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Several models of the diffuse double layer in liquid electrolytes are discussed. These models all 

involve partitioning the space charge region into a number of planar layers parallel to the metal 

electrode, with ionic liquid lattice gas, as opposed to idea gas, response in each layer. Each layer 
may contain both ions and solvent molecules. Several difficulties implicit in the earlier work of Liu 

on such a model are pointed out. These problems seem to have caused the appearance of an initial 

charge-free region in Liu’s results. A layer model involving Liu’s original assumptions of point 

ionic charges and point dipoles is discussed in detail and is shown to be electrostatically 

inconsistent. It is replaced by a layer model in which ionic charge resides on each basic layer, with 

each such layer surrounded symmetrically by charge layers representing the effect of finite-extent 

permanent dipoles. This model leads, as it should, to Gouy-Chapman behavior in the continuum 
limit. Finally, a method of including ion hydration effects explicitly in such a model is proposed. 

1. Introduction 

The electrical double layer (EDL) plays a very important role in the 
electrical behavior of solid and liquid electrochemical systems, colloids, and 
living cells. But the conventional Gouy-Chapman (GC) [1,2] theory of the 
diffuse part of the double layer breaks down for concentrations well below 
1 molar [3-51, and there is no wholly satisfactory theory of the inner or Stern 
part of the double layer [3,6,7], a charge-free region in the absence of specific 
adsorption. Various approaches have been suggested in order to obtain an 
improved theory of the EDL in unadsorbed electrolytes. Recently it has been 
found [S] that a continuum liquid lattice gas model of the diffuse double layer 
(DDL) region yields excellent agreement with Monte Carlo results for a simple 
aqueous electrolyte model when mean field corrections are included in order to 
take some account of ion-ion interactions beyond those implicit in the Poisson 
equation and thus to attempt to compensate for the difference between the 
local (or inner) electrostatic potential and the potential of mean force. The 
imposition of a three-dimensional lattice, even in liquid situations where it is 
clearly an approximation, implicitly takes some account of the finite size of 
charge carriers and limits the maximum space charge possible in any region, an 
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effect not present in GC theory where point ions are assumed. 

The first application of lattice gas theory to the present area seems to have 
been that of Grimley [9], and a lattice gas approach has been applied recently 
to the electrical behavior of both single crystals [lo-161, where it should be 
completely appropriate, and to liquid electrolytes [8,10,11,13,17]. The work of 
refs. [&lo, 11,13- 151 includes mean field corrections. All of the work cited 
above except that of Liu [17] assumes that the dielectric constant of the 
underlying lattice material, or that of the solvent in the liquid case, is 
independent of local field strength. It was, however, pointed out in [8] that 
dielectric saturation effects can be readily included in these treatments using 

the approach of [6]; this has been done in unpublished work of the author. But 

the introduction of a dielectric constant at all, even a field-dependent differen- 
tial dielectric constant, in microscopic regions near an electrode is itself a 

serious approximation and clearly should be replaced by a discrete treatment 
involving induced and (when present) permanent polarization effects [ 181. The 
recent work of Liu [ 171 is extremely valuable in showing how a reasonable start 
may be made in doing so. 

There are two elements of Liu’s work which are important in the present 
context. First is his use of statistical mechanics to include in a lattice gas 
treatment dielectric saturation effects arising from field-induced changes in the 

orientation of solvent-molecule permanent dipole moments. But further work, 
currently in train, should add the effects of induced polarization of both ions 

and solvent molecules as well and should consider the appropriate form of a 
Lorentz-cavity type of correction and mean polarization effects [19] to yield a 
more accurate expression for the field that produces the polarization at a given 
layer. When the solvent permanent dipole moment is taken zero in Liu’s 

results, the expression for the space charge p reduces, as it should, to the 
ordinary liquid lattice gas result without mean field interactions [8- 121. Also in 
the absence of ions his results reduce to ordinary Langevin behavior. 

