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Particles of finite size are assumed to move randomly in a gas or liquid,
with their only interactions arising from their hard cores and excluded volume.
The mean nearest neighbour separation of such particles is caiculated exactly
for one dimension (n=1, rods) and quite accurately for two and three dimen-
sions (=2, 3 ; hard discs and spheres). Results are exact for n=2 and 3 in
the limit of zero density or for any density when the particles are points.
For finite-size particles the results are extended to the close-packed limiting
densities. Forn=2and 3, the present predictions differ very appreciably over
the entire density range from those calculated by conventional approaches.

1. INTRODUCTION

The problem of the average nearest-neighbour separation between particles,
such as molecules, atoms, or ions, is one of considerable interest and is relevant
to the lattice and hole theories of liquids. The situation to be considered is
appropriate for gases and liquids where the particles can move randomly and are
not constrained to a lattice. The only interaction between the particles is here
taken to be that arising from a distance of closest approach, 7q, which is primarily
steric for uncharged particles of finite size. For charged particles of the same
sign, however, 7, may exceed the steric value because of coulombic repulsion [1].
In three dimensions (n=3), we shall be dealing with the standard problem of the
hard sphere gas with particles of diameter 7o, but we shall be concerned with
densities, p, up to the close packed limit associated with g,

Although the assumption of particle—particle interactions arising only from
7, is a stringent one, it nevertheless leads to more realistic results than do the
conventional treatments of the mean nearest-neighbour separation, ¢r>. These
treatments [2, 3], which are often applied to electrolyte situations, generally
ignore finite size effects completely, ignore the random aspect of particle motion
in a liquid or gas, and assume, in order to obtain an expression for {r), that the
particles are arranged on a fully occupied lattice whose primitive spacing is
determined by the particle concentration. As we shall see, both random motion
and finite size effects can make the {r) values calculated herein quite different
from those predicted by the conventional approach.

We begin with the calculation of (z> forn=1, 2, and 3, and follow this with a
comparison of random-situation predictions of {r) with those of the conventional
approach.
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2. CALCULATIONS FOR RANDOM ARRANGEMENTS

Although we shall be concerned with n=1, 2, and 3 situations, i.e. hard rods,
hard discs, and hard spheres, it is convenient to pose the problem for =3 and
then discuss the necessary specialization for n=1 and 2. The mean nearest
neighbour separation is given by

= foP(f) o, (1)
with
6‘ P(€)dé=1. (2)

Here P(r) dr is the probability of finding the nearest neighbour of a particle,
whose centre is at r=0, in the spherical shell of thickness dr and inner radius 7.
Because in general 7,0, P(r) must be zero for r <7, and thus must involve the
unit step function Uy(r—7,). Equation (2) is the usual normalization condition
for a probability density.

Now P(r) dr may be expressed as the product of three terms,

P(r) dr =Py (r)Pn(r)Uglr —1o)- (3)

Here Py(r) is the probability of finding a particle within the spherical shell of
thickness dr and inner radius 7 and Py(r) is the probability that the nearest
neighbour does not lie in the spherical volume of radius 7. Through the use of
(2), we can express Py(7) as

Pu(r)=1- § P(6) dz, )

the same in form for n=1, 2, and 3.

Consider now the n=1 situation of hard rods of length »,. Since it can be
solved exactly, it gives some guidance for the n=2 and 3 situations. Let there
be a total number of N rods distributed in a total length L. Then the density is
p=NJL, and the maximum possible density is py=(L/ro)/L=7y"" Now Py(r)
is just 2N dr[(L — Nr,), where (L — Nr;) is the free or available length [4], cor-
responding to the free volume for n=3. If we now divide through by L, we

have
Py(r)=2p dr/[1 - pry]. (5)

Let us define the relative free ¢ volume ’ as T'=(1 - pw) for any #n. For n=1,
w=r, exactly, but no exact expression for w(p) is known for n=2 and 3. Here
(p) is essentially the average ‘ volume ’ taken up by a particle for #=2 or 3 when
two or more are present. In the n=2 and 3 cases, w>V,, where V, is the
“volume ' of a single particle, because discs and spheres do not fit together
exactly and some volume is thereby excluded. But since rods do fit together
exactly in one dimension, (5) is exact, as is the resulting P(r). The integral
equation resulting from the substitution of (4) and (5) into (3) may be readily
solved by the approach in [1] and yields

P(r)=[2p/(1 —pro)] exp [(2p/(1 = pro) Jro=7)] . Ug(r —70)- (6)
The resulting exact {r> forn=11is
> =0-5(ro+p7%), (7)

which yields (¢} =7, when p=p, as it should.
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The approach and solutions are similar for n=2 and 3. In these cases
Py(#)=2m(2)*2 pr*2 dr{T(p). The simplest choice for T(p) is to take w=10

and thus ignore excluded volume effects.

