertainties and standard deviation 
have heuristic value but  not  necessarily rigorous statistical significance. 

The fitting results show that  the equivalent circuit of  Fig. 12 provides a rea- 
sonable approximation to the data and that  the behavior of  the fitting param- 
eters is much as might be expected from the discussions of the previous Sections. 
The value of C2 obtained from the fit agrees within 1% with Cd~ -- 1, where CdN 
is the differential capacitance determined by the methods of Section III. The 
parameter R1 is found to always increase with I V~as] in the (0, 0, M, ~m, V~s) situ- 
ations, reflecting the combined effects of  charge injection and the mobility ratio. 

For systems with two blocking electrodes and 7r m = 0 or 7r m = 0% satisfactory 
fits are obtained with the finite-length Warburg impedance omit ted (ZDo = 0), 
but  for lrm = 5 this component  is required. For the (0, 0, 10, 5, Ms) situation 
the coefficient ZDO increases with ] V~as [ while the effective length H associated 
with the diffusion effect  decreases at high values of  ] V~ s [, probably reflecting 
the localization of  diffusion effects in the space charge layers near the electrode. 
Previous examination [27] of  small-signal results for unbiased systems with two 
identical electrodes has shown that  H is often well approximated by [0.25(2 + 
7r m + ~ 1 ) ]  ~n M for intrinsic materials, in agreement with the value obtained for 
the (0, 0, 10, 5, 0) case. For (0, 0% 10, ~m, V~) system, with the exception of  
~m = oo or (~m = 0) and ~m = 1, V~a~ = 0, the Warburg impedance is almost always 
significant, but  with the characteristic length H remaining nearly constant  at 

O 

.... ~k/~/k, Z D 
Ri 

Fig. 12. Approximate  equivalent  circuit  for small-signal response of (0, 0, M, 7rrn, V~as) and 
(0, 0% M, ~m, V~as) systems. 
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roughly [0.25(2 + Vm + 7rm I)] 1/2(2M), reflecting diffusion of charge through the 
entire system. 

Unweighted fitting of the same data expressed as system admittance yields 
similar values of the circuit parameters but not usually agreement within the 
standard errors estimated for the parameters in the impedance fit. The disagree- 
ment between the impedance and admittance fits is not serious but does confirm 
that the equivalent circuit provides only an approximation to the exact system 
response (even in the flat-band V*aas = 0 case). Care must be taken in the fitting 
process to include a sufficiently wide range of frequencies or spurious parameter 
estimates may be encountered. While it is probable that further useful refine- 
ments of the fitting process, perhaps using an alternative weighting or a modified 
equivalent circuit, can be achieved, the procedure adopted in this work appears 
to be adequate for the preliminary analysis of experimental data for appropriate 
systems. 

(vii) SUMMARY AND CONCLUSIONS 

We have reported small-signal impedance and admittance results for unsup- 
ported systems with one or two blocking electrodes subject to an external steady 
bias, obtained by computer solution of the appropriate differential equations. 
In addition to the qualitative features previously discussed for flat-band systems 
[34,35], the presence of an external bias induces behavior which may be attri- 
buted to the redistribution of charge and, in the case of one non-blocking elec- 
trode, to charge injection into the system. An equivalent circuit was found which 
provided adequate least-square fits to the system impedance and yields param- 
eter estimates consistent with a qualitative understanding of the physical pro- 
cesses involved in system response. 

The results presented here are most applicable to situations in which the pos- 
sible presence of compact layers owing to finite ion size, specific adsorption, or 
system preparation (air gaps, etc.) can be neglected. In future work this restric- 
tion will be removed, and we shall examine the role of the compact layer in 
small-signal response for systems subject to external bias, with and without 
intrinsic space charge (Frenkel) layers. 
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