The second interesting element of Liu’s approach is his approximation of 
the three-dimensional charge and polarization distributions by means of two- 
dimensional layers.parallel to the electrode. These layers contain the ions and 
solvent molecules, taken electrically as point charges and point dipoles. He 
elects to consider the layers as part of a three-dimensional lattice gas structure. 
For the last several years the present author and his associates have been 
investigating, particularly for single crystals, a nearly equivalent approach in 
which each layer may be considered a two-dimensional lattice gas, with or 
without mean field ion-ion interactions [10,13]. In the absence of such 
interactions, this approach is still slightly more general in one way than Liu’s 
because the interplanar separation need not necessarily be the same as the 
lattice length parameter. The approach, which is quasi-discrete, as compared to 
a pure continuum model, is particularly appropriate in single crystals when the 
Debye length is of the order of the lattice spacing or less. Although Liu 
characterizes his method as involving a mean field approximation, this is not 
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the same as the mean field interaction mentioned above, which leads to the 

necessity of solving a self-consistency equation for the local charge density 
[8,10,11,13,14]. Instead, the Liu mean field approximation, also used in our 
work, assumes that each layer has a given mean local potential, mean charge 
density, and mean dielectric displacement. 

A particularly surprising feature of Liu’s discrete-layer numerical results [ 171 
not found in the absence of permanent dipoles, [ 10,131 is the appearance next 
to the electrode of a virtually charge-free layer, analogous to the inner or Stern 
solvent-molecule layer found in aqueous electrolytes in the absence of specific 
adsorption. Beyond this first layer, ionic charge effects dominate permanent 
dipole polarization effects, as expected in the ordinary DDL. Since the Liu 
treatment included no explicit treatment of hydration, it seemed important to 

investigate whether the apparent inner-layer effect arose from approximations 
in the model or numerical calculation method or was an intrinsic feature of 

any model including permanent dipoles. 
In the rest of this work, certain problems in Liu’s analysis and calculations 

will be discussed, and equations describing a more self-consistent model which 
includes permanent dipoles will be discussed and compared to those of Liu. 
Although mean field corrections (Bragg-Williams) [8,10,11,13-161 can be 
readily added to this model, since they are not included in that of Liu, they will 
be omitted herein. 

2. The Liu model 

The equations which define the Liu model will be presented in normalized 
form for simplicity and generality. Then a layer diagram following from these 
equations will be presented and discussed and an alternate self-consistent 
model developed. Let ~a be the bulk dielectric constant of the solvent in the 
absence of solute ions. It is about 80.4 for water at 20°C. If cc, is the 

concentration of ions of either sign in the bulk for a molarity M,,, then 

c,, = 6.022045 X 102’ Ma per cm3. At an absolute temperature T, the bulk 
Debye length L, is then (r,kT/87re2c0)‘/‘, where k is Boltzmann’s constant, e 
is the protonic charge, and a urn-univalent situation has been assumed. 
Normalized quantities of interest are potential, + - $/(kT/e); field, & E 
E/( kT/eL,); dielectric displacement, 9 e D/(kT/eL,); polarization, 9 = 
P/( kT/eL,); and mean charge density (two-dimensional) in a layer, Q G a/u,. 
Here the normalizing charge density an is Zec,L, = CdoVT, and C,, = 

cB/4rLD is the diffuse-layer differential capacitance/unit area for an applied 
PD across the DDL of +,, K VT E kT/e. The quantity P is the polarization 
density per unit volume, and Pa will be the surface density arising from ideal 
permanent dipoles in a layer plane for layers separated by a distance a. For 
simplicity, in his actual calculations Liu neglects the direct contribution of the 
induced polarizability of solute ions and solvent molecules to the dielectric 
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constant in a layer, e, and takes c,, the value of c: when the permanent dipole 

contributions have been saturated out, as unity. It is usually considered to be 
about 6 for water. This value is larger than the square of the index of refraction 
because it includes water-molecule vibration and libration contributions [6,18]. 

If the solvent is water, as assumed by Liu, the concentration of water 
molecules in a region without ions is N = NA /l8 = 3.3456 X 1O22 cma3, where 

NA is Avogadro’s constant. The concentration N is taken as the density of 
lattice points for the lattice gas treatment. The above value is close to that used 
by Liu (private communication) of 3.33 X 10z2 cme3. It is convenient [8,10-141 
to define the fractional or relative bulk concentration of ions as 6 = co/N. 
Then 6 = 0.018OA4, for water. In Liu’s work he defines c as the concentration 
of ions in the bulk, but it is clear that his c is actually the present S. In the 
general case, we need one more quantity, A G a/L.,, where a is taken as 3. I A 
by Liu. For this value of a and en = 80.4, A = 1.015M’/2. 

