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There does not exist a theory of the ionic double layer at a completely blocking metal electrode 
in liquid electrolytes which is adequate in the charge/potential region where ions and solvent 
molecules begin to approach saturated conditions. Under these conditions, a continuum theory, 
such as that of Gouy and Chapman (GC), becomes entirely inadequate. Here the problem is 
attacked in a semi-discrete way by first partitioning the space charge region into layers parallel to 
the planar blocking electrode..Each layer is part of a cubic lattice with lattice-site spacing 
determined by the pure solvent concentration. Lattice sites may be occupied by ions of either sign 
or by solvent molecules, taken as spheres having a permanent dipole moment. The solvent 
molecule finite-length dipoles are then approximated by slabs of constant point-dipole polariza- 
tion. Thus each of the planes parallel to the electrode is a locus of ion centers, and the polarization 
is accounted for by equal and opposite charge layers equidistant on either side of an ionic charge 
layer. The mean polarization and ionic concentration in each three-layer region are determined 
self-consistently by free energy minimization, and electrostatic equations are employed to couple 
the electrical conditions in one layer to those adjacent. This ion-dipole model (IDM) is solved 
self-consistently for arbitrary molarity in two regimes: the weak-field situation where the electrode 
charge approaches zero, and the arbitrary field-strength regime. In the first case, an exact, 
closed-form solution is obtained which reduces to that of GC in the appropriate limit, but 
numerical analysis is required in the second situation. The present treatment provides a more 
realistic account of the electrical effects of discrete solvent dipoles than do those treatments, such 
as the GC model, which represent them entirely by a background, non-saturable, or even saturable, 
bulk dielectric constant. Here polarization saturation enters naturally in a fully self-consistent way. 
Thus although dipoles line up with the field in high-field regions, they tend to be displaced by ions 
of a given sign in the layers immediately adjacent to the blocking electrode, reducing the net 
polarization. A simpler model, more directly appropriate for single crystals than for liquids, the 
layered lattice gas model (LLM), retains layering but represents the permanent dipolar polarization 
by a non-saturable continuum bulk dielectric constant; it is thus intermediate between the IDM 
and the GCM. Predictions of the three models are compared with Grahame's experimental 
differential capacitance results for NaF in the low-field region. The IDM is found to be much 
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superior to either the LMM or the GCM. Many results are presented for the three models in the 
arbitrary field region. One of the most striking is that the IDM alone yields a strong oscillation in 
potential versus distance away from the blocking electrode, as first predicted by Kirkwood and 
Poirier for layered ionic structures. 

I. Introduction 

There is no fully adequate theory of the electrical double layer in solids and 
liquids, although much recent effort has been devoted to the problem [1-18]. 
The classical approach was that of Gouy [19] and Chapman [20], based on a 
model in which point-charge ions move in a background of homogeneous 
dielectric characterized by a dielectric constant. This theory takes no account 
of ion size and thus is unable to model the approach to charge saturation in the 
neighborhood of a blocking electrode. When applied to aqueous solutions, the 
dielectric constant is taken as that of bulk water, c B = 80. Because of ionic 
hydration and the resulting dielectric saturation, this must be a poor approxi- 
mation in the immediate neighborhood of an ion. The same difficulty exists 
near an electrode where the local electric field may be very high. 

Most modern statistical treatments of the double layer have used the 
homogeneous dielectric model with finite-size ions [I-6] .  These works make 
use of sophisticated mathematical tools such as the modified Poisson-Boltz- 
mann equation, the hypernetted chain approximation, or the Ornstein-Zernike 
equation. The formulation is invariably very complicated, involving the solu- 
tion of nonlinear integral equations. On the other hand, these approaches do 
not appear to be of practical value for medium or high ionic concentrations 
a n d / o r  for potential differences across the double layer much beyond the 
thermal voltage P'T = k T / e .  Neither the nonlinear theories nor the simpler 
linearized mean spherical approximation [1,2,4,6,9,15] yield a valid description 
of charge saturation. 

Predictions of the statistical theories have been compared with results of 
Monte Carlo calcul.qtions [17,22,23]. This numerical procedure can be applied 
in the physically important range where charge saturation effects begin to 
appear. Nevertheless, the assumption of a homogeneous dielectric medium 
makes the results of the calculations unreliable for aqueous electrolytes. 

An alternative way to simulate the finite size of ions is to require them to 
occupy points on a three-dimensional lattice. The ion- ion  interaction can be 
treated in the mean field approximation, and it has been found that a single 
mean field parameter  allows an excellent fit to the Monte Carlo results over a 
wide range of double layer potential and ion concentration, including the 
beginning of the charge saturation region [I 1,12]. 

As mentioned earlier, water as a solvent is pooriy represented by a homoge- 
neous dielectric. Several statistical treatments of a fluid of ions and solvent 
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molecules, both approximated as hard spheres of the same size, have appeared 
recently [9,13,15,16]. The solvent molecules possess an effective dipole mo- 
ment, and the induced polarizabilities of both ions and solvent molecules are 
neglected. These treatments are naturally more complex than those that assume 
a homogeneous dielectric, and their linearized forms are again limited to the 
small concentration and low potential region. 

Because of the limitations of the existing theories, it seemed worthwhile to 
us to develop a statistical theory of the double layer which would trade off 
exactness for simplicity. After all, what is most needed is a theory which can be 
compared with experiments that measure average quantities such as electrode 
charge and differential capacitance. In the following lattice-gas approach we 
make approximations which preclude the exact calculation of local quantities; 
we include solvent dipoles; we take some of the discreteness of the double layer 
problem into account; and we find a straightforward solution for ion con- 
centrations up to saturation and over the entire range of double layer potential 
of interest in experiments on aqueous electrolytes. This ion-dipole model 
(IDM), defined in detail in section 2, requires both ions and solvent dipoles to 
occupy positions on a lattice. Its equations are also derived in section 2. 
Section 3 deals with the analytic solution of the model equations in the weak 
elecrode-potential limit. Finally, in section 4 numerical results for high elec- 
trode potential and ion concentration regions are discussed. 

