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The conventional theory of surface charge and distributed space charge in single crystals exhibiting Frenkel
or Schottky disorder is generalized in several ways. First we generalize the usual continuum theory of the
diffuse double layer in the crystal by adopting a lattice gas model which restricts the mobile charges to a fixed
number of lattice sites. The lattice gas activities can be used in both zero and nonzero current situations and
are shown to be consistent with a three-dimensional generalization of ordinary Langmuir adsorption. The
substantial effects of the resulting limit on concentrations in accumulation regions are examined and shown to
be particularly important in high bias situations and in materials in which the bulk equilibrium charge
densities are very high. Second, we take explicitly into account the physical separation between the plane of
the surface charges, which balance the bulk space charge, and the first normal lattice plane of the crystal and
show that under most conditions of interest this separation modifies the earlier surface potential results of
Poeppel and Blakely substantially. We also show that the thermodynamically generated equilibrium relation
between surface charge density and surface potential is itself just a form of the Langmuir adsorption isotherm
applied to occupancy of the kink sites. Finally, we investigate the response of the system when a completely
blocking electrode is attached, with the physical separation between the equipotential plane of the electrode
and the plane of the electrical centers of the “adsorbed” surface charges explicitly introduced. Free energy
minimization in this situation leads to Langmuir adsorption at the surface. A new equivalent circuit
representing the total differential capacitance of the system is derived, and competing effects of adsorption
capacitance, diffuse double layer capacitance, and separation capacitances are investigated. An important
result is that we find the surface adsorption capacitance to be essentially in parallel rather than in series with
the diffuse double layer capacitance. Numerous analytic and numerical results of capacitance versus
temperature and applied bias are presented for different limiting surface site concentrations and it is found
that the surface potential plays somewhat the role of a diffusion potential, causing the minimum of the diffuse
layer capacitance (occurring at the “flat-band potential””) and the maximum of the adsorption capacitance to
be displaced from one another in potential. Some of the results of the present work also may be relevant to the
theory of adsorption capacitance in unsupported aqueous electrolytes.

I. INTRODUCTION

The equilibrium distribution of space charge near the
surface of an ionic crystal has been the subject of nu-
merous theoretical and experimental studies.!™® To set
the stage for the present work we will briefly review a
number of these contributions, with emphasis upon the
physical situations considered and the approximations
and assumptions made in each case.

For the moment we restrict our consideration to binary
crystals of chemical formula AB, and let N denote the
concentration of anion or cation sites. [A glossary of
symbol definitions appears at the end of this paper. ]
For simplicity we assume the bulk of the crystal to be
stoichiometric and the lattice disorder to be exclusively
of either the Schottky or Frenkel-type. We let ¢y denote
the bulk concentration of positive and negative ion va-
cancies (Schottky disorder) or positive ion interstitials
and positive ion vacancies (Frenkel disorder) and define
the bulk fractional defect concentration & as ¢,/N. This
important parameter appears in the entropy contribution
to the free energy of the crystal when account is taken
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of the lattice structure (lattice gas statistics) and reflects
some of the consequences of finite ion size. Neglecting
the charge carrier concentration in comparison with N
amounts to the assumption of ideal gas statistics for the
charge carriers.

In Refs. 1, 3-5, 7, and 8, the assumption that the
charge carrier concentrations are everywhere small
compared to N has been made either implicitly!-3 ™8
or explicitly®* before the electric field dependence on
local potential is calculated. This approximation has the
actual effect of eliminating the lattice gas restriction
on the magnitudes of the charge carrier concentrations,
leaving them free to increase without limit. An im-
portant part of the present study is the analysis of situa-
tions in which & is not negligible compared to unity
(the usual case in superionic conductors, such as 8-
alumina) and those in which the concentration of charge
carriers in the interfacial region is significant compared
to N, even though & itself may be quite small. In such
situations, finite ion (or vacancy) size should not be
neglected. It will be dealt with in the present work by
the adoption of an explicit lattice gas model.®
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References 2 and 3 treat crystals of finite size (two
surfaces of interest in the usual one-dimensional ap-
proximation) while the rest involve the assumption of a
semi-infinite crystal with no perturbation present far
away from the single surface of interest., Further, Refs.
1-3, 6, and 8 assume Schottky disorder and 4, 5, and 7
consider Frenkel disorder. Only Refs. 5 and 7 consider
the possibility of a limiting concentration, I'; per unit
area, of surface sites (termed N, in these references)
possibly much smaller than the corresponding con-
centration of ion sites in an interior lattice plane parallel
to the electrode. Other treatments have less realistical-
ly set no limits on surface site occupancy, or when an
electrode is present, taken surface charge to be identi-
cally zero. References 5 and 7 assume that the only
surface sites energetically available to the mobile
charges are kink sites. Then for an uncharged surface
of a Frenkel defect conductor, one-half of the kink sites
(T, /2 per unit area) will be occupied by metal ions and
the remaining half by negative ions.*” References 3-5,
and 7 have dealt with no-electrode situations and 1, 6,
and 8 have assumed completely blocking electrodes.

Only Refs. 6 and 8 have considered to some extent the
differential capacitance of electrode/crystal systems.

Grimley was the first worker to analyze the arbitrary
6 situation.? He examined the contact between an elec-
trolyte solution and a single crystal having Schottky
disorder. By free energy minimization he obtained solu-
tions for field and charge distributions vs local potential
in both phases for both finite and semi-infinite crystals.
His results, which take some account of the lattice nature
of the solid, are very similar for the two phases, Al-
though the boundary conditions used by Grimley? and by
Kliewer and Koehler® are somewhat different, Grimley’s
results for the field and charge concentrations in the
surface region of the crystal are exactly the same as
those which Kliewer and Koehler would have found in both
the finite and semi-infinite cases, had they not taken 6
to be negligible.

Let us use L, todenote the Debye length in thebulk of
a crystal of length [. In the situation where {/L,> 1,
one may consider a single surface of the crystal, as-
suming bulk conditions to hold in the crystal interior
and thus deal with a semi-infinite case. The solution for
effective potential vs position measured from the sur-
face obtained by Kliewer and Koehler® in this case, with
6 negligible, is of the same form, when one uses the
identity tanh (zo/4)= sgn(z,)exp[- sinh™{csch(z,/2)}], as
that found much earlier by Macdonald and Brachman,
itself a form of the Gouy diffuse double layer solution
given long ago.

In the present work, we shall show how three different
approaches can lead to the same charge distributions in
the arbitrary 6 situation, thus providing some additional
physical insight into this case. In addition, we shall ex-
plore predictions obtained from the general solution when
T'; is not taken infinite in both the semi-infinite and finite
length situations. In the latter case, we shall, however,
assume that l/LDZ 20, so that conditions at the two sur-
faces are uncoupled except through the unequal division
of any applied potential difference between the two re-
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gions. We shall devote especial attention to differential
capacitance behavior since this may prove a valuable
diagnostic tool, possibly better in some ways than the
vibrating capacitor technique used by Danyluk and Blake-
ly.*® Although the present work, like all its predeces-
sors in this field, takes no account of the attractive and
repulsive interactions between neighboring charges ex-
cept through the coarse-grained electric field obtained
on integration of the Poisson equation, we plan in future
work to show how some of these interactions may be
introduced in a lattice gas model for charged crystal
defects. In Sec. II we shall consider only electrode

or surface charge situations, reserving analysis and dis-
cussion of the more general situation where both may

be simultaneously present for Sec. III. Further, to
maintain continuity with past work in this field, we shall
ignore certain aspects of ion size in the interphase re-
gion in II but not in III,

I1. INITIAL ANALYSIS
A. Current and charge distribution equations

In this section we demonstrate how results for the
arbitrary 6 situation for Schottky or Frenkel disorder
can be obtained by different methods from overtly dif-
ferent assumptions for the case of limited or unlimited
I',. Further, the quasithermodynamic approach to be
described is also applicable in nonequilibrium situa-
tions, *

Leti=1, 2, with ¢, the volume concentration of the
ith species of charge carrier of valence number z, (2,
=1). For generality we allow z,+#z, in the Schottky
case; 2z, =2, is required for materials with Frenkel de-
fects in only one sublattice. We shall make the identifi-
cations ¢;=n and ¢,=p, where n and p denote concentra-
tions of negative and positive charge carriers (ions and
vacancies in the Frenkel case). The chemical and elec-
trochemical potentials of species i are defined in the
usual way as

1;=n%+ kT In(a;) (1)
and
m=u+(-1ze0 , (2)

where 19 is the standard state chemical potential, a, is
the activity of species 7, e is the proton charge, and
is the local potential, related to the local mean field by
8p/dx =—E. The Faradaic current associated with
species ¢ may be obtained from

I,=(=1)'ez,cD,/kT) (-%’;) , 3)

for the one-dimensional current flow situation con-
sidered here.!* Using the Einstein relation between dif-
fusion coefficients and mobilities, D;=(kT/e)(i ; /2;)
where u,,,; is the mobility of the ith species, one finds
that Eqs. (1)-(3) lead to

I,=(-1)ez, [(- )i, c.E-Dyc;/a,) (%%)] , @)

which reduces to the ordinary dilute-concentration form
of the Nernst—Planck equation as ¢;~0 and a;~c;.
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Finally, on defining the thermodynamic factor 7,=(c;/
a))8a, /ac,), one has

I=(- 1)‘ezium,[(—1)'c,E— (ﬁl;)Ti Z—;‘:I , (5)

where T,—1 in the dilute limit. In time-dependent
situations the total current density is given by I =1, +],
+I;, where I, is the displacement current contribution. '
We shall solve Eq. (5) for the equilibrium case shortly.

We adopt a “noninteracting” lattice gas model, in
which one has® a,=c,/[1 - (c,/N,)] and thus

Ti=[1'(ci/Ni)]-1 . (6)

The only interaction between particles in this model
arises from their finite size associated in a crystal lat-
tice with N,;, the concentration of lattice sites as-
sociated with charge-carrier species i. Thus, for an
ionic crystal of NaCl structure with Schottky disorder,
N,;=N, the concentration of anion or cation sites. For
such a material as AgCl which exhibits Frenkel dis-
order, N, =N and N, =2N, the concentration of inter-
stitial sites available for the metal ions. We shall re-
fer to these two conditions as the “typical” Schottky
case and the “typical” Frenkel case, respectively, and
will subsume them into one equation by defining a
“structure” factor s;, with s; =1 always and s, =1 for
the former case and s, =2 for the latter. We may then
rewrite Eq. (6) as

T,=[1-(c,;/s;M]* . (6")

The less common case of an A, B, material may be dealt
with by taking N; =N as the concentration of cation sites
and N, =s, N, the concentration of anion sites with s,
=n/m.

The above forms of a, and 7, are derived from the par-
tition function for a noninteracting lattice gas.? On in-
serting them in the transport equations one obtains for
the equilibrium state, the same results as were obtained
in Refs, 2-5 and 7 from directly considering the free
energy of the whole crystal. We shall demonstrate this
in greater detail later. We have discussed the trans-
port equation approach here because it is directly ex-
tendable to the usual nonequilibrium situation in which
the departure from equilibrium conditions is small
enough to justify the postulate of local equilibrium as
employed in nonequilibrium thermodynamics.® We shall
solve several direct-current situations using these trans-
port equations in future work.

We now present the solution of Eq. (5) for equilibrum
conditions. We assume either the absence of anelectrode
(but an arbitrary surface charge) or a blocking electrode
and no surface charge and thus take I,=0. We can then
combine Eqs. (5) and (6’), write E = -5y/56x, and solve
for i as a function of c; by integration. For a semi-
infinite crystal with its surface at x =0, the appropriate
boundary conditions are y —0 and ¢;~c; as x -,
Electroneutrality in the bulk requires z,c¢9=25¢z. AsS
usual, we let ¢, be the common bulk value of ¢;5 and ¢y
when z,;=z,. The semi-infinite case may be approxi-
mated in practice by a finite crystal with I/L;>20 and
an ohmic electrode at the right end.

