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'ABSTRAcr

A.n analys:s is made of the al:uhty ol‘ nonlmear oomplex least squares ﬁumg to yneld useful estimates of
parameter values occurring in-equivalent circuits. In- addition, three-dimensional perspective plots- are -
presented which show the ful! frequericy response of either 1mpeda.nce or aduuttanoe data Three dlffen:'lt
kmds of data are studlcd usmg these two methods. S ‘

Fora gwen setof four ciceuit e!ements {two rcgstors and two capamtors) arut" aa!ly cumputer-genem!ed
1mpcdancc and’ ‘admittaince; valucs ane constructed for a Voigt circait ‘having two time constants. These
exact results are. then: oon!a:mnatod cither by digit’ round-off . or. _addition" of zero ‘'mean, normallyj
distributed :'andom noise. A oomplcx least: squareés analys:s is then ma.de on the contaminated data and
the resultmg estimates of lhe circuit parametcrs and their associatéd standard errors are compared to the
‘exact starhng va]us. For . the case: ‘when one of. lhe Capacitors | is’ vamshmg smal] the optimal’ ra.nge of
.mmun:mem ovcr lhe multmg sermi-circle.in-the eomplcx :mpdanoe planeis d:scusscd in detail: ‘For this
‘Gase. the accuracy of inpiif data requm:d 1o resolve the values of the two resistors when’ :hey are separaled- ;!
ifx size by two orders of magmlude is detemuned “The other extreme of (wo fimé constants which are not.
well scparated is also. smdled Again one oblams approximaie estimates of both the rarige of frequencxcs '
and the inherent accuracy of the data necessary. to ‘adequately. resolve all four circuit: paramelers, . :

The actual Erequcncy depeudent adnuuxmx of ‘a real ladder nefwork ui resistors and capamtors havmg :
. lhree diffscent tinte canstants was ‘measired on a4 Solariron type 1172 -Tesponse analyzcr These data were,
then analyzcd using the comp!cx teast: squans prooedute and the fittcd cm:mt paramctcrs wcre all in closc
agreemcnt with'their pominal experimental vales. -

Finalty, the 2dmittance response of B-FbE; at 474 was measured on lhc So!anmn | 172 A complex
: !cast ‘squam anal_y_ i ‘E.thm dam ylc!ds a: good ﬁ! whcn an equwalem cu-cuu employmg a Oonstant :

0022:0728,/0000-0000/$02.75 © 1982 Elsevier Séquoia SA.



78
I. INTRODUCTION

The estimation of parameter values entering theoretical models or equivalent
circuits from impedance and /or admittance data is important in obtaining quantita-
tively accurate representations of the frequency response of liquid or solid electro-
lytes. Such analyses have long been used [1] and occur throughout the literature [2].
However, the methods employed in actually estimating the parameters and, in
particular, the associated error distribution of the parameters, have often been quite
crude. These latter error estimates are often more significant than even the parame-
ter values themselves in determining which theoretical model is most appropriate for
a given set of data. ’

The aim of this paper is to investigaie the applicability, power, and types of
results that a nonlinear complex least squares minimization {3,4] can give for several
kinds of data. Here the word complex is taken to mean that both real and imaginary
components of the data are sirnultaneously fitted in the least squares minimization
[4-6]. In addition, we demonstrate the value of three-dimensional perspective
plotting of impedance and/or admittance data as opposed to ordinary complex
plane plotting.

Several recent studies [7-10] have been made which involve relatively simple,
non-least squares determinations of model parameters. All of these, however, have
used electrochemical data taken on actual, distributed systems. Thus, a fundamental
understanding of the inherent ability of the method of analysis to resolve different
parameter values may remain obscured or exaggerated by the presence of systematic
errors which inevitably appear in fitting measurements on such real electrolytic
systems. To clarify this aspect, in Section II several least squares analyses are
performed on artificial, computer-generated circuit data which have been con-
taminated by either digit round-off or the addition of zero mean, normally distrib-
uted random error to each data value. The circuits analyzed cobsist of simple Voigt
networks of ideal resistors and capacitors. In Section III, compiex least squares fits
of actual frequency response data for two different experimental systems are carried
out and discussed. The first such system measured involved an actual ladder network
of resistors and capacitors having three different time constants, while the second
one was a sample of B8-PbF, at 474 K. In this latter case, a three-dimensional plot
(Real Z, —ImZ, log f) showing the agreement between fitted and measured values
of the impedance Z as a function of the frequency f is also presented.

II. SYNTHETIC DATA

In general the frequency response of a system does not uniquely determine the
circuit used to model that response. For example, in Fig. 1, three different circuits
are shown. Each circuit has six lumped elements (three ideal resistors and three ideal
capacitors) and three (N =3) time constants. The total impedance for all three
circuits will be a polynomial in angular frequency, w, of degree four divided by a
polynomial of degree three. For any given choice of the six elements for one of the
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Fig. 1. Three N =3 circuits which can have the same impedance-frequency relation.

models, there exist corresponding sets of circuit elements for each of the two
remaining networks such that all three have exactly the same impedance at all
frequencies. The choice here of circuits having three time constants is unimportant,
and such an equality can be achieved for any N [11,12]. Starting from the Voigt
network, it is possible to obtain simple algebraic formulae for the corresponding
Maxwell or ladder circuit parameters [13].