2. The ion-dipole model 

The model we use is a more refined version of a lattice model for the double 
layer proposed by Liu [8,14] and is also a generalization of a layered lattice gas 
model (LLM) investigated by Macdonald and co-workers [12]. A simple cubic 
lattice is erected with one cubic face parallel to the electrode. The lattice sites 
are populated by either spherical ions or solvent molecules. Both ion species 
are assumed to be monovalent, and the solvent molecules are treated as 
permanent dipoles. The probability that a lattice point is occupied by an ion or 
a dipole is determined by the respective Boltzmann factors, With ions interact- 
ing with the local electric potential and dipoles interacting with the local 
electric field. The field variables are determined self-consistently from the 
charge and polarization densities through electrostatic equations. 

In the early version of the IDM [8,14], the dielectric properties of the 
interstitial region were not specified. Macdonald [18] showed that this led to 
inconsistencies in setting up the electrostatic field equations. To make the 
model both more general and internally consistent, he proposed the iterated 
layer model depicted in fig. 1. Here, each layer of molecules (ions a n d / o r  
solvent) is assumed to occupy a slab of width d. The ions are taken as point 
charges residing on lattice points of a planar square lattice at the center plane 
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Fig. I. An iterated layer model of the electrical double layer, showing distance, charge, potential, 
and field quantities for several values of the layer marker, i. For i >  0, regions of constant 
permanent dipole polarization are shown cross-hatched. 

of the slab, and the solvent molecules, also residing on lattice points, have a 
diameter equal to the width of the slab. The net polarization of the slab, 
assumed to be uniform for simplicity, is represented by equal and opposite 
surface charges at the faces of the slab. Thus each basic slab involves three 
charge layers. The neighboring slabs are separated by a distance b. There is a 
blocking electrode at x = 0 and an ohmic or indifferent electrode at x = oo. 
Between these electrodes is a periodic array of an infinite number of slabs. The 
effective separation between the blocking electrode and the first slab is 
determined by charge overlapping effects [24], so that this distance, denoted by 
b o, is to be determined experimentally. To model the polarizabilities of the 
molecular species, the entire right half space is filled with a dielectric with 
% = 6 [18,25,26"]. Inside a slab the effective dielectric constant is thus % plus 
the contribution from permanent dipoles, which is a function of the local 
electric field. In this particular respect the model goes beyond the LLM 
investigated by Macdonald and coworkers [12], who approximated the dielec- 
tric properties of the solvent molecules by a bulk dielectric constant. Note that 
in the present IDM, as well as in the LLM, one takes all quantities as averaged 
over the plane to which they apply. No such specifically planar averaging 
occurs in earlier continuum lattice gas models [7,1 I] or in the continuum ideal 
gas Gouy-Chapman model [19,20] (GCM). 

The rest of the model parameters are defined as follows. The lattice 
parameter a is (Nv) -I /3 ,  where Nv---3.3456 • 1022 cm -3 is the number of 
water molecules per cubic centimeter. The concentration of ions is given in 
terms of the bulk molarity M 0 so that the number of ions of each charge in a 
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unit volume is c o = 6.Q22 • 102~ cm -3. We label tile slabs by i (i = 1, 2, 
3 . . . .  ), with i = I being the slab closest to the blocking electrode. 

As was pointed out in the earlier work [8,12,18], the layered model becomes 
mathematically tractable when one assumes all field and density variables to be 
functions of only one spatial variable, i.e. the distance from the electrode. 
Accordingly, for the ith slab the potentials at tlle left surface, center plane, and 
right surfaces are denoted by 4'~d, 4'~, and 4'di respectively, and the charge 
densities of these surfaces "are O~d, o~, and Od~ respectively. The electrode at 
infinity has zero potential and zero charge, while the metal blocking electrode 
has potential 4'm and charge density om. The electric fields within and between 
the slabs are related to the potential by 

~d.i- I -- 4'id = bEi- I . i '  

4 ' i d  - -  I~i = ( d / 2 )  gid  , 

~ i  - ~di  = ( d / 2 )  Ed,, 

~di -- t~i+ l.d = bEi.i+ I. 

(1) 
(2) 
(3) 
(4) 

Across each charge layer the change in electric field is related tO the surface 
charge density by 

E i _ 1 3 -  Eid = - -  ( 4 r r / / , a ) O / d  , 

Eid - -  E d i  = - -  (4~r/e~)o,, 

E~i - E,.,+, = - ( 4 , , / q )od , .  

( 5 )  

(6 )  

(7) 
The polarization charges are functions of the polarization density Pi of the 
slab: 

od, = - oid = P, ,  ( 8 )  

and overall charge neutrality requires that 

O m = - -  f i  O i ,  (9) 
i - - i  

The electric field E~ at the center plane of the slab is defined by 

Ei-- �89 Em + Edi). (lO) 

In addition we relate P~ and o; to the local potential 4'i and electric field E, by 
statistical mechanics [8,18] 

o i = _ 2eaNv8 sinh(e~,)/Zi,  

P, = Nv(l - 28)p [)'~ cosh (y )  - sinh(y~)],/y2Z,, 

Z~ = 28 cosh(cb~) + (1 - 28) sinh(y~)/yj .  

(Ii) 

(12) 
( 1 3 )  

In the above equations 8 = c0/N v, e: i - e4'i//kZ, )'i =-pEi /kT,  P is the effective 
dipole moment of the solvent molecule,/~ is the enhanced dipole moment due 
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to short range dipole-dipole correlation caused by hydrogen bonds [8], k is the 
Boltzmann constant, and T is the absolute temperature. Finally, the potential 
at the blocking electrode is given by 

q,m = ~Pta + boEo,, (14) 

and the total double layer differential capacitance is simply 

C D --- dom/d~m , (15) 

while that for the diffuse space charge region alone is 

C a = dom/dtp, a. (16) 

The equations are made simpler and the task of numerical analysis easier if 
all variables are measured in natural units so that they are dimensionless. A 
natural length scale in the problem is the Debye length 