Macdonald, Franceschetti, and Lehnen: Interfacial space charges in ionic crystals

Let us now introduce the normalized local potential
¢=9/(ET/e). Then one finds

(- 1)‘Z¢¢ =1n[(ci0/ci){1 - (Ci/s,'N)}/{l - (C{D/S{N)}] .

(7
Let C,=c,;/s;N and C;y=c;y/s;N and solve for C,.
Then
Ci=[1 +(C;3-1)9Xp{(- 1)‘21‘1)}]-1
___Cyexpl(-1)*"'z,¢]
T 1+Cplexpl(- 1™z, 0]-1} @)

Note that when z, =25, C;0=8/s;. In the dilute limit
where C ;<< 1, ¢, c oexp[(~1)#'z, ] the usual Boltz~
mann distribution. With the earlier definition of s,,
Eq. (8) holds for both Schottky and Frenkel disorder,
Its deviation from the Boltzmann form arises entirely
because N is limited and indirectly because the charge
carriers are of finite size. Nevertheless, Eq. (8)
represents a continuum and not a discrete result.

We shall now compare Eq. (8) with results obtained in
two other ways. The first such alternative is based on
the Langumir isotherm for surface adsorption!® which
is itself based on a two-dimensional lattice gas model. '’
This isotherm assumes a maximum surface occupation
density I'; and the possibility of only single occupancy of
any surface site, Let us begin by conceptually applying
this isotherm to each lattice plane parallel to the sur-
face in a single crystal and then carry out the transition
from discreteness to the continuum limit for the inner
planes, replacing I'y by s, N. The general form of an
adsorption isotherm is'®

agexpl- AGY /kT] =a, (9)

where ap is the unperturbed bulk activity, a, the activity
of the adsorbed species, and AG? is the standard free
energy difference between the bulk and the adsorption
plane,

In accord with the general outline given above, we
take the Langmuir form of the isotherm using the lattice
gas expression for a; with N;=s, N, The same result
is appropriate for ap with ¢, replaced by ¢;5. For the
present case AG?, the standard free energy of adsorp-
tion (site occupancy) is potential-dependent. Introduc-
ing this dependence in the conventional way, > '® we write
AGY=(-1)!ez,y. Equation (9) then becomes

c,‘/[l - (Ci/SiN)]=[C,-0/{1 - (CiO/SiN)}]eXp[(— l)i*lzid)] ’
(10)
a relation entirely equivalent to Eq. (8).

The Langmuir isotherm, when applied to the interior
region of the crystal is thus thermodynamically equiva-
lent to the lattice gas model under equilibrium condi-
tions. This observation which follows from the par-
ticularly simple form of the partition function for the
lattice gas in two or three-dimensions can serve as the
starting point for several different lines of investiga-
tion. For example, various modifications, 16 mostly
somewhat heuristic, have been made to the ordinary
Langmuir isotherm to account for attractive and re-

J. Chem. Phys., Vol. 73, No. 10, 15 November 1980

Downloaded 26 Aug 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Macdonald, Franceschetti, and l.ehnen: Interfacial space charges in ionic crystals

pulsive interactions between adsorbed species that go
beyond the hard sphere model implict in the Langmuir
isotherm itself. These same modifications when trans-
formed as above for a volume rather than surface charge
distribution may be useful in guiding the choice of the
form of activity expressions to take such interactions in-
to account and can be used in the transport equation (5)
in both equilibrium and nonequilibrum situations.

Finally, it is of interest to compare the present results
for C, with z; =z, =1 with those obtained by Poeppel and
Blakely before 5 was implicitly set to zero in their work, ®
Theirs is a semi-infinite free surface situation and they
take the zero of potential at the surface of interest. With
our zero in the bulk, their ¢, equals —y,=~ (kT/e) ¢,
where ¢, is the present normalized surface potential in
the absence of any applied potential. When the Poeppel—
Blakely Eq. (I-5) is expressed in the present notation,
one obtains

- 1)
e ¢ - (% i%z((-ll))f(grss//%bexp[— S+ (-1 e - 6],

(11)
with ¢ = ¢, at the surface and ¢ =0 in the bulk, Here
T", is the number of surface sites per unit area (taken
as kink sites®); o, is the net surface charge per unit
area, given here by’ g,=e[I', - (T', /2)] where T, is the
number of positive ions in surface sites per unit area;
$,=AG,/kT, and the present AG,’s are the free energies
of formation of the charged species, here vacancies
and interstitials. In this typical Frenkel case, s, =1
and s, =2. When ¢ =0, C,;=3/s,; and Eq. (11) yields in
this limit

o 1~
1-5 =(1+§Z>e"p(-91-¢s) (12)
and
/2 1+2
1("{6/)2) B (lizu(j)) exp(= Sy +¢,) , (13)

where w= (o, /el',}= (', /T,) - 0.5 and 2w thus repre-
sents the relative deviation of T'y from its surface-neu-
tral vatue of T’y /2. Necessarily -0.5< w= 0.5, al-
though the limits are never attained at finite tempera-
ture. The product of Egs. (12) and (13) is

(6%/2)
-0 1-@/z)] ~®-5),

where §.=6,+S,. This is a form of mass action law
since the left-hand side of Eq. (14) is N2 times the
product of the bulk activities of the mobile charges in
the lattice gas model; it may be solved for & as a func-
tion of G,. The maximum value of 5 is, of course, unity,
and for G, > 1, 6= VZexp(- G,/2)<< 1., By taking the
quotient of Egs. (13) and (12), one obtains
¢, =0.5[In{(1 - 8)/2 - (1 - 20)/(1 +20)F) - ]
= 4o — 2 tanh™!(2w)
= ¢4~ 2 tanh Yo, /0,,) ,

where
¢40=0.5{In{(1-8)/2-6%-6.]. (18)

Here §.=6,-S,, o,,=el, /2, the maximum surface

(14)

(15)
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charge, and ¢4 is the value of ¢, at the point of sur-
face neutrality, w=0. Equation (15) sets a simple but
crucially important relation between the normalized
surface charge and the potential in the plane of this
charge ¢.. It specifies that because of the thermo-
dynamic requirements of the situation, it would be neces-
sary to establish a p.d. of ¢ between the plane of the
charge and the bulk in order to force o, to be zero. The
above result for ¢, is expressed in its most transparent
form here but is entirely equivalent to the Poeppel and
Blakely result for ¢, (=- (kT/e)¢,). We may now use
Egs. (12) and {13) to eliminate §, and ¢, from Eq. (11},
yielding

1 féi = [1 (_6(/58/11‘)] exp[(-1)"' 9],

which is again entirely equivalent to Eq. (8) in the z,
=z, =1 case appropriate for a free AgCl surface as con-
sidered by Poeppel and Blakely.

117

We have now seen that the same distribution function
C(¢) for the arbitrary 5 case may be obtained in three
different but interrelated ways. We next make use of
these distributions to obtain the differential capacitance
when I'; and & are both arbitrary. Although we shall be
particularly concerned in this paper with AgCl and simi-
lar materials, it has been suggested' that a lattice gas
model such as that we are considering here is especially
appropriate for the superionic conductor a-Agl.

B. Field expressions

Poisson’s equation may be written in the intrinsic and
time-independent case as
dE

- (4me/ex)(zaca—2,1)

where €, is the bulk low frequency dielectric constant,
We normalize E and x so that §=E/(¥T/eL,) and X=x/L,,
where

amn

Lp=lep kT/4me? (25 c19 + 25 c3p)] /2
=(2/2,(c10/N)2y +25)] /2L 1y (18)
with
Lpy=[ep kT/87®NTH2 . (19)

Here use has been made of the relation 2% ¢,y +22 ¢
=2;C19(2; +2,). Equation (17) may now be written in
normalized form as

d8 _ 235Cy-2,85,C,
ax Zl(clo/N)(21+zz)
=J(¢), (17)

where the C,’s are given by Eq. (8). Now since & =-d¢/
dX, d6/dX=-848/dp. Therefore, for the semi-
infinite case, we may write the general expression

8 ®
2 8 g/ =é’2 = ’ ’
fo d zfo T de’ (20)
leading to
82 =[2N/(2, +23) 21 c1o]1nf{1 + C o [exp(z, ) - 1] 12
x{1+Cpolexp(~2,4) - 1]}2] . (21)
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From now on we consider only the usual z; =z, =1 case.

Then for typical Schottky disorder, Eq. (21) yields

8%=5"In(1 +R,), (22)
where

R,=46(1 - 8) sinh®(¢/2) . (23)
In the 6~ 0 limit, one obtains the usual result

8 =2 sinh(p/2) . (24)

Matters are somewhat more complicated for typical
Frenkel disorder. Then

82 =57 1nf{1 + 5 [exp(o) - 1111 +(5/2) [exp(- ¢) - 1]}*]

25
which after considerable algebra reduces to “
8%=5"1In(1+R,), (25')
where
R,=A;-B,, (26)
and
A, =46 sinh®(¢/2) (27)
and
B, =[5 sinh(¢/2)]*{3 + (1 o)1 —exp(-¢)]} . (28)

In contrast to the typical Schottky case, the present 8
is unsymmetrical in + ¢ unless §—0. In this limit Eq.
(24) is again obtained.

We shall next explore several specific semi-infinite
crystal situations for arbitrary 5 going from simple to
more complicated. First, we consider the situation in
which no surface charge o, exists but a metallic elec-
trode is present, Next follows further analysis of the
Poeppel-Blakely situation, in which no electrode is
present but a definite surface charge layer exists at
x =0 so that ¢,#0. Finally we shall consider the case
in which both a surface charge layer and a metallic
electrode are present simultaneously. If we denote the
charge density on the electrode by ¢, and the diffuse
double layer space charge integrated from x =0 to x ==
by o,, then overall charge neutrality requires that

Op+0s+0,=0 (29)

in this latter case.
unit area.

Here all quantities are charge per

C. Bilocking electrode, no surface charge

Since the electrode is assumed to be completely block-

ing, I, in Eq. (5) is zero and as we have seen we obtain

the C,;’s of Eq. (8) and thus the §¥s of Eq. (22) for the
|

6(1 - 6) sinh(d, + ¢ p)

. Interfacial space charges in ionic crystals

typical Schottky case and Eq. (25’) for the typical Frenkel
case. Now we explicitly take o,=0, so0 ¢,=~0,. Gauss’
law immediately leads to

On=leg /AME = (c5 /4nLp) kT /)8 ,,=Cy V1 &,
=CyVeV88,,, (30)

where &, is the field at the surface of the electrode.
Here C,=¢5 /47Lp is the usual diffuse double layer
capacitance per unit area in the limit of zero p.d.

All appropriate quantities will be specified per unit area
from this point on. The capacitance Cy=(Lp/Lpy)C,
=C,/VE is independent of & and V,=kT/e is the thermal
voltage.

