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JOHN BOSWELL WHITEHEAD

Two of the recent J. B. Whitehead Memorial
Lecturers, J. G. Trump and Bernhard Gross, have
discussed Whitehead the man, and Gross has
touched on Whitehead's work on the anomalous
properties of dielectrics, emphasizing and
reiterating Whitehead's feeling about the great
divergence between the points of view of ex-
perimentalists and theorists in the field.

In the National Academy of Sciences Biographi-
cal Sketch of Professor Whitehead [1], it tells
of his habit of never throwing anything away.

He justified this position with the statement,
"Keep a thing nine years, and you will find a use
for it." As a one-time experimenter in the field
of dielectrics and a long-time theorist, I plan
today to tell you something about part of the
theoretical work of myself and my associates,

J. A. Garber, D. R. Franceschetti, and A. P.
Lehnen, over the last nine years, without I hope
thereby widening the gap between theory and ex-
periment! The principal subject, ac and dc
response of solids and liquids, was one close

to the heart of John Whitehead, and three of the
nine chapters of his 1927 book [2], Lectures on
Dielectric Theory and Insulation, deal with
dielectric behavior under alternating stress.

In fact, his next to last paper [3], was
entitled, "The Measurement of Dielectric Loss

at High Frequencies and under Changing
Temperatures." We are still working today

in areas pioneered by Whitehead, and much of

his work still repays study for background
results and concepts.
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GENERAL BACKGROUND

Starting near the beginning, I remind you that
Robert Symmer invented the two-fluid theory of elec-
tricity in 1759 by reasoning about the sparks thrown
off by his socks! Since then, the field has grown
quite a bit, and I must therefore restrict considera-
tion to only a small part of it, the part I know most
about. First, let me mention those areas I won't
discuss any further.

There is a whole area of great interest encompassing
single or double injection of charge at electrodes
into an originally nearly insulating material. It is
well summarized in the book by Lampert and Mark [4].
Another important area, which is to be the main topic
of Session IV later on in this 1980 CEIDP meeting,
which was discussed at the 1978 conference by
Dr. Gross [5], and which has been reviewed in detail
elsewhere by him [6], is that of charge storage and
polarization effects in condensed matter induced by
penetrating radiation.

The general area which I will discuss is that of the
electrical response of a solid or liquid which con-
tains positive and negative charge, with mobile
charges of at least one sign. In the solid, immobile
charge may be present in addition to mobile charge of
one or both signs. In all cases, it is assumed that
the material is electrically neutral in the bulk, far
away from any electrodes, when the system is in
thermal equilibrium with no potential difference V,
applied across the electrodes.

One interesting approach to the steady-state ac and
transient response of materials is that developed in
recent years by Jonscher [7] and termed by him, 'The
Universal Dielectric Response.'" Such response, fre-
quently found experimentally, is that where the real
and imaginary components of the complex dielectric
permittivity are proportional to w”~1, where 0<n<1.
Associated with this frequency response for a linear
system is a current transient response, on application
of a constant p.d., of the form t7”. Response of
this character was discussed by the author and
Brachman [8] in 1956, and it was pointed out there
that it was formally physically unrealizable (see
also Ref. 9). Nevertheless, this type of response
may hold quite well over limited frequency and time
ranges, and it was suggested [8] that it might also
be related to the I/f noise found in many electrical
devices. One way to cure the defect inherent in the
t~" form is to start instead with the Voglis [10]
expression [I + (t/t¢)]™" and derive the associated
frequency response of the system. This approach was
followed [11] in 1961, was applied to internal fric-
tion and creep rather than electrical response, and
led to interesting agreement with a substantial body
of data, a considerable part of the agreement being
in the region where I could not be neglected compared
to (t/tq).

The Jonscher universal dielectric response (UDR)

has been proposed to apply to systems with permanent
dipoles, and to hopping charge carriers of electronic,
polaronic, and ionic nature. It is said to be valid
in single crystals, in polycrystalline, and in amor-
phous structures, universal indeed! It is believed
to arise from a variety of ubiquitous correlated
states [12]. If this response were indeed as univer-
sal and ubiquitous as claimed, this should properly

be my stopping point. At most, universal response
theory is probably an alternative, holistic descrip-
tion of the response of some materials which contain
free charge to the approach I will discuss, that
where the detailed transport, continuity, and Poisson
equations are solved with appropriate boundary condi-
tions.

First, I shall discuss fitting and analysis of
frequency-response data, including relatively simple
electrical equivalent circuits and their possible
elements. Next, I shall present a few examples of
theoretical small-signal response curve shapes plotted
in the complex plane. More shapes, plotted in two
and three dimensions and derived from complex least
squares fits of various kinds of data, will follow in
order to show the utility of this method. Then some
results will be presented for transient and frequency
response for applied potentials sufficiently large to
make the system behave nonlinearly. Finally, non-
linear response will be discussed when the finite size
of ions is explicitly taken into account using a
lattice gas model for the charged species present in
both the bulk and the interphase region.

FITTING AND ANALYSIS OF DATA

Here I shall discuss small-signal frequency response
measurements, leading to impedance Z or admittance Y
vs frequency, taken at constant temperature. There
are two other complex quantities also worth consider-
ing: the Modulus function [13] M = ZwZ and the complex
capacitance function [14,15] K = (Y/iw). The latter
function, when properly normalized, also yields the
conventional complex dielectric permittivity function.
It is frequently useful to plot some or all of these
quantities, or their complex conjugates, in the com-
plex (argand) plane, as parametric functions of fre-
quency. In my opinion, one can usually conclude more
from such plots about the physical processes leading
to the response and/or the most appropriate equivalent
circuit with which to fit the response than from just
plotting such quantities as loss tangent or parallel
or series capacitance vs frequency. Many examples of
complex plane plots will be given later. Another
possibility, which I am currently developing, and
whose use I most strongly urge, is three-dimensional
perspective plotting with axes such as log(f), Re(Z),
and -Im(Z). Results for this new kind of plotting,
which can show a great deal of information at a glance,
will also be presented later.

Consider the two-dimensional complex plane plot.
One would like it to show as much structure as possible,
and some of the four functions above show more than
others for the same data. For example, if the data
involve two time constants whose difference arises
primarily from differences in resistances rather than
capacitances, a plot of ¥ shows structure emphasizing
the separation of the time constants. On the other
hand, if the difference arises primarily from a
difference in capacitances, the complex plane plot of
Z* is most appropriate. Here the star indicates com-
plex conjugation.
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Although many authors use complex dielectric permit-
tivity plots (Cole-Cole plots [16]), they are only
most appropriate, in my opinion, for true dielectric
response, such as that of polar materials without
mobile charge. The dielectric permittivity is properly
an intensive material parameter, whereas an effective
complex dielectric permittivity derived from X will
not be intensive over the entire frequency range if
some of the response involves truly mobile charge with
or without diffusion effects. In such cases, which
are the only ones considered here, it seems much more
preferable to deal only with some or all of the four
complex quantities mentioned above and investigate the
intensive-extensive character of complex plane plots
by repeating measurements with different electrode
scparations £. It seems somewhat inappropriate, for
example, for the Jonscher UDR approach to be applied
to materials with mobile charges under a name which
involves "dielectric."