2 I / 2  L~.- (qkr/8~e Co) , 

and a natural potential scale is the thermal voltage VT = k T / e .  The relevant 
lengths in the model are reduced to 0 -= d / L D . ,  'g; = b / L o ~ ,  and A --- a / L D .  = 
0 + ~ = A .  The reduced electric potential and field are C = +/V-r, and E = 
E / E .  =- E / ( V T / L D . ) ;  the reduced charge density is Q = o/on; and the polari- 
zation density is @--- P / E  n. The unit of electric field is E n = ( k T / e L D . ) ,  and 
the unit of charge density is % ==- 2ecoLo~ = Ca~V. r, where Ca. = % / 4 r r L D .  is 
the unit of double layer capacitance/unit  area; this is the Gouy-Chapman low 
field limiting double layer capacitance/unit  area of an electrolyte with ion 
density c o and dielectric constant %. We may also define Can, where % is 
everywhere replaced by %, the bulk dielectric constant. In the above units the 
model equations reduce to 

~'d. ,- ,  - ~,~ = ~E,_  ~.i, (1')  

~,~ - c ,  = ( o / 2 )  ~ ,~ ,  ( 2 9  

c ,  - ,~a, = ( e / E )  c a , ,  ( y )  

Ca, - C,+, .a = ~E/. /+ ; ,  (4 ' )  

E i - , . i  --  ~id = Qdi ,  (5') 

E;ia - E;ai = - Q,, (6') 

Ca, - E , . ,+ ,  = - Qa, ,  (7 ' )  

Qo, = (4~r/%) P,, (8') 
eo 

Om = - E O i ,  (9') 
i - I  

E, = 0.5(~a, + E,,,). (lO') 
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The statistical relations lake the forms 

Qi = - . 4  sinh( ~ i ) / Z i .  

Qd, = 3Ei(l  - 28)(C~o/G - 1)([y~ cosh(y~) - s i n h ( k . ) ] / ) ? Z i ) ,  

659 

(I 1') 

(12') 

where yi==-sEi; p' =--p/eLDa; s =p/eLDa;  and Z i is given by eq. (13). Here 
s = siMIo/2 is a normalized dielectric saturation parameter. In order to simplify 
later comparison with GC predictions, we have def ined ' the  new dielectric 
constant Cxo in (12') through the relation 

Cxo/G - 1 - s p ' / 6 3  - 4~rNvpff /3GkT.  (17) 

The electrode potential is 

~m = e?,a + ~JoEol, (14') 

where fo = bo/LDa, and the total double layer capacitance is 

C D = Cda dam/dqb m = CdaCDN, (15') 

where CLm is the normalized capacitance. We may also define the effective 
dielectric constant of the polarization layer for any values of cz and M o as 

'~ - 'a + 4r:Pi/Ei = G (  1 + Qai/Ei ) �9 (18) 

In the next two sections we will discuss the solutions of these equations in the 
linear, weak-potential region and the nonlinear, strong-potential region. 

3. Analytic solution in weak field limit 

In the limit of I'/'i[ << 1 and lEA << I for all i, the model equations can be 
linearized and solved analytically. For this purpose it is convenient to manipu- 
late eqs. (1') to (I0') and derive the following recurrence relations 

epi + (�89 + ~ )( E , - � 8 9  + ~Qd,=e?,_, - �89  E,_, + �89 (19) 

E, + Qd, -- �89 Q, = E,_, + Qd.i- n + �89 Qi-  I" (20) 

The equations for Qi and Qdi simplify to 

Q, = - A ~ .  (21) 

Q,j, = (1 - 2 3 ) ( p ' s / 6 8 ) E , -  (1 - 2 3 ) ( 4 3 p f i N v / a G ) E  , - (c~/c a - I)E, ,  (22) 

where c~, defined above, becomes in the present weak field limit, 

c~ = G + ,~TrNv (1 - 2 8 ) p f i / 3 k T =  % + (I - 23 ) (Go  - G ) .  (23) 

Its value for 3 = 0  (pure solvent) is of course exo. For comparison, the 
Gouy-Chapman  approach uses a homogeneous dielectric constant, which, in 
the presence of ions, may be written analogously as 

' a  = ' a  + (1 -- 2 3 ) ( , B o -  r ' (24)  
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Substituting eqs. (21) and (22) into eqs. (19) and (20), we obta in  

(1 + -t,0A )(4' i- ,  -- '~,) + �89 = �89 + E,)  + ( ~ / R  x ) E  i, (19') 

~o,_, --  E i = 0 . 5 R x A  ( ~  / "{- ~ i - I ) ,  ( 2 0 ' )  

where R x -- %/cx. This set of linear difference equations can be solved by the 
substitutions 'r 4'i-IY and E i = E i_ Vt, where ~, is a decay constant which 
satisfies "/< 1. The conditions that eqs. (17') and (18') have nonzero solutions 
for '~i and E i determines 7, with the result 

Y = A -  (A 2 -  1) '/2 , (25) 

where 

A -  [1 +140.4(1- Rx)+ �89  + ~ 0 A ( 1 -  R,,)].  (26) 

Note that when A ---, 0, 7 --* 1. The relation between E i and r is 

E,I~i = �89 [(1 + V ) / ( l  - V)]. (27) 

The charge on the blocking electrode is just 

Qm = A E ~i = Ae?,/(1 -- Y). (28) 
i - -I  

The potential of the blocking electrode is found to be 

~m = ~,(1 + ~oAy/(1 -- y)  +~0A [1 + R x [(1 + y ) / ( 1  - y ) ] ] ) .  (29) 

Thus the total double layer capacitance, here equal to CdaQm/e?m, is given by 

co  = CdaA/[( l  +  ,0a)(l - V) +  ,OaR (1 + V) +  0A], (30) 

and C d is obtained by just setting/Jo = 0. At first glance, this IDM cxpression 
for C o may secm to contain a considerable number of adjustable parameters 
such as A, 0, and R,,. But as we shall show shortly, a subtlc rclation is required 
between two of these parametcrs, greatly reducing the range of their indepen- 
dent variation. 

Our results become particularly simplc if we make the gaps between the 
slabs infinitesimal, i.e. we let b and b o ~ 0. We then find 

y = (1 - X ) / ( 1  + ~,), (31) 

where 

X = A[  R J ( 4  + A2)] '/2, (32) 

2 1/2 Co--Cd=Cj(R [1 ]) (33) 
The quantity Cd8 ~- cs/4~rLt)  B = C d J ( R B )  t/2 = (%e2co /8r rkT )  I/2 is the low 
field Gouy-Chapman result for the double layer capacitance of a material of 
uniform dielectric constant %. Here R B - % / % .  It is clear from eq. (33) that 
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when A .--, 0 and (x0 = %0, we find Cd = CdB, showing agreement between the 
I D M  and the GCM in this limit. Such agreement is important since the 
difficulties with the GCM mentioned earlier disappear as M o ---, 0. But as eq. 
(33) shows the IDM predicts a lower capacitance for A > 0 than the GCM, 
which comes about because of the dielectric screening of the slabs. As A ~ 0, 
on the other hand, the ion density becomes so low that the Debye length in the 
dielectric becomes very large compared with the interatomic distance and the 
capacitance approaches the classical limit for the choice CxO = %0. 

