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ABSTRACT : 

An analysis is made of the ability of nonlinear complex least squares fitting to yield useful estimates o f  
parameter, values occurring in-equivalentcircuits. In addition, three-dimensional perspective plots are 
presented which show the full frequency response of either impedance or admittance data. Three different 
kinds of data are studied usingtixc~e two methods. : . . . . . .  

-For a ~ven se tof  four-circuit elements~tWoresist0rs and two.capacitors) artificiallycomputer-genera!ed 
impcdanceand ~admi~tai~ce.values are c'onstructedf6r a Voigt Circ!Oi't ha~ng two time constants. These 
exact -results- ~we. flien :c0ntaminated either by: digit  round=0ff: " or addition. 0f zero :mean, normally 
distributed random noise..A~complex least:squares analysis is then made on the contaminated dam and 
the resulting ¢sfimat.esl.0f thecircuit parameter:and thei r a~a t ed . s t anda rd . e r r0~  are compared to.. the 
exact start~g_ value~.: Fog the c~se'whe~ " . one 6 f  the: cap.ac~t0rs isv~nighlng s.'a~!l, the..opi!m~ ! - rang e Of: 
measurement over lhe3res~fin$'sefi~:~ircle.in the ¢ompie~impdancc plageis d i s c u s S  :in detail. FO r this 
-Case the.aecuraCy0f ihp{it data.required .to re~Ive the yalues Of :the tworesistm-s ~hen:_th~are separa__ted - 
in size by.tw0orders Of magnitude is. determined.The otherex _treme:0f: two time' Comt an tswhicha~ not 
well ~-parated.i~.aL~o..studi~.:Again 0he ~.tains approximate ~s~nal~ of.both the(range Of frequencies 
and tile inherent, a ~ _ o f ,  the data n ~  t 0  adequatelyresolve all :four circuit parameters. . - 

" The- actual frequency depend .ent ~ lmi t tanceofa  real iaddet; networkof resistg~ ~ d  ~ p ~ t g ~  ha~ng  
. three diffet~-nt time-constantsi~.as-meas-ured on a Solar/ton type.! IT2 .responseahalyzer. These'data Were. 
then at~yzed :using.thec6mplex~l~ti~squ,~esprocedUre and thefi!t~! ci~uitp:ar:~_ ~. eters were all in c!o~ 
a g r e ~ t  with::the!r]nomi,~! ex~erimental'.va!uesL --[~i-i )~: 3: ~ : ::.:].-:"~ ~]-- -".:: -.-~-:/-: . :- ~- : .  :"." - . 

. ~- ; Finally~*.lI!¢ ~d ~W-~'|t~n~: ~re~ponse 0[:~-PbFz a t  ..474K Was racasta~I/.on the.Solarrron:l 172. A complex -: 
least-i~Ua.~s i-analysisl p.£th~i:da~yidds, a:g~, fit .. when an-cquiyTa!¢nt :]ci~ui.t .¢mplo~ng: a_ constem t 
ph~f¢ lemen!  ~ i A : ~ m ~ i O i i ~ . i ~ l ~ f i v e  plot :~0~."  gl Very ¢lear!y:~e"agreement between " 

:fitiedand~measuted:vali~es~6fihe-~inped-.aace:is sh-6wn~ i~ : : i - . :  ..--!:. ::": [ ~-(!, ._: :-:. ~... .i":"~. i:~.". .... ;f-.  [.~ 
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I. INTRODUCTION 

The estimation of parameter values entering theoretical models o; equivalent 
circuits from impedance and/or admittance data is important in obtaining quantita- 
tively accurate representations of the frequency response of liquid or solid electro- 
lytes. Such analyses have long been used [ 1] and occur throughout the literature [2]. 
However, the methods employed in actually estimating the parameters and, in 
particular, the associated error distribution of the parameters, have often been quite 
crude. These latter error estimates are often more significant than even the parame- 
ter values themselves in determining which theoretical model is most appropriate for 
a given set of data. 

The aim of this paper is to investigate the applicability, power, and types of 
results that a nonlinear complex least squares minimization [3,4] can give for several 
kinds of data. Here the word complex is taken to mean that both real and imaginary 
components of the data are simultaneously fitted in the least squares ininimization 
[4--e]. In addition, we demonstrate the value of three-dimensional perspective 
plotting of impedance and/or admittance data as opposed to ordinary complex 
plane plotting. 

Several recent studies [7-IO] have been made which involve relatively simple, 
non-least squares determinations of model parameters. All of these, however, have 
used electrochemical data taken on actual, distributed systems. Thus, a fundamental 
understanding of the inherent ability of the method of analysis to resolve different 
parameter values may remain obscured or exaggerated by the presence of systematic 
errors which inevitably appear in fitting measurements on such real electrolytic 
systems. To clarify this aspect, in Section II several lease squares analyses are 
performed on artificial, computer-generated circuit data which have been con- 
taminated by either digit round-off or the addition of zero mean, normally distrib- 
uted random error to each data value. The circuits analyzed consist of simple Voigt 
networks of ideal resistors and capacitors. In Section III, compiex least squares fits 
of actual frequency response data for two different experimental systems are carried 
out and discussed. The first such system measured involved an actual ladder network 
of resistors and capacitors having three different time constants, while the second 
one was a sample of /3-PbF2 at 474 K. In this latter case, a three-dimensional plot 
(Real Z, -ImZ, logf) showing the agreement between fitted and measured values 
of the impedance 2 as a function of the frequency f is also presented. 

