A finite-length-dipole model of the double layer in polar, polarizable materials
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Because no relatively simple theory exists for the electrical double layer in polar, polarizable
material such as an aqueous electrolyte, we develop here and solve in closed form, a semidiscrete
lattice gas double layer theory applicable over a range of applied potential difference up to that
leading to full dielectric saturation. It considers for the first time in the present context solvent
molecules with finite-length permanent dipoles and induced ideal dipoles. The latter dipoles are
treated in two distinct ways: semidiscretely or as leading to a continuum background dielectric
constant € . We consider statistical averaging of the permanent dipoles in a given layer over all
possible orientations and include competition for lattice-site occupancy between ions and solvent
molecules self-consistently. Results for the diffuse region with multiple lattice layers and finite
ionic concentration will be discussed in subsequent work. Here the full equations are first
developed and then specialized for the case of a charge-free molecular monolayer at a metal
electrode; they thus apply best to an adsorption situation or to the inner Helmholtz layer region of
the full electrical double layer, but their predictions are compared with bulk dielectric constants
as well. We present the dependences of various electrical quantities of interest on position across
the monolayer and on applied field and permanent dipoles (p.d.), with the monolayer taken
between two conducting plates. The semidiscrete treatment of the induced polarizability leads to a
ferroelectric Mossotti catastrophe, but that for the finite-length permanent dipoles alone does not.
The present work also demonstrates that the finite-length dipole model leads to negligible
dielectric saturation, when applied to water molecules, e.g., up to fields larger than those expected
to occur in the actual aqueous electrolyte double layer. This surprising result is a direct
consequence of the behavior of the finite-length rather than the ideal permanent dipoles assumed

in other treatments of the dielectric constant and dielectric saturation.

I. INTRODUCTION

The ionic diffuse double layer, which consists of a space
charge region near a phase change or electrode, plays a very
important role in the electrical behavior of solid and liquid
electrochemical systems, colloids, and living cells. But there
does not currently exist a theory of the ionic double layer at a
completely blocking metal electrode in liquid electrolytes
which is adequate in the charge/potential region where ions
and solvent molecules begin to approach saturated condi-
tions. We present here a semimicroscopic theory which at-
tempts to meet this need.

There are two common approaches to the problem of
treating the behavior of a large quantity of discrete particles:
the continuum and statistical methods. In the first of these,
the particles are taken as infinitely numerous points,
smoothly filling a region of space of interest. The first double
layer theory, that of Gouy and Chapman,'? is of this type
and becomes wholly inadequate when finite particle size
plays a dominant role, e.g., at high concentration and even at
low concentration near saturation. In the statistical method,
on the other hand, discreteness is accepted but only average
behavior is considered, again representing a particular ideal-
ization of reality. Many modern statistical treatments of the
double layer in a liquid®>~® have considered discrete charges
but represented the liquid by a continuum with homogen-
eous field-independent bulk dielectric constant €5. A few
recent ones have, more realistically, represented the solvent
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by taking the discrete molecules as hard spheres with perma-
nent ideal or finite-length dipole moments.'®"'* These dipole
theories have the great advantage of including such effects as
dielectric saturation and hydration in a natural way. Espe-
cially in regions where large spatial gradients of potential
exist, as in the space immediately next to a blocking elec-
trode with an appreciable applied potential difference, ideal-
dipole treatments will be inadequate since the use of a point—
dipole model to represent a finite-size molecular dipole is
equivalent to averaging over a region comparable to a sol-
vent molecule in size. Further, all these valuable treatments
are invariably very complicated and have not yielded ade-
quate results for the approach to saturation. For these rea-
sons one of the authors and his associates have considered
some simpler but more approximate lattice-gas treatments
of the diffuse double layer which allow saturation to be close-
ly approached. The lattice gas approach, while quite appro-
priate for single crystal solids, is an approximation for li-
quids but one which has, nevertheless, been found quite
useful in the theory of liquids.

Previous papers have dealt with various lattice-gas ap-
proaches to the calculation of accumulation-type space-
charge equilibrium distributions near blocking electrodes in
solids and liquids with charges of both signs mobile. Earlier
work'*~!® employed continuum differential equations and
the homogeneous field-independent bulk dielectric constant
€. In order to treat regions of high charge-carrier concen-
tration near the electrode more exactly, the continuum ap-
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proximation was partly eliminated by considering a model
involving an infinite number of discrete two-dimensional lat-
tice-gas charged layers parallel to the electrode.'® Thus, dif-
ferential equations were replaced with difference equations.
This analysis was particularly appropriate for single crys-
tals. Next, part of the bulk dielectric constant approximation
was eliminated in order to try to achieve a more realistic
treatment of the double layer in liquid electrolytes. A field-
independent contribution to the bulk dielectric constant
arising from induced polarizability alone € was added to
the effects of solvent-molecule permanent dipole moments.
These permanent dipoles were taken as ideal but their polar-
ization was spread out perpendicular to the electrode to ac-
count approximately for the finite size of actual solvent mol-
ecules. This approach’®?? replaced each of the charged
layers of the previous work by three charged layers, with the
outer layers having equal and opposite charges and thus fully
representing the effect of the region of constant polarization
between them. Although this treatment appears to provide a
useful advance over earlier ones, it does not treat the effects
of the finite length of solvent-molecule permanent dipoles
and induced polarizability accurately and discretely.
Therefore, in the present work we shall consider a
somewhat more realistic semistatistical model in which the
material is again divided into lattice—gas layers but ones with
each lattice site capable of being occupied by a positive or
negative ion of finite size or by a finite-size solvent molecule.
We take such molecules as carrying a rotatable finite-length
permanent dipole and as being polarizable as well. Each lay-
er thus has a thickness determined by the lattice spacing. We
solve the site competition problem for each layer by the sta-
tistical method, then average laterally over all particles in
the plane of the layer. Although it was assumed in Ref. 22
that there might be present finite-thickness € = € regions
without permanent dipole polarization between each triple
layer and its adjacent triple-layer neighbors, here we make
the more realistic assumption for an averaged situation that
each finite-thickness layer directly abuts its nearest neigh-
bors. Finally, an infinite number of such layers parallel to a
completely blocking electrode at x = Ois considered and the
layers are coupled together using one-dimensional electro-
static relations involving x-dependent average field, charge,
and potential. In the present paper, the equations for this
complete ion-molecule double layer problem will be fully
developed but applied only to the electrical behavior of a
single absorbed layer of polar, polarizable molecules. In a
subsequent paper, the solution of the full double layer prob-
lem for the present model will be presented. In the next sec-
tion the equations are developed and in the following one
results for an adsorbed layer are presented and discussed.
It is worth pointing out some connections between the
present lattice—gas treatment of a system containing ions and
polar, polarizable discrete molecules and experimental and
theoretical treatments of certain polar solids. An electrical
analog of a spin glass is the dipole glass, where electric di-
poles are arranged randomly.?® Such a material is not likely
to be very different in its equilibrium electric properties from
our present liquid electrolyte situation at a given instant in
time or in terms of time-averaged electrical properties.

Further, single crystals may contain ions arranged regularly
on a lattice with effective permanent dipole moments.?* For
these materials, a lattice—gas treatment is particularly appro-
priate, although there are generally only a few different di-
pole orientations possible in single crystals, while we consid-
er all possible orientations in the present work.

Il. THE FULL MODEL

We consider a system of N, particles per unit volume,
consisting of solvent molecules and uni-univalent solute
ions of concentration c,. Let § =c,/N,,. Then the molarity

M, =(6.022 X 10%°)c,,

where ¢, is measured in number per cm . A number N, of
the particles consists of anions, and there are an equal num-
ber of cations. The remaining (1 — 28 ) N, particles are mole-
cules with permanent dipole moment z. Each dipole is repre-
sented by two point charges, of magnitude 7e, separated by a
distance d =2¢. Thus the dipole moment is z = ned. In some
instances we may choose to take polarizability of the parti-
cles into account by assigning each type of particle a polariz-
ability a;, which may be 0. Each particle is modeled as a hard
sphere of diameter a=N ;; /. The hard sphere repulsive
potential is accounted for by the lattice gas treatment.