However, it seems reasonable for any specific real extended physical system that
the actual response is best represented by a unique circuit. Different theoretical
response models can lead to different equivalent circuits, such as any of the three of
Fig. 1. Even when one believes that a particular model and circuit is appropriate, one
may be wrong, and it is thus desirable to have means available to test the question.
One way to discover which of several circuits is most appropriate is to repeat
measurements over a variety of different conditions (e.g., temperature or electrode
separation). For a less appropriate circuit , most if not all of the parameter values
will then vary appreciably, while for the most appropriate model some of the
parameters may not vary at all, and most of the variation would be expected to
occur in a minimum set of remaining parameters. For example, if all but a single

" parameter of the ladder network are taken to be independent of temperature or
electrode separation, fimng of impedance data derived from this circuit, for say two
different separations, usmg either of the other circuits of Fig. 1 will yield equivalent
overall fits but fits in which, in general, not just one but all or most of the
parameters values estimated from the fitting will be found to be separation depen-
dent. Thus, & smgle fitting of a set of data to a given eqmvalent circuit will not
generally yleld estunates of the most . appropnate parameters unless the equxvalent
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circuit has nlrpar]v been proven t to he the most npprnpnate of those with !he same

1mpedance—frequency relation for the situation under study. -

Artificial computer generated impedance data was constructed for a two—ume-
constant Voigt network having (R, C;; R,, C,)=(10 2,0; 1039, 1 »F). The result-
ing three-dimensional (conjugate) impedance (Z*) plot is given in Fig. 2. The origin .
of the log( f ) scale is taken at —2 for these data. The real and imaginary parts of the
impedance are plotted in units of 200 2. The conventional two-dimensional Z* plot
(here the back projection) is just a semi-circle centered on the real axis at Z* =R, +
(R, /2) and having radius (R, /2). The capacitance C, manifests itself in this figure
only in the frequency dependence shown along the log( f) axis. For these data 145
points were generated starting at a frequency of 1.389 X 102 Hz and ending at
1.824 MHz. For the conveational two-dimensional Z* plot, this means that the first .
point on the semi-circle starts at an angle of 0.01° and the points extend to an angle.
of 179.99°. Coverage of the 145 points was such that they are more or less equally
spaced in angle with the angular separation of adjacent points being about 1.25°.

Following Despic et al. {8], for the purposes of data analysis one can consider the
semi-circie being divided into three sections: the first, Sector I, from 0°.to 30°, the
second, Sector 2, from 61.25° to 120°, and the last, Sector 3, from 151.25° to 180°.
For the data shown in Fig. 2, Sector 1 contains 25 points, Sector 2 48 points, and
Sector 3 24 points. An additional sector covering the whole semi-circle, but skipping
every other value (thus, having a spacing of about 2.5°) was designated as Sector4
and contained 73 points. In Fig. 2, Sector 1 starts with the first point and goes up to
the first double projection into the log( ), Re(Z) plane. Sector 2 starts at the second
double projection and goes up to the third. All the points after the last double
projection constitute Sector 3.

-Im(Z)

Log {f)

Scales
Z:unit =200 Q;origins: {0,0)
Log(f): unit =1; origin:=2

Fig. 2. Perspective three-dimensional plot of the Z* response of a N=2 Vo:gt cu'cuxl when
(R,.Cy; Ry, C2)=(102.0; 10?2, 1 uF). Individual data points are represented by small squares and
connected by a continuous curve, while planar projections are shown only as continuous curves.’
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To smulate expenmental error in these exact (actually l3—dng1t) data, the number
vof dlglts was rounded to-n(n<4). Then, a complex least. squares dctermmatxon of
R,; R,, and G; was. made for a variety of. sectors and choices of n. The virtues and-
'advantages of -a least squares analysis are well known [4;14].. Among these are that
the resulting: solution, -even - for a non-Gaussian distribution -of - error, is. both
unbiased and has minimum variance: For the case of- unpedance and/or admittance
data a complex least squares fit- puts both real and. imaginary components on an
“equal footing (apart from any inequities brought about by weighting dGifferences).
The results .of the analysis are .estimated parameter values and their “estimated
‘uncertamues along with-an estimate of the overall standard deviation of the fit, o
Thus, if the data detérmine some :parameter values better then others, this is
immediately obvious. Furthermore, in the analysis of real extended systems equiva-
lent circuit types such as those of Fig. 1 should always lead to the same o,. However,
the relative parameter uncertainties will in- general differ, and they thus will help
provide information for dnscnmmatmg between different models. :