Material
System

1 T

Experiment

Equivalent System
Theory \ Circuit | ICharacterization
\\‘ Plausible
Model
Fig. 1: Block diagram for characterization of a

material system

Data and plotting are usually not enough when the
object is characterization [17], see Fig. 1. One is
then interested in estimates of the parameters which
define both the bulk and interface properties of the
material. When the theoretical idealized model is
sufficiently simple that it can be represented by an
equivalent circuit, one will usually want to estimate
the parameters which appear in the equivalent circuit
first, then use combinations of the results to esti-
mate basic property parameters such as diffusion co-
efficients, electrode reaction rates, etc. Alternately,
some models, including the full small-signal response
one [17-19], lead to such complicated complex functions
that only in special cases can they be represented by
relatively simple equivalent circuits or by useful
equivalent circuits at all. 1In either case, however,
parameter estimates may be found by fitting the data
to the impedance predicted by the model or the equiva-
lent circuit. I believe by far the best way to do
this in both the present mobile charge situation and
also in pure dielectric response situations, is to
use nonlinear complex least squares fitting [20]. The
very high resolution of this method will be demonstrated
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later, even when the originally unknown values of
numerous parameters are to be estimated. Further, it
is a completely objective method and yields estimates
of both the overall goodness of fit and, quite
important, estimates of the uncertainties of the
estimated parameters as well.

When equivalent circuits can be employed, a minimum
necessary total number of elements should be used and
the maximum number of these should be frequency inde-
pendent (lumped ideal resistances, capacitances,
inductances). But different equivalent circuits are
not always mathematically unique. Fig. 2 shows three
three-time-constant (N=3) circuits, all of which can
have exactly the same impedance at all frequencies if
the values of the elements are selected properly.
Such equality can hold for any value of N. In the
third circuit, R_ is the bulk resistance and Cg the
geometrical capacitance, and the 'R" and "A'" sub-
scripts stand for the interface processes of electrode
reaction and adsorption.

R "
| VOIGT
R, 2 3
IF“
11
Ra
o Co Ry f—° MAXWELL
Cy Ry
—
Re RR RA
LADDER
T T To
o—
Fig. 2: Three N = 3 circuits which can have the same

impedance-frequency relation

How can one choose which circuit (¥ to be determined)
to use under such conditions? First, the Voigt cir-
cuit is probably most appropriate for polycrystalline
materials. The Maxwell circuit has been widely used
for multiple-time-constant dielectric situations.
Finally, the ladder, or continued fraction, circuit
is found as a limiting case of the full small-signal
model, applicable to liquids or single crystals. It
is likely that in any given physical situation the
actual connectivity of the system is best represented
by a unique circuit. One way to discover which cir-
cuit is, in fact, most appropriate is to repeat
measurements for different 1's and/or at different
temperatures. For a less appropriate circuit, most if
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not all of the parameter values will then vary appreci-

ably, while for the most appropriate one some of the
parameters amy not vary at all, and most if not all of
the variation will occur in a minimum set of remaining
parameters. Thus, a single fitting of a set of data
to a given equivalent circuit will not generally yield
estimates of the most appropriate parameters unless
the equivalent circuit has already been proven to be
the best of those with the same impedance-frequency
relation for the situation under study.

Let us now recall that a distributed transmission
line of length 7, has an input impedance of

Z051nh(X) + ZTERcosh(X)

T 1)
o + 2
Z cosh(X) ZTE,RS].nh(X)

Z(Ze) =12

where 7, = (Zgop/Ysp)0%, X = Ylgs Y 2 (Zgop¥sh)®S, and
Zrpg is a terminating impedance. Here Zg,,, is the
distributed series impedance of the line per unit
length, Ygp is the distributed shunt admittance per
unit length, and Z, is the characteristic impedance
of the line.

A recent treatment [21] of diffusion in electro-
chemical systems leads to an expression of the form of
Eq. (1) with Zgey = Rrkzp/D, Ygp = iwCgy = tw/kzpRp,
and Zpgg = Rppgp = Rngb/z ef- Here Rp is a reaction
resistance, D the diffusion” coefficient of the diffus-
ing entity, and the k's are rate constants. The total
diffusion impedance is found to be Zp = (klb/kngZ(Ze),
involving further rate constants. Thus, diffusion can
lead to the complex frequency dependence described by
Eq. (1) with Z, = Rpkzp/ViwD and y = vZw/D. Here we
are primarily interested in two limiting cases. First
is that where kjof = = and thus the exchange rate of
the diffusing entity at the end of the finite trans-
mission line is essentially infinite (since Rpgp then
equals 0, this is a shorted line). One readily finds
that

Z Z Otanh(X)/X;

b= Zpesc) % 2

finite Warburg response [17,22]. Here Zpp =
RRklbkgbZe/Dkgf. When 1, > =,

2, =12

D = Zpu = (Rgkpps /s ) /D (3

R"1b 3b

which is the ordinary infinite-length Warburg response
[23]. Note that such response is also equivalent to
constant phase response with n = 0.5, Such response,
a straight line in the complex Z* plane at a 45° angle,
is frequently found. If it is, in fact, associated
with diffusion, one would expect Eq. (2) to apply at
sufficiently low frequencies since no materials are

of infinite length. Often frequency response is not
extended to low enough frequencies, however, to show
the distinction between (2) and (3). At sufficiently
low frequencies, (2) shows that the complex Z* plane
line must curve over to the real axis, yielding a

w > 0 resistance of Zp,.

The second limiting case, an open-circuited trans-
mission line, is found when kjgf = 0 and the diffusing

species is blocked at the end of the line. Then (1)
reduces to
ZD = ZD(OC) = (Eﬁklbkgb/ksfjcoth(X)/VzwD, (4)
leading to
= (1 -1 -
KD = (szD) = (szle/RRklbkgb)(tanh(X)/X), (5)

similar in form to Eq. (2). But here we are dealing
with a completely blocked situation and Yj reduces to
simple capacitive behavior as w -0 .