We assume that the effects of the induced polarizabili-
ties of the ions and solvent molecules can be approximately
taken into account by a homogeneous background dielectric
constant € _ , much smaller than the bulk dielectric constant
of the solvent alone €. At sufficiently high fields or frequen-
cies we expect €., the effective dielectric constant of the
overall system to approach €_ . In order to investigate the
effect of the induced polarization of solvent molecules when
no ions are present by a semidiscrete approach, however, we
shall assume that a,=a, the polarizability of solvent mole-
cules, is not necessarily zero even when €_ > 1. By this
means, our approach will include the situations of physical
interest € >1, a>0.

In the present work, we consider a single lattice plane
and its occupants. In future work, we shall employ the pres-
ent single-layer solution to build up the solution for the equi-
librium electric response of an infinite number of layers. Al-
though we shall here consider only the no ion or zero
molarity situation in detail, we present the basic equations of
the full solute—solvent system in order to use these equations
in future multiple-layer work based on the present finite-
dipole model. When our general finite-length dipole equa-
tions are specialized for the single layer, zero molarity case
witha =0and €_ > 1, they become equivalent to those de-
rived earlier by Oldham and co-workers.>*** Qur full analy-
sis and the monolayer investigation of the present paper were
carried out independently of this pioneering work before its
existence was known to us. We develop herein the more gen-
eral equations for a multiple-layer nonzero-molarity situa-
tion with semidiscrete treatment of the induced polarizabili-
ty (@>0). Thus, our approach includes the statistical
competition for lattice site occupancy between positive and
negative ions and polar, polarizable molecules. Even in the
monolayer for the @ =0 and €_ > 1 case, where our work
overlaps with that of Oldham et al., we have elected to con-
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sider €4, dielectric saturation, specific position dependence
of electrical variables within an average layer, and high-field
response, while Oldham et al. were primarily concerned
with the differential capacitance of the monolayer. Further,
we make specific comparisons between results arising from
the two different ways of taking the molecular polarizability
into account and find large differences between them.

For the general case, we begin by erecting a three-di-
mensional cubic lattice with lattice spacing a. Each lattice
point may be occupied by only one particle, either a positive
or negative ion or a polarizable molecule. The ions are repre-
sented by point charges at the lattice sites. The polar, polar-
izable molecules are represented by finite-length permanent
dipoles, centered on the lattice sites, and infinitesimal in-
duced dipoles at the sites. In order to simplify the mathemat-
ics, we consider only the variation in the direction perpendi-
cular to the electrode, the x direction. All quantities thus
represent an average over the plane at a given x position. The
resulting effective field and “smeared” charge treatment are
not identical to the introduction of mean field approxima-
tions, but our self-consistent averaged approach does in-
clude many of the same feedback effects. Although no ex-
plicit detailed account is taken of cooperative effects, such as
short-range dipole ordering, there is a field at a position
where an ion or dipole could be which depends directly on
the average charge density in the given layer. Even though
further introduction of explicit mean field effects is possi-
ble,'®'® we have omitted them from the present treatment in
the interest of simplicity. We begin by considering an arbi-
trary lattice plane, indicated by the superscript /. In general,
unsuperscripted quantities are used to refer to a single lattice
plane, and superscripts are used to show the relations
between one plane and the next.

As already mentioned, in the present work we take
d = a, equivalent to the assumption that the finite-dipole
point charges lie at the ends of a molecular sphere diameter.
The case d <a has been analyzed in earlier more approxi-
mate work on the present problem®? where many layers con-
taining ions and dipoles are assumed present. Whend <a, a
layer of thickness (@ — d ) and dielectric constant € _ is inter-
posed between each finite-dipole molecular layer. It has low
capacitance, since it contains only induced infinitesimal di-
poles, and the capacitance of such layers is in series with that
from all the finite-dipole layers. In the earlier work it was
found that (@ — d )/a had to be small or the theory could not
yield experimental bulk capacitance results. We expect the
same effect to occur here and have eliminated it by taking
d = a. The problem is introduced by the present essentially
one-dimensional lattice—gas treatment. In an actual materi-
al, thermal agitation tends to average out most d < a effects
and no (d — a)-thick layers parallel to the electrode would
occur. By taking d = a but, in addition, introducing the dis-
posable relative finite-dipole-moment strength factor 4, we
gain sufficient flexibility to make the present idealized model
useful.

Let y=x/t, our basic normalized distance variable.
Since we take d =a, — 1<y« defines the diameter of a sol-
vent molecule. Let ¥{x) be the average local potential in this
region, defined as the potential whose derivative gives the
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average force on a negative test charge, the local electric
field. Thus

E (x)= — dy/dx.

Let us now use the thermal potential ¥, =kT /e to normal-
ize ¢, so

o=y/Vy. (1)
Take the normalizing field £, as ¥V, /t. Then,
E*y)=Ex)/Ey = — (d¢ /dy). (2)

It is useful at this point to define several other normalizing
constants and conversion factors. A natural unit of length is
the lattice Debye length,

Lpy=[€e, kT /8me*Ny)""2 (3)

It is also found useful to define a dimensionless constant
which scales as the dipole length,

Ty=t/Lpy. (4)
Finally, we may define a normalizing planar charge density
as

oy=€_kT /diret =Cy\Vy, {5)
where C, is a normalizing capacitance per unit area. We
shall normalize volume charge densities with (oy /7 }.

Now the (normalized) fields and potentials within the
ith layer are given by E *(y) and ¢ (y). The values at the left,
center, and right of a layer are

EX—1)=E*,, ¢(-)=0¢",,

E*O)=EX, ¢(0)=¢:, (6)
and

E*1)=EY, ¢(1)=¢}.

The boundary conditions which link one layer to the next are
simply continuity:

E*—ile‘xﬁ_‘y ¢i—1= ‘i_l: {7
with

i=23,...
At the first layer, next to the electrode,

E¥ =0, L =4 (8)

Here Q,, is the (normalized) charge per unit area on the elec-
trode, and ¢, is the applied potential difference, with ¢ at
x = o taken zero. Note that Q,, is equal and opposite to the
sum of the net charges of all the layers between x = O and «
for the present completely blocking electrode situation.

Within each layer the fields and potentials are deter-
mined by the effective overall charge density, which is relat-
ed to the particle occupancy and average dipole orientation.
From now on, we shall consider only the monolayer, i = 1,
situation. Since we are interested in low frequency or dc re-
sponse, we may use equilibrium statistical mechanics to find
the number of particles of each type present at each lattice
layer. These numbers depend on the electrostatic energy of
the particles ,, given in normalized form by

U=u;/kT, (9a)
with
Ue = + 6 (9b)
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Uy, =7lg ) — (-, {9¢c)
and
U,= —(aB/2kT)E}. {9d)

In Eq. (9d), the normalized E, is not the full E *{0) of Eq. (6)
but, for self-consistency, it is that field minus the induced
ideal dipole self-field, which involves a delta function at
» = 0. The subscriptjdenotes the charges (C ), the permanent
dipoles (D), or the induced dipoles (). Here B is a constant
which is used to approximately account for the depolarizing
field caused by surrounding induced dipoles in the true
three-dimensional situation. This field leads to a feedback
which can effectively enhance or reduce a. The statistical
mechanics is contained in the partition function

Z,=-1 Sn expl — U) (10)
Ny 5

where #; is the bulk number density of particle type j. We
may separate the partition function into the contributions
from the charges,
Ze= z 3 exp( — zdo) = 25 cosh(d,), (11)
z= %1
and the part associated with the dipoles,

2, =(1-28)[ expl — (Up0)+ U} Jay

=(1- M)Haflcosh[ Uply)]dy, (12)
where
T, =exp( — U,). (13)

The integral in Eq. (12) is over all allowed orientations of the
dipoles. The I, term is the contribution of the induced di-
poles, which does not depend on permanent dipole orienta-
tion. There is no similar term in Eq, (11), as we are neglecting
the polarizability of the ions. If we define 8 as the angle
between the dipole orientation and the local field direction
¥y = cos(@). For simplicity, we assume a continuum model in
which any orientation is possible. The frequency with which
a given orientation occurs is determined by the electrostatic
energy of the dipole in that configuration u,,. Note that in
the case of a uniform electric field £ this energy is the stan-
dard dipole energy u, =uE cos(@). In the present case,
however, the dipole energy and the partition function are
nonlocal functions of the field.