II. SYNTHETIC DATA 

In general the frequency response of a system does not uniquely determine the 
circuit used to model that response. For example, in Fig. 1, three different circuits 
are shown. Each circuit has six lumped elements (three ideal resistors and thee ideal 
capacitors) and three (N = 3) time constants. The total impedance for all three 
circuits will be a polynomial in angular frequency, w, of deggee four divided by a 
polynomial of degree three. For any given choice of the six elements for one of the 
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VOlGT 

MAXWELL 

Fig_ 1. Three N=3 circuits which can have the same impedance-frequency relation. 

models, there exist corresponding sets of circuit elements for each of the two 
remaining networks such that all three have exactly the same impedance at ali 
frequencies_ The choice here of circuits having three time constants is unimportant, 
and such ‘an equality can be achieved for arty ZV [ 11,121. Starting from the Voigt 
network, it is possible to obtain simple algebraic formulae for the corresponding 
Maxwell or ladder circuit parameters [13]. 

However, it seems reasonable for any specific real extended physical system that 
the actual response is best representep by a unique circuit. Different theoretical 
response models can lead to different equivalent circuits, such as any of the three of 
Fig. 1. Even when one believes that a particular model and circuit is appropriate, one 
may be wrong, and it is thus desirable to have means available to test the question. 
One way to discover which of several circuits is most appropriate is to repeat 
measurements over a variety of different conditions (e.g., temperature or electrode 
separation). For a less appropriate circuit , most if not all of the parameter values 
will then vary appreciably, while for the most appropriate model some of the 
parameters may not vary at all, and most of the variation would be expected to 
occur in a minimum set of remaining parameters. For example, if all but a single 
parameter of the ladder network are taken to be independent of. temperature or 
electrode separation, fitting of impedance data derived from this circuit, for say- two 
different separations, using either of the other circuits of Fig.‘1 ‘will yield equivalent 
overall fits but fits in which, in general, not just one but all Or most of the 
parameters values estimated from the fitting will be .fotmd .to be separation depen- 
dent. Thus, a &ngle fitting of a set of data .to a given equivalent circuit will not 
generally yield estimates of the most appropriate p&meters unless the equivalent 
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circuit has already been proven to be the most appropriate of those with the z&e 
impedance-frequency relation for the situation under study. 

. 

Artificial computer generated impedance data was c&tructed for ti two-tin& 
constant Voigt network having (R,, C,; R,, C;) ~(10 Q, 0; lo3 Q,. I@)- The result- 
ing three-dimensional (conjugate) impedance (Z*) plot is given-in Fig. 2. The origin 
of the log(f) scale is taken at -2 for these data. The real and imaginary parts of the 
impedance are plotted in units of 200 0. The conventional two-dimensional Z* plot 
(here the back projection) is just a semi-circle centered on the reaI axis at z* = R, + 
(R,/2) and having radius (R,, ‘2 )_ The capacitance C;_ manifests itself in this figure 
only in the frequency dependence shown along the log(f) axis. For these data 145 
points were generated starting at a frequency of 1.389 X 10m2 Hz and ending at 
1.824 MHz. For the conventional two-dimensional Z* plot, thismeans that the fist 
point on the semi-circle starts at an angle of 0.01” and the points extend to an angle 
of 179.99”. Coverage of the 145 points was such that they are more or less equally 
spaced in angle with the angular separation of adjacent points being about 1.25”. 

Following Despic et al. [8], for the purposes of data analysis one can consider .the 
semi-circle being divided into three sections: the first, Sector 1, from O” to 30°, the 
second, Sector2, from 61.25” to 120”, and the last, Sector3, from 151.25” to 180”. 
For the data shown in Fig. 2, Sector 1 contains 25 points, Sector 2 48 points, and 
Sector 3 24 points. An additional sector covering the whole semi-circle, but skipping 
every other value (thus, having a spacing of about 2.5O) was designated as Sector4 
and contained 73 points. In Fig. 2, Sector 1 starts with the first point and goes up to 
the first doubie projection into the log(f), Re(Z) plane. Sector 2 starts at the second 
double projection and goes up to the third. All the points after the last doubIe 
projection constitute Sector 3. 

I -1m (2) 

Fig. 2. Perspective three-dimensional plot of the Z* response of a N =2 Voigt circuit when 
(R,. C,; R2. C,)=(lOSLO; lo3 Q. 1 gF). Individual data points are represented by small squares and 
connected by a continuous curve, while planar projections are shown odi as continuous curves_ 
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: ,To s&Iate..expcrimental .erroi in these-exact_(actually~ l&digit) data; the number 
of digits i&S ro*d&d-.tO- n(‘n G 4). Then, a Complex Itist. squares determination of 
R,; $, ar$ G-was mzide-for a variety.of.s&ztors and, choic&of-x; The virtues and- 
advantages of-a-least squ& analysis are .tiell known [4;14]..Among these are that 
the resulting _ solution, :-even for a. non-Gaussian distribution of. error, is. both 
unbiased and has mlnlmum variance: For. the case of impedance and/or admittance 
data -a c&plex least SquareS fit- puts both real zkd imaginary components on an 
equal footing (apart- from -any- ikquities brought -about by weighting differences). 
The results .of the .analysis are e+imatcd -parameter values and their -estimated 
‘Uncertainties, along with an estimate of the overall standard deviation of the fit, a,. 
Thus, if. the data determine some -parameter values better then others, this is 
immcdiatety obvious. Furthermore, in the analysis of real extended systems equiva- 
lent circuit. types such as those of Fig. 1 should always lead to the same uf. However, 
the relative parameter uncertainties will in general differ, and they thus will help 
provide information for discriminat& between different models. 