The finite Warburg appears in diffusion situations
where the diffusing species is either neutral (diffu-
sion of a reaction product in an electrode of effec-
tive length 7p) or is charged in a supporting electro-
lyte situation (I, = 1). For unsupported cases, the
full linear model can still yield finite Warburg re-
sponse under limiting conditions [17]. A complex
capacitance of the form of (5) has been derived re-
cently by Glarum and Marshall [24] for a linear model
in which mobile charges of one sign are blocked at
one electrode but not blocked at the other and charges
of opposite sign exhibit opposite blocking/unblocked
behavior.

The foregoing results show a few of the possible
frequency-dependent elements and responses which may
occur and may need to be included in an equivalent
circuit. One fairly general one is shown in Fig. 3,
where the Zp's are general frequency-dependent elements,
such as that involving Eq. (1). Usually only one of
the Zp's would appear in a given situation, and that
with Zp; and Zpg =0 is probably most likely.

C
e
1
C ¢—o0
1 -
L’\/\/\I—‘Zm
Ro Ca
ZDz
Rg
ZD3
Ra

Fig. 3: A general ladder network with three
distributed elements, ZDi
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LINEARIZED THEORY RESULTS

The solution of the usual continuity, current trans-
port, and Poisson equations with appropriate boundary
conditions can be carried out exactly in the flat-band
limit when only a vanishingly small ac signal is
applied [17,25]. Solutions may be applied to semi-
conductors, ionic crystals, and solid and liquid elec-
trolytes. Here I shall concentrate primarily on

materials with mobile ions and/or charged imperfections.

Although the theory includes arbitrary charge valences,
only the usual univalent situation will be discussed
here. The following physical processes are usually
included in the theory, and some or all of them may be
important in specific cases:

Charge transport: conduction and diffusion

Generation/Recombination: of charged species

Neutral species transport: diffusion in material and/or
electrodes

Adsorption/Desorption: at electrodes

Charge transfer (redox reactions): at electrodes.

The first two of these processes are homogeneous and
_occur in the bulk (but diffusion is intensive at high
frequencies and extensive at low); the last two are
heterogeneous (intensive) interface processes, and the
middle one is a homogeneous process occurring in

either the bulk or in the electrode (or possibly both).

A diagram showing the interaction of some of the pro-
cesses present in an electrode/material situation is
presented in Figure 4. Here the compact or Stern
layer is by definition either charge free or contains
specifically adsorbed charges only.

Cells

Interface/Bulk
Interface Coupling Bulk
Compact Layer Diffuse Layer Bulk
Phenomena Phenomena Phenomena
Fig. 4: Block diagram showing some bulk-interphase

relations
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The selection of appropriate boundary conditions is
usually of critical importance in developing a useful
theoretical model to compare with specific experi-
mental results. The Chang-Jaffé conditions [15,17,18,
25] have often been used when electrodes are not com-
pletely blocking to charge transfer. These conditions
state that at an electrode surface the perpendicular
convection current carried by a given charged species
is proportional to the difference between the concen-
tration of the species at the boundary and its concen-
tration in the bulk in equilibrium. More realistic
conditions for ionic materials are the Butler-Volmer
relations [18,26] which take some account of the effect
of the finite size of ions at the boundary.

Many and varied are the forms of small-signal model
frequency response results when plotted in the Z* or Y
complex planes. When the time constants of the various
processes are relatively close together the resulting
shapes can be quite complicated. Many shapes are illus-
trated in Refs. 15, 27, 28, and in the two reviews,
Refs. 29 and 30. Here I reproduce in Figs. 5-7 some
Z* and Y shapes for various conditions, together with
their associated equivalent circuits [28]. Arrows
show the direction of increasing frequency. The Yy of
Fig. 6a is the present Zﬁ}sc)' Although the N 2 2 RC
circuits of Figs. 5 and 6 may be replaced by their
Maxwell or ladder equivalents, such replacement is
generally invalid when a circuit section involves Zp
rather than a R and C. The error of taking as equiva-
lent, different circuits containing Zp becomes larger
the closer the RC time constant approaches the effec-
tive time constant of the Zp circuit. In the limit
where complex Z*-plane-shapes arising from these pro-
cesses don't overlap, the error approaches zero. As
an example of a medium-overlap situation, consider the
circuit of Fig. 6a with R_ = 103Q, C, = 6x10~%F,

Zpo = 4x1032, and H = 0.06. Here I have set the 1,2/D
which appears in the X variable of Zp(ge) equal to HZ.
Synthetic data were generated for this circuit and a
complex least squares fit of these data to the Fig. 3
ladder circuit with Zpj; = Zp(ge)s CR = RR = Zp2 = RA=Cp=
Zpz = 0 was attempted. No adequate fit could be found
with the most appropriate weighting, but unity
weighting of the data yielded the estimates R, =
(1229+17), 108¢, = (2.645%0.045), Zpy = (3701%18), and
H £ (0.0584%0.0003). Although most of these estimates
are fairly close to the original values, this fit is
very poor compared to that obtained with the original
circuit, which led to essentially exact estimates of
the original parameters. The present fit yields rela-
tive deviations between data and circuit predictions
that approach 100% for frequencies greater than about
4x103 Hz.

Fig. 7 shows bulk (B), reaction (R), and adsorption/
reaction (A/R) semicircular shapes for different elec-
trode rate constant parameters. In the A/R case, it
has proven very useful to employ complex rate con-
stants [18,31]. Note that those curves with arrows
pointing to the right in Fig. 7 involve negative A/R
differential resistances (Bq < 0), and those curves.
with Im(Zp) < 0 involve negative differential capaci-
tances (Cgq < 0) as well.
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Fig. 7: Z* gnd ¥ plane responses for situations in-
volving adsorption/reaction processes. In (a) the
ry's are normalized reaction parameters [28]. The
curves presented in (b) include finite Warburg
response, denoted D here.

Let us denote diffusion response such as that arising
from Zp(gr) of Eq. (2) by Dg and the Zp(oc) of Eq. (4)
by Dyp. When I, + =, they both reduce to the Zpe of
Eq. (3), which we will denote by D_. In addition,
denote a capacitive element by C, and the constant
phase element by CPE. How may these be combined to
yield various shapes in the complex plane? Consider
the circuit of Fig. 3 with Zpy = Zpg = 0, for example.
It can give the shapes of Fig. 7b if Ry is negative
and Zpz = Zp(gc). Thus this Z* plane response may be
represented symbolically by B-R-A/R-Dg, moving from
high frequencies to low. The shortest effective time
constant sections come first and the longest last, but
clumping of time constants can lead to much more com-
plicated results.
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We always find that B comes first in any such sequence.
Often measurements are not extended to sufficiently
high frequencies to allew its C, the geometric capaci-
tance Cg, to be obtained. Then after B follows the R,
A/R, or Dg which has the smallest effective time con-
stant. If R and 4/R are both non-zero, they occur in
the R, A/R sequence since they involve sequential pro-
cesses. Thus, such responses as B-Ds-A/R, B-R-DS-A/R,
and B-R-A/R-C are possible. In Fig. 3, the first of
these would require Zp2 = Zp3 = 0 and Zp7 = Dg, while
the second would involve Zp; = Zpz = 0 with Zp2 = Dg.
As illustrated above, C must come last, as in Fig. 5b,
when it is the only blocking element. Similarly,
since Dp reduces to simple capacitive behavior asw ~ 0,
it must come last if it provides the only blocking.
When both Dp and C occur, their order is not signifi-
cant. Note that CPE or D, response may be substituted
for Ds in the above, but the overall response will
then still exhibit a kind of blocking behavior since
Re(Z*) will increase without limit as w - 0, elimin-
ating any dc path through the circuit. Incidentally,
many of the sequences discussed above have been found
experimentally, even that of the rather complex Fig.
7o [32]. Of course such complex shapes are not pre-
dicted by the UDR. Some transient and frequency-
response results for cases where generation-
recombination of extrinsic charge carriers is impor-
tant have also been presented [33] but the effects of
generation/recombination are often suble compared to
those of some of the other processes included in the
linearized theory [17].