Let the complex function, f(w; R) f (w, R)+tf (o; R), represent the 1mped-
ance (Z) or admittance (Y) response of the model or equivalent circuit used to
describe the system. Here { is a function both of the angular frequency, «, and the
set of model parameters, R. For the purposes of this fit, the frequency, as is usually.
the case experimentally, is assumed to:have negligible error as compared to the

“measured” values of Z (or Y) In this approximation, with measurements made at
angular frequencies ; (i = 1,.:. K') of complex Z (or Y) data of the form x, + iy,
the goal of a complex least. squares analysis is to find that set of parameters wmch
minimizes the welghted sum

s= z{w [ -t ﬁ)]%w,.r[y,.-;_,(w,.;zz‘)]l} | W

Here w;* and w,.” are the weights associated with the ith data point. If the standard
deviations o;* and ¢} of each point are known, then w;* =(0;5) "2 and w} = (o} )‘2.
The choice of w* =w’ =w, where wis-a positive number independent of i
equivalent (as far as the choice of R for which S is a minimum) to umty wexghtmg
(i.e., unweighted data).

_The initial least squares determination of parameters was done by a computer
program employing the Levenberg—Marquardt {15,16] algorithm. This part of our
code was supplied by the Argonne Laboratory and was_written by B.S. Garbow,
K.E. Hillstrom and J.J. Moré. The final output value of R (the converged parameter
set) of this part of the total program was then' used as the starting input parameters’
for a separate computer code ‘which’ calculated among other things, the parameter
‘covariance matrix. This provxded us thh a statistical estimate of the error distribu-
tion of the parameters. This program is based on a nonlinear least squares package-
given to us by J.D. Olson of Union® Carbide Corporatmn and written by H.I. Britt -
and R. H Luccke 6] All of these ‘calculations were done on an IBM: 360/3707
operatmg system at. the Umversuy of: North Ca.tolma Computatxon Center.
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The complex least squares analyses were carried out on both unweighted (or unity
weighted) data, designated by W =0, and, in addition, with the assumption that the
random errors in the data were proportional to the magnitudes of the data values
(W = P). The results are given in Table 1.

Here the numbers following the = signs are the least squares estimated parameter
uncertainties. As one would expect from Fig,2, the ability to resolve R; (here
R, /R, = 10™°) is most difficult if the data only samples the low frequency tail of
Sector 1. This is true even for n =3 (i.e., data accurate to about 0.1%). If data from
Sectors 2 or 3 are used, even the n = 2 case gives parameters which are within about
a percent (the “inherent” accuracy of the data) of the “actual” values. It is also
interesting to note that Sector 2, again as one might have predicted from Fig. 2, is the
optimal sector. Since it samples the central portion of the semicircle, it gives good
estimates of all three parameters, even for n = 2. In fact, as Table 1 shows, the n =2
data analyzed over Sector2 give slightly better results than Sector 1 data which is
accurate to 0.01% (n = 4)! Perhaps even more surprising is that the analysis for n =2
on Sector2 appears to give results at least as good as the analysis made over the
whole frequency range (Sector 4). Presumably, this could be interpreted as meaning
that with an accuracy of only about 1% (n=2) one should in fact avoid impedance
data from either end of the semicircle, where errors are disproportionately exag-
gerated. Finally, one sees that the parameter uncertainty estimates for Sections 1 and
3 are often too small. In contrast, the analysis of Sector 2 data gives results which are
within 2 estimated parameter uncertainties of the “correct” values. The general effect
of the W= P vs. the W =0 weighting is to improve both parameter and parameter
uncertainty estirates.

The fact that data from the middle portion of the impedance semicircle is the
most reliable in estimating parameter values has also been noted by Despic and
co-workers [8]. However, because their treatment was not a full least squares
determination and, in particular, since their estimation of parameter uncertainties

TABLE {

Complex least squares fitting results for the synthetic impedance data of Fig. 2 when error is introduced
by digit roundoff

W Sector n R, /Q R,/ G /nF

0 1 4 10.56=0.11 999.45+1.03 1.0011==0.0223
o 1 3 2223995 988.17+=9.70 1.0245=0.0206
p 1 3 15.80+=6.04 994.43=5.88 1.0110=0.0122
0 2 3 10.26x0.14 999.95=0.08 1.0004+0.0003
(4] 3 3 10.01==0.05 999.33% 1.70 1.0004%=0.0003
0 4 3 10.01=0.10 1000.24=0.12 0.9999:0.0003
P 1 2 46.54=20.1 961.87+=19.6 1.0828 =0.0451
0 2 2 10.14x1.24 1000.39+0.70 1.0003 =0.0026
0 3 2 9.84x0.16 985.22+=5.20 1.0024 =0.0008
0 4 2 9.65+=049 998.32+0.57 0.5982+0.0014
P 4 2 9.89=0.04 999.21=0.80 0.9999+0.0009
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was non-statistical, they seem to have underestimated the region of parameter space
where a good resolution of ‘all parameter values can be obtained. This explains why
our Sector 2 analysis of data with n as small as 2 would seem to contradict their
conclusion- that acceptable accuracy in the determination of R, is obtamable only
when R, is not more than one order of magnitude smaller than R,. :

It is interesting -to note that Despic et al. claim to have done a slahstxcal
determination of R; and R, by a least squares fit of the impedance data to a
semicircle (nor complex least squares). We too have considered this problem, and
show in Appendix A how a generalized inverse technique can glve excellent starting
values for both the radius and the circle center.