Let the complex function, f(w; 2) = f;(w; Z) + if,(o; .K), represent the imped- 
ance (Z) or admittance (Y). response of the model or equivalent .circuit used to 
describe fhe system. Here! is a function both of the angular frequency, o, and the 
set of model parameters, R. For the purposes of this fit, the frequency, as is usually 
the case experimentally, is assumed to have negligible error as compared to the 
“measured” values of Z (or Y). In this approximation, with measurements made at 
angular frequencies oi (i = 1,. . . K) of complex 2 (or Y) data of the form xi + &, 
the goal of a complex least squares analysis is to find that set of parameters which 
nkiimks the weighted sum 

Here w: and w/ are the weights associated with the ith data point. If the standard 
deviations a: and c$ of each point are l+ow+n, then wiX = (c:)-~ and w: = ( I$‘)-~. 
The choice of w/ = wiV = w, where w is . a positive number independent of i, is 
equivalent (as far as the choice of R for which S is a minimum) to unity weighting 
(i.e., tmweight.ed data). 

The initial least squares determination of parameters was done by a computer 
program employing the LevenbergMarquardt ]15;16] algorithm. This part of our 
code was supplied by the Argonne. Laboratory and was_ written by B.S. Garbow, 
ICE. Hillstrom and J.J. Mark The final output value of R (the converged parameter 
set) of &is pti of the total prograikwas then-uSed &the starting input p&meters- 
for a sqkrate coi$uter c&le ~hic~~calcuiatq.i; akong other things, the parametei 

~covarianc& ‘&a%_ This provided us .+th a statistical estimate of the error distribu- 
tion of the parameters. This Ikogram is basedon a nonlinear least squares package- 
given to us by J-IX Olson of Umon-.Carbide Corporation and written by H-1. Britt 
and R.H., L&&e_: [6]. All offthese calculations were done on an IBM- 360/370 
operating sjrsteti$ at. the University of-North Carolina Computation Center: 
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The complex least squares analyses were carried out on both unweighted (or unity 
weighted) data, designated by WE 0, and, in addition, with the assumption that the 
random errors in the data were proportional to the magnitudes of the data values 
(WE P)_ The results are given in Table 1. 

Here the numbers following the 2 signs are the least squares estimated parameter 
uncertainties. As one would expect from Fig, 2, the ability to resolve R, (here 
R,/R, = lo-‘) is most difficult if the data only samples the low frequency taiI of 
Sector 1. This is true even for n = 3 (i.e., data accurate to about 0.1%). If data from 
Sectors2 or 3 are used, even the n = 2 case gives parameters which are within about 
a percent (the “inh&ent” accuracy of the data) of the “actual” values_ It is also 
interesting to note that Sector 2, again as one might have predicted from Fig. 2, is the 
optimal sector. Since it samples the central portion of the semicircle, it gives good 
estimate-s of all three parameters, even for n = 2. In fact, as Table 1 shows, the n = 2 
data analyzed over Sector2 give slightly better results than Sector 1 data which is 
accurate to 0.01% (n = 4)! Perhaps even more surprising is that the analysis for n = 2 
on Sector2 appears to give results at least as good as the analysis made over the 
whole frequency range (Sector4). Presumably, this could be interpreted as meaning 
that with an accuracy of only about 1% (n = 2) one should in fact avoid impedance 
data from either end of the semicircle, where errors are disproportionately exag- 
gerated_ Finally, one sees that the parameter uncertainty estimates for Sections 1 and 
3 are often too small. In contrast, the analysis of Sector 2 data gives results which are 
within 2 estimated parameter uncertainties of the “correct” values. The general effect 
of the W= P vs. the W= 0 weighting is to improve both parameter and parameter 
uncertainty estimates. 

The fact that data from the middle portion of the impedance semicircle is the 
most reliable in estimating par+meter values has also been noted by Despic and 
co-workers iSI. However, because their treatment was not a full least squares 
determination and, in particular, since their estimation of parameter uncertainties 

TABLE I 

Complex least squares fitting results for the synthetic impedance data of Fig. 2 when error is introduced 
by digit roundoff 

IV sector n RI/Q R2/Q CL/PF 

0 
0 
P 
0 

0 
0 
P 
0 
0 
0 
P 

I 
I 

1 

2 

3 
4 

1 

2 

3 
4 
4 

4 10.56’0.1 I 999.45 I% I .03 I .oO 1 I 2 0.0323 
3 22.23 -e 9.95 988.17-c9.70 1.0245 -‘0.0206 
3 15.80’6.04 994.43 f 5.88 1.0110‘0.0122 
3 10.26-cO.14 999.95 -CO.08 1.0004’0.0003 
3 10.01=0.05 999.332 1.70 1.0004’0.0003 
3 10.01 -co.10 1000.24~0.12 0.9999 * 0.0003 
2 46.54-c20.1 961.87* 19.6 I .0828 -tO.O45 1 
2 10.14* 1.24 1c@o.39-c0.70 I.0003 -cO.O026 
2 9.84ZO.16 985.22k5.20 1.0024-0.0008 
2 9.65 -c 0.49 998.32-cO.57 0.9982-cO.0014 
2 9.89=0.04 999.2 I -co.80 0.9999 --‘0.0009 
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was non-statistical, they seem to have underestimated the region of parameter space 
where-a ,good resohition of .all parameter values can be obtained. This explains why 
our Sector 2 analysis of data with n. as smalI as 2 would s&m to contradict their 
conclusions that acceptable accuracy in .the determination of R, is -obtainable only 
when R, is not’more than one order of magnitude smaller than &. 