The partition function allows us to calculate the num-
ber of charges and the number of dipoles in every orienta-
tion, given the potential at every point y. This potential is
influenced by the charges and dipoles and thus must be cal-
culated self-consistently. One way of calculating the poten-
tial is to use a smeared charge approximation in which we
replace the discrete charges by sheets of charge of the appro-
priate charge density. This is entirely consistent with the
one-dimensional nature of the problem.

The appropriate volume charge density follows from
the partition function and a generalization of the thermody-
namic result,

p=dkTInZ)}/dy.
Here ¢ is the conjugate variable to the charge density p and

the derivative is interpreted in the sense of the functional
derivative. Specifically, the ions involve a delta function in
surface charge density at the layer lattice points (x = 0), and
their bulk charge density may be written

p; = (BaeN,/Zr)e* — e*)5(x)
= (26aeN, /Z )sinh(@g)6(x). (14)
Each finite-length dipole involves a charge at y and an equal

and opposite charge at — p. Thus the charge density due to
the dipoles at position y is a function of the number of dipoles

in the orientations cos(f ) = y and cos(@) = — y,
pol) = (1 — 28)7eN (1, /Z;)} [e ™ 7 — e~ 74 7"]
= — 2neN,(1 — 26\({1,/Z;)sinh [ U, (y)]. (15)

The induced dipoles may be taken as contributing a charge
doublet at the origin

Palx) = — (1 — 28)(NyaaBE\I1,/Z1)5'(x). (16)

The electrostatics now consist of the one-dimensional
Poisson equation,

9 _ dmpixye..,
dx
or in normalized form,
dE*
= pVoy, (17)
dy
and the definition of the electric field E *= — d¢ /dy, where
Pl = pply) + pa ) +p, ) (18)

The combination of Egs. (9}-(11) and (14)(18) forms a com-
plicated set of nonlinear integro-differential equations. In
addition, Z is a nonlocal function of potential, and must be
calculated self-consistently. These equations can be solved
analytically in terms of elliptic functions (see the Appendix),
or, in the low-field limit, in terms of elementary functions.
The equations become somewhat simpler by introduc-
ing variables which take advantage of the symmetry of the
problem. From Eq. (17), the field can be written as

1 ” (] ’
E*y)=E*, + - 1;o(y)dy

N +

1 1
_E*, 4 —f poldy + 0, Uglp) + ——
On J-1 (Y

X [[potdy’ + Qa8 (19)
or
E *(V}EE‘- [ Sane QDI + QI Uo(}’) + QD(}’} + Qaaty)’
(20)
where
Q; = — 28T sinh(¢o)/Z, (21a)
0,ly)=0y 'fpnw')dy', 21b)
Op,=0Qp(1), (21¢)
and
Q.= —2BE:. (22)

Here Uy{y) is a unit step function, and the constant
B=47N,(1 - 28)aB(ll,/Z})/€,
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scales that part of the voltage drop in a layer due specifically
to the induced polarizability. It is useful to define the related
constant By=B (Z/I1,) the low-field limit of B. For conve-
nience, in the rest of the paper we shall take £ *(y) to mean
[E*y)— Q.6(v)], where the E *(y) within the brackets is
that of Eq. (20). Then E }=F *(0) is the normalized field at
the layer center except for induced dipole effects. Thus, we
always take E *(0) in the figures and the rest of the text to
mean just £ ¥. Now the potential can be expressed in terms of
the “finite-length dipole potential,” ¢, as

so=—[ E*viay. 23)
which leads to
dY)=d_,—W+YE*, —QOp,)
— (0, + Qu)Ualy) + o) + b1 (24)
where
$o01=— [ o'k, 5,=051. (25)

Now all the variables can be found if the dipole variables
Pps @b, $p, and Z are known. The final set of equations
becomes

0ol = 05! f PR (26)

bol) = — f:QDWy', 1)

Z= J-lcosh[ Up))dy, (28)
and

Z, =26 cosh(g,) + (1 — 26)/1,Z, (29)

together with Egs. (9¢c) and (15). It is important to emphasize
that because of the coupling between the equations they
must all be solved self-consistently.

Il. RESULTS FOR A MOLECULAR MONOLAYER

The complete analytical results for a single lattice gas
layer containing finite-size ions and polar, polarizable mole-
cules have been presented in Sec. IT and the Appendix. In the
present situation where it is assumed that no ions are present
(6 = 0), the analytical solution of the problem is considerably
simplified but remains implicit for any normalized applied
p.d., ¢,, comparable to or greater than one. Except in the
limit of small ¢, one must solve the implicit Eq. (A5) for the
partition function Z before Eqs. (A1) and (A2) may be used to
obtain final results. The solution for self-consistent Z is
straightforward, although it is found that Z becomes very
large as | ¢, | increases, even within its experimental range of
0 < |#,| =35. In this section, we present computer-calculat-
ed self-consistent results for the various monolayer electrical
quantities of interest.

Although the equations developed earlier and in the
Appendix apply to a single layer, they are in a form appropri-
ate for the complete double layer problem, where each layer
is coupled to those next to it. We require a field to orient the
permanent dipoles of the monolayer and to induce ideal di-
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poles at its center. It is therefore convenient to consider the
monolayer as being between plane-parallel capacitor plates
with a charge Q,, on theleft and a charge — Q,, on theright.
The left plate may be taken as a metal electrode, and in terms
of normalized quantities we may set £ *( — 1)=Q,,. Al-
though the orienting field or charge may be considered in
some cases to be a “‘natural” field arising from chemisorp-
tion and work function effects,?® we shall here consider it
only as being associated with the situation present in the
inner, charge-free region of the double layer. For present
purposes it is then necessary to assume that all the potential
drop occurs across the inner layer, and the diffuse ionic dou-
ble layer region abutting it at the right acts as a perfect con-
ductor and imager. This assumption will allow us to consider
inner layer molecular effects apart from anything else. In the
analysis of the full double layer, to be considered in a subse-
quent paper, this assumption is modified since although
most of the applied p.d. occurs across the inner charge-free
region, there will always be a small part of the total p.d.
across the diffuse layer. It should be noted that the present
monolayer will not act like a region of constant polarization
as in a macroscopic capacitor. Since its total polarization
will be a function of position, the actual internal local aver-
age field £ *(y) will not be independent of position, although
from symmetry it is clear that it must be an even function of
»

In the rest of the paper, we shall be concerned with two
limiting cases for the effect of induced ideal-dipole polariza-
tion. In the semi-discrete situation of case (a) B,>0 and
€., = 1 while for the semicontinuum approach of case (b)
B, =0and e, = 6. The appropriateness of this value of € _
has been discussed elsewhere.?® Let us begin by considering
some case (a) results. Figure 1 shows the spatial dependence
of the partial normalized charge p} field, and potential from
the left side of the monolayer, where we take ¢ (y) = ¢ { — 1),
to the right side, where ¢ (y) = ¢ (1). Here

pPEWI=poV(oN/1)

is just the normalized effective dipole charge density arising
from statistical averaging over all permanent dipole orienta-
tions. It does not contain the delta-doublet term arising from
induced polarization [cf. Eq. (16)] or the §(y) term which
would be present if the ionic concentration were nonzero.
All the results of Fig. 1 are for the relatively small value of
E * of unity. Curves are shown for three representative val-
ues of the polarizability constant B,. All plotted curves are
zero for |y|>1 for a single monolayer.