Since the minimization of eqn. (1) can be done for either Z or Y data, it is of
interest to see how this choice of measurement type affects the parameter estimates.
Accordingly, the exact (thirteen digit) impedance data of Fig. 2 was inverted to yield
Y results. The grouping of points into the various sectors was left unchanged. Errors
in the data were again simulated by rounding to n digits. The results of a complex
least squares determination of R,, R,, and C, for various values of n and different.
sectors are presented in Table2. Here the W =P and n =2 analysis of Sectorl,
which was presented in Table 1, is not given. The reason for this omission is that
although the Levenberg—Marquardt algorithm converged to a parameter set having
(R; R,,G)=(021%2; 1009.89 2,0.9821 pF), the Luecke-Britt routine did not con-
verge. Thus, parameter uncertainty estimates on all three parameters were not
obtained. From previous fitting work this seems to illustrate that, while the Leven-
berg—Marquardt algorithm seems more robust (i.c., it will converge for a very large
class of problems) and is very fast in terms of computing time, it sometimes
converges to local minimum solutions which are not fully reliable (not the absolute
minimum of the sum of squares). Thus, our use of the second independent analysis
on the results of the first gives us a powerful check on the reliability and stability of
the estimated parameter values.

From Table 2 one sees that the use of Y data, like the Z fitting, gives the worst
results when only Sector 1 is used. However, in contrast to the impedance results,

TABLE2

Complex least squares fitting of the synthetic admittance data associated with the impedance plot of
Fig. 2 when error is introduced by digit roundoff

W Sector n R, /2 R,/2 C,/pF

0 i 4 9.96+022 - 100004 0.21 1.0600+0.0004
0 i 3 16.67=1.87 - 993.59= 1.83 1.01330.0038
P 1 3 16.83=8.11 99343 7.97 1.0137=0.0165
0 2 3 10.39=0.40 1000.09= 0.31 1.0014=0.0008
0 3 3 10.000.001 100230+ 3.20 1.0001 =0.0002
0o 4 3 10.00==0.005 1000.50= 0.61 1.0005=0.0001
0 2 2 2.354x292 1002.15= 2.20 0.9834+0.0062
0 3 2 10.01:0.01 o 979x29 0.9955:0.0017
] 4 2 10.00=0.005 1000.75= 6.15 1.0002=0.0010 .
P 4 2

1000005 =~ 100407= 172 -  1.0003%0.0015
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Sectors 3 and 4 give better estimates, at least for R, and C,, than does Sector2.
Furthermore, the advantages, if any, of W =2 weighting are small. A direct
comparison of Tables 1 and 2 reveals that in Sector 1 a ¥ analysis gives better results
than the corresponding Z fit, though with W= P the Y and Z results for n =3 are
comparable. The Sector2 Z fit (which as already noted seems to be the optimal
range for Z) gives better results, especially for n =2, than the corresponding Y
analysis. In Sector 3 the Y data give better values for R,, but not for R, and C,.
Finally, the Y fit of Sector4 even for the worst case of n =2 gives parameter values
accurate to within 0.5%.

In summary, for this type of Voigt network, one can conclude from our work that
with data taken over the entire frequency range a complex least squares fit of Y data
gives the best results. However, for data in the middle of the impedance semicircle, a
Z fit would be somewhat preferred.

One could well argue that digit round off is not really a simulation of real
experimental error. As an alternative procedure we contaminated the exact (13 digit)
results with random noise. Let x represent the 2K-component vector of exact
impedance or admittance values. Then the jth “measurement” of x is denoted by X/
with
%! =x]1+d67] @)

Here i is a component index with 1 <i<2K and d is a positive number. The vector
G’ has 2K components and contains Gaussian or normally distributed numbers
having zero mean and unit standard deviation. This procedure contaminates the real
and imaginary parts of the exact data completely separately so that the “errors”
added to them are completely uncorrelated for each frequency considered. For large
K one would expect that approximately 68% of the %/ would have an absolute
fractional deviation from their true values less than d. The G/ vectors were generated
using the International Mathematical and Statistical Library (IMSL, 7th ed.) routine
GGNML *. This program uses a pseudo-random number generator which for J
different choices of a “seed” produces J different vectors G/. We generated ten
(J =10) such sets of contaminated data from the impedance values in Sector 1
( K = 25). The results of a complex least squares fit for d = 10 "2 are summarized in
Table 3. The choice of GT equal to a, b, or ¢ stands for three alternatives in
analyzing the contaminated data. First from each of the ten data sets a set of
parameters was determined. The average and standard deviation of these parameters
over the ten trials are presented as GT = a. In a slightly more realistic simulation of
experimental data, a new composite data set was generated with data points { given

by

x5 =[ P x{]/f (3)
,J d

* IMSL is a collection of FORTRAN mathematical and statistical subroutines developed by Interna-
tional Mathematical and Statistical Libraries, Inc.. 7500 Bellaire Boulevard, Houston, TX 77036, U.S.A.