We shall defer until later a discussion of the constitltive equations following 
from free energy animation. They give P and the charge density p E o/a at 
a given point in terms of the local potential and field acting at that point. In 
normalized form, the pertinent Liu equations are 

qj = Cj&, = Gi + 4&Y*) (1) 

“%,+ 1 = qz + ej&!j+ 1, (2) 

+ r+l =+i -A*&,+,. (3) 

I-Iere Q, is the net normalized charge density on a layer i and gi+, is the 
normalized field between layers i and i + 1. The factor of ca in (2) arises from 
the normalization. The model used by Liu is shown explicitly for the first few 
layers in fig. la. Normalized quantities are shown; explicit reference to normal- 
ization will be omitted hereafter. The charge on the completely blocking metal 
electrode is Q, = Q, and the total PD from this electrode to an ohmic 
electrode at infinity is C#B, = +,,. In normalized terms 6i&, = en&. 

Although Liu assumed infinitesimal ideal dipoles, he elected to spread out 
the polarization arising from them through the space between layers, as shown 
in the figure. As shown by eq. (I), Qi = ‘?iJj(Fi), but the polarization contribut- 
ing to Qj actually should be associated with the plane i, that where the charge 

Q, resides. This is necessary because the free energy calculation leading to 

%(+r* 6,) and Qi(+jt&j) re q uires that Pi and ,o, E us/a be defined at the same 

point. Thus, the spreading out of the polarization is an inconsistency in the 
ideal-dipole Liu model. It could be removed by considering (actual) non-ideal 
finite-extent dipoles in a much more complicated treatment. If one does 
require the ideal dipole polarization ‘$ to be localized on the ith plane, it is 
clear that the normal field acting to orient the dipoles is the average of Fj and 

&i+l* not Gj. Thus the use of Gj rather than &,, overestimates polarization 

effects since 1 &;i 1 will be larger than 1 EAv 1. 
There is one further serious problem in the Liu model. Eq. (2) is inconsistent 
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Fig. 1. (a) The Liu layered model. The.separation between each charged plane is u. (b) A model 
involving infinitesimal dipoles. 

with the boundary condition on the normal component of the displacement. 
The consistent equation involves the charge between 6$_, and qi, but eq. (2) 
involves that between ‘9i and %Ji+, . Thus eq. (2) should be replaced by 

‘%$+, =‘!iJ; +eBQi. (4) 

It is very likely that the use of (2) rather than (4) in Liu’s numerical work is the 
main reason for the appearance of virtually zero charge (Q, = 0) on the plane 
i = 1, the first plane of the DDL. 

Liu elected to obtain his &‘s, Q,‘s and qi’s by starting at large i, say i = i,, 

and progressing towards the electrode at the left. This is a valid procedure, 
although in our earlier work [ 10,131 we chose to start at i = 0 and progress to 
the right. But Liu replaced the material for i 2 i, by the continuum Gouy- 

Chapman model. While this is appropriate in that fields and potentials will be 
small for large i, one should not expect that a continuum model, based on the 
assumption that a single Debye length spans many molecules and ions - i.e. 
that these are of zero size in the continuum limit, will yield exactly the same 
spatial dependencies as a layer model where, for Ma = 1, one of Liu’s choices, 
A - 1 and there is only about one molecule per Debye length. In fact, earlier 
work on the P = 0 case shows that the final slope in the exponential decay of +i 



and Qi is somewhat less for A - 1 than for A s 0.01, a range which yields a 
good approximation to the continuum solution. One might guess that this 

initial difference at the i = i, joining point could lead to growing errors as i 
progressed from i, back towards zero. Fortunately this is not the case. Recent 
numerical work of Liu (private communication) shows (that the slightly incor- 
rect GC slope makes no difference after one progresses several layers into the 
discrete region, and the proper discrete slope is quickly established. 