[1] for the n=2 case.

This was the course followed earlier

It is, of course, valid in the p =0 limit but not otherwise.
Here we have elected to use the results of Andrews [4] for w(p) for n=2and 3.
Since the‘ present random approach will be extended to the dense limit, p—pg,
where p, is the close packed, ordered density, we need T'(p) over the entire range
pf p. Now po=(2/4/3)ro"% and 4/2r,;~% forn=2and 3, respectively, correspond-
ing to hexagonal close packing and face centred cubic close packing. Let
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z=plpy; thenO0<z<1l. Wemaywrite T=1-pw=1—[pgw(z)]z. Since there
is no volume available to add another particle when z=1, it is necessary for z=1
that w=p,~1, and thus 7=0 in this limit. Sensible formulas for T(z) have been
given by Andrews and are listed in figures 1 and 2. They have led [4] to very
good agreement between derived equations of state and molecular dynamics and
Monte Carlo hard disc and hard sphere resultsfor =2 and 3.  Slightly different
expressions for w(z) have been employed in later work [5], where a more precise
definition of w also appears.
For n=2 and 3 let us introduce the new normalized variable

x=2mnYn— " Tt p=x, T 2, (8)
where T(z) =1—[pyw(2)]z, and

(4/3)12 w2 36276, n=2
X = (9)
(32)V2 /3 ~5-9238, n=3.

Note that if T'(#) =1 for all 2, x,, is the maximum possible value of x, that at close
packing. Otherwise the maximum value of # is infinity. Results for P(r) and
{r) may now be expressed as

P(r)=n(x[ro)(r[ro)*~* exp [x{1—(r/ro)"}] x Uy(r—ro), (10)

{rofrg=a"1" exp (x)I(1 + 21, x), - (an

where I'(a, x) is the incomplete gamma function. These results would be exact
if the function w(p) were exactly known, and they are, of course, exact in the p -0
limit and for ,=0 with any p.

Now as x>0, (11) reduces to {r)>fry, »aT'(1+n1), where I'(1+n-1) is
the complete gamma function. Thus for n=2, {r>[r,~>0-54/(=/x) and for n -3
it approaches x~1/8 I'(4/3), where I'(4/3)~0-89398. In the other extreme as
x—=>00, {r)fro>1+(nx)1+ .. .. '

Figures 1 and 2 show the dependence of {r)fr, and [{r)[ry]—1 0on zforn=2
and 3 and several choices of T(z). The dotted lines show the approach to
limiting z -0 behaviour. The quantity {r)/r, has been plotted only for the third
form of T, that derived by Andrews for the fluid region of the equation of state,
%20:67 for n=3. When spheres begin to cooperate and establish regions of
close packed order, at ¥50-74, the material begins to approach a hard sphere
crystal rather than a liquid or gas. Andrews has suggested that a reasonable
choice for w(p) is p,™! in this region, leading to T'=1—2z. In order to allow
comparison of differences in (r)/r, arising from different T'(z) choices, the figures
include curves for [{r)/ry] —1 for the three T expressions of interest. As far as
{r>[ry is concerned, it clearly makes little difference whether the second or third
form of T is used. But the T'=1 results, where free volume corrections are
ignored, lead to x=wx,, at p=p,, rather than to x=oo0 at this limiting density.
‘The values of {r)/r, obtained for x = x,, are about 1124 and 1-051 for n=2 and 3,
respectively, results which are significantly different from the correct value of
unity. To use the present results properly one should switch from the third to
the second form of T'as one passes from the fluid phase to the crystalline one,
But since {r}/rq is so close to unity by either approach when 0-7 ¥z < 1, there is
no practical reason to do so as far as calculation of {r)/r, is concerned.

and
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3. COMPARISON WITH CONVENTIONAL APPROACHES

Since the conventional methods of calculation of {r) do not take explicit
account of the finite size of particles [2, 3], we cannot normalize with 7, and must
coropare {r) predictions directly. For the low density limit it is convenient to
introduce the function

Fo=[p/7¢r) o (12)

which becomes, on using (11},
| | Fy=[27{(n—1)n}]¥" (1 +-n72). (13)

Table 1 shows n=2 and 3 results for F, for the several choices of interest. Note
that the particle diameter 7, plays no role in the p—0 limit where the particles
are far apart. The F, random results for n=2 has been given previously [1].
The table shows a difference between conventional and random results of about
a factor of two. Such a large difference suggests that the present, very nearly
correct, result should always be preferred to those of the conventional approaches.
Not only is this the case for p—+0, but because the present random-situation
approach takes 7, explicitly into account, the present formulas should be prefer-
able for all p, up to p=pg.