Another interesting prediction of the model is that the potential in the 
dielectric has large oscillations. We can see this more easily in the case b ---, 0, 
so that ~id = ~d.i- t is the pot.entiai at the boundary between the i - 1 and the 
i th slabs. A simple calculation gives 

tl, id/~pi = [l + (A/2)2]1/2{[1 + (A/2)2]1/2 + R ~ n A / 2 } .  (34) 

The ratio is greater than one. Similarly, 

~,ia/~i_l = [1 + (A/2)2]1 /2( [1  + ( A / 2 ) 2 ] ' / 2 -  R~BA/2} ,  (35) 

which is also greater than one in most electrolytes. Thus, the spatial depen- 
dence of the potential has the form of an exponentially damped periodic 
oscillation, as shown in fig. 2. Here, where the choice b o = 0 has been made, the 
distance from one layer center to the next is a = d =  3.1 ,~,. 

The origin of the potential oscillation shown in fig. 2 can be traced to the 
discreteness of the charge distribution in the electrolyte. In the IDM the ions 

IO'Z ~ I I I I I I 

h T = 20~ 

I~ ~'a = 6 
I ~  r = ! 
I ~  Mo = I 

o t  I ~ t C Y 
I 2 5 4 5 6 

i 
Fig. 2. Normalized potential versus layer index i for M o = I and b o = 0 in the low field region. 
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form charged planes at the center of the slabs, so the electric field undergoes a 
discontinuous change across each charged plane. As a result the electric field 
oscillates alternatively above and below the average value, and this causes the 
electric potential to vary rapidly. When the layered structure of the electrolyte 
is ignored, as in the GCM, the potential and field oscillations disappear. The 
connection between the layered structure of the charges and the oscillation of 
the electric potential was discovered by Kirkwood and Poirier [27]. 

Carnie and Chan [15] have discussed another source of oscillatory behavior 
which arises from the microscopic structure of the solvent. In their theory the 
solvent is assumed to be a collection of dipole spheres. When these spheres are 
stacked up in layers, the density of the dielectric medium varies periodically in 
space and gives rise to over-screened and under-screened regions. A spatial 
variation of the potential can result from the inhomogeneneity in the screening 
strength of themedium. In the IDM the inhomogeneous dipole screening effect 
can be seen as electric field variations at the boundaries between a dielectric 
slab and the spaces on either side of the slab. The discontinuities disappear 
when we take b = 0. 

As a consequence of the potential oscillation near the electrode, the electric 
field strength near the electrode is higher than that predicted by the classical 
theory. We may define an electric field enhancement factor by 

= l + v)/(l +v). (36) 

For  a IM aqueous electrolyte we estimate that y =- 0.607 and R B ~ 0.0716, so 
that the enhancement factor is 4.17. The factor is smaller for more dilute 
electrolytes. It is difficult to assess the accuracy of this prediction except in 
qualitative terms. In treating the ions as point charges, the IDM overestimates 
the potential variation arising from the inhomogeneous charge distribution. On 
the other hand, in assuming uniform dielectric slabs, the model underestimates 
the effect due to the inhomogeneous dipole distribution. Since the two effects 
cause errors in opposite directions, one may hope that the prediction is not far 
from reality. The only experimental evi~lence indicates that this is the case [28]. 
In this work a Ag(100) surface is immersed in an aqueous electrolyte and the 
reflectivity of the surface is measured as a function of the bias potential 
relative to the bulk of the electrolyte. Two absorption features, attributable to 
excitations into two unoccupied surface states, are seen to shift in energy very 
rapidly when the bias potential is varied. The authors estimated that the 
electric field seen by the surface states is about three times as high as that 
calculated from the classical theory, in reasonable agreement with the present 
predictions. 

Now let us examine C o N  -- C D / C d a  in more detail. First define r = d / a ,  the 
fractional filling factor, which may be held constant as M o and A go to zero. 
Then 0 - r A  and eq. (30) may be expressed in normalized form as three 
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capacitances in series,.  

- I  CD~ -- Cd--~ + CiLr~, : (37) 

where 

Cdb~ - I  - I  -= CDm + Czos,  (38) 

and the normalized inner layer capacitance CIL/Caa is just 

CILS -- ~o I- 

The dipole contribution to the diffuse layer capacitance, CDm, is 

CDI s ~ Z~/(1 - ~,), (39) 

and the ionic contribution is 

C I O  N ~ {(rA/4)[ l  -- 7 + Rx( l  + ~ ' ) ] ) - ' .  (40) 

We have made these identifications on the following basis. Consider the A --, 0 
limit in which there should be no ionic contribution to Cow remaining. One 
can readily show from eqs. (25) and (26) that in this limit to first order in A, 

l -- ' t-- .  [rR~ + (l - r)] ' /2A. 

Then it is clear that as A ~ O, Ci-ds - ,  0, and 

Co,r~ ~ (rR x + 1 - r )  '/2, (41) 

a constant value. Further, if it were possible for M 0 to go to infinity, one would 
find that both Cio s and Co~r~ would become infinite and thus make no 
contribution to CDS. But 8 =-co/N v--- 0.018M o and cannot exceed 0.5. Thus 
the largest possible value of Mo in the present model is Momax = (2 • 0.018) - I  
= 27.7. The corresponding value of A with a = 3.1 .~. is about 19.43. 