We assume that the charge on the electrode is produced
by an effective potential, §,=¢,+¥,, where §, is the
applied potential difference and ¥, is an additional poten-
tial difference which takes into account the potential of
the reference electrode and allows for the possibility
that charge transfer may have occurred between the
blocking electrode and the crystal during preparation
of the interface, even though the interface, once prepared,
is taken completely blocking to all charges. Some ad-
ditional discussion of §,, is given in Ref. 8. ¥, will be
taken independent of i, for simplicity here. On normaliz-
ing all charges per unit area with ¢,=C, V so that @,
=g, /0,, etc., we obtain in the present situation @, =8,
=-Q,, and &, is given by Eq. (22) or (25') with ¢ re-
placed by ¢e = ((r’)a + d)D)-

We may define a normalized static or integral capaci-
tance by Cgy=Cs/Ca=Qn/0a=8 /¢, and a normalized
differential capacitance by

CDNECD/CdEde/dd)a=dgm/d¢a . @1)

Since Cpy is the quantity of usual experimental interest,
we shall consider it only from now on. Let M;=In(1
+R)) and Z,=dR,/d$,. The R;s are here given by Eqgs.
(23) and (26) with ¢ replaced by ¢,+¢p. For both
Schottky and Frenkel disorder &, =[6"1M,]'/%. Thus

Con=2,/2(1+R)@EM )2 . (32)
For Schottky disorder, one finds
Z,=25(1 - 8) sinh{g, + ¢p) , (33)
while in the Frenkel case,
Z,=25[1- (B, /A;)]sinh(p, + bp) + By — A8 [1 - (8/4)],
34)

where A, and B, are given in Eqs. (27) and (28) with ¢
replaced by (¢, +¢p). A relatively simple expression re-
sults for Cpy in the Schottky case. It is

(35)

Con = [1+46(1 - 6)sinh®{(¢,+¢p)/2} 1-[61n{1 +45(1 - 5)sinh?{ (¢, +dp)/2F 11172

As 5-0, this reduces to the well-known result®

CDN=COSh[(¢a+¢D)/2] ’ (36)

which strictly applies for arbitrary ¢, only when 6=0.
When R, =46(1 = 8)sinh?[(¢, +¢5)/2]> 1, Eq. (35) leads

|
to

Con=[46{|po+dp| +In{6(1-0}} ]2 . @7

The expression for &, obtained above for typical
Schottky disorder is equivalent when ¢ is set to zero
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0.
0]

20
bl

Normalized total differential capacitance Cpy vs
normalized applied p.d. ¢, for various 6 values. Results
apply for a single blocking electrode, Frenkel defect situation.

FIG. 1.

to that obtained originally by Grimley.? Grimley’s re-
sult has been used by Raleigh® to obtain an expression
for C, consistent with that of Eq. (35) and a limiting
form consistent with (37) when 6 is neglected compared
to unity. Note that (37) yields Cpy =« §;1/2 for | ¢,

> |In{6(1 - 6)}]. This is a familiar relation in semi-
conductor physics where it is associated with the forma-
tion of a charge carrier depletion region near a junction
or electrode.?® Here, however, it is associated with
the formation of an accumulation region of a special kind,
one where a region of nearly constant charge density
builds up from the electrode out into the material. In
contrast to the conventional picture of an accumulation
layer of point charges, in which the charge density near
the electrode may increase without limit, here ¢; and

¢, can never exceed N,

In the 6~ 0 limit, Z, and Z,, R; and R,, and M, and
M, all approach each other, and Eq. (36) for C,y applies
for either type of disorder. Alternatively, in the ¢,

-0 limit, Cpy approaches (1 - 5)!/2 for Schottky dis-
order and [1 - (35/4)]'/2 for Frenkel disorder,

For ¢, =0, curves of Cpy vs !¢, =1 ¢, are shown in
Fig. 1 with 0 a parameter. The top dotted curve is that
for 6~ 0; the bottom one is for typical Schottky disorder;
all other curves are for the typical Frenkel situation.
The dashed and solid curves show the asymmetry in
Frenkel results for ¢,> 0 and ¢,<0, They differ for
sufficiently large | ¢,| by very nearly a factor of V2,
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the difference ultimately arising from the s; =1, s, =2
values appropriate in this case. Surprisingly the
Schottky results (symmetrical in ¢,) are found to agree
with the ¢,= 0 Frenkel ones too closely for graphical
separation except for the bottom dotted curve in the re-
gion 0= ¢,<2. A single Schottky curve (for 0 <« 1) like
those of Fig. 1 has been calculated by Raleigh® and em-
ployed in the interpretation of capacitance data for
AgBr, a typical Frenkel defect material. As we have
seen above, for one of the two possible polarities of the
interfacial potential (here y,), there is no measurable
distinction between Schottky and Frenkel Cp results for
8=0.1. For ¢p#0, the curves of Fig. 1 still apply if
the !¢, scale is replaced by | ¢,! so that ¢,=0 cor-
responds to ¢, =—¢p.

Let us next consider completely blocking two-electrode
situations (finite separation length [) chosen so that
L=1/L, is 220, resulting in negligible overlap of the
volume space charge distributions associated with each
electrode for a substantial range of applied potential
differences. For maximum generality we associate a
fixed reference potential ¥,, with the left electrode/
material interface and a fixed, possibly different refer-
ence potential ¢, (allowing for different electrode ma-
terials) with the right interface. The applied p.d. ¥,
is divided between the two space charge regions so that
¥, =¥, +¥,.5 and the effective potential across the left
region is Y, =¥y, +9,; and that across the right is §,,
=pr +¥,r. With the present choice of signs if ¥,>0,
then both 3,; and #,, will be positive.

In general, the effective potential does not divide
equally between the two regions even when $p; =¢pr .
Because of the L>>1 assumption introduced above,
we may apply the semi-infinite case results just dis-
cussed to each region provided that ., and ¥, are prop-
erly determined. They must be consistent with the con-
dition 0 ,(ez) + O mW@er) =0 m{pr) +om{@pr) Which follows
from overall charge neutrality and the assumed complete
blocking of charge transfer between the electrodes and
the crystal. On transforming to normalized variables,
one may write the equations which determine ¢,, and

[baR as
Qa7 Par +Par »
d)eL =¢DL +¢a.L ’

(beR: ¢DR + ¢aR ’

(38)

and
Qu(Der) +Qmlder) = @m®pr) — @m(dpr)
=8 (Der) +E n(Per) = E n(dpr) = S n(dpr) =0 . (39)

Equation (39) must be solved by iteration to obtain say
®az» given ¢,, ¢pz, and ¢pp.

Figure 2 shows some results for the typical Frenkel
disorder situation with ¢p; =¢dpr=4. We have plotted
Cox =[Covr +Cpvr] ™t vs | ¢, here since Cpy is sym-
metric in ¢, for this ¢p; =¢pr case. Shown dotted is
a curve for ¢py =¢ppr =0 and 8§ -0. At ¢,=0, the Cpy
values for the solid curve are, of course, just half of
the corresponding Cp, values for the semi-infinite case
at ¢,=0, The dashed 6§ =0 Cpy curve of Fig. 2 is of the
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FIG. 2. Cpy vs I¢,4l for a Frenkel defect situation with two
blocking electrodes and ¢ p; = ¢ pr=4.

same form as found earlier® when the parameter X of the
earlier work is taken zero, There, normalization was
with 0.5 C,, however, instead of the present C,.

To illustrate some of the complexity of C,y curves
possible when ¢p; # ¢pr, we have presented curves for
different 6’s with ¢5; =12, ¢pp =3 (dashed) and ¢, =2,
¢pr =6 (solid) in Fig. 3. Note that these curves are
symmetric around the value ¢,=¢pr — dpr, —9 and 3
in the present cases (see arrows). The separation be-
tween the minima of the curves is 2 max (¢pz, ¢pr)-

D. No electrode, surface charge present

This is the situation analyzed by Poeppel and Blakely®
(abbreviated hereafter as P-B) in the 6 - 0 limit. Here
we shall investigate the consequences of a finite value for
8 and consider the capacitance possibilities.

In the present no-electrode situation Gauss’ law leads
too,=eT,w=(cz /4M)E,=CoqV; V8 &,. We define the
temperature-dependent quantity H=C,Vy /el’;. Follow-
ing P-B we shall apply the results of this section to the
Frenkel-disorder material AgCl. Then N=2.336
x10% cm™ and H=1.607x 10" (5 kT)!/23/I',. In order to
take the dependence of €, on T into account, we use an
expression for €,(T) given by Corish and Jacobs,® 1t
yields about 12.5 at 200 K and 19,5 at 667 K.

In normalized terms, the above equation for ¢, be-
comes

w=HV8 §,=HVM,=H{In(1 +R,)]'/?, (40)

Macdonald, Franceschetti, and Lehnen: Interfacial space charges in ionic crystals

where R, is given by Eq. (26) with ¢ here replaced by

the ¢, of Eq. (15). Since ¢, depends on w, Eq. (40) is

an implicit equation for w which must be solved by itera-
tion. In the § -0 limit, it is equivalent to the correspond-
ing expression for o, given by P-B. We have found it
possible to solve this implicit equation accurately for any
0 by the Newton—Raphson method, although solution is
difficult in nearly saturated regions where lwl = 0.5.

A simpler approach will be discussed in the next section.

Since there are no electrodes, one cannot readily apply
an external potential to the present system and thus the
temperature dependence of various quantities will be of
primary interest here. We shall use the same expres-
sions for AS’1 (positive ion vacancy formation energy)
and AS, (positive ion interstitial formation energy) vs T
as have been used previously for AgCl,* >7 although one
should recognize that they are not very accurate as the
melting temperature is approached.? They are, how-
ever, quite adequate for illustrative purposes. Then
S.=(1.44/kT)-9.4and G_=(-0.5/kT)-6.0.

The w values obtained from the self-consistent solu-
tion of Eq. (40) are found to vary from about 0. 004 at
200 K to a maximum of about 0.4993 near 600 K and
then decrease slightly to about 0.496 at 10° K for I',
=102 cm™, Similar results are found for other T,
values. These lead to the curves of Fig. 4 for ¢,(T) and
various I'g choices, There is no limitation on surface
site density for the I' — curve; steric considerations
alone limit I'; to a value between 10 and 10'* cm™,
however, for AgCl. The dotted line in Fig. 4 indicates
the melting point of AgCl. For completeness sake we
have extended the temperature scale above the m.p.
This may not be wholly unreasonable for silver halides
since Raleigh?® found almost negligible change in the dif-
ferential capacitance of AgBr on melting,

The curves of Fig. 4 differ only slightly from the cor-
responding ones for —y, (= ¢, in P-B notation®) found by

30

1
1
]
I
]
|
05 | | i
-30 -20 -10 o] 10 20 30 40
fa
FIG. 3. Cpy vs ¢, for Frenkel defect situations with ¢ pr# ¢ pr
and differing values of §.
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P-B over most of the common temperature range, >’
justifying P~B’s 6 -0 approximations. At 200 K,
§~107', yielding a ¢, of only about 2,6x10° cm™3, It
increases to 5.6x 107* by 667 K and formally, to 0.0356
at 10°K. To obtain a precise comparison between ¢,
calculated with Eq. (40) for arbitrary 6 and that es-
sentially equivalent to the corresponding P-B ¢,, one
merely needs to carry out the § -0 limit for M,=1n(1
+R,) before solving (40). One obtains M, —~ R, A,
=46sinh®(¢, /2). By this means we avoid any dis-
crepancies arising from our using a temperature de-
pendent €, and their presumably taking it constant. For
T,=10%cm™2, we find ¢, values of 1.1682/1, 1677 and
0.09629/0.09496 for T =666.6 K and T =10° K, respec-
tively. Here the first ¢, value was obtained with the
arbitrary 6 form of Eq. (40) and the second with the
small-3 form. For I, =10 c¢m™?, the corresponding
results are 4.6909/4,6698 and 0.9285/0,9083, These
are still quite small differences because 0 is still ap-
preciably less than unity even at 10° K. For some other
material (such as Na-3-Al,0;) exhibiting higher & values
in the experimental temperature range it would be quite
necessary to use the arbitrary-96 results. Although the
¢, pairs above are quite close, the value of R, was by no
means always much smaller than unity. For example,
for ', =10 em™ and 666.6 K, the components of R, ,
see Eq. (26), are 4,=0.06 and B,=3,4x10"°, For the
same I'y and 10° K, 4,2 0.033 and B,= 1.1x 1073,

These results imply that although ¢, is relatively in-
sensitive to the small — § approximation, some other
derived quantities may not be.

In Fig. 5 we show how the surface concentration of
interstitials T', (Ag* for AgCl) varies with temperature

Ts= (#* of sites) /cm?

q -

2+

0 ' =

200 400 600 800 1000
T (K)

FIG. 4. The normalized surface potential ¢, vs temperature
for various I'y values; no electrode present. Results applicable
to AgCl.
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FIG. 5. Dependence of T, and (T'; ~ I';) on 10%/T for Iy=10"
sites/cm?,

for fixed I';, the total number of interstitial surface
sites available equal to 102 cm™2. It is assumed® that
there are T’y /2 negative kink sites at monomolecular
steps (C1” for AgCl) that remain fixed and temperature
independent, We see that the surface is virtually neu-
tral (o, =e[T, - (I'; /2)]=0) at low temperature, and that
T', approaches very close to I', near 600 K, then de-
creases slightly at higher temperatures.