TABLE3 .

Complex least squar&s ﬁumg results for the syntheuc mped.:nce data of Fxg "2 when zero miean, norma.lly

disiributed random error-is added to each point

w Sector GT R, /2 R,/% Cy/uF

o 1 a 11.89= 7.76 998.15+=7.30 1.0038=0.0154
P 1 ‘a 11.51= 6.10 998.42+5.86 1.0033+0.0122
0 1 b S 10.61% 230 999.29:+2.25 1.0013=0.0046
i 1 b 11.38= 1.43 998.53=1.40 . 1.00290.0029
s 1 b 1L15= .41 998.76 = 1.37 1.00240.0028
0 1 c 23.46==10.01 986.90+:9.77 1.0270+0.0203
P 1 c 21.16= 5381 989.15=5.66 1.0221+0.0120
s 1 c 991.60==-6.34

18.60= 6.52 1.0168=0.0131

and intrinsic uncertainty

12 :
{2 [x - %] /(J—i)} | @

=1

Thus, in addition to the W =0 and W= P options, one now has the “natural”
weighting choice, W =S, where wf = (o) 2. The analysis performed on the com-
posite data is called b. Finally, the GT=c analysis was made on the GT =54
composite data .rounded off to three digits. It should be emphasized that the
uncertainties listed for GT = b or GT = ¢ come from a least squares estimation of the
parameter covariance matrix, while those for GT = a are just the ordinary standard
deviations associated with estimating an average based on ten trials.

As one would expect, the GT = b analysis gives the best results. Furthermore, a
comparison between Tables 1 and 3 shows that the effect of rounding to three digits
is a more severe deterrent to an accurate determination of parameters than the
presence of random noise in the third digit. It should be noted, however, that this
conciusion is being made for the worst case situation of data from Sector 1.
Nevertheless, from these results one may conclude that if the data are adequately
distributed in frequency a complex least squares fit has very strong resolvmg power
even for data accurate to 0.1% or worse.

Although we have not investigated the effect of adding fully correlated random
error to real and imaginary data values associated with the same frequency, one
should realize that round-off or truncation induces correlation between the errors
thereby produced. Thus, our round-off results, which are generally worse than those
with “equivalent” uncorrelated Gaussian error added, throw some light on this
question. But equivalent truncation or round-off will generally yield worse data in
any event since added Gaussian error will not disturb some data values much or at
all, leaving them at or close to their proper values, while truncation degrades. the
accuracy of all points. - -

A more comphcated and more relevant problem in parameter esumatlon occurs
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for a Voigt network having two distinct time constants. The determination of lump
circuit elements is then closely related to the problem of the resolution of two
overlapping semi-circles (in this context in the impedance plane, but other applica-

tions would include nearly overlapping Debye curves for complex dielectric permit-

tivity). There is already a great deal of literature on this subject [3,10,17—-19]. These.
methods are based on either direct (i.e., finding the location of centers and radii)
iteration or transformed (from circles to straight lines) iteration procedures. Thus a

study of the resclving power of a complex least squares estimation for this problem

is warranied. A

Synthetic Z and Y data were generated for the following set of parameters:
(R,,C;R,,G,)=(1039,0.1 pF;1022,102 uF). The data were chosen to be ap-
proximately equally spaced in log frequency with a frequency ratio of 10'/8. A total
of 48 data points were generated starting at f = 0.1 Hz and ending at f= 74.99 kHz.
The above choice of parameter values yields a time constant ratio of 100 and 10:1
difference in the size of the two semi-circular arcs in the resulting impedance plane
plot. A three-dimensional impedance plot is shown in Fig. 3, where the origin of the
log( f) scale is taken to be —1.

As before, to simulate error the exact data values were rounded to n digits. The
results of a complex least squares fit are presented in Table4, where the choice
T=Z or Y indicates the type of data (Z or Y) which was analyzed. These results
again show the generali superiority of W = P weighting compared to the unweighted
W =0 fit, but the difference in resolution ability between Z and Y analyses is not
clear. One can, however, see that the parameter estimates are good even for n =2.

-IM(2)

SCALES:
Z UNIT: 200 Q2
Log {(f) UNIT: I

Fig. 2. Perspective three-dimensional plot of the Z* response of a N =2 Voigt circnit when
{R), Cii R,, G5)=(1032,0.1 pF; 102Q.102 pF). Two-dimensional projections :are shown as dashed
lines. . S s ST



‘ TABLE 4

Complex l&st squares f‘ tung r&sults for synthetxc data of a Vo:gt cn-cmt wnth two time constants bavmg a
ratio of 100 ’ : : . . .