Now from eq. (41) we may express Cm with Crib normalization, C D I B N  ~--" 

CDI/CaB = CDIS R~B, as 

CD,BN = [ R , / ( r R ~  + 1 - r ) ]  '/2 (42) 

in the A ---, 0 limit. Clearly when r = 1 and R~ = R B, it yields C m = Cd~3, in 
agreement with eq. (30) in this limit. But it is of interest to explore under what 
conditions CDI = Crib for A .-* 0 and r_< 1. Eq. (42) immediately yields the 
relation 

R ~ = r - I ( R a + r  - 1 ) ,  (43) 

which only allows a positive R~ solution for 1 - R B < r <  1. For R B = 6 / 8 0 . 4  

--- 0.075, appropriate for water when ~ -~ 0, one finds 0.925 < r < 1, showing 
thai there is only a limited range of r values for which the present model can 
agree exactly with G C M  predictions in the A ---, 0 limit. Put another way, b/a  
must equal or exceed R B, and thus the b ~ap cannot be greater than about 
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eight percent of  the water molecule diameter. No te  that eq. (43) is equivalent to 
d /c  x + b /% = a/cB, which is just  the condit ion that the layered model  exhibits 
the bulk dielectric constant  c B = cB0 for any possible r and % value when 
M o --* 0. When r < 1, c x must  be greater than ct~ in order  to compensate  for the 
effects of  the low dielectric constant  b > 0 regions where c = %. 

In  the r ~ 0  limit, the I D M  should degenerate to t h e ' L L M  and no R~ 
effects should remain since no region of  permanent  dipole polarization is then 
present. One finds 

y =  1 + ( a / 2 ) 2 -  a [ l  + ( A / 2 ) 2 ]  l / 2 ,  

= {[ . ,  

(44) 

(45) 

Thus  we have found a general closed form expression for CdN in the LLM case 
as well. If  we take q ~ c a for this model and let A ~ 0, we obtain CaN -o Cda N 
= 1, again in agreement  with G C M  predictions. 

For  most  of  the rest of  this work, we shall compare  results for the LLM,  the 
G C M ,  and the I D M  with r = 1. Let us first examine the dependence of  C d on 
M o in the present ~nd ~ 0 case. Fig. 3 shows such results up to M0m~. The  
L L M  curve has been calculated using eq. (45) and q ~ ~B with ~B given by eq. 
(24) and CDo = 80.4. The  G C M  curve is just  that  for Can = cn/4rrLoB, and the 
I D M  C d curve follows f rom eq. (30) with r = 1. Note.especial ly the max imum 
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Fig. 3. Comparison of differential capacitance, Ca, dependence on molarity, M o, for several models 
in the limit of  zero electrode charge. 
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in the I D M  C d near ~.t o = 3. Since hydrat ion effects are not  included in the 
present model, the I D M  curve is not likely to be very significant for M o greater 
than 2 or  3. 

Now although we have thus far distinguished between r and ~nd (see fig. 1) 
because b o may not be zero, it should be noted that even when b o = 0 the 
present theory is not just a theory of the diffuse double  layer alone but a 
theory of  the full double layer. The charge Qtd is not a true charge but  a 
pseudo charge used to calculate polarization effects in the d region most 
readily. Thus, even when b 0 = 0 there is still a charge-free region of  thickness 
d/2 between the electrode at x = 0 and the first real charge layer at x = d/2. It 
is not therefore surprising that when we take b o = 0 so that r = ~'td and 
C o = C d is the differential capacitance of  the full double  layer, inner layer 
elects should become apparent.  As long as r > 0, charge-free polarized regions 
will be present, explaining the general dependence of  the C d curve for the I D M  
in fig. 3. 

Table 1 shows some results for the LLM,  GCM,  and I D M  situations. To 
emphasize the 9td "-' 0 situation, we have written C d and C D a s  Cdo and CD0 
here. The first two models deal with ions in an c a background,  while the I D M  
involves ions and permanent  dipoles in an c a = 6 background.  In addit ion to 
the r = l I D M  results, some for r -- 0.93 have also been included. The value of  
r used requires c~---970, much greater than cB0. But this is about  the value 
which follows dircctly f rom free energy minimization if one takes an effective 
dipole moment  of/~c = 17.2 D (see later discussion); such moments  have been 
augmented by the presence of  surrounding water dipoles and are thus much 
larger than that of  an isolated dipole [8,18]. This value of/7c is found through 
interpreting experimental dielectric saturation measurements  on pure water. 
The  combinat ion of  layers of  polarization involving c~ - c a --- 964 of  thickness 

T a b l e  I 

Different ia l  capac i tance  ( / . t F / c m  2) of  aqueous  e lect rolyte  for ~n,t ~ 0, several  concent ra t ions ,  
T =  25~ cao = 78.4, Ca ~ 6, a ~ 3.1 A, and  different  s i tua t ions  

bfo lar -  No  series capac i to r  Series capac i tor :  CIL = 31 Experi-  
i ty  bt F / c m  2 merit 

M o LLM G C M  I D M  I D M  N a F  {29] 

r = 0 Cda r = l r = 0.93 G C M  I D M  I D M  Coo 
Cao Cao Cao Coo r = I r = 0.93 

CDO COO 

10 -3  7.3 7.2 7.2 7.3 5.8 5.8 5.9 6 
10 -2  24.0 22.8 22.5 23.5 13.1 13.0 13.4 13.1 

10 -  n 84.7 72.1 62.3 71.5 21.7 20.7 21.6 20.7 

1 .369.3 224.5 107.1 138.9 27.2 24.0 25.4 26 
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d = - 0.93a and. surrounding layers of c a = 6 of thickness a - d -  = 0.07a yields 
r = 77.72 in the Mo--, 0 limit. Thus this layer model of the water dielectric 
constant works properly although it may seem a bit strange. 

Also shown in table l are Grahame's NaF results for the total differential 
capacitance at the electrocapillary maximum (~ld = 0), C D. Although the two 
sets of IDM results agree better with experiment than does that for the GCM, 
they clearly are far from entirely explaining the experimental results. It appears 
that inner layer effects in the present IDM involve too large an effective 
inner-layer capacitance to allow agreement with experiment. It seems probable 
that later work using finite dipoles directly and including hydration effects will 
yield appreciably better agreement. For the present, we have shown the effect 
on the GC and ID models of including a conventional [24] direct inner layer 
capacitance of CIL = 31 /.tF/cm 2. The r = 1 IDM then exhibits especially good 
agreement with Grahame's results. This CIL value corresponds to a thickness 
of about 0.29 ,~ if its effective dielectric constant is taken as unity. This is too 
small a value to be entirely explained b y  field penetration into the metal 
electrode, which generally leads to a value of about 0.5 .~. On the other hand, 
it seems quite explicable on the basis of non-local electron overlap effects [24]. 