Now analogous to the Cp, of Eq. (31) we may define a
kind of Cpy for the present situation as Cpy=dQ,/d¢,,
where Q,=0,/0,=0,/C,Vp=8,=~@Q, in the present @,
=0 case where &, is a function only of ¢,. The result-
ing equations for Cpy are formally the same as those
given in Egs. (32) through (37) except with ¢, replaced
everywhere by ¢,. But here ¢, is not independently
variable and for a given system it can only be varied by
a temperature change. Therefore it is not very practical
to measure the present C,=do, /d),. To do so we might
consider applying a small temperature change, resulting
in a small change in §, and a change in ¢,. Although the
P, change might be measured, at least as a change in
relative surface potential by the vibrating capacitor
technique, ' the experimental determination of the change
in g, and thus in E; would be very difficult if not im-
possible. Nevertheless, we have calculated C, as a
function of temperature for the present AgCl situation
to show its variation and for comparison with later re-
sults obtained for the blocking electrode situation where
o, and o, are both nonzero and dependent on ¢, .

Results are presented in Fig. 6 for various I', values.
Since C, itself varies with temperature, we have pre-

- sented Cj, rather than Cp, and also show the C, varia-

tion. The dashed line at the left shows its deviation from
linearity in this semilog vs 10%/7 plot. This deviation
arises both because of the change of dielectric constant
with temperature which we have included and also be-
cause the exact quadratic expression for §(T), Eq. (14)
must be used in the high temperature regime. Figure 6
shows that C, approaches the Cj, for I';~ at sufficiently
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FIG. 6. The synthetic capacitance Cp=do,/d¢s vs T and 10°/T
for various I’y values. Also shown is the C; temperature depen-
dence appropriate for AgCl.

low temperature for any I', and correspondingly ap-
proaches C, (more precisely, C,[1 - (36/4)!/2] at the
temperature where ¢, is less than unity and becoming
negligible. Between these extremes, there are quite
wide temperature ranges where C, remains nearly
temperature independent.

The differences between the C,’s calculated with the
general formula applicable for any 6 and those calculated
with the P-B approximation by assuming R, <« 1 so that
M, = R, begin to become significant as T becomes large
and as I'; increases. For example, corresponding C,
values in uF/cm? are 56.58/58.50 and 103.3/107.2 for
I,=10"cm"? and T =666.6 K and 10° K. The accurate
results appear first in each pair and the approximate
ones second. For I';—«, results for the same two tem-
peratures are 130.7/186.5 and 154.2/782.9. Although
the 7 =10° K comparisons are probably not very meaning-
ful for the specific AgCl case, they nevertheless show
how large the differences can become in cases where the
M, = R, approximation is unjustified,

Thus far we have taken some account of the finite size
of ions (and vacancies) by means of the lattice gas model.
We have, however, neglected one important consequence
of finite ion size with regard to the surface, in that we
have followed P-B in assuming zero separation between
the surface layer and the underlying material. Because
of finite ion size there is actually some separation be-
tween the electrical centers of the surface charge and
the first interior layer of the crystal and, as well, sepa-
ration between the effective plane of the surface charges
and the effective surface plane of the electrode when one
is present. It is clearly inconsistent to adopt a three-
dimensional lattice gas model for the interior of the
crystal, thus taking into account finite ion size both in
the planes parallel to the surface and in the direction
perpendicular to the surface, while adopting a two-dimen-
sional lattice gas model for the surface plane and ne-
glecting the finite size of the surface ions when dealing
with the perpendicular direction. Therefore, in the next

: Interfacial space charges in ionic crystals

section we present a consistent treatment which we
believe is more physically realistic than any of the pre-
vious approaches. We include the possibility of an elec-
trode and a surface charge-layer simultaneously present
and show how the preceding work in this paper can be
further generalized to a situation of great utility in elec-
trical response measurements.

Itl. FURTHER ANALYSIS AND RESULTS
A. System definition

Figure 7 is an idealized sketch of the interfacial re-
gion for a completely blocking metal electrode in contact
with the surface of a single crystal material such as
AgCl. The region between the phases is termed the inner
or compact layer and corresponds to the Helmholtz layer
in aqueous electrochemistry. A full description of the
relevant theory for the aqueous case is given in Refs,

24 and 25. Here ESP is the electrode surface plane

(the surface plane of the perfect conductor which best
approximates the actual electrode with its properly
averaged surface roughness and field penetration ef-
fects). The inner Helmholtz plane (IHP) is taken as

the plane of charge centroids of ions at kink sites, cor-
responding conceptually to the plane of charge centroids
of surface (adsorbed) charges in the aqueous electrolyte
case. For simplicitly, no distinction will be made here
between the positions of Ag® and CI1” ions on kink sites,
allowing a single IHP to be employed. This approxima-
tion will be eliminated in later work. Finally, the outer
Helmholtz plane (OHP) is taken to be the plane of charge
centers of the first layer of the crystal, here the plane
where vacancies and interstitials may be considered to
still reside in the crystal, rather than at surface kink
sites, We ignore (or average) the small differences be-
tween the position of this first plane for interstitials
and for vacancies.

In addition to the bulk dielectric constant, we have
also defined effective dielectric constants for the ESP-
IHP region (thickness g) and the IHP-OHP region
(thickness ). The theoretical basis for the selection
of effective dielectric constants has been extensively
examined for the case of aqueous electrolyte, 2426-2% and
there includes contributions from the orientation of water

ESP IHP OHP
T
ELECTRODE | | MATERIAL
|
€ € €
B ( Y B
i
Cs l Cy
Tm o %4
|
| |
[ I I
¥m ¥s Vd y—=>0
FIG. 7. Definitions of various quantities in the idealized

electrode-interphase area.
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molecules. Here one would expect the main contribution
to the effective inner layer dielectric constants to arise
from electronic polarization of the surface ions and thus
one would expect ¢, and ¢, to be probably no larger than
n®, the index of refraction squared, about 4 for AgCl.
We shall take ¢; =¢, =€, in the present work in view of
the appreciable uncertainties of these quantities. The
quantity € , is obviously best determined experimentally.
Armstrong ef al.?® have derived a value of 2.8 from ex-
periment for the interphase between Ag,RbI; and Pt, a
situation in which only the silver ion is mobile, as it is
here in the surface region of AgCl. They state also
that this value is in reasonable agreement with expecta-
tion. Here, for illustrative purposes, we shall use a
field and temperature independent value of 3, realizing
that the optimum value probably falls somewhere be-
tween 2 and 4. A more precise approach which we plan
to follow in subsequent work is to derive an occupation
and field dependent € , using a discrete-entity treat-
ment?%2%3% which accounts separately for the polariza-
bilities of both Ag* and Cl™ ion species at surface kink
sites.

There is also some uncertainty in what values to em-
ploy for 8 and y. For 3 we shall use the radius of a Ag*
ion (1.26 10\) plus 0.5 A to allow for field penetration in
the metal electrode.®*% The proper value for ¥ will de-
pend somewhat on the type of crystal surface plane
considered. Here, we shall take y as the sum of a Ag*
radius and a C1” radius (1. 81 A)asis appropriate for
an unrelaxed [100] surface. These considerations lead
to values of the inner layer integral capacitances C; and
C, of about 15 and 8.7 uF/cm?, We shall use these
values in the rest of this paper. Note that their series
combination Cg, is about 5.51 uF/cm?,

In treating a superionic conductor situation where no
separate surface charge layer (IHP) was assumed to be
present, Armstrong®® has considered the entire elec-
trical double layer region to be restricted to the space
between the electrode and the first complete layer of the
crystal lattice and thus associated with a low dielectric
constant. For a very high 6 situation (6~0.5) he has
taken the total differential capacitance of the system C,
as in fact a compact layer capacitance equivalent to the
present Cz, i.e., the capacitance of a parallel plate
capacitor with plate separation equal to that between
first-layer -charge centers and the electrode. He states
that this capacitance can never exceed =50 y F/cm?,

For a thickness of 1,26 A (no allowance for field penetra-
tion into the metal electrode) and an effective dielectric
constant of 3, however, the capacitance is only 21 4 F/
cm?, so the value of 50 may well be an overestimate.
Armstrong et al. actually derived a value for the inner
layer capacitance of 20 1 F/cm? from experimental mea-
surements using a Pt electrode.?® For those of the
following calculations where no surface charge is assumed
to be present or possible, we shall take the effective
separation between the electrode and the surface of the
crystal as leading to C; =15 uF/cm? and thus will take
Cy=>. Note that this situation is not the same as the
a,=0, zero surface charge, configuration associated
with equal and nonzero numbers of Ag* and Cl” ions at
surface kink sites; for such a situation both C4 and C,
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are still finite. They remain independent of I'; be-
cause of our assumption of constant €.

Armstrong®® considers the diffuse double layer space
charge region to be negligible in his high 6 situation be-
cause Ly is always less than the size of an atom in such
superionic conductors. We shall continue to employ a
continuum approximation for the diffuse layer in the
present work, however, since for most materials there
are many crystal planes within a Debye length over a
wide temperature range. For example L, ~100 A at
500 K for AgCl. It has dropped to about 10 A by the
melting point, however, and a discrete, multilayer
treatment of the diffuse region would then be more
appropriate than the present continuum one. We plan to
develop in later work a consistent discrete treatment of
both surface and diffuse space charge regions. Even in
the neighborhood of the melting point and above, how-
ever, our present combined discrete/continuum model
will not usually be a very poor approximation as far as
overall capacitance C, is concerned because the poten-
tial difference across the diffuse region will often be
only a small fraction of the total applied. This means
that the diffuse region capacitance, which we shall
designate Cp, hereafter, is usually much larger than C,,
and thus, even if it is a poor approximation, will then
not affect C, appreciably.

In the present work we are concerned only with condi-
tions at the blocking electrode and its neighborhood in the
material of interest and thus take the second electrode
to be ohmic, an infinite distance to the right, and take
the zero of potential at this point. There is no bulk or
geometric capacitance C, for such a system. For com-
pleteness, however, and for use in later work, we have
actually carried out the analysis of Appendix A for finite
length. At X =L, there is present an ohmic electrode,
one with an infinite recombination rate surface which
ensures that the charge density p=e(c, - ¢;) vanishes
there. Nevertheless, for L <«, there will be a charge
oy on this electrode. This charge will aproach zero
as L—-«. But for L<«, it is ¢, that ensures that C,
is nonzero as it must be, Of course, in actual practice
it is not possible to place the right-hand electrode at
X ==, Therefore it is of interest to inquire how large
L=1/L, should be to ensure that conditions at the block-
ing end of the system are virtually the same as they
would be with L ==, We shall explore this matter in
greater detail, along with the way C, appears in the
equilvalent circuit in subsequent work. Here it is suf-
ficient to remark that in a situation with nonzero sur-
face charge at the blocking electrode, for 7' =500 K and
r,=10" sites/cm?, ¥,,, ¥,, ¥,, o,, and o,, at the block-
ing end are the same to three or more decimal places for
L =3 as for L ==. Incidentally, we assume that there is
a rapid charge transfer reaction at the ohmic electrode
which may be taken as a parent-ion type and thus that
there is no potential drop between the end of the bulk
material and the ohmic electrode. Thus, any capacita-
tive effects which might possibly be present at this
electrode are shorted out by the very small (-~ 0) re-
action resistance there.

For simplicity, we have implicitly assumed that the
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binding of a Ag*ion at a surface kink site (next to a CI”
at a jog) increases I', by one unit. While it certainly
adds one unit of charge to g,, it is often considered to
add to the surface two positive units, each of charge ¢/2,
Consider a line of several alternating Ag*, C1” ions on
the surface, beginning with a C1” at one jog and ending
with an Ag* at a second jog, so that the entire line pro-
trudes from an otherwise uniform ledge. The line

is then neutral. The addition of an Ag* next to the end
Cl” leaves the sequence with an Ag® at each end. Since
only a single positive charge was added, one can con-
sider that the two equivalent end Ag® ions each have a
charge of ¢/2. On this picture we can interpret the
equal number of Ag® and Cl” ions on the surface at g,
=0 as T', occupied positive kink sites of charge e¢/2 and
T', occupied negative kink sites of charge —e/2. The
bookkeeping is independent of these interpretations.