It is interesting -to note that Despic et al. claim td have done a s&tical 
determination- of R, and R, by a least squares fit of the impedance data. to a 
semicircle (not complex least squares). We too have considered this problem, and 
show in Appendix A how a generalized inverse technique can give excellent starting 
values for both the rGlius and the circle center. 

Since the minimization of eqn. (1) can be done for either 2 or Y data, it is of 
interest to see how this choice of measurement type affects the parameter estimates. 
Accordingly, the exact (thirteen digit) impedance data of Fig. 2 was inverted to yield 
Y resuhs. .The grouping of points into the various sectors was left unchanged_ Errors 
in the data were again simulated by rounding to n digits. The results of a complex 
least squares determination of R,, R,, and C, for various values of n and different 
sectors are presented in Table 2. Here the W= P and n = 2 analysis of Sector 1, 
which was presented in Table 1, is not given. The reason for this omission is that 
although the Levenberg-Marquardt algorithm u&verged to a parameter set having 
(R,; R,, C,) = (0.21 Sz; 1009.89 Sz, 0.9821 pF), the Luecke-Britt routine did not con- 
verge. Thus, parameter uncertainty estimates on all three parameters were not 
obtained. From previous fitting work this seems to illustrate that, while the Leven- 
berg-Marquardt algorithm seems more robust (i.e., it will converge for a very large 
class of problems) and is very fast in terms of computing time, it sometimes 
converges to local minimum solutions which are not fully reliable (not the absolute 
minimum of the sum of squares). Thus, our use of the second independent analysis 
on the results of the first gives Us a powerful check on the reliability and stability of 
the estimated parameter values. 

From Table2 one sees that the use of Y data, like the Z fitting, gives the worst 
results when only Sector 1 is used. However, in contrast to the impedance results, 

TABLE 2 

Complex least squares fitting qf the synthetic admittance data asociated with the impedance plot of 
Fig. 2 when error ii introduced by digit roundoff 

W sector n R,/Q RJQ G/PF 
0 I 4 9.96 10.22 KloO_o4~ 0.21 l.OOC!O~O.OMM 
0 1 3 16.67 -c I .87 993.59-c I.83 1.0133--‘0.0038 
P 1 3 16.83~8.11 993.43 zk 7.97 1.0137=0.0165 
0 2 3 10.39*0.40 1000.09 = 0.3 I 1.0014~0.0008 
0 3 3 10.00~0.001 1002.3di- 3.20 1.oaO1~0.0002 
0 4 3 10.00+0.005 1000.50C 0.61 1_oclO5~0_0001 
0 2 2 2.54*2.92 1002.15= 2.20 0.9834*0.0062 
0 3 2 10.01 =o.oi 979=29 0.9955-c0.0017 
0 4 2 10.00~0.005 lOtlO.75-c 6.15 1.0002’0.0010 
P 4 2 10.00~0.05 1004.07’ 1.72 l.claO31-0.0015 
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Sectors3 and 4 give better estimates, at least for R, and C;, than does Sector2. 
Furthermore, the advantages, if any, of W=P weighting are small. A direct 
comparison of Tables 1 and 2 reveals that in Sector 1 a Y analysis gives better results 
than the corresponding Z fit, though with W= P the Y and Z results for n = 3 are 
comparable. The Sector2 Z fit (which as already noted seems to be the optimal 
range for Z) gives better results, especially for n = 2, than the corresponding Y 

analysis_ In Sector3 the Y data give better values for R,, but not for R, and C,. 
Finally, the Y fit of Sector4 even for the worst case of n = 2 gives parameter values 
accurate to witbin 0.5%. 

In summary, for this type of Voigt network, one can conclude from our work that 
with data taken over the entire frequency range a complex least squares fit of Y data 
gives the best results. However, for data in the middle of the impedance semicircle, a 
Z fit would be somewhat preferred. 

