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Some background is presented on the constant-phase admittance element, frequently used as part of a circuit for fitting
immittance data on solid electrolytes. Several alternate ways of writing an expression for the constant-phase element are
discussed and compared, and it is suggested that one particular parameterization seems preferable to the others.

The possible importance of constant phase behavior
in the dielectric response of materials was emphasized
by Cole and Cole [1], who included the constant-
phase impedance element in one of their equivalent
circuits. Later [2], it was considered as an alternating-
current system response function, the Kronig—
Kramers relationship between its separate real and
imaginary parts was given, and the associated (non-
normalizable) distribution of relaxation time func-
tion derived. The importance of this ac response
function and its possible relevance to the often found
t~" time domain response and to (frequency)”l-noise
was also pointed out. Note that a phase angle inde-
pendent of frequency implies [1] that the ratio of
the average energy stored to the energy dissipated per
cycle is also frequency independent.

In recent years the above independence for the CPE
has been made the basis of the “universal dielectric
response” of Jonscher [3], often expressed in the
form that the imaginary part of the dielectric sus-
ceptibility,x ", is proportional to "~ (n < 1) for
many materials, where w is the angular frequency.
Here we wish to present a comparison and critique of
various forms of the CPE which have been suggested
by various authors and used to fit a wide variety of ac
response data, particularly those for solid electrolytes.
For the sake of consistency and simplicity, we shall
translate all results to admittances or non-ideal capa-
citances and change the a of Cole and Cole to the
symbol n, now more common in the present context.
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If we define the constant-phase-element (CPE) ad-
mittance as Y, then the Cole—Cole formis Y, =
aq(iwT)". Let us rewrite this for 0 <n <1 as

Y, = Ayiw)", (1)

where 45 and n may be temperature dependent. This
form of the CPE has been used, for example, as part
of an equivalent circuit used to fit impedance data
taken at several constant temperatures for lithium
nitride [4] and has also been used for fitting TiO,
data [5]. Both A and n were found to be tempera-
ture dependent for the results of ref. [4]. Note that
the form [6,7] Y = (iw7)" is unsatisfactory since it
leads as n = 0 to the too specific result Y, > 1. On
using eq. (1), we may follow Jonscher and define the
“non-Debye” capacitance [8,9],

C, = (Y fiw) = Ag(iw)" L, ()

which has been employed by Jonscher and Réau [10]
as part of an equivalent circuit used to fit impedance
data on B-PbF,. Of course the use of the admittance
element of eq. (1) or the non-ideal capacitor of eq.
(2) are equivalent ways of introducing CPE response.
The CPE capacitor approach has also been recently
used in the analysis of single crystal Na S-alumina im-
pedance data [11].

Although there thus far appears to be no fully ade-
quate theory of ac conduction which leads to the CPE
form and establishes connections between the param-
eters Ay and n and more microscopic, physical mater-
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ial parameters as well as temperature, it is worth men-
tioning that eq. (1) has been expressed by Schrama
[12] in the form of an infinite continued fraction,
leading to an equivalent circuit consisting of a semi-
infinite, continuous, non-uniform RC transmission
line. The line is uniform for the special choice n =
0.5. Later, Scheider [13] showed that the admittance
of eq. (1) could also be represented by RC ladder net-
works with multiple branching. Both the Schrama
and Scheider circuits can be interpreted in terms of
non-uniform diffusion processes.

We have already pointed out the inadvisability of
the CPE parameterization Y = (iwr)"; now we shall
discuss other related inappropriate parameterizations.
First, for future comparison, let us write (1) in ex-
panded form as

Y, =A¢w" [cos(nn/2) +isin(nm/2)], 1"

a form where it is clear that the real and imaginary
parts are properly related by the Kronig—Kramers re-
lations [2]. Now Raistrick et al. [7] have employed
the form

Y =Aw" +iBu", 3)

to fit impedance data on silicates. Initially 4 and B
were used as independent fitting parameters, but it
was soon pointed out [6,7,14] that they must be re-
lated through

B/A = tan(nn/2), 4)

consistent with the Kronig—Kramers relations, as in
(1"). It should be emphasized that the use of eq. (3)
with 4 and B taken independent [7,15] introduces
an unwarranted degree of freedom in fitting to ex-
perimental data.

Although the necessary relation (4) has been known
and used by Jonscher [3] and his collaborators since
1974 and by others [11,15], I believe it can and has
been used to parameterize the CPE in infelicitous
ways. It has become customary to write (1') in the
form

Y, =P, [1 +itan(nn/2)], ©)

where P, is a constant to be determined from the
fitting. But clearly P, = Ay cos(nm/2). If A is tem-
peature dependent and largely independent of n, P,
mixes the temperature dependence of n into that of
A. This is a matter of no great importance when

measurements are made at a single temperature, but it
becomes important when data are taken for several
temperatures and » is temperature dependent. (The
quantity # is often found, in fact, to decrease with in-
creasing temperature.) Then the least squares deter-
mination of P, and n is likely to be somewhat com-
promised by the correlation between them. Further,
(1) shows that asn — 1, Y, — iwA ), involving a pure
capacitance, and asn >0, Y > A4y, a pure conduc-
tance. Although (5) is consistent with the second of
these limits, it yields (ie°) in the first limit when P, is
taken as a direct fitting parameter. Fitting to data for
a nearly pure capacitance with this form would yield
the misleading result that P, ~ 0, or more likely,
would lead to P, > 0 and an n estimate appreciably
smaller than the true n Z 1. This difficulty does not
arise with (1) or (1").

Similarly, problems can appear with the parameter-
ization of the C,, of eq. (2), which can be written as

C, = Ay~ [sin(nm/2) — i cos(nm/2)]. ")

But this (and its dielectric susceptibility equivalent)
[8,9] has been reexpressed as [9,11]

C, = 0,1 — i ctn(nm/2)], (6)

where Q,, = 4 sin(n7/2), a parameter to be determin-
ed from fitting. Again n dependence is mixed with
any present in 4 here, although in a different way
from that above. It thus follows that as n = 1, eq. (6)
leads to the proper result C,, - O,, - Ay, while when
n approaches zero, C,, > —(ie°). But in fitting, one
will usually be dealing directly with the Y associated
with C,,. From (6), this Y =Y, is

Y, SiwC, = Q,«" [ctn(nm/2) +i]. @)

Again, the n — 1 limit is proper, but that forn -0
yields ¥, - o> when @, is taken as a constant param-
eter determined from the fitting and its actual depen-
dence on n suppressed or forgotten.

These problems with potential division by zero are
entirely avoided when (1), (1"), (2) or (2") are used
for fitting. When n varies appreciably with temperature,
it may be sometimes useful to use the original Cole—
Cole form of the CPE since both parameters ¢ and 7
may then be determined separately from a combined
least squares fitting of Y (cw, T) data. Under some cir-
cumstances, this will reduce the correlations between
the two parameters @,, and 7 and n(7T) more than will
the single-parameter form of eq. (1).
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Finally, it is worth mentioning that the CPE in se-
ries with a capacitor leads directly to Cole—Cole dis-
tributed dielectric response [1], and in parallel with a
resistor it leads to the depressed circular arc response
often found for solid electrolytes when measured im-
pedance is plotted in the impedance plane. The CPE
is thus more general than usually realized. In actual
data fitting, it will be most appropriate to use either
an isolated CPE or a separate C or R combination with
the CPE as above. This approach keeps the CPE param-
eters and the other parameters properly separated.
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