"W T . n R/ C,-XlO/p.F. _ Ri/n ] G/pF

0  Z 3. 100004028 ' 1.00015%0.00071 100.28 = 0.34 101.77 = 0.94

A J z 3 999.78=0.19  LO0011=000019 100.02 = 006 _  99.992= 0.117
0 Y 3 100000148 - 1.00042%0.00013 10007 = 256 10001 * 7.11
P Y. 3. '100003+0.16 - 100028000023  .99.98i=* 0061 - 100.11 = 1.04
0 Z. 2 993 =25 1.0020 | =0.0064 1065 %= 30 - . 9493 = 735
P .z 2 9993 =17 1.0028 .=0.0017 99.83 = 0.51 - 99.84 = 1.03
0 Y 2 9980 =1.I - 0.9955 =0.0009 1017 =188 1936 =48.1
P Y 2 ‘9989 =12 10029 = 045 99.25 = 0.76

0.9987 +=0.0017

. Four other sets of synthetic data with different ratios of time constants and arc
size were generated. From the point of view of parameter resolution the most
stringent case had (R,, Cj; R,, G) =(10°Q,20 pF; 102, 103 F). These choices lead
to a time constant ratio of 2 and a size ratio of 200: 1. The 32 points used here began
at f=0.1 Hz and extended to f=749.9 Hz, with approximately equal spacing in log
frequency (frequency ratio again equal to 10'/%). Table5 shows the results of a
complex least squares analysis of these data. For n <4 and W =0 the results for R,
and G, are wholly uncertain and therefore are not shown; this is also essentially the
case even for W= P when n=2.

Again. one sees that the W= P wexghtmg opuon results in the best estimates.
Although, in contrast to the conclusions drawn from Table 4, the choice of analyzing
Y rather than Z data here gives more accurate parameter values. Finally, as one
would expect for this very stringent case of nearly equal time constants and one arc
iiearly negligible in size compared to the other, the inherent accuracy of the input Z
or Y data must be greater than was the case of the data of Table4 in order to
achieve adequate resolution. However, as the n=3, W=7, Y fitting results il-
lustrate, one can still r&solve all parameters (and in particular R, and G;) to within
less than a single estimated standard error of their “correct” values. In summary,

TABLES

Complex Icast squares ﬁtung results for synthetic data of a- Vmgt circuit with two time constants having a
ratio of 2

' 'Imls =17

1996 =005 .

W T n Rn/ﬂ : Cy/nF R,/Q G, /uF

1] 4 4 10013 =16" 199610045 86 1.6 S 1H11=131
P z 4 100039044 = 19.989=0013 9.58+043 - 1031= 34
0. Y 4 ' 999.91=0.17 - 12000:%0.12 100 =4.1 999304 .
P Y 4 . 89996=023 . 2000 =001 . _ 10.04=023 998+ 17
P Z. -3~ 10057 =16 .- -19.83 =005 . 438147 1787%=404
P Y 3  835=173

1130167
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=9

imilar e ata results show that in general the resolution of a
complex least squares fitting can be very hlgh provided a surficxent equency region
is covered.

these and similar svntheti

III. EXPERIMENTAL DATA

The use of synthetic data in Section II had the advantage of being a complietely
controlled way of seeing how the introduction of error affects the ability of a
complex least squares procedure to yield estimates of parameter values. For experi-
mental measurements this is generally not the case and so the success of the method
in modeling measured data taken on real systems is the ultimate criterion of its
usefulness. :

The frequency response of the actual N = 3 ladder network of lumped-constant
circuit elements of Fig.4 was measured using a Solartron type 1172 response
analyzer. The experimental cell arrangements and equipment have been described
elsewhere [20]. Here the real values of Y had four decimal places and the imaginary

narts had either three or four. Freguencies were mna“v spaced in log( f\ with a ratio

LSS GRS TatAITL SANIUN U LURALL ATt ANAS VRS Ry Spallel 22 X5 asil & s_ay?

of about 1.58 and extended from 0.4 Hz to 10¢ Hz. Three-dmlensmnal perspective
plots of both the Z and Y data are presented in Figs. 5 and 6 respectively. In Fig. 5
the origin of the Re(Z) axis is at 2.5 k&2 and in Fig. 6 the origin of the Re(Y') axis is
at 120 puS. As usual, the origins of the imaginary axes are at zero. There is very little
separation apparent in Figs. 5 and 6 bztween the sections having 27.5 ps and 211 pgs
time constants, even though their ratio is 7.7. Unity weighting proved to yield results
with slightly smaller parameter standard deviations for these data than did W=P .
weighting. The parameter estimaies found from Y fitting are shown in parentheses in
Fig. 4.