For convenience, we shall continue to deal with quanti-
ties such as I'; which count elements by full rather than
half-charges. Then, as usual, there is a maximum of
I', positive Ag® ions possible at kink sites for given I, .
If one could close-pack Ag* ions on a smooth surface,
one would obtain the purely steric limit I";~7,3x 10
charges/cm?. Trautweiler® has discussed the possibili-
ty of a maximum number of 10" cm=2 Br~ ion sites on a
AgBr surface. We shall only consider a maximum value
of T', for the present calculations for AgCl of 10 cm™,
recognizing that a somewhat larger value may, in fact,
be possible on some crystal faces with specified de-
grees of roughness. Although we take I'; as indepen-
dent of temperature and applied potential difference as
have earlier writers in this field, there may be some
such dependence. In particular, the high fields present
in the inner region when I'; = T, may cause some re-
construction of the surface, making it rougher and actual-
ly increasing I' ;. We shall neglect any such possibility
herein.

B. Potential and charge relations

Since Cy=¢, /478 and C,=¢ , /47y, we may introduce
for convenience the normalized quantities
As=Chy=Cq/Cs=(e5/€4)(8/Lp)
and
N =Cy5=Cq/Cy=(e5/€a)y/Lp) .
For a Frenkel defect material let us define
Qm+ Q= — Q= Fldg) = 5gn(d,) [67 In{1 + Ry(¢0)} I'/#
(43)
where R, is defined in Egs. (26)-(28). The appearance
of sgn(¢,) in Eq. (43) ensures that the signs of charges
and associated potentials are consistent. We obtain the
same diffuse region result as before, with ¢, now re-
placed by ¢,, because Appendix A shows that even when
surface charge and an electrode are simultaneously pres-
ent, free energy minimization still leads to the same.
expression for the charge distributions as that discussed
in Sec. IIA (see Eq. 8). The function F(¢,) represents
the negative of the integrated space charge in the material

for the L = case, as shown in Appendix A. We shall
only consider this case hereafter in this paper.

(41)

(42)
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Now simple electrostatics leads to the following

(normalized) potential relations, well known in the

aqueous electrolyte area?4 2" 353,

¢s=¢d+7\1[Qm+Qs]=¢a+7‘1F(¢a) (44)
and

¢m=¢s+7\BQm . (45)
But Eq. (15) may be rewritten as

Qs =Qum tanh[fﬂzl‘h] : (46)

which may be considered a function only of ¢, when @,
and ¢,, are known (see Eq. 43). Therefore,

Qm=F(¢d) - Qs

is also only a function of ¢, and it follows from (45) that
¢, is also such a function. Thus, given a value of ¢,
one may first calculate ¢, then Q,, and finally ¢,,.

If the basic variable is taken as ¢,, no iteration is re-
quired to calculate all the other average potentials and
charges. Of course, if one requires that @,, Q,, ¢,,
or ¢, remain fixed, it will be necessary to solve an
implicit equation for the ¢, value consistent with the
value held fixed. We shall use both approaches in the
following work, The P-B case essentially corre-
sponds to Eq. (47) with @,=0. The implicit equation
thereby obtained is much simpler to solve accurately as
a function of ¢, than of w, as was done in Sec. IID [see
Eq. (40)].

(47)

C. Consideration of the adsorption isotherm and adsorption
capacitance

Equation (46) which is in the form of an adsorption
isotherm, is uitimately derived from free energy
minimization under the condition that there was a limited
number of surface sites per unit area I'; for positive
ions, each limited to single occupancy. Since these are
essentially the assumptions of the Langmuir adsorption
isotherm, it is worthwhile establishing a connection be-
tween the two approaches. We begin by considering three
particular forms of Langmuir adsorption.

The Langmuir adsorption isotherm involves a Fermi-
Dirac distribution function®® and may be written for
positive and negative surface charges as

Nt /Nt =[1+exp{aG*/rT}]?, (48)

where N., and N;,,, not necessarily equal, are the maxi-
mum surface concentrations allowable of positive and
negative charges. The AG*'s are the standard free
energies of adsorption referenced to the point at which
Nt/N: =0.5. Consider the special but representative
case where N', = N.,=N,, and AG*/kT=S*=x[¢, — G},
where ¢, is a normalized potential-dependent quantity

(a micropotential) and G, is independent of potential.

Let o,,=eN,, and Q,,=0,, /0, here. Then (47) leads to

Qs = Q{1 +exp(§ )}t = {1 +exp(S)}]

=Q,, tanh [ 59—1‘1&] (49)

2

Next, consider the usual aqueous electrolyte case
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where only charges of one sign (here positive) are
adsorbed. Therefore, take G very large and positive
and §*=¢, -G,. Then one readily finds that

Qs =Qqm[1+exp(§)],
and o, is here taken as eN;, , a positive quantity.

(50)

Finally, consider the case where N, =N =N, =T,
om=el,/2, AG-=0, and AG"#0. Then one finds

Qs =(eT'y /0,) [{1 +exp(§*)}* - 2]=Q,,, tanh(- §*/2) .
(51)
But these assumptions correspond to our present Ag’,
CI” kink site situation.
them to be of the same form and comparison of (46) and
(51) leads to the identification

Sz, ~ oy - (52)

Thus our earlier results are fully consistent with the
Langmuir adsorption isotherm as they should be. Al-
though the present G* depends only on average poten-
tials (such as ¢, ¢4, or ¢,,) the above derivation makes
it clear that corrections for discreteness of charge ef-

fects which will slow down the approach to surface charge

saturation because of repulsion between like charges,
will lead to the replacement of ¢ in (51) and (52) by
micropotential terms, 2373 Such discreteness cor-
rections will be nearly symmetrical in @, because to
first order it will be as difficult to add the last charge
per unit area to a set of (I', /2 — 1) unbalanced positive
charges as it will be to remove the last positive charge
per unit area from a set of T', /2 negative charges. In
future work we plan to show how discreteness effects
will change our present results,

Now the normalized adsorption capacitance is defined
as

CAN == dQs /dd)s . (53)

For the situations of both Egs. (49) and (51), it is found
to be of the form

CAN =(Qsm /2)sech2 [2&;_¢8_0_] = (Qsm/z)[l - (Qs /Qsm)z] ’

(54)
although the @,,’s differ by a factor of two in the two
cases. In the present AgCl situation Q,, is eT", /20,
=el', /2C4 V7 =(2 VOH)!. Note that C,y reaches its
maximum value @, /2 at the point where Q,=0, If for
the case of Eq. (50) we again take §"=¢, ~ Sy~ ¢, - b,
we find

LERU -
Cav =Qsm [Hie°—~9-:w?] = (Qsm /4) sech® [9}_2@3_0_]

(55)
But this Q,,,/4 =eT', /40,, the same as the Q,, /2 of
Eq. (53). Thus we see that although the isotherms dif-
fer, the capacitances which follow from them are of
exactly the same form, The first form of Eq. (55) is
well known in aqueous electrochemistry®® and the sec-
ond form has appeared before in ionic adsorption and in
electronic surface state calculations.* An approach for
electronic surface states equivalent to that of Eqs. (48)
and (49) has been given by Davison and Levine.

Comparison of (49) and (51) shows
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| | 11
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FIG. 8. Equivalent circuit for the total measurable differential
capacitance Cj, showing contributions from various sources.

D. The total differential capacitance Cp

Appendix B presents a derivation of the overall nor-
malized differential capacitance Cpy of the system de-
scribed in Fig, 7. The final result, Eq. (B8), appears
reasonably complex but it leads to a particularly simple
equivalent circuit Fig. 8 which we believe has not been
obtained previously. We have indicated that two of the
elements of this circuit depend explicitly on potential.
Note that the maximum directly measurable value of Cj,
for this circuit is Cz, here taken as 15 wF/cm?, Simi-
larly, even if Cpy becomes very large, the maximum
value for the branch in which it appears is C,, here
8.7 uF/cm®. When C,<« C,, the overall maximum
capacitance is just Cp=Cy, = (C5' +C;1)™ .

It is particularly noteworthy and important that the
exact analysis of Appendix B shows that the adsorption
capacitance is in parallel with the series combination
of C, and Cp,, nof in series with Cp,. The capacitance
C, depends on ¢, (referenced to zero potential at the
electrode at ) not on (¢, - ¢,), the usual assumption, 8%
Thus, even a very small value of Cp, need not keep C,
from contributing its maximum effect. Further, the
reaction plane is usually taken to be the IHP. If an elec-
tron can tunnel from the electrode to a Ag* ion at the
IHP, an electron transfer reaction occurs. This pro-
cess leads to a reaction resistance'®* in parallel with
Cy, essentially shorting it out for dc response. We can
take such a reaction into account for present purposes
by choosing C,=«. Then Cp will be dominated by C,
when it is much larger than C,, and very large values
(5100 pF/cm?) of Cp, become possible, as is indeed ob-
served for both aqueous and solid electrolyte situations.
This situation will be considered in detail in future work
which will include discreteness effects in adsorption,

The present C, may be identified with the “adsorp-
tion pseudocapacitance” of aqueous electrolyte theory.
It has been stated, however, that there can be no such
capacitance for an ideally polarized (completely block-
ing) electrode, and that it only exists when a hetero-
geneous reaction occurs.* The above considerations
suggest, however, that in the system considered here
and others as well, a capacitance of the same form is
indeed present under complete blocking conditions but
is only fully expressed in C, when an electrode reaction
occurs and C, is essentially shorted. When T, is large,
(C4)max =€°T', /4kT may be very substantial. Note that
had C, appeared in series with Cp,, as it does in earlier
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treatments, the maximum value of Cp would be limited

to the maximum of Cp, (a concentration dependent quanti-

ty) even when C, was far larger.

The present equivalent circuit Fig. 8 involves a Cp,
which is more accurate than the conventional Gouy dif-
fuse double layer capacitance because of our inclusion of
ion size effects in the diffuse layer., Cp, therefore
reaches a maximum at some ¥, for any particular 8
value, unlike the conventional Cp, which can increase
without limit. Nevertheless, even the present cal-
culation of Cp, needs improvement, improvement which
we plan to provide in future work. It should be empha-
sized that the equivalent circuit of Fig. 8 includes po-
tential dependent elements, The potential-charge re-
lations of Eqs. (44)~(47) must be solved consistently
as discussed to yield, given $,, C,(d,) and Cpo(da).
Then Cp(y,) may be calculated from the equivalent cir-
cuit or equivalently from Eq. (B8).

It should be mentioned that Armstrong®® has con-
sidered a blocking-electrode, solid-electrolyte situa-
tion in which some cations may occupy “abnormal” posi-
tions, nearer the electrode than the first normal layer
of cations and anions. In many respects our treatment
of kink sites is analogous to his treatment of these posi-
tions. He assumes that there may be partial charge
transfer between ions in abnormal positions and the elec-
trode and finds the possibility of a large C, which in-
cludes a large C, contribution. We believe that even
with partial charge transfer (partially covalent bond-
ing), so long as the electrode does not permit a steady-
state direct current, a proper consideration of Cg; and
C, would limit C, to a maximum value of C; as already
discussed. Only in the presence of an electrode reac-
tion, also considered by Armstrong, would C, be able
to make its full contribution to C,. For this situation
Armstrong essentially takes C, infinite or replaces it by
C, and does not consider C;. Thus, for Cg=», his re-
sult is consistent with ours (although he considers no
explicit expression for C,) provided Cp; is also taken
as «, Some experimental situations may involve an
appreciably greater degree of roughness of the elec-
trode or crystal surface than assumed in Armstrong’s
or our work, A plausible equivalent circuit for such

20
Qg =0 8_=_IO'5
_ 2 N 3
o |- Cg=15uF cm2 = ~o
T Cy=wpuf/em O~
< | Cqz | uFrem? i ~
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2 | ————¢n <O ~
o — 0'3\\
(%) L // \\\ \\
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FIG. 9. Cpvs |¢,|, the normalized electrode potential for a
single blocking electrode situation without separate surface
charge possible for various values of 6.
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FIG. 10. The normalized potential ¢/¢¢ vs normalized dis-
tance X in the diffuse space charge region of the material for
5=10",

systems might involve the parallel combination of
several sections, each of the form of Fig. 8.