SOME COMPLEX-LEAST-SQUARES FITTING RESULTS

In this section, results for three different types
of situations will be summarized: first, complex least
squares fitting with synthetic data generated from a
known circuit with known paramters; second, fitting of
experimental data obtained from a known circuit of
actual R's and C's only; and third, fitting of experi-
mental data for a single crystal of PbF;.

The three-dimensional impedance-frequency plot with
perspective presented in Fig. 8 shows response of a
particular realization of the N = 2 circuit of Fig. 5c.
The actual "data' points used in the plotting are shown
in Fig. 8 connected by straight line segments. The
origin of the log(f) scale is taken at -I here and in
the succeeding 3-D plots, equivalent to f = 0.1 Hz, and
the highest frequency point plotted here is at 75 kHz.
The origin values of the Z axes are zero here. Note
how much more clearly the frequency separation between
time constants shows up in the 3-D as compared to the
ordinary 2-D Z* complex plane plot (the back projection
here). When color is also available, 3-D plots will be
even more useful. The data presented in Fig. 8 were
calculated with R = 1039, Cg = 0.1 uF, Rp = 100 @, and
Cr = 100 wF. The points shown are equally spaced in
log frequency (frequency ratio 107°) starting at f=
0.1 Hz. These parameter values yield a time constant
ratio of 100 and a 10:1 difference in the size of the
two arcs. How well can one resolve data like this
using nonlinear complex least squares fitting? To
approximate experimental results, the exact calculated
Re(Z) and -Im(Z) data values were truncated to lengths
of n =4, 3, and 2 total digits. The last of these
gives modified data results of no better than 10%
relative accuracy on the average.
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Fig. 8: Perspective 3-D Z* response of an N = 2
Voigt cireuit. Two-dimensional projections shown
dashed.
Table I. Complex least squares fitting results
for the data depicted in Figure 8
Weighting
Type n Reo 107¢, Ry 104cy
1000.04 1.00015 100.28 1.0177
0 3 + 0.28 + 7x10-4 + 0.34 + 0.0094
999.78 1.00011 100.02 0.9999
P 3 + 0.19 + 2x10™4 + 0.06 + 0.0012
999.28 1.0028 99.83 0.998
P 2 * 1.69 + 0.0017 + 0.51 * 0.010

Complex least squares fitting was carried out both
for unweighted (actually unity weighted) data (W = 0)
and with the assumption that the random errors in the
data were proportional to the magnitudes of the data
values (W = P). As one might expect, the latter
generally gave better results. Table 1 shows some of
the Z-fitting parameter estimates and their estimated
uncertainties (standard deviations) for several situa-
tions. Even with n = 2, quite good results for all
parameter estimates are found for these data.
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Table II. Complex least squares fitting results
for a different N = 2 situation (see text)
10°C R 103¢c
n Reo g R R
1000.39 1.9989 9.58 1.031
4 + 0.44 + 0.0013 + 0.43 + 0.034
1005.7 1.9828 4,38 1.78
3 * 1.6 + 0.0050 + 1.48 + 0.40
1001.8 1.9959 8.35 1.13
3 + 1.7 + 0.0051 +1.73 £ 0.17
1007.2 1.975 1.22 3.12
2 + 3.3 + 0.013 + 1.91 + 2.79

Next, a much more stringent least squares resolution
was attempted. Here the values of R, Cg, Rg, and Cp
used to calculate exact 'data' were 1035 20 uF, 109,
and 103uF. These values yield a time-constant ratio
of only 2 and a size ratio of 100:1. Table 2 shows a
few fitting results for this situation, all with W=P
weighting. The 32 data points used here began at
f = 0.1 Hz and extended to about 750 Hz with yniform
spacing in log frequency, frequency ratio 10 8, We
see that reasonable results are obtained, even for Rp
and Cr with n = 4. 1In Table 2 all results are again
for fitting of Z data except the second n = 3 row, a
Y fit. These Y fitting results were obtained by
fitting of Y data generated by inverting the exact Z
data and then truncating to n = 8. They happen to
yield somewhat better estimates here, though this is
not by any means always found to be the case. For
n = 3, the truncated ''data" are not really quite
accurate enough to yield a good estimate of Rp although
the actual Y-fit estimate of Rp is within less than
two of its standard deviations of the correct value.
Here when 7 = 2, the values of Rg and Cp obtained from
7 or Y fits are wholly uncertain. I believe that these
and similar results show that the resolution of complex
least squares fitting can be very high even for typical
1% data, provided that a sufficient frequency region
is covered. Note that the method may also be used to
resolve nearly overlapping Debye curves for complex
dielectric permittivity or X data.

The frequency response of the actual N = 3 ladder
network of Fig. 9 was measured by Dr. J. Schoonman of
the University of Utrecht using a Solartron type 1172
response analyzer (private communication). Here the
real values of Y had four decimal digits and the
imaginary parts had either three or four. Frequencies
were equally spaced in log(f) with a ratio of about
1.58 and extended from 0.4 Hz to 10" Hz. Nominal
values of the lumped circuit elements used are shown
on the figure (top values), with resistances in® and
capacitances in nF. Measured Z* vs f points are
plotted in 3-D for both Z and Y in Figs. 10 and 11
using different viewing directions for maximum clarity.

IEEE Transactions on Electrical Insulation Vol. EI-15 No.2, April 1980

Here the origin of the Re(Z) axis is at 2.5 k2, and

in Fig. 11 the origin of the Re(Y) axis is at 120 uS.
As usual, the origins of the imaginary axes are at zero.
We see very little separation in Figs. 10 and 11
between the sections of 2,75x10~° and 2.11x10% sec.
time constants even though their ratio is about 7.7.
Unity weighting proved to yield results with smaller
parameter standard deviations for these data than did
proportional weighting. Parameter estimates found

from Y fitting are those shown in parentheses in Fig. 9.