3. A self-consistent model 

The first problem is what to do about the induced polarization contribution 
to the dielectric constant. Although non-zero induced polarizabilities for the 
solvent molecules and solute ions may be introduced into the free energy 
minimization calculation, the results are quite complex and their discussion 
will be deferred to a later paper. Here it seems reasonable to pick a middle way 
between the above choice (where an effective 6, will come out of the 
calculations) and that of taking em = 1. Thus, following the earlier work 
[lo- 141, which was particularly appropriate for solids, I shall here introduce an 
induced polarization contribution to the dielectric constant throughout the 
material of e,, independent of position and field strength. It will usually be 

appropriate to take E, = coo. 
First, a model consistent with Liu’s original assumptions of infinitesimal 

charges and dipoles will be considered. But this model will be shown to be 
electrostatically inconsistent. Next, an outline will be presented of a model 
which allows dipole effects to be included explicity and is electrostatically 
consistent. The actual working out of this model and discussion of its predict- 

ions will be deferred to a joint paper with S. Liu. 
In order to describe the first model explicitly, it will initially be useful to use 

double subscripts. Further, since there is a potential drop across even an 
infinitesimal-thickness ideal dipole sheet, it will be convenient to show the 

dipole layer as of finite size in order to distinguish various quantities. The first 
model, in which the induced polarizability effects are spread out as in a 

continuum but the permanent dipole polarization is restricted to planes, is 
shown in fig. lb. An explicit distinction has been made in fig. lb between the 
distance a, between the equipotential plane of the electrode and the charge 
centroids of the first layer of charge and a, the distance between the rest of the 
charge layers. A recent paper [7] suggests that because of nonlocal effects a0 
may be as small as or smaller than the distance of field penetration into the 
metal, O(0.5 A). This will be of .no consequence for calculations of the DDL 
alone, since one can start the calculation at i = 1 with +,e - edd, the total PD 
across the DDL, and treat the calculation of the PD ($+,i - +,,,) separately 
whenever the total applied PD, &,, = (PO,, is required. 

Note that the 9’s in fig. lb are not conceptually equivalent to those in fig. 
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la. They do not include permanent dipole effects, and one can write 

qj,j+, = e,&;,i+, F &i,i+ 1 + 41T9ind; i,i+ 1) (5) 

Where $Yind is the induced polarization. The connection between sequential ci) ‘s 

may be written (for forward progression) as 

‘;l)i,i+, =‘,-,,i +~BQ;;, (6) 
leading to 

G,,+ I =G;-_,r +(~~/'~a)Qii. (7) 

Note that there is no overt contribution to eq. (6) from the dipole layer because 
its net charge is zero. But one should, of course, expect a stepfunction increase 
in potential to occur when passing from the negative to the positive side of a 
sheet of smeared-out ideal dipoles. In the present non-linear polarization 

situation, it is not clear exactly how to express this PD for the ideal dipole 
sheet. For illustrative purposes only, we shall use 4naP,, /cB and its normalized 

equivalent, 4rAqiii /~a, in the following equations. As we shall see, the use of 
ideal dipole sheets is itself inappropriate anyway in the present context, so the 
present choice is not critical. The normalized equation for the PD across the 

ideal dipole layer is 

+i,i+ I = +i,i-, + (4~rA/~a)q~~. (8) 

But the potential and field which produce Qii and ‘G?,i are just the average 
values $+i and Gii shown on the diagram and given by 

+ii =“‘5(Gi.z-l ++r,r+l)Y (9 

Gji = 0.5( Gi_ ,,i + &i,i+ ,). (10) 

Now in forward progression we will always know such quantities as +i,i_, and 
&,_,,i and will need to calculate the successive equivalent values G~+,.~ and 
Gi,;+,. To do so, we need the relation which follows from the definition of G, 

+i,i+I -+i+l,i =A’Gi,i+l~ (11) 

equivalent to eq. (3). Combination of eqs. (7) through (11) now yields the basic 
relations 

+ii =~~,r_, + (2~A/~,)~ii =~i-,,; -A’G,_,,i + (2~ A/~a)~ij, (12) 

Gii =&;-,,, + Qii/2. (13) 

On combining eqs. (8) and (11) and eliminating &i,i+, with eq. (7), one finds 

+i+l,i = q+_, - A - Gi_ ,,i + (4m A/e,& - A . Qii, (14) 

allowing one to progress from the known prior values, G,,,~_, and &,_,,i to the 
new value $J~+,,~, p rovided Qii and ??,i are known. Since these quantities both 
depend on &, and Gii, the set of coupled equations (9) and (10) must first be 
solved self consistently before eqs. (7) and (14) may be used to progress from 
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one layer to the next. For forward progression, the calculation of the DDL 
response alone can begin with i =I: 1 and (p,, = +d and &,, = %JO,/c, = 