E. Special situations
1. Blocking electrode present, no surface charge

This situation is the same as that considered in Sec.
IIB except that C, is here not infinite. The condition of
no surface charge present (or assumed possible here)
is achieved by taking C, ==, I'; =0, and requiring that
Q. =0 for any ¢, value applied. Then ¢,#¥,=¢,. No
implicit equation need be solved here if ¢, is taken as
the independent variable. In the present situation the
presence of a finite C, value makes it somewhat inap-
propriate to plot a general Cpy VS ¢,=¢,,. However,
we have taken the explicit value C; =1 uF/cm? in cal-
culating the results of Fig. 9 so that here Cp,=Cpy .
Figure 9 may be compared with Fig. 1, but note that
we use a logarithmic !¢, scale here instead of the
linear scale used there. Comparison shows that the
present curves exhibit smaller peaks than those with
Cy=C, = and are, of course, limited so that C;2Cs=15
1F/cm?, These effects arise both because C, is in
series with Cpo here (see Fig, 8 with C,=0 and C, =x)
and because C; reduces 1¢,! so that |¢,] is always less
than |¢, |, making Cpo{¢,) smaller than it would be if

¢, equaled ¢ .

2. Diffuse layer behavior

Consider now the diffuse space charge region in the
material and recall that ¢, is the value of the normalized
potential ¢ at the surface X =0 and that ¢ -0 as X~
Figure 10 shows some Frenkel defect results for &/ bq
vs X for various values of ¢,. The main curves il-
lustrate the behavior for X2 1.2, i.e., within 1.2 Debye
lengths of the surface while the inset carries the re-
sponse out to three Debye lengths. The rather odd be-
havior arises from the lattice gas limitations on mobile
charge carrier concentrations. Note especially the pro-
gressive separation of the positive and negative curves
for given ¢, as | ¢,| increases. Although these nor-
malized curves show crossovers, none occurs when
$(X) rather than ¢(X)/¢, is plotted,

The spatial dependence of the normalized charge densi-
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FIG. 11. The normalized charge density p*/p} vs X in the
diffuse space charge region for 6 =103,

ty, p*(X)=2C, ~C, is shown in Fig, 11, where for easy
comparison we have actually plotted p* /p¥ . Here p¥
is the value of p* at X =0 for given ¢, (see values in in-
set of Fig. 11). For | ¢, somewhat larger than 10p}
reaches its maximum value, p¥..., that where ¢, =2N
or ¢, =N, depending on the sign of ¢,. Figure 11 shows
how the constant-p* region grows as |¢,| increases.
The growth is quite slow and requires relatively large
applied potentials. For example, at T =500 K, ¢, =250
corresponds to §,=10.77 V. If L, were 100 f\, the
electric field in the region between the electrode and
X ~1 would be of the order of 10" V/cm, possibly suf-
ficient to cause breakdown. It should be remembered,
as discussed in Sec, IIIA, that the present results for
the diffuse layer only apply for many lattice planes con-
tained in each Debye length and even then would be more
accurately described by a modified lattice gas model,
one which takes Coulombic interactions in the lattice
planes parallel to the electrode into account. In the
more accurate model it would be more difficult for p* (X)
to reach the p§ ., values shown here. It is likely that
for reasonable values of §;, |p*| will always be less than
| 0§ max! - Finally, it should be pointed out that for any
complete blocking situation with the series capacitance
Cg<=, ly,| will be appreciably less than |9,|. For ex-
ample, with Cz=15 uF/cm?, C, ==, T =500 K and Q,=0
a P, value of 2 V requires ,=10.1V, and y,=10 V
leads to y,=30.3 V.,

3

3. Qp, =0, surface charge present

This situation corresponds, except for C, <=, to the
P-B no-electrode condition discussed in Sec. IID,
When @, is held at zero, ¢, =¢, and the value of C, is
immaterial. Because we have dealt with average charges
and ignored discreteness of charge effects, no self-
imaging energy of an adsorbed charge in the conducting
electrode has been included in the adsorption isotherm.
Such inclusion would actually add a term nearly indepen-
dent (to first order) of @, and T to ¢4, a term of such
sign that it always aided adsorption and led to more
adsorption than would be present in its absence. This
happens, of course, because the force between a charge

moving to an adsorbed position and its image is always
attractive. Because of the neglect of such imaging in-
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teractions, the moving of an uncharged conductor (the
electrode) from — « to its final position next to adsorbed
surface charges causes no change in the energy of the
system, and thus an uncharged electrode is, in this ap-
proximation, equivalent to none at all. We may there-
fore, compare present @, =0 results with the earlier
P-B ones to investigate the effect of removing the P-B
idealization of implicitly taking C, ==, That the above
neglect of imaging terms in adsorption is an approxi-
mation follows immediately from a well-known theorem
of electrostatics, namely that the introduction of an un-
charged conductor into the field of a fixed set of charges

lowers the total energy of the field, We shall remove
this approximation in later work.

The imposition of the @, =0 condition generally re-
quires that Eq. (47) be solved by iteration to obtain a
congistent ¢,. For @, =0 one obtains,

F(¢4) =~ Q,,, tanh [¢a - ¢aoz+w<¢>.,>]

’ (56)

with @, =F(¢,). For I',~= and therefore @,, ~ =, the
tanh term must approach zero; thus in the case of very
large Q,,, the tanh may be expanded and approximated by
the first term in its series expansion. Then one ob-
tains, on solving for F(¢,),

F(60)= (Qom /2>[1—+(Ex‘f<?71%] ’

a result which reduces, when @, —~«, to

Qs =F(¢d) =CYN [‘bso - ¢d ] s (58)
an implicit equation for ¢, . This result yields, using

Eq. (44), ¢,=¢4+X Cypldso— §a)=ds0. Note that in this
limit Eq. (58) shows that g, =C,{§, - §,) where (¥, - ¥,)
is just the p.d. across C,.

(67

Results are not the same for @, -~ in the Kliewer-
Koehler, P-B situation where A, =0. Then solution
of Eq. (56) or (57) leads to ¢, =¢,,, yielding

Qs =F(ds0) (59)

Since ¢, =¢, =, here, one sees that ¢, =¢,, indepen-
dent of A, even though @, does depend on A,. As an il-
lustration of the differences, take T =500 K, I';~«, and
C,=8.7 puF/cm®. Then C,,= 6,237 and iterative solu-
tion of Eq. (58) yields @,=17.20. For the X, =0 case,

Eq. (59) leads to @,=67.88. In both cases ¢,=¢4
=8.456 and thus §, =9,,=0.364 V.

Figure 12 compares P-B results for y ,(T) (corre-
sponding to the ¢(7') curves of Fig. 4) with those ob-
tained when 2,> 0 and thus C,<». The top dotted curve
shows the [’y ==, ¥ =y, results discussed above, in-
dependent of C,. The other curves show, however, that
for T'; =10 cm™ the value of C, has a large effect on
$4(T). In particular, the C,=8.7 uF/cm? curve, which
should be close to the most appropriate value, is very
different from the P-B C, =~ curve and lies much nearer
the I'; = curve. It thus appears that interpretation of
¥¢(T) data (perhaps obtained by the vibrating capacitor
technique'®) implicitly or explicitly assuming C, =»

would lead to quite inaccurate values of S_(T). As Fig.
13 demonstrates, however, the situation is much less
serious for small I'; such as 10'’cm™. Danyluk and

10, 15 November 1980
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FIG. 14. The dependences of ¥, and ¢; on electrode potential

Uy, for Iy=10'* sites/cm? and surface charge and blocking elec-
trode both present.

Blakely*® indeed found strong differences between their
vibrating capacitor results for different AgCl surface
orientations (perhaps reflecting in part different I'
values) but did not quote any T', or o, values. There-
fore, it is not possible to estimate how much their
derived AG, resuits may be in error because of their
C, == assumption,

F. Some potential and charge results

From now on, we shall consider an interface involving
an electrode and possible surface charge. Figure 14
shows , and ¢, vs ¥, for typical values of T';, T, Cs,
and C,. Because of the strongly nonlinear dependence
of Cpo(,) on ¥, , this quantity grows much less rapidly
with ¥, than does y,. The interesting behavior in the
small 1¥,| region is shown expanded in the inset. Be-
cause ¢4,*0, ¥,#0 when $,=0 and , must be negative
to force , to zero. Values of §, for which various
charges are zero are indicated on this y; curve. In-
cidentally, for 13,15$0.4 V, one has R,> 0.1, so that
expansion of 1In(1 + R,) in (42) begins to become a poor
approximation. Some further numerical results are
presented in Table I. Line 1 corresponds to the flat-
band condition, that where there is no diffuse layer
space charge, Because of adsorption, this by no means
corresponds to the point of zero charge (pzc), that where
¢,=0. The ¢ values in the table may be converted to
normalized @ values by the relation @ =0/0,, where o,
is here 0.0601 1 C/cm?. Since ¢, =0 for line 1, the re-
sults given there are all independent of »,. The §_,
value is given by ¢, =~ (el', /2Cg)tanh(¢p o /2). This

TABLE I. Values of ¥, which lead to significant values of
other quantities for I';=10" sites/cm?’ and T=500 K. Also
Cg=15 pF/cm?;, C,=8.7 pF/em?; o, =8.0109 uC/cm? and
Yo =0.3643 V.,

P s ¥y Om Og (O + O5)
(v (v V) (uC/em?®  (uC/em?)  (uC/em?)
1 —0.53¢ 0 0 —8.008 8.008 0
2 0 0.298 0.215 —4.468 5.190  0.722
3 0.354 0.354 0.241 O 0.981  0.981
4 0.433 0.364 0.246  1.034 0 1.034
5 0.513 0,375 0.250 2.069 —0,981  1.088
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FIG. 15, Adsorption isotherm @, (Q,,) for T=300K and T,
=10% sites/em?.

quantity, rather than y, itself, plays somewhat the
same role here as the ¥, constant potential shift in-
troduced in Sec. IIC, but this y_ is not necessarily con-
stant. In the present instance the tanh term is very
close to unity, so 9, is essentially dependent only on

T, and C5. For I',=10" cm™, possibly not realizable,
$,, would achieve the large value of =5.3 V.

Line 2 shows the resulis for zero p.d. between the
working electrode and that at x ==. To achieve this con-
dition one will generally have to compensate for any con-
tact p.d. between the blocking and ohmic electrodes with
an external series voltage source of the correct mag-
nitude. It will usually be convenient to take the effective
applied p.d., ¥,, with reference to this balancing source
so that ¢, =,

Line 3 shows conditions for ¢, =0, already discussed
to some extent in Sec. IIIE3 where we took @, =0. This
is the pzc in aqueous electrolyte terminology. Here
On=0, =dyg+A, F(¢,) where ¢, is the consistent solution
of Eq. (56). Next, line 4 gives the ¢, =0 results; here
Zf)s =d)30 and ¢’m =¢50+7\BF(¢d) and ¢d =¢30 - A‘YF(d)d) =¢30
-%Q,. Thus §,=¢,~C;'0,. Finally, line 5 shows
results for a o, equal and opposite to that of line 3.