These results show good agreement with the nominal values. It is likely that the
least squares estimates are, in fact, appreciably more accurate than the nominal

12 nfF
(l2.0't’I ;':LO.02)

11

{ I03+nF
°_‘22V9V5"—‘Q (102.1 [k 0.3) &
(2292.5 £ 1.2) 1

WAL
2405 Q
(2410.821.6) L_Ann,
2053
(2067 +2.0)

Fig. 4. Test circuit involving lumped elements. Nominal values are the numbers on top, while those in
paientheses are the complex least squares estimates.
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CEImiZ)

2 UNIT: | <
- Log (£} LNIT: (

Fig. 5. Perspective three-dimensional plot of the Z* response of the circuit shown in Fig. 4.

values since the former represent the result of many individual measurements. As a
check the 12 nF capacitor was remeasured at f= 120 to 10® Hz by using a General
Radio type 1680 bridge, yielding values which ranged from about 11.9 to 12.25 nF
with some slight tendency towards increasing values with increasing frequency. The
mean and standard deviations of nine measurements were 12.09 =0.15 nF, in close
agreement with the fitting result. Fitting to data in impedance rather than admit-
tance form gave parameter estimates very close to those in Fig. 4 but with apprecia-
bly larger parameter standard deviations. On the scale of Figs. 5 and 6 no difference

[ ——

Y UNIT: 40 #s
Log (f) UN!

Fig. 6. Pérépéctive thkee-dimensid@al plot of the ¥ response of the circuit shown in Fig. 4.
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B-PbF, at 474 K

2

(13.29+0.24) nF
{

(2280 +16) 0 (41.6+33)nF +—°

L AAA—
1931255)Q

{2.196 + 0.008)}-10"%
(0.4025 + 0.0018)

(890:40)9.
2p = [AGiw)"]™

Fig. 7. Equivalent circuit used to fit admittance frequency data of B-PbF; at 474 K. Complex least squares
estimates and the estimated standard deviations are shown in parentheses. A constant phase element is
used here for Zp,.

would be seen between the original data and values predicted from the fit.

Finally, to illustrate the application of complex least squares to actual measure-
ments on a distributed system, data was obtained on S8-PbF, with platinum paint
electrodes at 474 K. Both Re(Y) and Im(Y) were given to four decimal places and
27 points spanned the range from 0.2 Hz to 20 kHz. As usual, frequency values were
taken to be exact. The circuit used for fitting is shown in Fig. 7 with Z, given by a
constant-phase element [21] of the form Z, =[A(iw)"]”'. Here 4 and n are
frequency independent parameters and 0<n<<1. A Z fit with W= P gave the

-Im(Z)

ST -

L

Z UNIT: 6 K2
Log{f) UNIT: |

Fig. 8. Perspective three-dimensional plot of the Z* response of 8-PbF, at 474 K. The data pomts are
indicated by solid circles and the complex least squares fitting results by solid triangles. .
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followmg parameter estlmates R, -—(2280 x. l6)9 RR (1931 ES 55)9 CR
(1329 %0:24) aF, R, = (890*‘40)&1 Cx=(41.6 =3.3) nF, 4 =(2.196 +0.008) X
1075 and ir- —(0 4025 % 0.0018). Desplte the fact that seven. parameters are used, the
- relative parameter- uncertamty estimates are all less-then- about 8%. D

~ The actual complex least squares fitting results are shown as a. three-dnmensmnal,
'lmpedance plot in Fig. 8. Here the original data peints are indicated by small solid
circles (a solid line in three dlmensmns) while points at the same t‘requencnes
calculated using the fitted parameters values in the circuit are designated by small
solid tnangles Most of the original and calculated points fall so close together that
they cannot be distinguished. Only at the lowest frequencies do any differences
(whose relative errors are still less than 2%) appear. The lines with short dashes are
_associated with the original data and those with longer dashes with the calculated
points. These results are only one specific example of the power and utility of
employing together non-linear complex least squares analysis and three-drmensnonal
perspective plotting.

APPENDIX
Fitting data to a circle

The problem of finding the “best circle” through a set of data points in the plane
(x;,3,), with i =1,... N, is not quite as arcane or pedantic an exercise as it might at
first seem. The problem has arisen in several quite applied contexts [8, 22] and could
be related to the problem of resolvmg multiple time constants [9] discussed in
Section II of this paper. Also, in his text, Brandt [23] discusses the least squares
solution of this problem. As necessary ingredients to such a least squares analysis
one needs initial estimates of the radius, R%, and the coordinates of the circle’s
‘center, ( P,°, P2). Following Brandt one could arbitrarily pick any three points (to fit
points to a circle, of course one must have N=3) and obtain the following
estimates:

‘P": =0.5 -

X(y s )2 [(x% YZZ)_(xz 2)] (J’zl .V| [(x% 2)—(x2+ 2)]

"Ll =008 +98) = (<2 058)] = (s =) (52 432) = (s +52)]
' x[(xz.—xl)(}'s » .Vz) (x, : xz)()’z }’n)]_ 7 S o : : (Al)
R=[(m-V+(n-2)]" )