Much of our results will be illustrated in terms of an
aqueous electrolyte and will involve parameters appropriate
for liquid water. For water at 20 °C,

N, =3.337%x10** cm 3,

a=1.444x10"%* cm?,
and we take uz, = 1.85 D, the approximate vapor-phase val-
ue of the water permanent dipole moment. Then for case (a)
with # = 1, B,=0.6. We shall discuss more realistic choices
for B, and B later. For the choice d = 3.1 A, the pertinent

normalization quantities are ¥V, =002526 V, Ejy
=1.63X10° V/cm, Cy=5712 €, uF/cm? and oy
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FIG. 1. Dependence of normalized dipole charge, field, and potential on
position across the monolayer for w, = 1 and E *{0) = 1.

=0.1443 ¢ uC/cm’.

Figure 1(a) shows that the effective permanent dipole
charge density does not vary entirely linearly with position,
even for the small value E *{0j = 1. When B,#0, the pres-
ence of the induced ideal dipole at y = O leads to the step
function shown at this position. The values of 7 and T, used
in calculating the Fig. 1 results were selected for illustrative
purposes and for convenience in such a way that

we=V29Ty = 1.

Note that the permanent dipole moment

p=ne(2t)=9.6yTyL,y D
if L, is expressed in angstroms. For case (a), L, =0.0457
A and z=0.31 D for the present choices of 7 and T,,. More
realistic values of u for water will be discussed later.

Figure 1(b) illustrates how E *(y) varies with y and B, for
the specific choice E *(0) = 1. Here the § (y) term arising from
the induced ideal dipole at y = 0 is not shown or included in
E*(y). Clearly, the character of the E *(y) dependence
changes significantly as B, increases. Finally, the curves of
Fig. 1{c) show ¢ (v) dependence with the choice ¢ (0) = 0.
Note that

$.=A4¢=¢(—1)—4(1).

Although these curves are nearly the negatives of the corre-
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sponding ones of Fig. 1(a), this is not a general result but
merely an artifact of the various %, Ty, ¢ (0), and E *(0) values
selected. For the B, = 0 case, ¢, =2.25, but ¢, is progres-
sively reduced as B, increases because of the shielding effect
of the center ideal dipole until ¢, =0.3 for B, = 0.75.

Figure 2 shows results for (€. ), the ¢,—0 limit of €,
vs B, for various values of the dimensionless ¢,—0 dipole
moment variable w,=+27T . These results were calculated
using Eq. (A54). Note that as w,—0,

(€cx)o—(1 — Bo)™ !

Further, for any w,, Eq. (A54) and Fig. 2 show that (€. ),, the
ordinary small-signal effective dielectric constant of the
monolayer, exhibits a pole when

B,lw, cothiwg)] = 1.

Thus, the model leads to a ferroelectric transition at this
point. This is the present analog of the Mossotti catastrophe
described by Fowler”” and von Hippel.”® But there is an in-
teresting difference here. As discussed by Fowler,”’ the ordi-
nary Debye theory of gaseous electric susceptibility, involv-
ing permanent ideal dipoles, leads to the Mossotti
catastrophe, but here the transition arises from the induced
ideal dipoles and disappears for B,—0. We conclude that the
reason there is no Mossotti catastrophe for the permanent
dipoles [e.g., in case (b) with B, = 0] is because they are taken
of finite length in the present nonlocal theory. As Onsager®®
and Kirkwood*® have shown, for condensed systems inclu-
sion of reaction field effects and association between dipole
orientations eliminates the Mossotti catastrophe in treat-
ments of polar materials involving point permanent dipoles.

In areal liquid, as opposed to a lattice~gas model, polar-
izable molecules move around continuously, thus spreading
out over the space the electrical effect of each induced nearly
ideal dipole. A measurement of (€4 ),, even for a monolayer,
yields the time and space averaged effect of many individual

i

(4

( Eorr),

FIG. 2. Dependence of the low-field effective dielectric constant (€.¢ ), on

the normalized polarization parameter B, for several values of the normal-
ized dipole moment parameter w,.
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ideal dipoles, and, of course, does not show ferroelectric be-
havior for most matenials, even in the bulk. No such behav-
ior appears either in a dipole glass, where the dipole arrange-
ment is random.” But some single crystals involving
permanent dipoles arranged regularly on a lattice do show a
permanent polarization in the low temperature region.
Thus, we may conclude that it is in part the failure of our
equilibrium lattice gas model to allow time and space smear-
ing/averaging of ideal dipole positions which is associated
with the present possibility of (€.4),— « behavior in a range
of B, likely to be realizable in actual materials. Further, Fig.
2 shows that the larger the permanent dipole moment, the
smaller B, and the polarizability necessary for this catastro-
phe to occur.

Although our present induced and permanent dipole
treatment takes account of dipole surroundings and nega-
tive-feedback reaction-field effects only through the inclu-
sion of the so far ad hoc factor 8 in B, for induced dipoles,
and through the possibility of i > p2,, for permanent dipoles,
we can improve the induced dipole approach in an empirical
fashion by first considering how £ depends on @ and N, in
ordinary semicontinuum lattice treatments of condensed
phases with some effects of dipole surroundings includ-
ed.>' For two-dimensional layers one finds®' that €_

=1+ AaN,, where A =9 is the Topping enhancement fac-

tor arising from surrounding similarly oriented induced di-
poles. This result is obtained if a depolarization factor £ is
introduced and taken as (1 + AaN,)"". Slightly generaliz-
ing to the present situation and replacing A by 4, we take
the negative feedback factor as

B=[1+Adymg ™", (30)
where

Ag=47N, a/e_, (31)
and

my=w, coth(w,)- (32)
Then

By =Ay/(1 + Aymo)s (33)

a quantity always less than unity. When this expression is
substituted in Eq. (A54), one finds

(€er)o/€,, = mo[ 1 +Agfmg—mg 1‘0(2)}], (34)

aresult which predicts no Mossotti catastrophe. It also leads
to the expected result,

{€xlo =€, + 47N,

in the wy,—0 limit. We have included €_ in these equations
for completeness, even though in the present case (a) situa-
tion we take € . = 1. Notice that for w,R 3 or so, my=w,
and Eq. (34) reduces to just

(€q)o/€,, =mos2,,

totally independent of B,. Even our original Eq. (A54) is
likewise independent of B, for w, ® 3 except in the immediate
region of the ferroelectric transition. Further, since in the
present § = Ossituation B =B,/Z and Z becomes much larg-
er than unity as |@, | increases, it is clear that induced polar-
ization effects associated with B must entirely disappear for

J. R. Macdonald and S. W. Kenkel: Model of the double layer

appreciable |@, |. For @, % 3, the usual situation of interest
for water, we see that there are no case (a) a effects as |@, |—0
or as |@,|—co. As we shall show, there are, in fact, none of
consequence in the intermediate |@, | range either for w, 2 3.

Thus, although the case (a) inclusion of the effects of
induced polarization of discrete molecules in our theory has
been instructive, it is clear that with a reasonable value of B,,
which takes into account negative feedback effects, there are
little or no case (a) a effects of interest. Therefore, in most of
the remaining part of the paper, we shall make the alterna-
tive case (b) choice, replacing €, =1, B;>0, with ¢ > 1,
and B, = 0. We thereby replace discrete induced ideal di-
poles by smeared-out material with a field independent di-
electric constant €_ , more in keeping with actual space and
time averaging effects present in a real material. For the ac-
tual value of € used in the subsequent calculations, we
choose 6, a reasonable value for water.?% In the remainder of
this work we shall be concerned with the dependence of var-
ious electrical quantities on the applied field or potential dif-
ference, in order to show saturation effects, and we will addi-
tionally examine the spatial dependence of the effective local
dipole charge and potential for small and large applied
p.d.’s.