(ea/ea) Q,, -(~,/~a) Q,. 
It is possible to define as follows a dipole-layer dielectric constant cii, which 

will represent the response perpendicular to the layer: 

qi = EiiGii = Fii + 4T[ 9i&;jj + qgi] f (15) 
where gind is again the response associated with (E, - 1) and Tjj arises from the 
permanent dipoles. Then 

fii = c, + 4n[(??ji/&,i]. 06) 
In the (pii + 0 and Gii + 0 limit, cii should equal ea. Finally, for a completely 
blocking electrode at the left, overall electroneutrality requires that 

Q,,,+Qd=& (17) 

where 

Q,zi Qii, 
{=I 

( 18) 

Q, = QOI, and Qd is the total charge in the DDL. 
When ?P = 0, eqs. (7) and (14) yield 

+i+ I,i =(b,,i-j -A*&g,,+iv 09) 

equivalent to that used in earlier work [ 10,131 for this case. When O? # 0, 
however, it turns out that GC behavior is not obtained in the continuum limit. 
The difficulty is that the presence of a finite “2? arising from dipole charge 
sheets infinitesimally separated from each other requires, in the limit, infinite 
dipole-sheet surface charge densities. But such charge densities are inconsistent 
with the dielectric coefficient discontinuity from e, = 6 to cii (which may be as 
large as 80 but is not infinite) and from zii to e,. Thus this model must be 
scrapped. 

A more consistent model is found if one replaces the finite-extent water 
dipoles by regions of uniform ideal-dipole polar~ation. Use a Debye length for 
normalization involving E, instead of ~a and let the finite-dipole charge 
separation be d (” a). Now represent the effect of the permanent dipoles by 
dipole sheets of normalized surface charge Qd and - Q,, , separated by d. Then 
let Qd = ‘2?. (4a/e,), where the field and potential leading to g(+, G) are just 
those at the center plane of the double layer. Although the effect of each 
permanent dipole has been spread out spatially through the introduction of the 
?Qd charge sheets, the actual strength of the effective dipole moments is 
determined by the potential and field at the center plane, necessary for 
consistency. Finally, consistent with the mean field approach and the statistical 
mechanical treatment of ‘2? and of Q, the ionic charge, place Q also on the 
center plane between the two dipole sheets. Then anywhere in the system 
except at actual charge centroids one will have %= ea&, and it will be 
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unnecessary to deal explicitly with an z arising from 9 directly. All such effects 

will have been included through the + Qd and - Qd sheets. If we let r - d/a, 

the continuum limit will be obtained as d + 0 and a + 0, keeping the value of r 

constant. Note that with r = 1 the dipoles fill the material, and with d = 0, so 

r = 0, there are no dipoles and only charge layers remain. This model yields 
ordinary GC behavior (with Ed B ea) when p0 # 0 in the continuum limit 
(A + 0) when &, + 0 and r = 1. Results for different values of A, 7, and +d will 
be discussed in a later paper and may be expected to differ considerably from 
GC predictions when +d and A are appreciable, even for r = 1. 

4. Constitutive relations 

The constitutive relations, Qii(&, Gii) and 9J&, G,,), are the essential 
element in Liu’s important generalization of the layer model without perma- 
nent dipoles to a model including polarization from such dipoles. Some 
inconsistencies in his results, together with improved relations, will be dis- 

cussed here. For simplicity, in this section we shall suppress the subscripts and 
take $,, = 4, $ii = $, Eii = E, CJji = 9, etc. 

Liu [ 171 found the following unnormalized expressions by means of a free 
energy minimization approach: 

p = -2eN6 sinh( e#/kT)/Z, (20) 

and 

P=N(l-26)p[y cash(y) - sinh(y)]/y*Z, (21) 

where y -pE/kT and the partition function Z is 

Z = 26 cosh( e#/kT) + (1 - 26) sinh( y)/y. (22) 

Here p and p are augmented dipole moments which take account of the effects 

of surrounding solvent molecules. If pO is the permanent dipole moment of 
solvent molecules in isolation ( pO = 1.84 Debye for water), then pO <p CF. 