Finally, it is of interest to compare directly a few {r) values calculated from
the various approaches already discussed. Table 2 shows a few such values for
uncharged particles and n=2 for three choices of p. Again we see large dif-
ferences between conventional and random predictions. For the lowest p, the

Table 1. Values of the function Fn=[p¥"<r>],. for several arrangements in two (n=2)
and three (n=3) dimensions.

n Arrangement Fy
Square array . 1

2 Hexagonal array (4/3)14221-075
Random 0.5
Simple cubic array 1

3 Face centred cubic array 216221123
Random 0-554

Table 2. Calculated values of {r) for n=2 for three values of p and several situations.

> (A)
p (cm™)

Arrangement ro (A) 5x 10t 5x 10 5x 10
Square — 4472 14.14 4.47
Hexagonal — 48-06 15-20 4-81
Random 0 22-36 7-07 2:24
Random 1 22-39 7-15 2-45
Random 3 22-60 7-68 349
Random 4-25 22-81 8.18 4-37

|
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distance of closest approach, 7y, makes little difference because the particles are
generally much farther apart than this distance. This is certainly no longer the
casefor p=5x 10" cm~2, The quantity z is about 0-043 for r,=1 A and increases
to about 0-782 for ry=4-25 A when p=5x 104 c¢m=2. The 425 A value has
been picked here because it has been employed in recent Monte Carlo simulations
of the diffuse double layer [6]. Some discussion of the approach to hexagonal
close packing for charged particles has been given elsewhere [7].

Table 3. Calculated values of {r) for n=3 for three different molarity situations.

r>A)
p (em™)
M 0-1 (neutral) 1 (neutral) 1 (charged)
Arrangement re (A) 6-02 x 101? 6-02 x 1020 1-2x 102
Simple cubic — 25-51 11-84 9-40
Face
centered cubic — 28-64 13-29 10-55
Random 0 14-13 6-56 5-21
Random 1 14-14 6-57 5-23
Random 3 14-21 6-33 . 5-59
Random 4.25 14-32 7:20 < 607

Finally, table 3 shows similar results for n=3. Here we use the molarity, M,
in mol I~* to establish values of p for consideration. We have p=10-3 eMN,,
where N, is Avogadro’s number, and ¢ is unity for uncharged particles and two
for a z-z-valent binary electrolyte. Again one sees appreciable differences
between conventional and random calculation results. Only for M1 does a
non-zero 7, make much difference. The relative density z is about 85 x 10~4 for
ro=1A and p~1-2x 10 cm~2* and about 0-065 for r,=4-25 A and the same P
value. We thus consider looser packed systems here in three dimensions than we
did for the =2 results of table 2. Although the conventional approach has
been applied up to M=10 or more [3], it is quite clear that for such high con-
centrations one must not ignore the packing density limitations set by 7,. Since
22 0-065 for the situation leading to <{r;»~6-07 A in table 3, it is likely that the
predictions of fluid random packing are still adequate here, although r,=4-25 A
would probably need to be interpreted as a coulombic hard core rather than the
smaller steric hard core [7] in this charged particle case.

The present approach is most pertinent for uncharged particles and is, of
course, less applicable for charged particles because of its neglect of Coulomb
interactions. Nevertheless, a few possibilities for charged systems are worth
mentioning. First, the theory should become more and more applicable for
such systems as the charge density decreases, the particles are farther and farther
apart on the average, and Coulomb interactions become less and less important.
Second, for regions where the particles are mostly of the same sign, as in a space
charge region, one might apply the present results for n=2 or 3, as appropriate,
with 7, an effective coulombic radius possibly dependent on charge density.
Finally, for a bulk electrolyte region of overall charge neutrality containing
charges of both signs, one might apply the present theory to the ion pairs present
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[8, 9], neutral entities whose concentration would be calculated by conventional
ion-pairing theory. It would be simplest to take r, as the effective diameter of
the ion pair, and the theory should then yield an estimate of the mean nearest-
neighbour distance for such pairs. In most cases of practical interest, the low-
density limiting form of the theory would be quite adequate.

The helpful comments and suggestions of Dr. W. A. Bowers, J.J. Hermans,
S. W. Kenkel, and A, P. Lehnen are greatly appreciated. The work has been
supported by the U.S. National Science Foundation (Grant No. DMR 80-05236).

Note added in proof.—Recent work of F. C. Andrews and H. M. Ellerby,
(1981, ¥. chem. Phys., 75, 3542), applies probability distributions equivalent to
those herein to the problem of deriving an equation of state for liquids. Excellent
agreement with Monte Carlo and molecular dynamics results is obtained.
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