Figure 3 presents some field-dependence results for the
normalized effective dielectric constant quantity

h=(€q — €.)/((€cx)o — €.,)
previously used in the present context.”® With the present
normalization we do not need to distinguish between cases
(a) and (b) when # is plotted, but the normalization tends to
obscure actual unnormalized differences between the pre-
dictions of the two cases; thus some unnormalized results for
€.+ will be presented later. We have elected to show B> 0
results here only for the small value w, = 1 because, as al-
ready mentioned, case (a) results with B, >0 are virtually
indistinguishable from those with B,, = O unless B, is nearly
equal to the ferroelectric transition value M ;~'. For appre-
ciable w, values, such as four or more, differences only occur
when B, has a value so close to that yielding the (€. ), pole
that (€. ), is greatly enhanced (see Fig. 2). It is clear, how-

E (1)

FIG. 3. Dependence of the normalized dielectric constant parameter & on
normalized applied field £ *{ — 1) for various w,, and B, choices [cases {a}
and (b)),

J. Chem. Phys., Vol. 80, No. 5, 1 March 1984

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. R. Macdonald and S. W. Kenkel: Model of the double layer

ever, from Fig. 3 that for small w, even B, values not close to
the transition value can appreciably affect dielectric satura-
tion curves. The B, = O curves show that as w, increases, €4
actually increases with field before decreasing rapidly to-
ward €_ . No such effect seems to occur for bulk water, but
the present predictions of an initial increase may possibly be
appropriate for a real monolayer.

In Fig. 4, we compare some B, = 0 results with ordi-
nary Langevin saturation behavior.?>?¢ This behavior,
which was also found for the previous three-layer approxi-
mate finite dipole model, leads to

h=3X,_—‘[coth(XL)—X[‘ , (35)
where
X, =uE /kT=(u/et)E*.

We choose the E * acting on the point dipoles of the ordinary
Langevin saturation model as E ¥, with E ¥ always less than
E*(—1). For our present water parameter choices,
X, =0.134uE ¥ when u is expressed in Debyes.

We have chosen three different z values for our curves
here. The choice u = 1.85 D is that for vapor-phase water
molecules. Second, we pick

(€erlo = €p =€, @y
and determine w, and u for the choice €; = 80.1, the bulk
value for water at 20 °C. This yields = 10.17 D, close to the
9.5 D value used in the three-layer model for the correlation-
augmented value of  in liquid water. Finally, theyx = 17D
value is that following®*? from the experimental water di-
electric saturation measurements of Kolodziej and Jones.**
We shall assume that d = 2¢ = 3.1 A is the same for all these
1 values, making E § « E, for any 2. Then the three 7 values
corresponding to these u’s are 0.124, 0.682, and 1.14, respec-
tively. Note that 9 should not exceed unity for univalent
dipole charges. The use of the large 17 D figure for Langevin-
type dielectric saturation in water is likely to be a poor ap-
proximation, probably associated in part with the replace-
ment of the actual water molecule tripole by a dipole.
Nevertheless, the use of an effective dipole moment for lig-

\\:t\\ ——
\\ \\
! O
\\
B2 0
o
d=3lA
10 E €6
Finite- length dipoles N
N\ =
————— Langevin AN \,\t 1070
~ \
HeiTD N
N N\,
N, N,
T i — e PN N N
10" I 10 10*
E%)

FIG. 4. Dependence of & on E *( — 1)for case (b) with several 4 and w,, values
appropriate for water comparing finite-length dipole and Langevin dielec-
tric saturation response.
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uid water greater than g, = 1.85 D is a common way to
account for some of the effects of reaction field and correla-
tion on each permanent dipole.***°

The curves of Fig. 4 show that a Langevin dipole model
leads to much more saturation at a given field than does the
present finite-length dipole one. Further, the z = 10.17 D
finite-length curve again shows a peak in 4 or €. before a
rapid decline. Clearly, increasing u for a Langevin model
causes a given degree of saturation to be achieved at a lower
field the larger u, but the opposite effect appears for the
finite-length dipole model, if ¢ is held constant as it is here.
The field near the electrode in the inner-layer region of the
electrolyte double layer reaches very high values®® but prob-
ably does not reach or exceed 10® V/cm at most. If the case
{(b) ¢ = 10.17 D curve in fact applied to a monolayer of water
in the inner layer region, there would be no dielectric satura-
tion of this layer, even at the largest experimentally practical
applied p.d. Even the case (b) # = 1.85 D curve would show
little or no saturation under maximum voltage conditions.
The u = 17 D Langevin curve would lead to great satura-
tion, but the y value used here was derived from relatively
low field, very small saturation results on bulk water. Al-
though a model which fits Grahame’s*> NaF double layer
capacitance data quite well?® strongly involves inner-layer
Langevin-type dielectric saturation effects, there seem to be
no independent data available concerning such effects for
the inner layer or other molecular monolayers, and therefore
the no-saturation prediction of the finite-length dipole mod-
¢l should not be dismissed out of hand.

Let us turn now to a consideration of unnormalized
results for water at 20 °C. Curves for cases (a) and (b) and
Langevin response are presented in Fig. S with E ( — 1) as the
abscissa. Note that

ou=0(—1)=885x10"%Xe_E(— 1)juC/cm?

when E is expressed in V/cm, so the abscissa scale is propor-
tional to o,,. Here, we have again used u = 17 D for the
Langevin curve and have adjusted (€. ), to agree with that
for the case {b) curve. This curve has the same parameters as
that with @, = 2.43 in Fig. 4 and involves a value of T, of
13.84. The case (a) curve, on the other hand, involves T, of
33.89 and thus leads to w,=5.95 for u =1.85 D and
7 = 0.124. The results of Fig. 5 clearly show the very large
differences between case (a) and (b) predictions for situations
with the same d and y. They also illustrate how much more
readily saturation occurs for Langevin response than for the
case (b) finite-length dipoles. On the other hand, the corre-
sponding case (a) curve shows little or no change of €., from
(€.¢r)o Within the entire likely experimental range of E ( — 1).
Note that E ( — 1) = 10® V/cm corresponds for this case to
Oy = 8.85uC/cm?.

The maximum charge density at a given end of the fin-
ite-length dipoles when they are all lined up parallel, as
would be the case at very low temperature with a small ori-
enting field or at room temperature for an infinite orienting
field, is o,y = me/d %, equal to about 20.6 £C/cm? for the
present situation. On the E ( — 1) scale, this charge density
corresponds to about 3.9 10" V/cm for case (b) and
2.3X 10* V/cm for case (a). At these fields the corresponding
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FIG. 5. Dependence of €, on E { — 1)for
Langevin case (b) and case (a) water-like
situations.
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curves show only a relatively small amount of saturation.
We complete our consideration of .4 behavior with the
Table I summary of (€.4), values for various situations. The
initial choice, from which the other values follow, is in bold-
face. Some of the row 1-6 water results have already been
mentioned. Here we have also presented values of Cy; o, the
capacitance per unit area of the monolayer of thickness d and
dielectric constant (€.q),. For the inner layer in aqueous
NaF, it is about?*?%*>3¢ 31 yF/cm?. As shown in rows 3 and
4, this choice leads to a reasonable case (a) value for 1 but an
unlikely one for case (b), but it should be mentioned that the
case (b} line 2 situation with z = 1.85 D may readily be made
to yield a value of Cy;, of 31 uF/cm? if an additional thin
region of field penetration into the metal electrode is includ-
ed as well. This nonlocal electron overlap effect’>*¢ can ef-
fectively lead to the presence of a very thin layer of low di-
electric constant in series with the ordinary finite-length

TABLE 1. Values of (€.¢), for various conditions. Rows 1-6: H,O at 20 °C;
rows 7-10: CH,Cl at — 20 °C. Odd rows: case (a); even rows: case (b).

72 Cio
{Debyes) (Ecr)o (uF/em?)

1 5.95 17.0

2 1.85 14.59 41.7

i iz; 10.85 31.0
2 umw s
7 .66 7.2

]3 :;(8) 12.6 24.6

dipole molecular inner layer.