Eq. (20) leads to a result for u E up in agreement with that found earlier [8-141 
when p = 0 and there are no dipoles present. Further, eq. (21) reduces as it 
should to just the Langevin expression when S -+ 0 and there are no ions 
present. 

The high field limiting value of P is, from eq. (21) Np(1 - 2S), which 
becomes just Np for pure solvent, consistent with Onsager’s treatment of ~a for 
water. But for the high-field limit, where all dipoles point in the field direction, 
dipole polarization effects may be quite different than those assumed in the 
low-field Onsager theory. It seems at least plausible to assume that the 
maximum polarization, that when all dipole motion is saturated out, is just 
Np,, a smaller value than Np. Further, in this limit (which may be approxi- 
mated by conditions in the first layer next to the blocking electrode at 



appreciable applied potentials), the solvent molecules near the electrode will be 
in regions of high pressure arising, loosely speaking, from the attraction of 
neighboring ions to the electrode [6]. Then the effective PO, Poe, may be even 

smaller than PO because of solvent molecule compression. Liu has also pointed 
out (private communication), that eq. (21) is inconsistent with (22), since the 
usual derivative relation between the partition function and the polarization 
leads top rather than the p of eq. (21), making the saturation polarization even 
larger. It is clear that this anomaly arises because dipoles with effective 
moment p were used in the free energy but no energy interaction terms 
involving the change from dipoles with dipole moment PO to p were included. 
To include all necessary terms of this kind would be very difficult, and we 

prefer at this stage to attack the problem in a more heuristic way, one closely 
coupled to experimental results. 

There are three immediate conditions which P and the dielectric constant f 
involving P should satisfy. We consider first dielectric saturation in bulk 
solvent since ionic effects may be readily added later. First, as E -+ 00, one 

should have P -+ NP,,,. Second, as E --) 0, one should find z = <a = E, + 

4r[P/E]. Now eq. (21) leads to 

z = e:, + (4nN/3)( @/kT). (23) 

With Liu’s values ofp andp for water, N = 3.346 X IO** cm-‘, and E, = 1, one 
obtains E z 77.6, close to the value fg = 80.4 at 20°C. But if p is replaced by’ 
the smaller PO or po, in order to satisfy condition (I), it is clear that $j must be 
increased to pc in order that e = ca. Thus we require that pp =poe& be 
consistent with the experimental value of cg. Such an increase in p means that 
the permanent dipoles are more easily saturated than predicted by the Liu- 

Booth [ 17,201 result. 
Luckily, recent dielectric saturation data on water [21] allows one to obtain 

a larger, experimentally derived estimate for ir,. and our third necessary 
condition will be that the value of IS, agree with this result. All these conditions 
assume that the form of the expression for P(E) is reasonably valid. In the 
absence of very high field dielectric saturation experimental results or more 
sophisticated saturation theory for the region of appreciable saturation, this 

assumption appears reasonable. 
Now Kolodziej et al. [21] found for water at 20°C that be/E2 = lo-‘s 

(m/V)2 up to their maximum applied field of 10’ V/m. Expansion of eq. (21) 
to first order in E* with 6 = 0 yields 

Aq’E2 =4?rNp~3/45(kT)3 =[(Q -c,),‘l5](P/kT)*. (24) 

This leads to AC/E* = 3.2 X lo-16 (m/V)2, a factor of about 3.1 smaller than 
the experimental value. If we replace p and p in eqs. (23) and (24) by pee and 17, 
and use 6, = 6, then the requirements of agreement with the experimental es 
and the experimental saturation constant lead to pee - 1.27 D and PC = 16.9 D. 
Note that indeed pee is appreciably less than po. 
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When the constitutive equations are expressed in normalized form, one has 

for Qii(r#+i, G,,), the normalized charge density on plane i, 

-Q, sinh(+) 
’ = cosh( $) + C,[sinh( b,F)/ (b,G)] 