These results show good agreement with the nominal
values. It is likely that the least squares estimates
are, in fact, appreciably more accurate than the
nominal values since the former represent the result
of many individual measurements. As a check, the
capacitor Cp was measured at f = 120 to 103 Hz by
Schoonman (private communication) using a General
Radio type 1680 bridge, yielding values which ranged
from about 11.9 to 12.25 nF with some slight tendency
toward increasing values with increasing frequency.
The mean and standard deviation of nine measurements
was 12.09%0.15 nf, in close agreement with the fitting
result. Fitting to data in impedance rather than ad-
mittance form gave parameter estimates very close to
the above values but with appreciably larger parameter
standard deviations. There is no point in showing a
comparison between the original data and values pre-
dicted from the fit since relative errors
were generally in the range of 1073 to 107",

12 nF

(12.07 + 0.02)

{ |
103 nF
o—A ANV (102.1 £0.3)
2295 Q) 11 o
(2292.5+1.2) i
AN\~
2405 )
(2410.8+1.6) AN

2053 Q
(2067 +2.0)

Fig. 9: [Test circuit involving lumped elements.
Nominal values above, complex least squares
estimates and standard deviations in parentheses.
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Fig. 10: Perspective 3-D IZ* response of the circuit
of Fig. 9.
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Fig. 11: Perspective 3-D Y response of the circuit
of Fig. 9.
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Let us now consider some response data obtained by
Schoonman (private communication) on B-PbF, with
platinum paint electrodes at 474 K. Both Re(Y) and
Im(¥) were given to four decimal places and 27 points
spanned the range from 0.2 Hz to 20 kHz. As usual,
frequency values were taken to be exact. The circuit
employed for fitting was that of Fig. 3 with C,, Zp1s
and Zp, zero and Zpz given by a CPE. Weighting of
P-type was used and a Z fit gave excellent results.
Parameter estimates found were R = (2280+16), Rp =
(1931£55), Cp = (13.29%0.24), Ry = (890%40), Cy =
(41.6x3.3), A = (2.196x0.008) x 10~°, and n = (0.4025%
0.0018). The last two estimates refer to CPE param-
eters. The capacitance (g was undeterminable from the
data. Here resistances are again in 9 and capacitances
in nF. Note the desirably small values of parameter
uncertainty estimates even when seven parameters whose
values were initially unknown are estimated here. The
data were also fitted with the same circuit except with
Zp3 = Zp(sc), and the overall standard deviation of fit
was found to be nearly eight times larger than that
obtained using the CPE.

SCALES: \“\\q_ /

Z UNIT: 6K T~/
Log(f) UNIT: | —~

Fig. 12: Perspective 3-D Z* response of equivalent
eircuit data of J. Schoonman on B-PbFg at 474 K.
Data points are indicated by solid circles and
complex least squares fitting results by solid
triangles.
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Actual complex least squares fitting results are
shown in the 3-D Z* plot of Fig. 12. Here the original
data points are indicated by small solid circles (solid
3-D line) while points at the same frequencies calcu-
lated using the CPE-fit parameter estimates are desig-
nated by small solid triangles. Most of the original
and calculated points fall so close together that they
cannot be distinguished. Only at the lowest frequen-
cies do some differences, whose relative sizes are two
percent or less, appear. The lines with short dashes
are associated with the original data and those with
longer dashes with the calculated points.

1.0 T T T
=0
M=10
M=l
v Vo*=0.01
ol 4
Vo5
Vo *:10
%®*:10 \Vo*=5 \ Vo' =00
00 A > L
) LX) 10 15 20
/M
Fig. 13: Normalized current-time charging curves for

two different normalized lengths and several step
potentials applied at t = 0. Blocking electrodes
present, charge of only one sign mobile.

NONLINEAR RESPONSE RESULTS

The electrical response of charge-containing materials
generally becomes nonlinear when a potential difference

9f magnitude (kT/e) or greater appears across a block-
ing or partially blocking electrode-interface region.
Linearization is then invalid, and the full nonlinear,

coupled partial-differential charge transport equations

must.bg solved numerically with appropriate boundary
conditions to obtain time or frequency response. An

accurate computer simulation technique for the solution

of such equations has been developed, and the some

nonlinear-situation results have already been presented

[26,34,35].
cussed.

Here a few of these results will be dis-

Consider first the transient response of a simple

system made up of intrinsic material without recombina-

tion of free charge, fitted with completely blocking
electrodes. Let Vi = V,/(kT/e), a normalized applied
p.d. Fig. 13 shows the normalized charging current vs

normalized time obtained [34] for two different lengths

upon application at ¢ = 0 of a step-function p.d. of
Vq. Here M = 1/2Lp, where 1 is, as usual, the elec-
trode separation and Lp is the bulk Debye length.
These results are for a situation where charge of only

one sign is mobile. For equal mobilities instead, the
relative p.d. dependence of the ¥ =10 curve is reversed
over that shown here [34]; that is, slower decay is
found with higher V, magnitudes. These decay curves
are only exponential in the long-time region. None

of them is of the £~” or Voglis response forms. Fig.
14 shows a comparison of charging and discharging
curves for the same situation and V§ = 5. Nonlinearity
is indicated here by the difference between charging
and discharging curves.

Fig. 15 showsnormalized small-signal ac frequency
response [35], plotted in the complex Z* and Y planes,
for the same situation considered above with M = 10.
Here the system is biased by the static potential Vg,
which determines the space charge distribution in the
interface regions and thus the frequency response.

Fig. 16 is similar except that it was calculated for
one blocking and one ohmic electrode and positive and
negative charges are taken to have the same mobility.
One sees quite different p.d.-shape dependence for

this situation where only a single interface region is
important. Further changes in the ratios of the
mobilities of the positive and negative charged species
lead to large changes in the curve shapes as well [35].

10
*vis
ol
dischorging
005 05 1.0 15 20
T/M
Fig. 14: Normalized current-time charging and

discharging curves for two different lengths,
demonstrating nonlinear response.
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Fig. 15: Z* and Y plane responses for a material

with two blocking electrodes as a function of
normalized static potential difference across the

%
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Charge of only one sign mobile.
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Fig. 16: Z* and Y plane responses for one blocking

and one ohmic electrode under static bias; charges
of both signs have equal mobilities.