One could well argue that digit round off is not really a simulation of real 
experimental error. As an alternative procedure we contaminated the exact (13 digit) 

results with random noise. Let x represent the 2K-component vector of exact 
impedance or admittance values. Then thejth “measurement” of x is denoted by ji’ 
with 

zj =x;[l +dG;] 

Here i is a component index with 1 d i d 2K and d is a positive number. The vector 
Gi has 2K components and contains Gaussian or normally distributed numbers 
having zero mean and unit standard deviation. This procedure contaminates the real 

and imaginary parts of the exact data completely separately so that the “errors*’ 
added to them are completely uncorrelated for each frequency considered. For large 
K one would expect that approximately 68% of the gj would have an absolute 
fractional deviation from their true values less than d. The Gi vectors were generated 
using the International Mathematical and Statistical Library (IMSL, 7th ed.) routine 
GGNML*. This program uses a pseudo-random number generator which for J 
different choices of a “seed” produces J different vectors GJ. We generated ten 
(J = 10) such sets of contaminated data from the impedance values in Sector 1 
(K = 25). The results of a complex least squares fit for d = 10 -’ are summarized in 
Table3. The choice of GT equal to a, b, or c stands .for three alternatives in 
analyzing the contaminated data. First from each of the ten data sets a set of 
parameters was determined. The average and standard deviation of these parameters 
over the ten trials are presented as GT = a. In a slightly more realistic simulation of 
experimental data, a new composite data set was generated with data points gf given 

bY 

(‘3) 

* IMSL is a collection of FORTRAN mathematical and statistical subroutines developed by Intema- 

tional Mathematical and Statistical Libraries, Inc.. 7500 Bell&e Boulevard. Houston. TX 77036. USA 



TABLE3 

Complex least &ares fittihg &sults for th&syn~etic~im+dance data of Fig.-2 when zero niean, normaily 
distributed random error-is added to each point 

w sictor -CT RI/Q R2/Q C2/@ 

0 1 
P. I 
0 I 

P I 
S I 
0 I 
P I 
S I 

a. 

;: 
b 

b 

c 
C 

c 

I I .89+ 7.76 
11.51~ 6.10 
iO.61- 2.30 
I I.382 1.43 
11.15” I.41 
23.462 IO.01 
2i.i6= 5.81 
18X505= 6.52 

998.15ki.30 
998.42-5X6 
9ti.29k2.25 
998.53 = I A0 
998.76 * I .37 
986.9O-c9.77 
989. IS 2 5.66 
991.60’6.34 

1.0038r0.0154 
i.OO33-cO.Oi22 
i.OOi3-cO.OO46 
1.0029~0.0029 
1.0024~~.0028 
I .0270& 0.0203 
I.0221 co.oi2o 
1.0168~0.0131 

and intrinsic uncertainty 

Thus, in addition to the IV= 0 and W=P options, one now has the “natural” 
weighting choice, IV= S, where wjC = (c$)-~. The analysis performed on the com- 
posite data is called 6. Finally, the GT= c analysis was made on the GT= b 
composite data rounded off to three digits. It should be emphasized that the 
uncertainties listed for GT = b or GT = c come from a least squares estimation of the 
parameter covariance matrix, while those for GT= a are just the ordinary standard 
deviations associated with estimating an average based on ten trials. 

As one would expect, the. GT= b analysis gives the best results. Furthermore, a 
comparison between Tables 1 and 3 shows that the effect of rounding to three digits 
is a more severe deterrent to an accurate determination of parameters than the 
presence of random noise in the third digit. It should be noted, however, that this 
conclusion is being made for the worst case situation of data from Sector 1. 
Nevertheless,‘from these results one may conclude that if the data are adequately 
distributed in frequency a complex least squares fit has very strong resolving power 
even for data accurate to 0.1% or worse. 

Although we have not investigated the effect of adding fully correlated random 
error to real and imaginary data values associated with the same frequency, one 
should realize that roundToff or truncation induces correlation between the errors 
thereby produced. Thus, our round-off results, which are generally worse than those 
with “equivalent” uncorrelated Gaussian error added, throw some light on this 
question. But equivalent truncation or round-off will generally yield worse data in 
any event since added Gaussian error will not disturb some data values much or at 
all, leaving them at or close to their proper values, while truncation degrades the 
accuracy of all points. 

A more complicated and more relevant problem in parameter estimation occurs 
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for a Voigt network having two distinct time constants. The determination of lump 
circuit elements is then closely related to the problem of the resolution of two 
overlapping semicircLes (in this context in the impedance plane, but other applica- 
tions would include nearly overlapping Debye curves for complex-dielectric permit- 
tivity). There is already a great deal of literature on this subject [9,10,17-191. These. 
methods are based on either direct (i.e., finding the location of centers and radii) 
iteration or transformed (from circles to straight lines) iteration procedures. Thus a 
study of the resolving power of a complex least squares estimation for this problem 
is warranted. 

Synthetic Z and Y data were generated .for the following set of parameters: 
(I?,, C,; R,, Cz) = (103!&0.1 pF; lO*Q, lo* pF). The data were chosen to be ap- 
proximately equally spaced in log frequency with a frequency ratio of 10”s. A total 
of 48 data points were generated starting at f = 0.1 Hz and ending at f = 74.99 kHz. 
The above choice of parameter values yields a time constant ratio of KKJ and 10: 1 
difference in the size of the two semi-circular arcs in the resulting impedance plane 
plot. A three-dimensional impedance plot is shown in Fig. 3, where the origin of the 
log(f) scale is taken to be - 1. 

As before, to simulate error the exact data values were rounded to n digits. The 
results of a complex least squares fit are presented in Table4, where the choice 
T= Z or Y indicates the type of data (Z or Y) which was analyzed. These results 
again show the generai superiority of W= P weighting compared to the unweighted 
W= 0 fit, but the difference in resolution ability between 2 and Y analyses is not 
clear. One can, however, see that the parameter estimates are good even for n = 2. 