Here the points are labeled by | 2 and 3 for sunphcrty The problem wrth this
procedure is that it does not take allv points into account, ‘and hence the reliability
of eqns (Al) and (A2) is very dependent upon the xmual chcxce of the three pomts
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One could of course consider all N!/[3!(N — 3)!] triplets and average the results of
eqns. (Al) and (A2). However, this could be rather time consuming and is also
unduly influenced by the effects of a few points having large deviations from the
“best circle”. As an alternative approach we give here a generalized—inverse or least
squares—solution [24] of the over-determined system of equations, -

wWirap=w'2RB . . ‘ - (A3)
Here A is an N X 3 matrix, whose ith row has the form
A4, =(x,y,1) (A4)
W1/2is an N X N weighting matrix,
Wy =(w)"*8, (A5)

where w, is the weight associated with the point (x;, y;). Finally B is a N X 1 column
vector with

B, =—(x?+)7) (A6)
while P is a 3 X 1 column vector with
—2P,
P=| —2p (A7)
- )
The parameter C is related to the other parameters by
C=(R)+(P) —(R) (A8)

For more than three points not all on the same circle, eqn. (A3) has no solution.
However, if at least three of the points are not co-linear, then the matrix A has full
column rank. Then the generalized solution of eqn. (A3), which is defined as the
unique minimum of the function f (P, P,,R)=(AP — B)TW(AP — B), is given by

P =(ATWA) 'ATWB (A9)

where W= W'/2W'/2 and AT represents the transpose of 4.

This method has the weakness that each point (x;,y;) is assumed to have an a
priori weight, w,, which is a measure of how well that point lies on a circle. These
weights are not easily related to any intrinsic uncertainties in the measurement of the
coordinates x; and y,. In particular, no provision is made here for the case where the
error in the x measurements is appreciably different from the error in measuring y.
However, such intrinsic x and y weights would be used in the actual least squares
calculation of P, P, and R for which P2, P? and R® are intended only as good
starting estimates. In the absence of any other mformatlon the choice w; = 1 would-
probably suffice. If one defines the average of a quantity q as

<a>E[ » a,-w,-]/ > wj] (A10)

J=ti i=t
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:then eqn. (A9) becomes o

(xz) (xy) (x) =i (x(x +y2)) S ST

B KGR SRR 628 B KE7 Con ) N L (N 1))

(x); ERCONERE B PENEN T
Hence, one gets the following results:

B A '=:[eov(y,x2_+y2')'><v cov(x,jy)‘—'- mv(x,x2.¥y2).x dz(y)]/b | (AIZ)
PP =[eev(x,x2'+y2) Xcov(x,y);-cqv(y,;_z +y2)>< oz(_r)]/D - (A13)
RO =[(22) + (BP) + (x? +y?y—2P%xy—2P% )] " (A149)
Here the covariance of quantities a and b [25) is denoted by
cov(a,b) = ((a—(a))(b—(b))y=(ab)— (a)(b) | (A15)
while the variance of a is defined as
c2(a) =cov(a,a)- (A16)
The denominator in egns. (A12) and (A13) is given by
D=2{[cov(x,y)]* ~02(x) X a?(»)} ' (A17)

At this point it should again be emphasized that eqns. (A12) through (A14) are
not the least squares solution of the problem of fitting points to a circle. That is an
inherently non-linear problem in contrast to the linear result of eqn. (A11). In fact, it
is not difficult to show that P2, P and R° minimize the sum

; .
(PR R)= Zw[(x, Y+ (5-R)-RT (A18)

i=1
In contrast, for unit weighting assigned to both x and y values, a least squares
analysis gives values of P, Py, and R which mmmuze the sum. :

APt R) = 2{[(x S ) L L (a19)

If oneis mterested in the less general problem where one of the coordinates of the
circle’s center, say P, is known to be zero, then the patameters P° and R°® which

~minimize the funcuon (PP, =0, R) are gwen by
P? =05><[cov(x x? +y2)]/[02(x)] e L (A20)
RO _[<x2 +y2)+P°2 2<x>P0]l/2 L e - o - . (AZI)

if one exchanges x and y, then eqns (AZO) and (AZI) glve the results for the case
. where B, 1S fxxed at 0. S :
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To connect these results to the determination of model- circuit. parameters,’
consider the Voigt network of Section II again with (R,, C; R,, G;) =
(102, 0; 1000 Q, 1 pF). From a knowledge of the problem one has P° =0.: Hence,
one deduces that R, = P® — R® and R, =2R°. Following Despic [8] the value of.
the capacitor C, can be found mdependently of R, and R, as -the slope of
—o/Im(Z) vs. . This result can be found by the non-weighted linear least-squares
formula, C, = co{w?, —w/Im(z)]/6%(w?). Of course this result has used only half:
of the data available by ignoring the real component of the frequency response. In_
addition, one has no parameter uncertainty estimates from this approach. However,
it is interesting tc compare the results obtained by this simple analysis with the
nonlinear complex least squares determination of the parameters. Using the syn-
thetic data of Sector4 with n =2, one obtains the estimates R, =9.66%;, R, =
998.34 2, and C, = 1.0029 uF. One sees that these results, parucularly those for R,
and R, which were determined from the circle fitting, are extremely close to the.
correspondmg W =0 results of table 1. Thus, it would appear that eqns: (A20) and
(A21) provide good initial estimates to an actual least squares analysxs '
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