(25) 

where subscripts have been suppressed, the maximum magnitude of normal- 
ized layer charge density is Q, E A/26, and C, z (1 - 26)/26. This Liu result 
reduces to that found earlier [ 10,131 when b,& --) 0 and there is thus no 
dielectric saturation effect. It does not include the mean field corrections 
present in the work of refs. [lo] and [ 131. In eq. (25) we have set ( pe,/kT)E E 
b,&, so b,, a normalized saturation parameter, is pe/eL,. For Liu’s value of jr 
and for 20°C and M, = 1, b, gO.66. For the value of jie discussed above, 

b, = 1.18. 
There is, unfortunately, no assurance that the Booth-Langevin dielectric 

saturation formula is valid, even to first order in E 2, much less in the region 
where 1 b,& 12 1. The large value of jr= and the small value of P,,~ found above 

suggest, in fact, that it is not. In the absence of a more plausible choice, 
however, we shall use the Booth-Langevin result here, considering 6, as a 
parameter whose effect will be investigated numerically for a plausible range of 
values. As shown below, the expression for 9 to be used will be written so that 
the bulk dielectric constant ca is recovered in the low field limit as M, + 0. 
With E, = Q, rather than unity, a reasonable way of writing the Booth-Langevin 
expression for polarization in the presence of ions in normalized form is 

where ~a is again the unsaturated bulk dielectric constant given by eq. (23) 
with pee and jam,, and 

F(b,&) = (b,&)-3 
(b,&) cosh( b,&) - sinh( b,&) 

cosh( +) + C,[sinh( b,G)/ (b,G)] 1 . (27) 

Note that when + and & go to zero F(b,&) + 26/3. Thus in the limit, 

[9/&l -+ (1 - ?W% - c=)/47~. The (1 - 2s) factor accounts for the reduced 
concentration of solvent dipoles in the bulk when ions are also present. The 
normalized dielectric displacement is given by eq. (15) and leads to the E of eq. 

(16). 
Now hydration effects [22] cause the bulk dielectric constant of a water ion 

mixture to decrease appreciably as M,, increases. Thus for a NaF solute, za has 
decreased by about 15% from its M, +OvaluebyM,=l.The(l-22S)factor 
only reduces cg by about 4% at Ma = 1, however. This suggests that hydration 
effects could be much better accounted for in the present model if one applied 

the conventional approximation of dividing the water molecules in a given 
layer into three classes: h + saturated water dipoles around each cation, h _ 
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saturated water dipoles around each anion [22], and the remaining dipoles as 
completely unsaturated. Liu has assumed that all dipoles present in a layer are 
free to rotate under the influence of an extenal field and thermal perturbations. 
The present suggestion takes the hydration numbers h + and h _ (which range 
from 1 to about 6) into account and assumes that the hk dipoles around a 
given ion (its primary hydration sheath) are influenced by the above effects 
together with the strong Coulomb field of the ion (involving a saturated 
dielectric constant of about 6) at the position of its nearest-neighbor dipoles 
(one lattice spacing away from the centroid of charge of the ion). Only for a 
strong external field, &, will these h I dipoles have an appreciable component 
of dipole moment in the direction of & and thus contribute to the effective e of 

the layer. At a layer where the local potential is +, if one sets Z = 1 for 
simplicity, there will be N$e+ anions and N$e-@ cations present, where 
N, =, UN. Thus there will be h _ N$e” dipoles in the primary hydration sheath 

around these anions, h + Ns8e -+ around the cations, and N,[l - 6(h _E@ + h + 
e-e)] free-to-rotate remaining dipoles. Although this division of the dipoles 
into three distinct classes is clearly an appreciable approximation, it should be 
considerably superior to no division at all and will be further pursued in a later 
paper. One of the immediate advantages of this approach is that if h +. + h _ , 
the Q, versus (pd curve obtained from the model will be asymmetric between its, 
#By > 0 and (pd < 0 regions, as is found experimentally. 

There have been many theoretical treatments of the DDL in recent years 
(see, e.g., references in ref. [S]) which do not use the lattice gas approach and 
include permanent dipole effects only through the intr~uction of a back- 
ground cn (> E,). These treatments are generally very complex, and become 
more so when discrete dipoles are included [23-251; they are usually limited to 
low bulk ionic concentration and/or small values of &,. The present approach 
does not suffer from these limitations but may be expected to yield less 
microscopic detail for the ionic and dipolar behavior because of mean field 
type averaging. There seems to be important roles for both kinds of models to 
play. Detailed comparisons between their predictions will be carried out in 

later papers. 

The author much appreciates the numerous valuable comments of Drs. S.H. 
Liu, J. Hernandez, and S.W. Kenkel, and thanks the US Army Research Office 
for support. 
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