-IM(Zl 

Fig. 3. Perspective three-dimensional plot of the 2’ response of a N=2 Voigt circuit when 
(R,. Ci: R,. C,)=(103 SZ.O.1 pF; IO’Q. 10” FF). Two-dimensional projections are shown as dashed 
lines. 
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complex kast sqii&s fi&lg results foAyllthe!&$a&of a Voigt - 
l-a&of 100 .’ 

arcuit with-t+ timb constints hav&a 

W T n R,/Q C, X lO/@F h/Q C2/H= 

0 z 3 1000.04-eO.28 1.00015~0xloO71 100.28 -c 0.34 101.77 -e 0.94 

P z 3 999.7g*o.19 1.aoo11’0.00019 .100.02 * 0.06 99.992+ 0.117 

0‘ Y 3 1tlOO.OO~1.48~ I.OOO42-~O.ooO13 100.07 -c 2.56 100.01 2 7.11 

P Y, -3 ‘1ooO.03-c0_16 1.00028’0dOO23 99.98 1 -c 0.061 100.11 i- 1.04 

0 .z 2 996.3 *2.5 1.0020 -c0.0064 106.5 -c 3.0 94.93 -c 7.35 
P z 2- 999.3 = 1.7 1.0028 .~0.0017 99.83 -c 0.51 99.84 f 1.03 

0 -Y ..& 998.0 21.1 0.9955. ~-o&GO9 io1.7 z!z 18.8 93.6 k-48.1 
P Y 2 998.9 -cl.2 0.9987 ~0.0017 100.29 -c O-45 99.25 f 0.76 

..Four other sets of synthetic data with different ratios of time constants and arc 
size were generated; From the point of ‘View of parameter resolution the most 
stringent case had (R,, C,; R,, q) = ( IO3 51,20 pF, 10 Q, IO3 pF). These choices lead 
to a time constant ratio of 2 and a size ratio of 200 : 1. The 32 points used here began 
at f = 0.1 Hz and extended to f = 749.9 Hz, with approximately equal spacing in log 
frequkncy (frequency ratio again equal to 1O’/8). Table5 shows the results of a 
complex least squares analysis of these data; For n < 4 and W= 0 the results for R, 
and C, are whdlly u~certaiu and therefore are not shown; this is also essentially the 
case even for ‘W= P when n = 2. 

Again one sets that the W= P weighting option results in the best estimates. 
Although, in contrast to the conclusions drawn from Table?, the choice of analjzing 
Y rather than 2 data here gives m&e accurate parameter values. Finally, as one 
would expect for this very stringent case of nearly equal time constants and one arc 
fiearly negligible in size compared to the other, the inherent accuracy of the input Z 
or Y data must be greater than was the case of the data of Table4 in order to 
achieve adequate resolution_ However, as the n = 3, W-P, Y fitting results il- 
lustrate, one can Still resolve all parameters (and in particular R, and C,) to within 
less than a single esti&#ed standard error of their ‘ckoriect” vahxs. In summary, 

TABLE 5 

Complex least squares fitting results for synthetic data of a Voigt circuit with two time eomtants having a 

ratio of 2 

W T n R,/Q- C&F R,/Q C2/@ 

0 .:z 4 lOOi. Z1.6 19.961=_0.045 S.a $1.6 ‘. -llll-c131 
P z 4 1000.39=0.44 19.989~0.013 9.58 Go.43 1031’ 34 

0 Y 4 999.91 -co.17 2O.iJO~ 26.12 10.0 =4.1 9992304 
P. Y -4 999.%--cO.23 20.00 10.01 10.04-co.23 998-e 17 
P z 3~ . . !005;7 =.I.6 
p .. y-. 3 iBN.8 kl.7 :. 

19.83 -o.@. ~_ 4_!8*1.47. 1787%4(34 

19.96 ‘$OS._ .~. ._ : 8.35- 1.73 ~13~~1167 

. . . . 
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these and similar s_ynthetic data results show that in general the resolution of a 
complex least squares fitting can be very high provided a sufficient frequency region 
is covered. 

III. JZXPJZRIMENTAL DATA 

The use of synthetic data in Section II had the advantage of being a compietely 
controlled way of seeing how the introduction of error affects the ability of a 
complex least squares procedure to yield estimates of parameter values. For experi- 
mental measurements this is generally not the case and so the success of the method 
in modeling measured data taken on real systems is the ultimate criterion of its 

usefulness. 
The frequency response of the actual N = 3 ladder network of lumped-constant 

circuit elements of Fig.4 was measured using a Solartron type 1172 response 
analyzer. The experimental ccl1 arrangements and equipment have been described 
elsewhere [20]. Here the real values of Y had four decimal places and the imaginary 
parts had either three or four. Frequencies were equally spaced in log( f ) with a ratio 
of about 1.58 and extended from 0.4 Hz to lo4 Hz. Three-dimensional perspective 
plots of both the Z and Y data are presented in Figs. 5 and 6 respectively. In Fig. 5 
the origin of the Re(Z) axis is at 2.5 k&? and in Fig. 6 the origin of the Re(Y) axis is 
at 120 $G_ As usual, the origins of the imaginary axes are at zero. There is very little 
separation apparent in Figs. 5 and 6 between the sections having 27.5 ps and 211 ps 
time constants, even though their ratio is 7.7. Unity weighting proved to yield results 
with slightly smaller parameter standard deviations for these data than did W= P 
weighting. The parameter estimates found from Y fitting are shown in parentheses in 
Fig. 4. 