Although the line 3 case (a) result is reasonable for the
inner layer if one assumes that correlation effects have led to
an augmented g, it is the case (b} result which is much more
appropriate for bulk water (rows 5 and 6). The case (a) situa-
tion even requires a 77 greater than unity. Of course, the pres-
ent monolayer treatment should apply better to the inner
layer than to bulk water in any event. It is interesting to note,
however, that Morriss and Perram,!! in a bulk water treat-
ment using a tetrahedral arrangement of four charges to rep-
resent the multipole behavior of the water molecule, ob-
tained, on taking some correlation into account, a value of
(€. )o Of 13, far less than 80 and near our line-2 result.

In rows 7-10 we present results for CH,Cl. Morriss and
Cummings'? applied their finite-length dipole theory for
bulk dielectric constant behavior to this material and argued
that its molecules involve nearly perfect finite-length electric
dipoles. They obtaineda — 20 °C value of (€.¢ ), of 10.3, 20%
less than the experimental value of 12.6. Our case (a) results
are with € _ = 1 and our case (b) ones use €, = n> = 1.79,
where n is the index of refraction. All results employ
d =N ;' = 4.53 A. Unfortunately, our row 9 and 10 val-
ues of u, necessary to obtain (€.4), = 12.6, are more aug-
mented over the vapor-phase value of 1.87 D than seems
likely. Again it appears that the present monolayer theory
must be extended beyond its range of applicability to yield
adequate bulk results.

Before leaving (€.¢ ), results, it is worth mentioning and
illustrating a remarkably effective expression for bulk (€.¢)o
for polar, polarizable liquids which came out of our present
finite-length dipole work. During our initial analysis of the
present case (b) finite-length dipole problem with B, = 0, we
inadvertently set to unity the denominator sinh(wg)/w, term
from m, [see Eq. (A53)] and obtained (€.4)o/€,, = c?sh(wo)
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instead of (€4 )o/€,, = @, coth(w,). Note that w} may be ex-
pressed as 47N u’/e_kT. Although the cosh result thus
had no good theoretical justification (it follows when the
finite-length dipole charge effects are properly accounted for
but the part of the p.d. associated with the permanent dipoles
is calculated as though their dipole moments were taken
zero!), it has been found to have remarkable predictive value
for a variety of materials and temperatures.®” In its simplest
form, involving no disposable parameters, one sets 4 = i,
the vapor phase value of 2, and €, = n” All correlation and
reaction field effects are then accounted for by the form of
the cosh function. Then w} becomes just

47N, */n*kT.

For water at 20 °C, the cosh formula yields {€.4),=77.2 in-
stead of 80.1, and for CH;Cl at — 20°C it produces 13.9
instead of 12.6. Alternatively, one could again take e, = n?
and find that 4 which yields perfect prediction of the experi-
mental € value. For water, the result is 2 = 1.865 D, only
slightly larger than the 1.84 to 1.85 D value for . The
predictive value of the cosh formula without disposable con-
stants®’ is frequently superior to that of the much more com-
plicated conventional Onsager—Kirkwood—-Frohlich for-
mula,® and it makes up for its current lack of adequate
theoretical justification by its accuracy and simplicity.

We now return to the illustrative input value 7 = 1/42
and show in Figs. 6 and 7 the field dependence of several
quantities of interest for small and large w,. Figure 6 shows
that E *(0)=E ¥ is nearly a linear function of E *( — 1) but
Qp(1), the normalized dipole planar charge density aty = 1,
reaches saturation near E *(1) = 4, a region where dielectric
saturation has begun but is still not extensive, as shown by
the w, = 1, B, = 0 curve of Fig. 3. It is clear that as Q, (1)
approaches saturation, — ¢,(1) = ¢, ( — 1) reaches a maxi-
mum and then decreases. This dipole potential represents
the integrated effect of the dipole field throughout its extent.

10°
E |
3
i 1 =1//2 /
oy -0 |
.
(o] J W=
E | Eo
1/
e Qo
IC-)|:—
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\\
52 L ,\‘\.u
o 10 10*

E*)

FIG. 6. Dependence of various normalized quantities on the normalized
applied field for wy, = 1.
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FIG. 7. Dependence of various normalized quantities on the normalized
applied field for w, = 10.

As the field increases, the shielding also increases, so that the
high field is confined to a small region. Thus the product of
field and distance reaches a maximum and then begins to
decrease. In this same region, Z begins to increase rapidly.
Figure 7 shows somewhat similar behavior for w, = 10, but
first E *(0) becomes nonlinear as expected in the region where
— ¢p(1) reaches and exceeds unity and where Q,(1) and
— ¢p(1) reach saturation and a maximum, respectively, at
the much higher value E *( — 1)=70. The linear growth of
Qp(1) all the way to saturation is remarkable. The saturation
value of Q,,(1) is, as shown in the Appendix,

Qom =1T% =w5/20.

This result of course agrees with o,,,, /0y = Qp When the
previous expressions for o,,, and o, are used. Now in the
low field region, (Z—1) is clearly proportional to
(E *( — 1))%. Again the transition value E *( — 1) = 70is near
the point where the w, = 10 curve of Fig. 3 has just begun to
show some dielectric saturation.

Figure 8 shows @,, = E *( 1 1) vs ¢, curves for several
w, values. For w, = 1, the effect of the permanent dipoles is
almost negligible. However, for all the curves, there is a lin-
ear region for 0<¢, = 1, then a buildup as Q,,(1) approaches
its maximum value and then a final linear increase. Thus, the
¢, = O intercept of the @,, curve is just Q,,,. Now it may
readily be shown from the case 2 equations in the Appendix
that as £ 3— oo,

m =EF + Qp(1)=>E§ + Qpu»
and ¢, —2E ¥. Thus,
Csyv = Op/$,—0.5 + (@pm/2E §}-0.5.

Therefore,

eeﬂ = 2600 CSN——)G«: ’

as it should. These results show that the expression for the
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FIG. 8. Dependence of normalized electrode charge Q,, on normalized

applied p.d. ¢, for several w, values.

lines asymptotic to the final Q,, vs ¢, lines in Fig. 8 is
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Qu = 0.5, + (w5 /27).
Finally, Fig. 9 shows a semilog plot of Q,(y) and  Office for support.
— ¢,(») vs y for O<y<1, several values of E *(0), and the
APPENDIX
In this Appendix, we solve the equations which lead to

relatively large value w, = 10. It is interesting that the
E *(0) = 1 curves lie higher over most of the range than those
with E *{0) either smaller or larger. As E *(0) becomes larger
than unity, we see that the distributed dipolar charge and the
majority of the dipole contribution to the total p.d. become
more and more concentrated near |y| = 1. For E *(0) = 55,
for example, @, (y) and _¢,(y) decrease nearly 4 orders of
magnitude between y =1 and y = 0.9. Thus as £ *(1) and
E *(0) increase, the present finite-length dipole model ap-
proaches closer and closer to the three-layer model discussed
earlier. In this model the dipole charges are takenas § ( + 1)
functions, thus all concentrated at y = + 1 and with their
magnitude dependent on £ *(0). But such concentration can
occur in the present model only as E *(0}— oo . There are thus
fundamental differences between the models and these show
up in many ways, especially in their different dielectric satu-
ration predictions. Although the present model, which is
here specialized for a molecular monolayer, is evidently not
entirely applicable to a bulk liquid or even a dipolar single
crystal with only a few allowed dipole orientations, its pre-
dictions and comparisons with those of other corresponding
models are nevertheless instructive and useful. In a further
paper dealing with the complete multilayer situation, results
for (€. ), in the limit of 5—0 will be available for direct com-
parison with those from experiment and from other models

for the bulk dielectric constant of a liquid.

final expressions for the permanent-dipole-related quantities

Qp(y) and ¢, (y) needed in Eqgs. (26) and (27). In addition, we
shall obtain a simplified closed-form expression for Z; and

expressions for €., and (€.¢ ), The equations we need to solve

and simplify are

QL W)=E3Y() = — Hfo snh[Up()]dy, (A1)
boly)= — Ea‘nyY(y')dy', (A2)
Up =716 ) — & ( — )]
= —Fly—Bsgavr+ [ Y(v')dy'], (A3)
and
Z, = 28 cosh(d) + (1 — 28)IT, Z, (A4)
where
(AS)

z Efcosh[ U, (y)]dy,

and H=H,I1,/Z,
Hy=(1 - 28}T%,

F=29E}% B=B)I,/Z,, and
By=4nN (1 — 28)aB)/€,, .
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The closed-form solution of the above coupled set of
integral equations for Y (y) turns out to be complicated but
possible. From Eq. (A1), we may immediately derive

P(y)s‘—i% = —Jsinh[Up)]. (A6)
Let
P(0+)=P, = — Jsinh(z,), (A7)

whereJ=H /E %, z,=FB, and we have used Eqs. (A6) and
(A3) with y = 0 + . Next, Eq. (A3} leads to

U
57’;—0'_) = —F[1+ Y(y) —2B5p)]. (A8)
Now on solving Eq. (A6) for U,(y) and differentiating, we
find
dUu
_L(y_) = _(ﬂ)/(p2+12)1/2. (A9)
dy dy

Define W (y)=1 + Y (y) and write
dP/dy = (dW /dy)dP /dW )= P(dP/dW).