It should be mentioned, however, that Henderson [ 13] has obtained low-field 
values of C o less than the experimental ones using the Mean Spherical 
Approximation results of Carnie and Chan [15] and Blum and Henderson [9]. 
This treatment does not include an explicit separate charge-free inner layer, 
but there is some question whether it applies well up to concentrations as large 
as M o = I. Henderson ascribes the lowering of his C o values to orientation of 
dipoles near the electrode. In our treatment such orientation can be increased 
if needed by including a mean field polarization interaction [14]. 

4. Numerical results for large applied potentials 

Although the equations of the problem may be solved exactly in the e~ld ~ 0 
situation, as was illustrated in the last section, numerical solution techniques 
are required when Ir > 0. Consider first a typical layer denoted by the index 
i. On combining several of eqs. (1') through (7') one obtains 

~)i ~- ~id - ( 8 / /2 ) (  E i -  l.i - Odi ) ,  (46) 

~i  = E i - , . i  + Q i / 2  - Qdi', (47) 

where for forward incrementation, r and Ei_ i.i will be known (for i = 1 and 
b o = 0, their values are ~ = e;,la and E01 = Q~). Now Qi and Qdi, given by eqs. 
(I 1'), (12') and (13), are functions of both 4, and E i. Thus eqs. (46) and (47) 
form a coupled self-consistency set which can only be solved for ~ and E~ by 
iteration when 14'~1 is not infinitesimal. Such solution must be carried out for 
each value of i. 
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Now we wish to find a completely blocking solution, one where if, and c- to i 
approach zero as i--* ~ under the constraint (9'). For  a given choice of ghd, 
there is only one, initially unknown, value o f  Qm which leads to such a 
blocking solution. In the present work we have elected to use forward incre- 
mentation [12], to fix '~Ja, and find the corresponding blocking-electrode Qm 
value by iteration. Alternatively, Q,., could have been fixed and the corre- 
sponding ~ d  found. Some checks of the present results using reverse incre- 
mentation [8] show excellent agreement and thus verify the applicability of 
both methods [18]. 

As mentioned earlier, even the present b 0 = 0 choice does not lead to just 
diffuse double layer conditions in the IDM. But for agreement with experimen- 
tal data it will generally be necessary nevertheless to take b o ~ 0 and thus add 
an extra inner layer capacitance C~L explicitly. Rather than include it in the 
analysis in this section, it has been omitted for simplicity but can be incorpo- 
rated to change C a to C O very simply when desired. Our present model 
assumes constant polarization in each individual layer, thereby replacing the 
finite-length dipoles actually residing in each layer by a layer of finite thickness 
made up of infinitesimal dipoles all similarly aligned. In future work on 
unadsorbed systems, all permanent dipoles effects will be represented by 
finite-length permanent dipoles, with the main inner layer populated only by 
such dipoles and with succceeding layers containing ions as well. 

Once the set (46) and (47) has been solved for given i, one needs equations 
which will allow progression to i +  1. Simple manipulation of the earlier 
equations leads to the required results, 

q';+, = ~ ,d  --  A E , _ , . ;  + OQd;  - -  ( Z~ - -  0/2)  Qj, (48) 

E l . i +  I = E i _  i.i  + Q i .  (49) 

Our solution procedure may now be summarized as follows. First, a value of 
~Jd is selected. Next an initial choice for the corresponding Qm is made, based 
on any earlier information available. Then eqs. (46) and (47) are solved for 
i = 1; eqs. (48) and (49) are used to progress to i = 2; eqs. (46) and (47) are 
then solved for i = 2; and so on. Such incrementation is continued until '~ia or 
~id --  ~i+ I,d changes sign or until ~ i d / ~ l d  ~ 10--6" When the latter condition is 
satisfied, we accept the result as a good solution, i.e. a sufficiently good 
approximation t o  t ~ i d / t ~ l  d ~ 0 as i ~ OO. Of course, such a solution will not be 
found immediately with the initial approximate choice for Qm, and the above 
procedure is automatically repeated until a value of Qm has been found which 
does satisfy the final criterion above. This consistent value must generally be 
determined to l0 to 12 decimal places in order to achieve a good solution. 
Further, the number of layers required for a good solution varies with the 
magnitude of A and ranges from around 30 for the largest A values of the 
present work to about 130 for the smallest. Incidentally, the solution procedure 
above for the IDM is also used for the LLM, but there one has only a single 
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consistency relatipn replacing eqs. (46) and (47) since Qdi is identically zero for 
this model. 

We shall next consider reasonable numerical values of  the various parame- 
ters which enter the theory. We shall pick T = 20~ for the work of this section 
since this value was Liu's  original choice [8] and is the temperature at which 
the most  recent dielectric saturation measurements  on water have been made  
[30]. For  simplicity, we shall also take r = 1 throughout  the rest of  this work. 
N o w  8 ~-0.018M o. Further,  following the results of the last section, we take 
c x = c B = 80.4 - 2 .6784M o. N o w  we have already chosen a = 3.1/~, and c a = 6. 
We find L o a  ~ 0.83395M o n/2 ~ and A = A a = A n ~ o ,  where A n ~ 3.7172. At  

M o = 1, R B = 0.0772. Further, Cda = 6 3 . 7 0 2 ~ o  ~ F / c m  z, E n--- 3.0293 • 

1 0 6 ~ o  V / c m ,  and a n ~ 1 . 6 0 9 3 ~ o / t C / c m  2. 

It now remains to decide what values o f p  and/3  to use. The dipole moment  
of  an isolated water molecule is about  Po = 1.85 D, but  Liu has used 2.35 and 
9.54 D for p and fi, respectively, since the Booth-Onsager-K_irkwood theory of  
dielectric saturation requires effective dipole moments  augmented by various 
d ipole-d ipole  interactions. N o w  from eq. (23) we have 

4~rNvpf f /3kT= cB0 - c a = 74.4. 