These results show good agreement with the nominal values. It is likely that the 
least squares estimates are, in fact, appreciably more accurate than the nominal 

I2 nF 
(12.07 + 0.02) 

I I 
I I 

103 nF 1 
2295 d-i?, 

(102.1 + 0.31 

(2292.5 r 1.2) I 1 0 

(2410.6 + 1.6) - 

2053a 
(2067 t 2.0) 

Fig. 4. Test circuit involving lumped elements. Nominal values are the numbers on top. while those in 

paxcntheses are the complex least squaws estimates. 
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Fig. 5. Perspective three-dimensional plot of the Z* response of the @rcuit shown in Fig. 4. 

values since the former represent the result of many individual measurements. As a 
check the 12 nF capacitor was remeasured at f = 120 to IO? Hz by using a General 
Radio type 1680 bridge, yielding values which ranged from about 1 I.9 to 12.25 nF 
with some slight tendency towards increasing values with increasing frequency. The 
mean and standard deviations of nine measurements were 12.09 L 0.15 nF, in close 
agreement with the fitting result. Fitting to data in impedance rather than admit- 
tance iorm gave parameter estimates very close to those in Fig. 4 but with apprecia- 
bly larger parameter standard deviations. On the scale of Figs. 5 and 6 no difference 

..\-- 
Fig. 6. Peq&ive ti&xiimensio~al @lot of the Y response of the circuit shown in Fig. 4. 
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&?bF2 ot 4?4K 
(13.29+0.24) nF 

I--+” 

Zn = [A( iw)” J-’ A = (2.196 f 0.008) - IO+ 
n = (0.4025 f 0.00 18) 

Fig. 7. Equivalent circuit used to fit admittance frequency data of p-PbFZ at 474 K. Complex least squares 
estimates and the estimated standard deviations are shown in parentheses. A constant phase element is 
used here for Z,. 

would be seen between the original data and values predicted from the fit. 
Finally, to illustrate the application of complex least squares to actual measure- 

ments on a distributed system, data was obtained on &PbF, with platinum paint 
electrodes at 474 K. Both Re( Y) and Im( Y) were given to four decimal places and 
27 points spanned the range from 0.2 Hz to 20 kHz. As usual, frequency values were 
taken to be exact. The circuit used for fitting is shown in Fig. 7 with 2, given by a 
constant-phase element 1211 of the form 2, = [ A(io)“] -I. Here A and n are 
frequency independent parameters and 0 c n -C 1. A 2 fit with W= P gave the 

I-Im(Zl 

Fig. 8. Perspective three-dimensional plot of the Z* response of &PbF, at 474 K. The data points are 
indicated by solid circles and the complex least squares fitting results by solid triangles. 
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follov&&r&neter esti&tes:-. &,_.=(228@~ 16)51, -. R, =(.1931%,55)52, CR.= 
(j3.29 ‘0,24).:aF,. ~A.:?~(@O -C&)Sl,... C, -5 (41.6 f- 3.3) nF,. A =(2;196 -CO.O&3).~ 
lo.+, and n:=(&W25 +O.OO.lS). D&p$e &e .fact that seven.par&netev are &xi, the 
reltit$e pgameter: *certainty &t&&s are all jessthen about-8% 

The.actual tim@x least squ&es fitting results are shown +s a three-dimensional 
impedan& plot h Fig. 8. Here the original data points are indiiz+l by small solid 
circles (a solid line in ,_&ree dime&o&), wl@Ie points at the same frequenci& 
calculated using the fitted parameters. yalu=..in the circuit are -designated by small 
solid triangles.-M&t of the original and calculated points fall so close together that 
they cannot be distinguished. Only at the lowest frequencies do any differences 
(whose relative errors are still less than 2%) appear. The lines with short dashes are 
associated with the original data and those with longer dashes with the calculated 
points. These results are only one specific example of the power and utility of 
employing together non-linear complex least squares analysis and three-dimensional 
perspective plotting. 

APPENDIX 

Fitting d&q to a circle 

The problem of finding the “best circle” through a set of data points in the plane 
(xi,y,), with i= I,... IV, is not quite as arcane or pedantic an exercise as it might at 
first seem. The problem has arisen in several quite applie&contexts [8,22] ancj could 
be related to the problem of resolving multiple time constants [9] discussed in 
Section II of this paper. Also, in his text, Brandt [23] discusses the least squares 
solution of this problem. As necessary ingredients to such a least squares analysis 
one needs initial estimates of the radius, R”, and the coordinates of the circle’s 
center, ($‘, P+). Following Brandt one could arbitrarily pick any three points (to fit 
points to a circle, of course one must have Na 3) and obtain the following 
estimates: p: 
[ I. fy” 

= 0.5 

x <u3 -y,>[( I x22 +y22) - (4 +v:)] - (Y* -+I[(4 +yj2) - (4 +y22)] 

(x2 -x,>[(x: +$) -+: +y,'>] -(x,.-x,>[(x,’ -tY22) -4x: +v:)] I 
x Rx* -xdn -ui) :(x3 -xz)(rz -,y,)l-’ (Al) 

RI0 =[(x, _Pr”j’+ (y ~,~Lp$]“2 (A3 

Here then points && labeled by I,, .2. a&d 3 for &&p&&y. The problem wiih t& 
procedure is that ii does iu% take all1.N points into accouniand hen& the reliability 
of tins. jA1). and (A2) is G&y dependent upOn the initial chckey of the. th& points. 