Then on setting Eqs. (A8) and (A9) equal, we obtain
P(dP/dW)/(P* +J)2=F[W(y) — 2BS(y)]. (A10)

Now we shall collect terms and integrate fromy =0 + to 1,
noting that Y(0 + )=0, W(0+) =1, and P(0 + )=P,<0.
Then

w P
Ff W'dW'=f P'(P?4+JY~V2gp’, (Al1)
1 2,
This leads to
P =P2 4+ F(PL+J)VW2— 1)+ [(F/2)(W?—1)]>
(A12)
Let ¥=W? — 1 and note that
2
(fdl) —ePVTF PP (A13)
Y
Combining Egs. (A12) and (A13) leads us to
% = + 2T+ V[P; +F(P} +J%)"?V
'y
+ (F/27V?]Y2, (A14)
This equation may be rewritten in the forms
dv
Do EF[(1+ VIV + V)V + V)2
=4+ F[(V—a)lV—>b)V—c)]'? (A15)

where we require ¥>a > b > ¢, and g, b, and ¢ are always <0.
Specific choices of @, b, and ¢ will be made below. It turns out
that ¥, and ¥, may be expressed as

V, = (4J /F)sinh’*z, /2), (A16)

V, = (4J /F)cosh?¥(z, /2), (A17)
and thus

V,—V,=(4J/F), (A18)
and

ViV, = [(2J /F)sinh(z,)]* = (2P/F ). (A19)

Let us digress for a moment and consider some E #—0
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low-field limits of several quantities of interest. In this limit
n,-1,Z-1,

Z,—254+(1-28)=1,

H—H, F-0, B—~B,, z,—0, JF->29H,,,

Vy—c0, Po—21HyB,,
and

Vi—V,e=2nH,B}.
The last form of Eq. (A15) is necessary for integration in
terms of an incomplete elliptic integral. But because of the
wide variation of ¥, and V, with E &, a single identification
of (a,b,c) and (1,¥,,V,) is insufficient. Table II shows the
three cases of possible interest. Case 1 applies for sufficiently
small Band E ¥ that ¥, < 1 and V,>1. As E ¥ increases from
zero, cases 1 and 2 coalesce at the E ¥ which leadsto V, = 1.
This E*, E % , may be calculated using Eq. (A17)in general,
but when a = 0so B =0, it is given by the implicit relation
E% = +2H /7. Since we shall always take E *( — 1)>0,
we may take the plus sign here. For E$>E ¥, case 2 is appli-
cable. Case 3 need be considered only when V> 1, a possi-
bility for sufficiently large B,. Note that when § =0, e.g.,
B = By/Z. Because of the rapid growth of Z as E ¥ increases,
B and z,, will decrease as E ¥ increases from zero. Thus, for
8 =0 case, the V,>1 situation is most likely to occur at
E$—0. For the § = 0, a#0 calculations in the present pa-
per, we shall always deal with sufficiently small a and B,
values that V< 1 and thus case 3 need not be considered
further.

Let us define

|4 '
I(G,V)Ef av .
o (V' —aV' —b)V' —c)]'?
Then using Eqgs. (A 15) and (A20), we may write

(A20)

"y
+F| dy =1+ Fy=10V)=I{e0)+I{@aV)
o (A21)
We shall need result No. 237.00 of Ref. 39,

IaV)=gsn ' [\V—a/NV=0,k], (A22)
where

go=2/a — ¢)'’%,

k*=(b — c¢)/(a —c), (A23)
and

k?=1—k?=(a—b)/a—-¢. (A24)

Here s# is a Jacobian elliptic function. Reference 39 is a very
useful comprehensive compendium of elliptic integral and
elliptic function relations. Let us further define

w=F /g, =(F/2Na — ¢ = JJF [(F/&] )a — ¢)]"/%. (A25)

TABLE I1. Possible choices for (g, b, ¢) for elliptic integral integration.

Case —a —b —c
1 2 1 v,
VI Vz 1
3 1 v, v,
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We assume, as discussed above, that as E ¥—0, case | rather
than case 3 applies. Then in this limit

o—JJF —(27H,)'*=0w,,
and P,—w} B,
VieoVie= (a’oBo)z-
Equations (A21) and (A22) now yield
+oy=u=sn"Ja/b, k] +sn ' [\W—=a/NV—0,k].
(A27)

Since Y (y)is, from physical considerations, even in y and thus
V (y)is also even, we must replace + yin Eq.(A27}by ly|, but
since we need be concerned only with 0<y< 1, we shall omit
this refinement. Next define

ag=sn~"[Ja/b, k],

and

(A26)

(A28)

U, =u — a,. (A29)

We may solve Eq. {A27) for ¥, obtaining
V=[a—bsn’u,)]/[1—sn’(u,)] = nc(u,)[a — bsn’(4,)],
(A30)

where we have omitted the k-modulus argument of the ellip-
tic functions for simplicity and introduced the additional
elliptic function

ne(u,)=[cnlu,)] ™"
Finally, on transforming back to ¥ (u,), we find

Y(u,) = ncfu,)[(@+ 1) — (b + 1sn’(u,)]"? — 1,(A31)
where we have selected the plus sign of the + on physical
grounds. Equation {A31) is our general solution of the origi-
nal equations. Note that it leads to Y (¢,) =0 at u = 0 and
+ 2a,.

We may now use Eqs. (A6) and (A31) to obtain

wl@ — bjtn(u, )dc(u,)

[l@+1)— b+ sn(u,)]'"?’
which leads to an explicit expression for U, (u, ) through Eq.
(A6),

Uplu,)= —sinh™'[P(u,)/T]. (A33)

When this result is combined with Eqgs. (A2) and (A3), we can
obtain an expression for ¢, (y) indirectly since the direct inte-
gration of Eq. (A31) in the general case seems very difficult.
We obtain

Plu,) = (A32)

— ¢ OVES=Iy = X Y{')dy'
=Bsgn(y) —y + F~'sinh™’
[ wla — btn(u,)dclu,) ]
J[la+1)—(b+ l)sn*u,)]"?
(A34)

remembering that 4, =wy — a,. In the above, tn=sn/cn and

de=dn/cn, where dn is another Jacobian elliptic function.
Let us now obtain a general expression for Z using the

foregoing results. First, from Eqs. (A6) and (A7) we obtain

JT + (P,/J)? = cosh(z, ) (A35)

and

J. R. Macdonald and S. W. Kenkel: Model of the double layer

V1 +(P/J)2=cosh[UD(y)}. {A36)
Now Eq. (A12) may be rewritten as
(F/2)W2=1)=J1+ (P/J)* =1+ (PJSJI)
= cosh[ U, (y)] — cosh(z,,). (A37)
Since W? — 1=V, we may use Eq. (A30) to write
cosh[ Up(y)] = coshiz,)
+ (F /2 )[a-nc?(u,) — b-tn*(u,)].  (A38)