75

Cq cc
it ! —~ —
|
| Ry Le
o0—4 —+ WA — 9080 —9—0
Cr X
Ro | Rx Ca
Rg | — —
(a)
Co
0—4 4 IC2
Ro
(b)
Fig. 17: Unbiased small-signal-response approximate

equivalent circuits for material with two partially
blocking electrodes; charge of only one sign mobile.
Effect of finite ion size in the compact layer
shown at right of center in (a). :

Thus far we have examined the frequency-response com-
plex plane shapes for blocking situations which allow
no steady currents. Let us now consider systems with
two partially blocking electrodes (A), or with one
ohmic and one partially blocking (partially polarizable)
electrode (B) with only positive charge mobile.
Further, let us take some account of the finite size of
positive charges, assumed to be ions, by including a
compact or Stern layer next to partially blocking elec-
trodes. No specific adsorption at the electrodes is
assumed, but charges must pass through the compact
layer in order for an electrode reaction to occur and
a steady current to flow. Even the linearized equations
lead to a very complicated exact solution for the im-
pedance in the A case [18,19]. An approximate, but
still quite accurate, equivalent circuit following
from this solution is shown in Fig. 17a. Specific com-
pact layer contributions appear at the right of center.
Luckily, it has been found [19] that this circuit re-
duces with quite high accuracy to the conventional
ladder circuit of Fig. 17b. Here Cg is made up of the
diffuse double layer space charge capacitance, Cp,
in series with that of the inner compact layer. See
Fig. 5c for the small-signal complex plane shapes to
be expected for this circuit.

Now what happens under bias sufficiently large to
make the response nonlinear? Fig. 18 shows Case B
numerical-solution results for steady-state normalized
overpotential-current relations when Butler-Volmer
boundary conditions are employed [26]. Here X, is a
normalized reaction rate constant; o is the cogventional
symmetry factor of Butler-Volmer kinetics; and § is the
ratio of zero-bias diffuse layer capacitance to compact
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layer capacitance. It thus depends on the bulk charge
concentration. There is no compact layer present
(Chang-Jaffé boundary conditions) when § = 0. The
overpotential is defined here as the difference between
the total potential and the ohmic potential drop in

the material; it is thus the p.d. across the interphase
region at the partially blocking electrode. The non-
linearity in these current-voltage curves is clear.
Notice also how the curves change as § increases and
compact-layer effects become more important. The
larger the current and overpotential, the more differ-
ence there will be between the results of Chang-Jaffé
and Butler-Volmer kinetics.

2.0
Kp= 0.01 * Cathodic
a=0.5 1.5+ 8=10
8->D
1.0+
3=1
0451_ 8=O
Il | | | ! 1
-5 -1.0 -05 05 10 15
IYKp
Anodic —-05
8-»0 -‘-I'O
-1-1.5
£8=10
8=‘ —‘20
8=0
—-2.5
—1-3.0

Fig. 18: Steady-state (normalized) overpotential-
current relations; one partially blocking electrode
with Butler-Volmer kinetics and one ohmic electrode;
charge of only one sign mobile. Here § is the
ratio of zero-bias diffuse layer capacitance to
compact layer capacitance.

Finally, Figs. 19 and 20 present some XK, =0.01 com-
plex Z*-plane results for M=20/Case B and M=100/Case A
situations, respectively., To quite good approximation,
these shapes are also well fitted [26] by the circuit
of Fig. 17b. Although nonlinearity does not appreci-
ably affect the structure of the circuit here (its
connectivity and type of elements), one does find that
Cg and Ry are current and overpotential-dependent. As
Fig. 19 indicates, Ry increases as the half-cell
system goes from having an accumulation region (I% > 0)
to a depletion region (I;< 0). The capacitance C2
simultaneously decreases as would be expected. The
situation is more complex in the Case A situation of
Fig. 20 where an accumulation region forms at one

-Im(Zy)

electrode and a depletion region simultaneously appears
at the other. The latter dominates the behavior of
the overall Ry of course. Notice that a current of
T4 = 0.02 is necessary to double Rg over its unbiased
value in the A case while only a change of |I§| = 0.01
is necessary for the case B situation. These results
show that when the current is non-zero it would be
quite incorrect to derive a reaction rate constant
from a value of Ry using the usual zero-bias relation
between the two [18,19], which becomes for case B,

kp = Kpr/LD = (kT/e)/(ecoRs), where k, is not normal-
ized and ¢, is the equilibrium bulk concentration of
the positive charge.

10 T T T T I T T
(0. 001,20, 0. 17) I =-0.020
=1, =05

8 —

6 —

15=-0.010

4»—-

2

0 | |

0 8 10 12 14

Re(ZN)

Fig. 19: Small-gignal Z* plane response under static
bias for the situation of Fig. 18 with K, = 0.01.
The I; parameter is the normalized steady-state
current.
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Fig. 20: Small-signal Z* plane response under static

bias for two partially blocking electrodes with
Butler-Volmer kinetics; K, = 0.01 and charge of
only one sign is mobile.
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FINITE SIZE EFFECTS

Thus far we have considered one aspect of the finite
size of charge carriers in defect or ionically con-
ducting materials, namely the finite thickness of the
inner compact layer. But occasions can often arise
where finite size enters in another way, leading to a
limitation on the maximum two- or three-dimensional
concentrations possible in a given region. One expects
that such a limitation will be important in systems
with very high concentrations or even in those whose
equilibrium bulk concentrations are low but where
accumulation-type diffuse space charge regions form.

In contrast, the conventional Gouy-Chapman theory of
the diffuse double layer [36,37] employs an independent-
particle ideal gas model (IGM) for the charges, all
taken infinitesimally small.

In an effort to overcome some of the limitations of
the IGM, which can lead to arbitrarily large charge
concentrations, we have begun to explore some of the
predictions of various lattice gas models (LGM) [38,
39]. In such models one assumes that the charges must
reside on one (liquid model) or two (solid model)
lattices of site concentration N. Then charge concen-
tration of a given sign can never exceed ¥, a quantity
entirely geometrically determined. Here for simplicity
we have considered that the charge carriers of opposite
sign are sufficiently close to the same diameter that a
site can be occupied by either in the liquid model or
that there are N sites for positive and N for negative
charges in the solid model. The latter is particularly
appropriate for single crystals; the version discussed
here is applicable for Schottky-defect materials, while
somewhat more complexity arises for Frenkel-defect ones
[39]. The LGM may involve either two- or three-
dimensional lattices. Here I shall initially apply the
three-dimensional version to the entire material of a
solid or liquid; except for situations with very high
bulk concentration, finite size will only be of
importance in an accumulation-type diffuse double
layer, within two or three Debye lengths of the surface
of an electrode, the interphase region. Even though a
lattice model is somewhat of an artifice in the liquid
case, employed to take finite charge carrier size into
account, and more complicated approaches such as the
use of the hypernetted chain approximation may be
appropriate, the LGM reduces to the IGM in low concen-
tration regions as it should; and, as concentration
gets very high, an actual lattice structure should
start to form even in a liquid. Thus the LGM is at
least a reasonable second approximation for a liquid
with free charge.