This low-field limiting relation leads to p/3----21.488 D z, in reasonable agree- 
ment  with 2.35 x 9.54 = 22.42. Part of  the difference arises because Liu set 
c a = 1. N o w  as already discussed [18], there is a problem when one at tempts to 
estimate values of  p and /3  f rom experiment using the above value for p/3 and 
experimental dielectric saturation results. For  the present theory, expansion o f  
c x = c B to first order  in E z using eq. (18) leads to 

( ' a o  - ' B ) / E 2  = 4rrNvP/33/45( k T )  3. 

Recent  saturation measurements  on water at 20~ up to fields of  105 V / c m  
suggest that ( c a 0 - - c B ) / E  z is about  10 -nn ( c m / V )  2 in the E 2 dependence 
region [30]. This yields p/33 = 6.378 x 10 3 D 4. NOW on dividing out p,  one finds 
/ 3~  17.229 D, a very large value. The corresponding p obtained f rom the p/3 
product  is only 1.247 D, a very small value [18]. 

These values are not  very plausible, and there is even doubt  about  the 
applicability of  the Booth theory at high fields. We can avoid some of  the 
uncer ta inty by using the experimental ca0 - c a value in the formulas. Then the 
only  remaining parameter  needed is/3, which then only plays the role of  a 
saturation constant.  It will be convenient to use s n, the M o = 1 value of  
s = f i / eLoa to set the strength of  saturation. If/3 is measured in debyes, it turns 
out  for the present situation that s n -= 0.25/3. Thus when/3 is  17.23 D, s~ -= 4.30. 
But this value will lead to very rapid dielectric saturation, and al though we 
shall investigate its effects, we shall carry out  most  of  our  calculations for a 
smaller intermediate value, s t = 1.175, corresponding to/3---4.705 D, essen- 
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tially equal to the square  root of the geometric means of the two p/7 values 
given above. This is a plausible value when p and/~ are replaced by a single 
value. Free energy minimization for a region containing ions and non-interact- 
ing infinitesimal dipoles leads, in fact, to equations of the form of (1 1) to (13) 
but  ones which involve a single dipole moment,  unless rather ad hoe modifica- 
tions are made. Dipole-dipole  interactions can be taken into account ap- 
proximately in the present average-field treatment by simply taking p =/7 
larger than P0, as we have done above. At a somewhat increased level of 
sophistication, one could add mean-field dipole-dipol  e interactions into the 
theory with bare dipole moments  of p =P0- The effects of such interactions, 
which will be investigated in. a later paper, would make the effective dipole 
moment  dependent on field, however, and would thus change the character of 
the dielectric saturation to at least some degree. 
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Fig. 4. Electrode charge, or,, versus normalized applied PD, ~md, for three double layer models and 
a range of molarities. No inner layer has been added to any one of the models. 
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Fig. 4 shows comparisons for a range of molarities of the total electrode 
charge versus total applied PD for the three different models already discussed. 
Note how the IDM leads to nearly linear dependence in this range, quite 
unlike the essentially exponential dependences of the other two models. In 
making this comparison we have not included an inner layer in any of the three 
models. The predictions of IDM are clearly more realistic because in treating 
water as a collection of dipoles some properties of the inner layer are contained 
in the model. What is absent in the model are microscopic interactions between 
the metal electrode and the molecules in the electrolyte. There is hope that 
when these interactions are understood and added to IDM, both the inner 
layer and the diffuse layer can be described by one consistent model. The 
values of Cda in the box of this figure are in / t F / c m  2. Now, differential 
capacitance is an even more sensitive indicator of differences between models. 
Fig. 5 compares C d versus ~ld results for the three models in the relatively low 
'~ld range. The M o-- 1 GCM and LLM C d results are too large to appear on 
this graph. It is particularly interesting to note the single cross-over point of 
the IDM curves at Old =- 10. Although, as already mentioned in the last section, 
the present results with b 0 = 0 still represent the full electrical double layer, not 
just the diffuse double layer, they clearly lead to much larger values of C d, both 
a s  t~l  d --~ 0 and for larger values of ~ld, than found experimentally [29]. Some 
kind of an additional inner layer is still required for better agreement with 
experiment. 

Fig. 6 is similar to fig. 5 but shows results for the IDM alone; it includes a 
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Fig. 5. Differential capacitance, "Ca, versus normalized applied PD, ~ld, for the three double layer 
models and a range of molarifies. 
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120 

wider range of t~ld, extending up to about the maximum experimental applied 
PD; and it demonstrates how C d curves depend on different values of the 
saturation strength parameter s~. The value of s~ = 10 -5 used here is suffi- 
ciently small that the polarization does not change from its ffld ~ 0 value over 
the entire g'~d range. Note that we are using an expression for Qdi that depends 
on e n 0 - c ,  as in eq. (t2'), rather than one that involves separate p and p 
values, which would both decrease as one changed Po- Here, eB0 - ( a is kept 
equal to the experimental value for water as/7 (and sl) is changed. If it were 
not held constant, the limit s~ ~ 0 would change the IDM into the LLM. As it 
is, the s~ --- 0 curve here represents an IDM situation involving non-saturable 
ideal permanent dipoles. The slow decrease of the s I = 10 -5 curve does not 
arise from changes in orientation of the permanent dipoles but is associated 
with shielding of the field as one progresses layer by layer away from the 
electrode. The s I = 4.3 curves included here exhibit such a rapid decay as ~la 
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Fig. 6. Differential capacitance, Cd, versus r for the,lDM alone for several saturation-strength 
parameter, Sl, values. 
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increases that they soon reach a value of C a smaller  than G r a h a m e ' s  m in imum 
value of about  16 # F / c m  2 found experimental ly  for the entire double  layer in 
N a F .  Thus,  the I D M  with this large a value of s t is unacceptable .  It is possible 
that  later work using finite rather  than infinitesimal pe rmanen t  dipoles will 
yield m o r e  sat isfactory resulis. Incidentally,  the sl = 4.3 curves have not been 
extended to higher `htd values here because it becomes  quite difficult (and 
requires much  compu te r  time) to find the p roper  Qm consistent with a given 
value of `htd when Pi is near  saturat ion.  In the present  case for s, = 4.3, 3 t  0 = 1, 
and  `h,d = 10, one finds, in fact, that the ratio of  cyi to its fully saturated value 
is about  0.81, 0.58, and 0.36 for i = l, 2, and 3, respectively, apprec iably  larger 
values than those for s t = 1.175 even at a `htd as large as 30. 