Figure 15 shows a typical adsorption isotherm Q,(Q,,).
One of the most striking results is that the curve does
not pass through the origin (see also lines 3 and 4 of
Table I). Thus there is surface charge present even at
the pzc. In the aqueous electrolyte area this behavior
is known as specific or superequivalent adsorption,
There is a limited region exhibiting adsorption of positive
charge even when the electrode is itself positive, It is
usual to ascribe specific adsorption to image forces and
to the difference in chemical bonding and dispersion
forces between the bulk of the material and the inter-
facial layer.* Here the former are neglected while the
latter are accounted for in an approximate and formal
way in the thermodynamic conditions which lead to a
nonzero ¢,, [see Eq. (16)]. Had we included a more
accurate description of some or all of the forces men-
tioned above, itwould have added a nearly tempera-
ture -independent positive constant to the present tem-
perature-dependent value of . Then ., would be
larger than 0.364 V and the region over which @, and
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Q,, would have the same sign would be larger.

Another remarkable feature of the curve of Fig. 15 is
the presence of a large region where Q,(@,,) is linear,
This region extends very nearly to the point where @,
reaches its positive saturated value of Q,,. The region
encompassing the transition to positive saturation is
shown greatly expanded in the inset. In the present
treatment, which includes no Coulombic repulsion terms
in the surface adsorption layer at the IHP, slowing the
approach to either positive or negative saturation, it is
evidently considerably easiér to reach positive than
negative saturation. The inclusion of discreteness-of-
charge repulsion terms may be expected to cause the
approaches to positive and negative saturation to be-
come more symmetrical.

G. Total differential capacitance results

In the present model, both the capacitances Cp, and
C, of Fig. 8 are temperature as well as potential de-
pendent. Now as Eq. (54) shows, C, is 2 maximum at
the @, =0 point. Therefore, in Fig. 16 we have plotted
Cpvs 10*/T at this point. The curves for various values
of I', should therefore indicate nearly the maximum of
Cp as well. As we have seen earlier, however, a tem-
perature-dependent ¥, is required in order to satisfy
the @, =0 condition. The actual values of ¥, =¥,
and ¥, are plotted in the bottom region of the graph.
Because @, =0, they are independent of I",, although

20

M}P Iy == sites/cm .
1
— 10"
T e
N’E‘ i
S —Cp (/.A,F/sz)
£y ————y (volts
S
3 —
2
Qs=0 10
Cp= 15 uF/cm
C,=87uF/cm
| —
™G
NN
e
N R SR
] S~ — S
> ¥ = Pag——=
0.3} -
/// \pd
0.2} /7
l/ | 1 i 1 1 I
! 2 5

3 3 |
1O7T (K™)
FIG. 16. Cpvs 103/T at the @, =90 point with surface charge

possible for various I'y values. Corresponding temperature
dependences of ¥,, ¥, and ¥, also shown,
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\
\Cq
- \ Ts= © sites/cm?
\
o—%"" 104
- \
3 4x10'3
~ f
£
S I = \[/m=0
E Cg=15 pF/cm?
S C, = 87 uF/cm?
0.3+
0.1 o
003}
0.0l 1 1
| 2 3 4 5
0¥ T (K™")

FIG. 17. Cpvs 10%/T for 4, =0 and various Iy values.

of course, C, is not. These results show that depend-
ing on T',, it is possible for Cj to either increase or
decrease with temperature.

Although the curves of Fig. 16 are useful in giving an
indication of how the maximum Cj, depends on tempera-
ture, they do not correspond to measurements at con-
stant ¢,. To illustrate some of the behavior possible
with constant i, , Fig. 17 shows results for ¥, fixed at
zero. We see that for I, 210! em2, C,~C, until the
high temperature region is reached where Cp approaches
Cg, . Clearly, C, makes little contribution for these
values of T, at , =0. On the other hand, for I' .54

T = 500K

Cg= 15 pFrem?

12" ¢, =87 pFrem?
Cg¥1.395 uF/em?

L Camax® 92.96 (I3 /10'%)

T, =10'% sites/cm?

-]

2]

Co (pF/em?)

FIG. 18. Cpvs ¥, for a typical AgCl situation, 7=500 K, and
various I'y values.
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14
T = 300K T = 10" sites/cm?
Cg= 15 uF/cm?
121 Cy= 8.7 uF/cm
Cy¥6.34x1073 uF/cm?
10 - Camaox® 154.9 (T5/10'%)
puF/em?
&
Es
I
2
o
6
© S
4
2
[¢] . 1 1
-4 -3 -2 -1 [5) [ 3 4 5
Ym (V)
FIG. 19. Cpvs ¥, for T=300 K and various I’y values.

x 1013 em2, C, begins to play an appreciable role and
entirely changes the character of the temperature de-
pendence. Note that in both Figs. 16 and 17, the I',
== c¢cm™ curve is just that for C, =C; at all tempera-
tures. Here C, is so large that C; entirely dominates
the equivalent circuit.

We turn now to the potential dependence of C, at con-
stant temperature. Figures 18 and 19 show results for
two different temperatures and various I', values. Since
(Canmax =@sm /2, Camax=eT,/4Vy, and is hence inversely
proportional to 7. The values of C,,,, are indicated on
Figs. 18 and 19 and reach large values for I',5 10* cm™,
But unless the electrode is not completely blocking and
an electrode reaction occurs, these large values of C,
which may exceed 100 pF/cmz, appear in series with
Cg and as usual, Cp cannot exceed Cy =15 pF/cm?,
Clearly, however, the larger I’y and C 4,,,, the broader
the adsorption peak. For I'; values of 10! cm™ or less,
adsorption makes very little contribution to the overall
capacitance of the system. The maxima of these Cj
curves occur very nearly at the @, =0 point, where C,
is itself a maximum. Therefore, the y, value at the

Vo = O
j2|= T = 500K T, = 10" sites/cm?
Cg:= I5,u.F/cm2
Cy = 87 uF/em?
10~ C4% 1.395 uF/em?
£ 8
<
W
2
a6
© [
4
2
10
o I ! | ! | 1 1
4 -3 2 -1 0 ! 2 3 4
Ym (V)
FIG. 20. Cpvs ¥, for T=500 K, ¥,,=0, and various I’y values.
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14
.8=05 T = 10" sites/cm?
2 T = 500K
B Cg= I5;4.F/cm2 4 x 10"
Cy = B7 uF/cm?
& 10 Ca ¥ 336.4 pF/cm?
10
Al
o
o
6 -
4+
1 | 1 | | | | |
-4 -3 -2 -1 0 | 2 3 4 5
¥m (V)
FIG. 21. Cpvs ¥, for T=500 K; like Fig. 18 except that
6=0.5

maxima is approximately § =9, + (0, /Cg), 0.433 V for
T =500 K.

The minima of the curves of Figs. 18 and 19 occur at
the flat-band condition, that where §,=0 (see line 1 of
Table I). The nearly symmetric rising curves on either
side of the minima are the usual Gouy diffuse double
layer C,, capacitance rises, modified here by the dis-
placement from ¥, =0 and the present lattice gas treat-
ment of the diffuse layer. Some of the main differences
between the results of Figs, 18 and 19 arise from the
difference in Cpgopyy = C, values for the two temperatures
considered. It is clearly the displacement of the minima
and maxima of these curves from the ¥, =0 point (be-
cause . #0) which keeps C, from dominating Cp, near
its minimum and allows the Gouy regions to appear even
for large I' values here.

It is therefore of interest to examine what happens
when 3, is actually taken zero. The same situation as
that taken for Fig. 18 is assumed but ¢, is arbitrarily
set to zero. Results appear in Fig. 20. They indicate
how the adsorption capacitance keeps the minimum of
Cpo from appearing until T', is less than 102 cm™,
These curves are very nearly but not quite symmetrical
around y, =0.

Finally, what changes occur when 6 is much larger,
as in a superionic conductor? To get some feel for
behavior with large 5, we have taken our T =500 K re-
sults for AgCl and arbitrarily changed é from its orig-
inal value of about 8.6x 107 to 0.5. All other §-depen-
dent quantities are changed correspondingly. Then
Cpo is large over the entire p.d. range of interest, and
C;}, may be neglected compared to C;!. Some results
are shown in Fig. 21. As expected, they show that C,
= Cg, except where C, is important. Further, there is
a slight shift of the value of §,, at the maxima to larger
voltages than those appearing in Fig. 18.°

GLOSSARY OF MAJOR SYMBOLS
A. Major subscripts
a Applied, as in applied p.d.

e Effective, as in effective p.d.

5289

1, 2, The value 1 designates a negative charge
carrier or a Schottky defect, while 2 designates
a positive charge carrier or a Frenkel defect
situation.

d (diffuse), A (adsorption), D (differential),
DO (diffuse layer alone).

d (diffuse), m (metal electrode), s (surface).
Bulk.

Left electrode (when two blocking electrodes are
present).

Normalized Capacitance: C,=C/C,.

Right electrode (when two blocking electrodes are
present),

B. Major symbols

a;

Cio

0

N,

Activity associated with c,.

Charge carrier concentration.

Value of ¢; in the undisturbed bulk.
Common value of ¢y and ¢y when z; =2, .
Protonic charge.

Boltzmann constant.

Length of single crystal material.

(B+v).

1 for Schottky defects; s; =1, s, =2 for Frenkel
defects.

Distance in crystal measured from beginning of
diffuse region at the blocking electrode.

Valence number of charge carriers.
Geometric capacitance.

c;/N;.

Various capacitances per unit area.
Capacitance between ESP and IHP.

Capacitance between THP and OHP.

Diffusion coefficient of ith type of charge carrier.
Electric field.

Normalized field: eL, E/kT.

-Q,; see Eq. (43).

AG,/kT.

G1+G,.

S1-5,.

Free energies of formation of charged species.
CoVy/eT,=CyVy /5.

Conduction current density for ith species of
charge.

I/L,.
s;N.
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N Common concentration of anion and cation sites.
Qs g, /c,; normalized charges.

Qsm  Osm/0,; maximum normalized surface charge
density .

R, Schottky or Frenkel parameter; Egs. (23),
(257)-(28).

T Absolute temperature.
T,; Thermodynamic factor; (c,/a;)(da;/8¢,).

Ve Thermal voltage; &7/e .

X x/Lp.

8 Distance between ESP and IHP; see Fig. 7.

v Distance between IHP and OHP, see Fig, 7.

€4 Dielectric constant in region between ESP and
OHP.

€p Dielectric constant in bulk of material in the low

frequency limit.
g Cen=Cq/Cs.
A, cl=c,/c,.

5 Fractional defect concentration in the bulk; c,/N.

[T Mobility of ith charge species.

p Volume concentration; e(c, - ¢4).

o* Normalized volume concentration; (s, C, - s; Cy).

Oy Various charges per unit area.

o, Normalizing surface charge density; 2ecyLp
=C,Vr.

Ogm Maximum net surface charge density; el’, /2.

¢ B/ Vp.

P Local potential referred to zero potential at the
ohmic electrode (x - <),

Pso Value of surface potential ), when o, =0. See

Eq. (16).
be Applied p.d.
P, Effective p.d.
(o, /el,) =0, /20,

Number per unit area of available surface sites
for positive ions.

T, Number per unit area of surface sites filled with
one positive ion per site.

APPENDIX A: FREE ENERGY MINIMIZATION

Kliewer and Koehler® and Poeppel and Blakeley® have
minimized the free energy of a Frenkel defect single
crystal in the absence of electrodes, without and with
a limitation on surface charge density, respectively.
Here we generalize to a finite length single crystal with
one blocking and one ohmic electrode. The crysial is
treated as a continuum, with the exception of the crystal

surface plane near the electrode, for which we assume
that there are only I', possible sites for positive surface
(adsorbed) charges as in the main text,

As in Fig. 7 let us take the beginning of the continuum
(OHP) to be at x =0 and the ohmic electrode at x =1,
corresponding to X=]/L,=L. Then the IHP is at
x ==7 and the metal electrode at x =- (B+7)=~1;.