In high-concentration situations one must employ the

following form of the Nernst-Planck flux equations [40]:

_ i+1 i+1 dy 1
Ii = (-1) e[(-1) uicidx + Di(ci/ai) T 1, (6)

where the c¢;'s are concentrations, the ai’s are the
corresponding activities, and p; and D; are mobilities
and diffusion coefficients of the ith species, assumed
concentration independent here. I have taken Z=1 for
negative species (i.e., c¢;=n) and 7 = 2 for positive
ones. Let the common equilibrium bulk value of cj

and ¢y be c¢,. Here x is the distance in the material
measured say from its beginning at the left end. The
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quantity ¥ is the inner potential (taken with refer-
ence to zero in the undisturbed bulk), and it is con-
venient to introduce the normalized potential

¢ = Y/(KT/e).

In a completely blocking situation (I; = Q)
(6) yields quite generally a; = apgexp[(-1)t"
the IGM, a; = ¢; and ap; = c¢p, giving the usual
Boltzmann potential distribution for the concentra-
tions. Free energy minimization in a completely
blocking LGM equilibrium situation leads to [38,39]
expressions for a; in terms of ¢; and e; vs ¢. For
the LGM, ¢; is not Boltzmann distributed since its
maximum cannot exceed N. Let us define § = co/N, a
fractional occupancy measure. Then for the solid LGM
one finds a; = ¢;/[1 - (e;/N)]; thus ajp = ¢,/(1 - §).
Results of this kind are slightly more complicated for
the liquid LGM.

Eq.
j¢]. In

Now for a partly blocking, direct-current-carrying
situation one may invoke non-equilibrium thermodynamics
to justify the use of the a;'s found for thermal
equilibrium in equations such as (6) with I; = 0,
provided the departures from equilibrium are not ex-
treme. Thus, one can solve LGM equations for current-
voltage, transient, and frequency-response results
even under partially blocking nonlinear conditions,
and, with the use of Butler-Volmer boundary conditions,
obtain numerical results more realistic than those
presented in Figs. 18-20. Such work remains to be
done. Here it is worthwhile to contrast IGM and LGM
predictions for completely blocking situations.

Consider the normalized charge density p*[=p*{¢(x)}]
at some position x, taking p* = p/(eN). The LGM
leads to [39,41]

-28(1-x8)sinh(¢)
1 + 48(1-x8)sinh?(¢/2)

p* = (7N

where x = 0 for the liquid LGM and 1 for the Schottky-
solid LGM. Here it is assumed that charges of both
sign are mobile. There will be little difference
between the two models unless § > 0.01. When § + 0,
p* > -26sinh(¢), so that p = -(2ec,y)sinh(¢), the

usual IGM Gouy-Chapman result. But when T¢| > o, (7)
leads to |¢ = 1, a limited charge density. Some
predictions of Eq. (7) are plotted in Fig. 21 for

X = 0 and several § values. The dashed lines are
limiting IGM results. Clearly, the saturation region
is reached for the LGM at larger ¢ values the smaller
§. To a good approximation the curve shapes are the
same for § ¥ 0.1, and thus p*(¢p) = p*(¢y) if ¢, - ¢;=
In(8,/5,).

Now inclusion of nearest-neighbor electrostatic
interactions in the free energy for the liquid LGM
leads to the replacement of ¢ in (7) by (¢ + op?*),
where o is an interaction constant [41]. Of course,
the modified Eq. (7) must then be solved self
consistently for p*, given ¢. This modification is
more or less of the form Frumkin suggested heuristi-
cally long ago [42] for two-dimensional adsorption
isotherms of the Langmuir form. It can arise from
other sources as well as that mentioned above. When
a > 0, the approach of p* to its saturated value as
|¢l increases is slower than that for a = 0. But in
both cases a finite and not very large ¢ can lead to
an extremely close approach to saturation, as shown
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a=0

LIQUID LGM
————IGM

The negative of the local norqalized charge

Fig. 21: >
density o* in the diffuse layer vs the normalized
local average potential ¢ showing the saturable

character of the lattice gas model.

Here § = co/zv
is a fractional occupancy factor.

in Fig. 21 for a = 0. If we write p* = tanh(z), in-
dicating its saturable character, then the variable

z! will grow monotonically with |¢|. But it is
physically unrealistic to expect that at finite
temperature a lattice could become essentially entirely
filled with charges of a single sign either for solids
or liquids. Therefore, it seems reasonable to con-
sider a simple heuristic change in the feedback term

ap* = atanh(z) to make the approach to saturation
more drawn out. The one we shall use, one of the
simplest possible, replaces the above with ap*/

[Z - (p*)2]05 = gsinh(z). Fig. 22 shows results for
8§ = 10-3, several values of a, and both the tanh(z)
and sinh(z) modifications. Indeed, the sinh(z) term
does not alter the tanh(z) results much for small §
but does lead to a more satisfactory asymptotic
approach to saturation. The sinh modification will
probably be especially appropriate for solids, where
the value of the normalized p.d. across the diffuse
double layer ¢4 can be appreciable. In unadsorbed
aqueous electrolytes, probably only rarely will ¢4
reach values where the distinction between the tanh
and sinh modification terms will need to be made.

When o = 0, it turns out that the Poisson equation
incorporating the p* of Eq. (7) can be integrated [39]
for the situation of a completely blocking electrode
at x = 0, normalized potential ¢4, and an ohmic elec-
trode at x = «, potential(. One finds for the normal-
ized field at x = 0,

ey = [sgn(sy)] [6~lin(1 + Rd)]OS (8)
where

R, = 48(1 - xé)sinh2(¢d/2), 9

d
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and e, = Eg/(kT/eLp). Here Lp is the bulk Debye

lengtg and thus involves ¢,. If o4 is the total charge
per unit area in the diffuse layer, then

e =0 /o, = Qg, where o, = Zec,Lp. Finally, the
normalized differential capacitance of the diffuse
layer is just Cpoy = Cpp/Cq = -dQq/déq. Here Cgq =
ep/4nLp is the IGM differential capacitance per unit
area of the diffuse layer in the ¢4 ~ 0 limit. It

involves €p, the bulk dielectric permittivity. These
relations lead, for a=0, to
(l-xé)sinh[¢d|

CDON =— (10)

(1+Rd)| edl

When § »~ 0, Eq. (10) yields Cpoy = cosh(¢d/2), the
Gouy-Chapman result.

LIQUID LGM 3=10"3 tanh

———— sinh

Fig. 22: The dependence of -p* on ¢ for three
sttuations: o = 0, no modification in the local
charge-potential relationship; o > 0, tanh and
sinh modifications--see text.