._. 
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One could of course consider all N!/[3!(N - 3)!j triplets and average the results of 
eqns. (Al j and (A2). However, this could be rather time consuming and is also 
unduly influenced by the effects of a few points having large deviations from the 
“best circle”. As an alternative approach we give here a generalized-inverse or least 
squares-solution [24] of the over-determined system of equations, 

w’/‘/qp = W’nB (A31 

Here A is an N X 3 matrix, whose ith row has the form 

Ai = (Xi,_viyi, 1) 

W’/’ is an N X N weighting matrix, 

(~44) 

Hy = ( w.) 1’2 Sij (A% 
where w,. is the weight associated with the point (Xi,ui). Finally B is a N X 1 column 
vector with 

Bi = - (xi’ +y;) (A61 
while P is a 3 X 1 column vector with 

The parameter C is related to the other parameters by 

c=(P,)‘+.(P_),)‘-(R)” @8) 
For more than three points not all on the same circle, eqn. (A3) has no solution. 

However, if at least three of the points are not co-linear, then the matrix A has full 
column rank. Then the generalized solution of eqn. (A3), which is defined as the 
unique minimum of the function fi( tr, cY, R) E ( AP - B)TW( AP - B), is given by 

P” = (A’WA)-‘A%? (A% 

where W= Wi/zW’/z and A’ represents the transpose of A. 
This method has the weakness that each point (xi,yi) is assumed to have an a 

priori weight. wi, w.hich is a measure of how well that point lies on a circle. These 
weights are not easily related to any intrinsic uncertainties in the measurement of the 
coordinates xi and yi. In particular, no provision is made here for the case where the 
error in the x measurements is appreciably different from the error in measuring y. 
However, such intrinsic x and y weights would be used in the actual least squares 
calculation of <,, P,, and R for which P,“, I$’ and R” are intended only as good 
starting estimates. In the absence of any other information, the choice wi = 1 would- 
probably suffice. If one defines the average of a quantity a as 



Hence, one gets the following results: 

P,” =[qv(y,x2 +y’) xco&Jq -cov(x,x2 +y’).Xa’(y)]/D 

P,0=[c0v(x,x2+y2)XC0~(X,y)-c0v(y$+y2)Xa2(_~)]/D 

R” =[(Pg2+ (P;)2+ (x2 +y2)-2P,0(a)-2P;(y)]“2 

Here the covariance of quantities a and b [25] is denoted by 

~v(a, 6) E ((a - (a))(b - (b)))= (d) - (a)(b) 

while the variance of a is defined as 

a2(a) Ecov(a,a)- 

The denominator in eqns. (A 12) +d (A 13) is given by 

D=2([cov(x,y)]2-u2(x) x02(y)) 
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(A121 

(AI31 

(A14) 

(Al51 

(A16) 

(A171 

At this point it should agaiu be emphasized that cqns. (A12) through (A14) are 
not the least squares solution of the-problem of fitting points to a circle. That is an 
inherently non-linear problem in contrast to the linear result of eqn. (Al 1). In fact, it 
is not difficult to show that P,“, Py” and R” minimize the sum 

(Al@ 

In contrast, for unit weighting assigned to both x and y values, a least squares 
analysis gives values of P,, P,,, and R which mink&e the sum 

/,(Px,Py,R)=; ([(x~-P~)~+(~~-P~)~]“~-R]~ (Al% 
i=l 

If one is interested in the less general problem where one of the coordinates of the 
circle’s center, say PY, is known to .be zero,- then the parameters P: and R” which 
minimize the function f,( P,, pY = 0, R) .are given by. 

P,” = 0.5 x [A(x,x’ +y2)]/[&)] -I . . (A29 ._ 
p = [(x2 ty++ pb -2(x)p,011” (A211 
if one exchanges x and y, then eqns. (420) kd (A21) give. the results for the case 
where p, is fixd at 0. . . 
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To connect these results to the determination of model--&&t &s&&&s,, 
consider the Voigt network of Section II again with (R,, cl;, R,, G) = 
(10 Q; 0; 1000 Q, 1 pF). From a knowledge of the problem one has Py _= 0: Hence, 

one deduces that R, = P," - R" and R, = 2R”_ Following Despic [Sj, the value ofI 

the capacitor C, can be found independently of R, and 6; as -the slope of 

-ti/Im(Z) vs. 0 *. This result can be found by the non-weighted linear 1east;squares 
formula, c, = co+&?. - o/Im(z)]/u2(w2). Of cour&this result has used ody hqlf. 
of the data available by ignoring the real component of the afrequexicy response. In_ 
addition, one has no parameter uncertainty .estimat&& from- this afi@roach. H&ever, 
it is interesting to compare the results obtained by t&s simple analysis Nith the 

nonlinear complex least squares determination of the parameters. F&g the syn- 
thetic data of Sector4 with n = 2, one obtains the estimates R, =9_66S2;- R, = 
998.34 Q, and C, = 1.0029 pF_ One sees that these results, particularly those for R, 
and R, which were determined from the circle fitting, are extremely close to the 

corresponding W= 0 results of table 1. Thus, it would appear that eqns. (MO) and 
(A21) provide good initial estimates to an actual least squares dialysis. 
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