Fig. 7 shows how the potential  varies as i increases for  a large value of 'hid. 
N o t e  the non-exponent ia l  decay for large values of  the local potential  near the 
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Fig. 7. Normalized potential versus layer index i for M o = 1, b o u 0, and a normalized electrode 
potential  of 30. Note  that each separate polarization layer extends from i - 0 . 5  to i +0.5  (solid 
circles), and the layer centers are at the various values of i itself (open circles). 
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Fig. 8. Normalized potential versus layer index i with the mean exponential response of the 
potential removed, yielding pure oscillatory response. 

electrode (here at i = 0.5). In this r = 1 situation, r and r ].d are the same; 
they appear  at i + 0.5 posit ions and ~i is plot ted at the center  of  each layer. 
Al though the potent ial  will actually change linearly between solid and open 
dot  positions, such linear dependence  does not  lead to straight lines on a 
semi-log plot [12]: the straight line joining the dots in the present  graph are 
included to guide the eye. These  results should be compared  with those of 
fig. 2: here the large value of  r makes  the initial dependence  of r or ~;d on i 
non-exponent ia l  while the r << 1 results of  fig. 2 show overall exponential  
response for all values of  i. In fig. 8 the average mean  exponent ia l  response, 
de termined f rom the large i region, has been removed f rom the values of  fig. 7, 
leaving only the oscil latory response,  r162 discussed in the last section, 
remaining.  The  non-exponent ia l  behavior  for i < 3  thus shows up clearly. In 
the present  linear plot,  the straight-line response shown is meaningful .  

In fig. 9, '~d values are plot ted directly, omit t ing ~ ones in order  to show 
exponent ia l  and non-exponent ia l  response more  clearly. The  curves indicate 
that  the initial non-exponent ia l  response increases as bo th  s t and ~ d  increase. 
The  ~ d  = 4, S~ = 10 -5 curve has been omit ted:  it lies so close above the 
s~ = 1.175 curve that  it would not be well resolved on this graph. It is 
interesting that even as large a Cbtd value as 4 still leads to essentially perfect  
exponent ia l  decay here. Fig. 10 is similar to fig. 9 but  involves ~ rather  than 
~ d ,  and we show I D M  results for only a single s~ value and compare  them with 
L L M  response.  In order  that  the I D M  and L L M  curves begin with the same 
i = 1 value, the L L M  ones have been calculated with the I D M  i = 1 ~i value 
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Fig. 9. Dependence of g'i,J alone on i for M 0 = 1, Cud = 30 and 4, and widely different values of s t. 

taken as the total applied PD. These values, for r = 30 and 4, are shown on 
the graph. As one might expect, these results show that decay is much more 
rapid for the LLM than for the IDM because of the absence of permanent 
dipole shielding and that the IDM leads to appreciably greater non-exponen- 
tial behavior foi" small i than does the LLM. Fig. 11 is similar to 10 but 
involves M o = 0.01. In this case a good IDM solution requires ima x - 130; here 
we have plotted the first 40 values of 4'i versus 1 without showing separate dots 
for each value. For this value of M o the difference in decay rates for the LLM 
and IDM is extreme. Note that the IDM nonlinearity is greatly increased as s n 
increases from 10 -5 to 1.175. 

Finally, fig. 12 shows some high-C, d layer-by-layer results for Q*, @ir~, and 
c~. Here a~ =- QJQ,  @is -- @i/@i . . . .  and , ,  is given by eq. (18) with c, = cx. 
Further, from eqs. (11'), (12'), (8'), and (13) it is readily shown that the QImax  

and @/max are -A/28 and (3/4~')(ct, o -  ~)/s, respectively. This expression 
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for  @,,,,x corresponds,  as it should to Pimax=Nvp. In the present case, 
Q , ~  -" - 103 and P ~ , ~  = 15.1. Although ~ m  is about  0.7 here, it is not as 
large as that ment ioned earlier for s, = 4.3, ~',d = 10, and M o = 1, By chance 
the particular ~m and Q* curves plotted here happen to have nearly the same 
values for the large i region. 

Al thoug h the L L M  curve (with a straight line drawn between the first two 
points) shows that Q, and even Q2 are beginning to approach  their saturated 
values at this high ~,d value, this is not  true for the IDM.  One finds that Q, 
and Q2 are about  - 2 8 . 7  and - 2 0 . 9  for the L L M  but are only - 3 . 2 7  and 
- 2 . 4 7  for the IDM.  These differences of  course arise f rom the strong perma- 
nent  dipole polarization, represented here b~r @m. It also leads to the strong 
reduct ion in c~ for i - I and 2 f rom its i ~ oo value of  cB. 
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Fig. 11. Dependence of ~i alone on i for M o = 0.01, sho~ing LLM and IDM differences and the 
effect of different sj values. 
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The foregoing results show the great differences that arise between the 
LLM, which uses a homogeneous c B that implicitly includes permanent dipole 
effects, and the IDM, where the effects of the permanent dipoles are taken into 
account explicitly through using a consistent average permanent dipole mo- 
ment for each individual layer. Although the results found for the IDM are far 
closer to those found experimentally than those predicted by the GC and LL 
models, they ar still not in good agreement with the data. As already discussed, 
agreement can be greatly improved by taking b o = 0 and thus including more 
of a Stern inner layer than that already implicit in the IDM. But the present 
IDM results are still based on the approximation of replacing a region 
containing a single finite-length permanent dipole by a region of the same 
maximum extent containing a uniform polarization associated with infinitesi- 
mal permanent dipoles. In future work on the double layer problem, the entire 
treatment will involve finite dipoles from the beginning, including an initial 
inner layer of finite dipoles but no charge, if necessary to achieve best 
agreement with experiment. Eventually, it should also be possible to take into 
account hydration effects around ions [18] in an averaged model of the present 
type and to include dipole-dipole interactions in a plane by mean-field type 
corrections [11,12,14]. Much still remains to be done. 
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Fig. 12. Comparison of LLM and IDM predictions versus i for the layer charge (normalized to 
unity at i = I), the IDM relative polarization, c~jr 4, and the effective dielectric constant, c i. 
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