Fig. 23 shows how -Qg varies with ¢4 for § = 1073
and several o values. As becomes very large, Qq
becomes proportional to ¢41. The effect of in-
creasing o is to make a larger and larger portion of
Fhe response proportional to |¢d| , where m > 1 and
it approaches I for large o. More details show up in
the.CDON curves. Fig. 24 shows such results for
various §'s and o = 0. These curves were calculated
for a Frenkel situation [39] and are thus asymmetric
apout ¢ 4=0. Results for the symmetric Schottky and
liquid LGM situations are obtained, to very high
accuracy, by reflecting the ¢4 2 0 curves in the
¢4 = 0 plane.
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Fiq. 23: The negative of the total normalized charge
in the diffuse layer (charge per unit area), Qd’ vs
9, for § = 1073 and various local charge- o

potential modifications.

Fig. 24: The normalized differential capacitance of
the diffuse layer, Cpoys Vs the normalized p.d.
across it, ¢4, for various § values for a Frenkel-
defect situation.

Most experiments will involve variation in ¢, rather
than N. Since (g, used in normalizing Cppy, depends
on ¢p, it is of more interest to consider the varia-
tion of Cpp, the unnormalized diffuse double layer
differential capacitance, vs § and ¢4 (or ¥ ;) taking
N as fixed. Such results for the liquid LGﬁ are pre-
sented in Fig. 25 for parameter choices listed thereon.
It is particularly interesting that the maximum values
of Cpp, = 150uF/cm?, are essentially independent of §
for § € 0.01. A IGM curve for § = 10-5 is also shown
for comparison. Clearly, the peaks in Cpp are asso-
ciated with the finite size of the charge carriers,
directly related to the value of N chosen. Since Cg
will vary as VN for fixed &, the larger N, the larger
the maximum value of Cpp. Thus, if measurements of
Cpo can be extended to sufficiently high ¢4 that the
maximum of Cpp is defined, the experimental value of
N may be readily determined. The same virtual § in-
dependence of the peak value of (p, when § 2 0.01 is
found when a # 0 for either the tanh or sinh modifi-
cations.

Fig. 26 shows a few C v VS ¢4 results for fixed §
and several o values. ?gcreasing a decreases the

peak Cpoy and causes it to occur at higher ¢4. The
final decrease of Cppy is proportional to |¢d[“Q5, as
in Schottky junction depletion layers. The decrease
arises from a quite different cause here; however, the
near filling to saturation with charge of a single
sign in a region of finite thickness next to the
blocking electrode, a nearly saturated accumulation
region.

300 T
|o'2 |°'3,"0'5
/ a=0

100

C,=468505 /B uF/CM?
¥4=0.02585 ¢4 V

Coo (uF/CM?)

T=300K
€g* 10
N=2x10%2 cM3

| 1 ||11|||| A e b A2 L)

Fig. 25: The unnormalized differential capacitance
per unit area of the diffuse layer, Cpp, V€ ¢d for
various & values and o = 0.
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Fig. 26: The dependence of Cpow on ¢4 for § = 10-3
and varitous charge-potential modifications.

o— —

e | L
I LR

Cy Cooleg)

Fig. 27: Circuit showing the makeup of the total
blocking-electrode differential capacitance, Cps of
a situation ineluding surface adsorption at a Finite
qumber of surface sites, and with the finite size of
tons taken into account in both the compact layer
and the diffuse space charge region.

For charge carriers of finite size it is impossible
to measure the diffuse layer capacitance, Cpp,
directly because the charge centroids of the charged
entities nearest the electrode will be separated from
the mechanical surface of the electrode by about a
radius of the charge carriers. Further, the effective
electrical equipotential plane of the electrode will
be of the order of 50 pm behind the mechanical surface
because of field penetration effects. For an effec-
tive dielectric constant 3 of this inner compact layer,
and a thickness of 15 pm, the capacitance which will
therefore be in series with Cpp will be about 18
uF/cmz, limiting the overall measurable capacitance
Cp to a maximum of this value, assuming complete
blocking at the electrode.
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When some of the charge carriers can take positions

on specific sites on the electrode or at the surface
of the material, they can be considered to be speci-
fically adsorbed there.
to the right of these charges, and the inner layer,

no longer charge-free, can be divided into two parts,

Then the diffuse layer begins

leading to two essentially potential-independent
capacitances which we shall designate as CB and C,,.

When the adsorption isotherm for surface-adsorbed
charges depends only on the local average potential

at the centroids of these charges, ¢g, it has been shown
[39] that the overall capacitance of the system Cp is
given by the circuit of Fig. 27, involving four
separate capacitive elements. Two of these elements
are potential-dependent. The resulting dependence of
the overall capacitance on the applied potential dif-
ference, Y at the electrode and zero at & = =, has
been investigated [39] in some detail for a Frenkel
case corresponding to single crystal AgCl. A final
figure, Fig. 28, is presented here to show some of
the complexity which can arise in such a situation.
Here 6 is about 1075, o = 0, and T_ is the number of
kink sites on the surface of the crystal at which Ag*
ions may be "adsorbed." The structure of interest
occurs in the region -1.5 < Y, < 1.5 V, with 1.5 V
equivalent here to a ¢, of about 35. Note that the
peak capacitance, arising primarily from adsorption,
is displaced to the right from the y, = 0 point. Such
displacement, associated with a constant term in the
adsorption isotherm, arises because of the difference
in free energies of formation of Ag* interstitials and
vacancies in AgCl.

T=500K

Cg=15 uF/cm?
2 C,=8.7 uF/cm?
Cg¥1.395 puF/cm?

10}~ Camax®92.96 (I3 /10'%)
pFrem?

I =10'"% sites/cm?

@

Co (pF/em?)

(2]

0o
Wm(v)

Fig. 28: The dependence of the total Cp of the
specific adsorption situation of Fig. 26 on the
p-d., Uy, between the blocking electrode and an
ohmic electrode at infinity. Here T. is the
surface density of available adsorption sites.
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Macdonald:

This review is not meant to give the impression
that bulk and interphase charge motion effects are
fully understood. Some understanding has indeed been
gained, especially for the simplest cases, but much
remains to be done. For example, a more detailed
treatment of charge interactions, including neutral
pair effects, is needed to provide an improvement
over the Frumkin-like correction discussed above.
Such micropotential calculations are needed both for
charges in the diffuse layer and for specifically
adsorbed charge. Much more work should be done on
nonlinear response, with and without a static current
present. Even the presence of built-in (Frenkel)
diffuse space charge layers in interphase regions, a
common occurrence, can lead to such nonlinearity. I
hope, however, that this paper has provided the reader
with a feeling for the scope and interest of the
general area discussed.
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