Now Eq. (A5) may be rewritten as

z =w_‘f cosh [ Up(u,)]du,

—ay,

= cosh(z, ) + (F/U)[a + = 12” [dn{u nlu,)
wk

+ dnlag)tn(ag) — E (u,) — E (ao) ],

where we have set

(A39)

uaIE(ual)y= 1 =0 — 4y

and have used integrals listed in Ref. 39. Here E (u,,) is the
incomplete elliptic integral of the second kind; it also in-
volves the modulus k. If, as usual, we restrict attention to

cases 1 and 2 only,a= — ¥V, and
coshiz, } + {(Fa/2J ) = cosh(z,,} — 2 sinh¥z, /2})=1.
(A40)
Now since
(F/2J )@ — b)/\wk ) = 2w/JF,
we obtain for cases 1 and 2 the general result
Z =1+ (2w/JF){dnlu,)tn(u,)
+ dn(ag)tn(ao) — E (uq) — E (ao)}- (A41)

Since tn and E are odd functions of their principal argu-
ments, it is obvious that Z—1 as w—0. In fact, it can be
shown from Eq. (A41) that as E $—0, a limit which yields
k >—1, then Z—1 for any consistent @, and @, values, where
g, is the limit of g, as E §—0. Although Eq. (A41) holds for
both case 1 and 2, the expressions for a, and o are different
for the two cases.

Now we shall specialize our other general results for
cases 1 and 2, remembering that case 1 is appropriate as
E* 0 and 2 as E} . Table III gives expressions for
some of the quantities of interest in these cases. At the transi-
tion field between these two cases, V,=1, k'=1,
V,=1— (4J /F), and all corresponding case-1 and case-2
quantities are equal. For case 1, Eq. (A31) yields

Y(u,) = cnfaginciu,) — 1, {A42)

TABLE II1. Comparison of various quantities for cases 1 and 2.

Quantity Case 1 Case 2
a, sn W) sn~'{tanh(z, /2)}
cn(ag,) V=7, sech(z,, /2)
cd (ay) sech(z, /2) =7,
k' (FraJ)l — V) (Frsa)1 — ¥ 1"
® JIF (F/aNT—7,
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which clearly leads to Y {x,}) = 0 at y = 0. Now we can ob-
tain expressions for I, and thus ¢, (y) both from Eq. {A34)
and by direct integration®; the results are, respectively,

I, =Bsgn(y) —y + F ~'sinh™'[ 2k "tn{u,)dc(u,)]
(A43)
and
k'tn(u,) + de(u,)
— k'tn(ay) + delag) ¥

I,= —y4+2F'In (Ad4)

where we have used

ola—b)/JJy1 -V, =2k’
in obtaining Eq. (A43). On setting Eq. (A43) equal to Eq.
(A44), one obtains an interesting, complicated and apparent-
ly novel relation between elliptic functions. It can be further
simplified through the identities.
FB /2=z,/2=cosh™'[dcla,) = — In[dcla,) — k 'tn(a,)].
(A45)
Next we require an expression for the total p.d. across the
layer:
$p=4¢=0¢(—1)—¢(l)= —5~'Up,,
where U, ,=U,(y) at y = 1. From Egs. (A3) and (A34), we
may immediately write
$.=m"'F[1—B+1y], (A46)
where I, is the value of I, at y = 1, where u, = u,,. The
two expressions for 7, above lead to two equivalent expres-
sions for ¢,. They may be simplified to yield the case-1 re-
sults,
8. =297 In[delu,) + & 'tnlu,)]
= 257" cosh™'[dc(u,)]
=n""sinh ™[ 2k 'tn(u,)dc(u,)].
Since k '—0 as E ¥—0,

#,—2 E2w; V1 — V,, sinh(w, — ay)
also approaches zero in this limit as it should.

In case 2, Eq. (A31) leads, after some manipulation, to

Y(u,)=cdaydclu,) — 1, {A48)
which again yields Y(u,)=0 at y=0. Note that
dn(ay) = vVe¢/b in general and is therefore unity at the transi-
tion field. Further, since k20 at this field, dn(u,) is also
unity at that point®® and expressions (A42) and (A48) are
identical as they must be. We can again obtain two different
but equivalent expressions for I in the present case but shall

not list them. To obtain ¢, we may use U, with Egs. (A32)
and (A33) to yield

(A47)

#, =n"'sinh™!

2cd (ag)tn(u,)dc(u,,)
[(1= V) — (1 = W)sn(u)] '/ ]
(A49)
where we have used
wla—b)/J=2J1—V, =2cda,)
for the present case. It is clear that this expression and those

in Eq. (A47) yield the same result at the transition point
where V,, k', and dn are all unity.

Next let us take § = 0 and consider the case 2 E¥—
limiting forms of @), ,, the y = 1 value of @, (y), and Z. Now
as E ¥ increases, k '>—0, and V,, ¥, J, H, and a, all approach
zero as well. We first consider the limiting form of Eq. (A41).
Then 2w/JF)—J !,

E(uy, k)—E (u,, 1) = tanh(u,),
(dntn — E )—(dnsn — cn-E )/cn
—{dn-tanh — cn-tanh)/cn = tanh-[(dn — cn)/cn].

Now we may employ the k '>—0 approximation formulas
127.02 of Ref. 39 to express (dn — cn)/cn as 0.5k ' sinh? in
the k >0 limit. Since a;—0,

uy—w—F/2=nE§.

Therefore, tanh(x,,}—1 and tanh(a,)—0. Finally, we obtain
from Eq. (A41),

Z—1 + (k "?/2J }sinh*(w)
—(2/F )sinh*(w)}—(nE %)~ sinh*(nE ¥)—>w, (ASO)
showing how Z approaches infinity for large E ¥. Next, let us

evaluate Eqgs. (A1) and (A42)at y = 1 for £ ¥— 0. On using
the results above, we may write

Qp,—0.5E *k ? sinh*(w)
—0.5E #(4J /F )sinh?(w)
—(2/F)(Hy/Z )sinh*(w) = Hyp T2 =Qp,. (A51)

Finally, let us derive an expression for €., and {€,4 ), for
the monolayer with 6 = 0. The static capacitance per unit
area Cg is given by €5 /4md, by definition of €. Now since
Cy=e_ /41,

CSNECS/CN = Geﬂ'/26°° .

Therefore, €. = 2¢€, Csy. But Cgy, isjust E *( — 1)/¢,, and,
from Eq. (20),

EXN—1)=0Qp, +E3
when @; = 0. It follows that
EX-1)=EZ{1+Y()} =ESW(1).

Since we are interested in the E *—0 limit, we use case-1
results. We may determine W (1) from Eq. (A42) and ¢, from
Eq. (A47). Then

2n¢€ , E §enlaginclu )
sinh='[ 2k 'tn(u,)de(u,)]

(A52)

eeﬂ' =

A similar expression applying in the case-2 field region is
readily derived. We now consider the E *—0 limit of Eq.
(AS52) to obtain a result for (€, )0/€_, . On using

enfag) =1 -V,
remembering that k >0, and that in this limit
ne(u, )—~>cosh(u,),
tn{t,;)—>sinh(u,,),
deluy)—1, o—>w,=21H,,
and
k'F/4IJ1—7,

with J>H/E ¥, we find

J. Chem. Phys., Vol. 80, No. 5, 1 March 1984

Downloaded 24 May 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



2182

where

age=sn""(V10) = 58~ (woB).

Finally, on using tanh(ay,) = @B, we may rewrite Eq.
(A53) in the form

1 — woB, tanh(w,)
1 — wyB, cothiw,)
This expression has a pole at B, = @, 'tanh(w,), but as long
as this condition is not closely satisfied and tanh(w,)=1,
(e.a)o/€, is closely given by o, coth w,=w,, virtually inde-
pendent of B, Finally, it should be mentioned that all the
foregoing results also apply when o = Oso that B, B,, z,,, a,,
and ¥ are all identically zero. Actual numerical calcula-
tions of the various elliptic functions needed in this work
have been carried out using the very rapidly convergent
arithmetic-geometric averaging method.*

(Eurlo/€., = (o cothia,)] ] (A54)
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