On extending the P~B formalism® to the present situa-
tion, one finds that the Gibbs free energy (for unit area
and constant pressure and temperature) is given by

G=W(l)+ f l [c1(x) AG; +cp(x) AG, = TS, 5ldx
o

- TScs +Gel - Wb . (Al)

Here W{l) is the binding energy of the crystal of length
1 without defects; AG, is, as usual, the free energy of
defect formation; and W,=0,%,, is the work performed
by an external battery in charging the electrodes. The
potential of the blocking electrode ¥, is taken with re~
spect to ¥ =0 at x =/ and includes any contact p.d.’s
present.,

Now S, =S.z(c;, N) is the standard*® configurational
entropy of the bulk defects per unit volume. It may be
written as

- (£ (NV)!
Sen <Vo> m{[(N— C1)V3]! YA
: (s NV !
[(sa N = cp) Vol e, Vol } ’ (A2)

where V; is the unit of volume and s, is the structure
factor, equal to two for typical Frenkel disorder.
Similarly, the configurational entropy per unit area
associated with the surface site occupation takes the
form

_ i (rs AO) '
Ss(®a 7 =(5) “‘{ [T, - T3) A [To Al

(A3)
where A, is the unit of surface area. Finally, G,
=G,(0,, ¥, p) is the electrostatic free energy, 4
by

given

14
Ge! =”12‘[0'ml/)m+0’31,bs+ J-O p(x)zp(x)dx] . (A4)

Here the volume charge density is given by
plx) =e[cylx) - c1()] (A5)
and, as usual, o =e [, - (T';/2)].

From simple electrostatics, one finds that the potential
within the compact double layer may be written

Zl)m xs -ll
V)= ) Y= (42"') (1 +%) —L=x= -y
d)m—C—Z){(omll+osy)+(om+os)x} . —y=x=0
(A8)

On the inverval 0= x <[, ¥ satisfies the Poisson equation
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%pg =—<:—ﬂ) plx), (A7)
B
with the following boundary conditions:
4
00 == (22 lonti v,
w'(0)=—(51) On+0s) , (A8)
€p

ll’(l) =0 ’

() =(:—}) o

Here the prime denotes differentiation with respect to
x.

The equilibrium values of ¢,(x) and o, at fixed pres-
sure and temperature can be determined by requiring
that G be a minimum with respect to independent varia-
tions. Using the variation operator & (assumed to com-
mute with differentiation?®) and Sterling’s approximation,
one finds that (Al) leads to

- (e ¢ x)
oG = fo {[AG1+kT In %N_—ITJC)}:I dcy(x)

+ [.’.\G2 +kTIn { Z—NC-%}] Gcz(x)}dx
T+ 2o, /e)]
+ (VT 1n{m}) 80, +0G,,—5W,, (A9)

where we have set s, =2. Now from Eq. (A4) one obtains

8G,y = % [(d)m = im0 B) 3G, + <‘pm - 41058 ) b0,
€4 €4

1
s fo {o() 6p(x)+p(x)6w(x)}dx] : (A10)
Next from Eq. (A7) and the identity
G2 V201 =1 V205 +V [,V 0y - 61V 0,] (A11)
one readily finds that
H 4
[Totrssmar= [ v 0ot ax
0 0
€ ayp ay)’
(&) (@ -0 (Z)), - o

The boundary conditions (A8) allow the surface terms
in (A12) to be evaluated, leading to

H
0C e =Ynbon 4, 80, + [ 0x) bplo) e (a13)

where as usual, ), =$,~ (47/€,)0, 5. Equation (A9) may
now be rewritten as

1
6G = L {[AG1+kT m{ﬁ—flc(’l‘(—)x)} —ezp(x)]écl(x)

+ [AG2 +&T m{z—Nfz&%)(;)} +ez[)(x)] Gcz(x)}dx

[Ty +(20, /e)]
+{ Vplnd i=t——2—22 10 V30,
{ T {[rs_(ZO.s/e)] s} s
From total charge conservation, or equivalently, from
the first integral of Eq. (A7), Gauss’ law, one obtains

(A14)
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the constraint

O +0,+0,+0;=0, (A15)
where
H
cdéf p(x)dx (A16)
0

is the integrated space charge.

We shall now take the variations 60, and 60, to be
zero. Our justification for this assumption is as fol-
lows. Consider first the usual situation in which a p.d.
of say ¢, =9, is continuously applied to the system by
means of an external battery. After sufficient time is
allowed for equilibrium to become established, G is a
minimum and all the charges have reached their final
values. Alternatively, start with an uncharged systen
and now apply a potential difference i,, to the system
for a fixed short time, then disconnect the battery and
leave the blocking electrode open circuited and float-
ing. A certain amount of charge will have been trans-
ferred to the blocking electrode and again we wait for
(open-circuit) equilibrium to be achieved. In this new
situation, ¢;(x) and o will clearly assume values which
lead to 6G =0 with 60, =060,=0. From the final, equi-
librium charge values and distributions one can, at least
in principle, calculate that  value, say ¥,5, which is
the equilibrium p.d. across the electrodes consistent
with the total amount of charge which was passed to the
blocking electrode while §,, was applied. We assume
that equilibrium was not reached during the application
of ¥, ; therefore, 19,5/ <|y,,!. Now using a battery
of proper voltage apply ¥,y =¢,; to the system as in the
first situation. No current will flow and the charge
distribution will remain unaltered. Hence, this final
equilibrium state must be éxactly the same as that which
would have been reached if §, =9 ,; had been applied
continuously to the system. Thus, it is indeed con-
sistent to take the variations of o,, and o, zero even in
the usual situation.

Equations (A14) and (A16) now lead immediately to
_ (' c1(x) T, +(20,/e)
8G = fo {[AG1 +£T In {(N—Icl(x)) (I‘s i /e))}
- €6t =) | Bei)
ca(x) T, - (20, /e)
* [AGZ eI ln{(ZN- cax) )(F, + (20, /e))}

el - ws)] 5Ca(x)}dx .

(A17)

Now since 8¢,(x) may be arbitrary, one immediately finds
the distributions given by Eq. (11) of the text when nor-
malized potentials etc., are introduced. Thus we have
shown that the same distributions are found in the pres-
ent situation as those obtained by P-B, but with the
electrode potential ultimately determining the value of
the surface potential j, in this case.

As is shown by one of us elsewhere, * the same dis-
tributions may be obtained from the assumption of local
thermodynamic equilibrium if one makes use of the vir-
tual chemical potentials for defect species introduced by
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Kréger and Vink.*® On defining the electrochemical po-
tentials of the cation vacancies and interstitials as

771(x) =AG + kT ln{cl(x)/ [N" Cl(x)]} —ep(x)
and
n,(x) =AG, + T In{cy(¥)/ [2N = c,(x)]} + e (x) ,  (A19)

respectively, and defining the electrochemical potential
of the surface cations as

n, =kT In{T, /(T, - T,)} + ey, (A20)

one finds that the distributions of Eq. (11) are obtained
directly from the requirements

(A18)

nx) +n, =0 (A21)
and
Nplx) =1,

when one makes use of the identity’ o, =e[[', - (T, /2)].
The above requirements are simply the thermal equi-
librium conditions for the reactions

(A22)

[vacanecy]+[surface cation]=0
and
[interstitial] = [surface cation] .

It should be noted that the activity terms in Eqs. (A18)
and (A19) take full account of lattice statistics® [see Eq.

(6)].

Finally, as in Eq. (25), one can obtain a first integral
of Poisson’s equation, now applicable to a fixed length
{. In normalized terms the result is

[0 X)F -[¢"(L)F =6 In[1 +Ry(9)] , (A23)
where ¢(0)=¢,, ¢(L)=0, and R,(¢) is given by Egs.
(26)-(28). Upon using Eqs. (A8) and (A23) with X =0,

then, in terms of normalized charge densities, one
obtains

Qm+Q, =5gn(9y) [67 In{1 + Ry(,)} + Q% 1Y%= F1 (4, 0) ,

(A24)
where we have used R,(0)=0. Here @,=-~8,=0,/0,
=¢’(L). Thus @, is the normalized charge density on
the ohmic electrode. Since @, —0 as L —«=, the present
F, -~ F_,= F in the same limit, where F is defined in
Eq. (43). Now it follows from Eq. (A23) that

% gy
X=I _ay A25
. Fo(¥,8) (A25)
and
%4
ay
L=f _ar A26
o Fo(¥, 0) (A26)

the latter an implicit equation for @ in terms of L,
which shows that as L -~ 1Q,! becomes proportional to
exp[-{1-(36/4)}/2L]. The normalized differential
capacitance of the material between X =0 and L, Cpoy,
now made up of contributions from both the diffuse
space charge region and the rest of the material, is
finally given by

Cpon=dF (¢, 8)/dd, ,

where @, , of course, depends on ¢, as well as L.

(A27)

: Interfacial space charges in ionic crystals

APPENDIX B: GENERAL CAPACITANCE RELATIONS

For our general system, we may define the following
normalized capacitances:

Coy=dQ,/dd, , (B1)

Can=-dQ,/dd, , (B2)
and

Cpon =~ dQy /ddg=dF(¢,)/dd, - (B3)

We have already seen that in the absence of discrete-
ness of charge effects, C .y is given explicitly by Eq.
(54). Further, Cpoy is here the same normalized dif-
fuse double layer capacitance as the Cpy calculated and
discussed in Sec. IIC and IID except that the basic po-
tential variable is here ¢,. Thus the earlier results for
Cpy serve to illustrate some of the dependence of the
present Cpoy(d,) on its argument. Note that in the
present case, if no surface charge can form and C;

=C, ==, i.e,, the situation of an electrode immediately
on the surface of the crystal with no inner layer separa-
tion, Cpy =Cpoy -

It remains to obtain a general expression for Cpy .
Using the above capacitance definitions, one finds that
the operator d/d¢,, applied to Eq. (47) immediately
yields

d d

Cmr:cuon(;%i) +CAN<E%:> (B4)
Then, using (44) and (45), one can write

d

Z%Z‘I'MCDN ) (B5)

d

ﬁ‘:‘=1+7‘1cnon ; (B6)
and thus

ﬁi=(d_¢d dos \ [ 1=2Cpy B7

s () (%) -(ie) B

Now from (B4), (B5), and (B7) it follows, on solving for
CDN N that

Co = Cpon +[1+2 Cpoy ] Cux (B8)
N 1+ +X)Cpox+2s [1 +)‘~/CD0N]CAN ’
or
C 1+[X1+CI-JION]CAN (BS')

N = (s +2,) +Coox +2g [Ny + Cion ] C ax

The last form is useful when the diffuse double layer is
so dense that Cy may be neglected compared to 2,
=C;4 . As far as we are aware, these general expres-
sions have not been given previously.

On differentiating Eq. (43), one finds

d daQ
Con =Coox ( 424 ) 99 (89)
DN DON d¢m d¢m ’
which becomes, on using (B7) and solving for Cpy :
Crp = Cpox _ ( 1+ Cpox ) dQ, .
b¥ 1+(7\s+’\1)cvon 1+ +X)Cpox/ don

(B10)
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Now write (dQ, /d¢,,) =Cpy(dQ,/dQ,) and solve for Cpy,
obtaining

Cily =t +20) + Cilow (14 G+ )+, S22

dQ,
aQ, ’

where Cily =2, +),=(C;k +C;y). An expression equivalent
to (B11) was first given by Devanathan.? It has also been
used by Bockris and Reddy® for a concentrated aqueous
electrolyte where Cjl,y was taken very small and ne-
glected. Equation (B11) is interesting but may be poten-
tially misleading. Bockris and Reddy have calculated
dQ, /dQ, separately (see Refs. 24, 37, and 38 for rather
stringent criticisms of their approach, which is based
on earlier work of Bockris, Devanathan, and Muller)
and used the result in their equivalent of Eq. (B11) to
obtain Cpy . But it is readily shown from the present
equations that

ot =D~ C1Can 5
thus, a complete treatment would require the substi-
tution of (B12) in (B11) and solution for Cpy, yielding a
result in agreement with the exact expression of (B8).
By not carrying through this last step, one fails to ob-
tain (B8) and the simple equivalent circuit with which
it is consistent.

=Cary +Cpon +(Cyk +Choy (B11)
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