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First, it is shown how an expression for the ac conductivity of an ionically conducting material derived by Almond and 
West and co-workers from an earlier "universal dielectric response" equation of Jonscher may be related to and subsumed 
under a response function proposed much earlier. Doubt is cast on the identification of a parameter in the Almond-West 
analysis as the ionic hopping frequency. The earlier function, first proposed by Ravaine and Souquet, is widely used to de- 
scribe the depressed arcs often obtained when experimental impedance data are plotted in the complex plane. A general 
relation which yields either this response or that of Cole and Cole for the complex dielectric constant is discussed and 
shown to involve inadequate high and low frequency limits. Finally, a new distribution-of-activation-energies model which 
can fit both unsymmetric and symmetric arcs in either the impedance or complex dielectric constant plane is briefly dis- 
cussed. This rr odel does yield physically realistic high and low frequency limiting response as well as predictions of the 
temperature dependence of power-law frequency response exponents. 

Some time ago Almond,  West and their co-workers 
showed in a series of  papers [ 1 - 3 ]  how one of  
Jonscher's empirical "universal dielectric response" 
equations [4] could be transformed into a form use- 
ful for analyzing the small-signal ac response of  ionic 
materials. Jonscher's equation was 

X" = B1 [(co/cop)n 1 - 1 + (co/cop)n2 - 1 ] , (1) 

with B 1 a constant ,  sometimes taken as unity and the 
exponents restricted to the range 0 < n < 1. Here the 
dielectric susceptibility X = (e - e.o)/e 0 = ×' - ix",  
where the complex dielectric constant is e = e'  - ie" 
and e' takes on the values e 0 and co. at sufficiently 
low and high frequencies. By setting n 1 = 0 and n 2 = 
n in eq. (1), Almond et al. were led to the following 
expression for the ac conductivity:  

O(co) =K[cop +.¢~pl-nt~.nll , (2) 

which exhibits both a non-zero dc conductivity and 
power-law response. The quanti ty K was identified as 
a temperature dependent  constant. An improved ex- 
pression for it has recently been proposed [5]. Almond 
et al. used eq. (2) to analyze data on single crystal Na/3- 
alumina and other materials and identified COp as the 
thermally activated ionic hopping frequency, v H . 
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It is useful in small-signal data fitting to have avail- 
able a fitting equation which includes both real and 
imaginary components  as functions o f  frequency. Then 
nonlinear least squares fitting of  both real and imagi- 
nary parts of  the data can be carried out simultaneous- 
ly, i.e. complex nonlinear least squares (CNLS) fitting 
[6]. Such fitting allows estimates of  parameters based 
on all, rather than half, the data to be obtained. It was 
shown by Macdonald and Cook [5] that an admittance 
closely related to eq. (1) with n 1 = 0 and n 2 = n could 
be writ ten for the Na/3-alumina situation as 

Y = G O [1 + (icoT0)n ] + icoC., , (3) 

where Co, is the high-frequency limiting capacitance of  
the system, exclusive of  contributions from the first 
term in (3). The real and imaginary parts of  the first 
term satisfy the Kronig-Kramers  relations [7] and 
the real part leads to the form of  eq. (2) with 

cop = [r 0 {cos(nrr /2)) l /n  ] -1  . 

The same data on single crystal Na ~-alumina that was 
analyzed by Almond and West by graphical methods 
was reanalyzed using eq. (3) with CNLS fitting in order 
to obtain more accurate, objective estimates o f  the pa- 
rameter values involved [5]. This analysis showed that 
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the data did not lead to a well-defined value of COe, 

where Wp = coe e x p ( - E / k T ) ,  and thus they did not 
confirm the Almond-West identification of cop with 
the ionic hopping frequency [5]. The Almond-West 
Na/3-alumina data has recently been re-analyzed and 
the question of the identity of cop and ult considered 
in more depth [8]. The conclusion is again reached 
that no available evidence supports the firm identifica- 
tion of cop and UH, but neither does the evidence ab- 
solutely preclude the possibility. 

Let us restrict attention to the first term in eq. (3). 
Then the impedance corresponding to this term is 

Z =Ro/[1 + (icor0)nl 

=R0/[1 +RoA0(ico) n] , (4) 

where R 0 - G~ -1 . The first form of this result was sug- 
gested years ago by Ravaine and Souquet [9], in anal- 
ogy to the Cole-Cole dielectric response function [ 10] 
and later independently proposed by others [11,12]. 
It has been found quite useful in fitting data which 
lead to a depressed semicircle when the impedance is 
plotted in the complex plane. It may thus be termed 
the ZARC function. The second form is just the com- 
bination [13] of a constant phase element (CPE) in 
parallel with a resistor R 0 . The CPE admittance is given 
[13] by Y =A0(ico)n with 0 <~n ~ 1. By focusing on 
a real rather than a complex function, Almond and 
West evidently did not realize that their eq. (2) was not 
entirely original. A sketch of a derivation of the first 
form of eq. (4) based on fractal dimensionality has 
been recently presented by Le Mehaute and Crepy [14]. 
Because of the generality of eq. (4), it seems unlikely 
that COp - [RoA 0 cos(nrr/2)]-l/n will usually fall close 
to the ionic hopping frequency for most ionically con- 
ducting materials. Further, rather than derive an em- 
pirical equation such as eq. (2) from another empirical 
equation, proposed primarily for dielectric materials, 
in order to obtain a result appropriate for conducting 
materials, it seems more reasonable to start with the 
well-known empirical equation (4) originally proposed 
for the analysis of such systems. 

Eq. (4) shows two different ways to parameterize 
the ZARC function, one considering it as a unitary 
function in its own right [9] and the other taking it as 
a composite function [13]. Which approach is the 
more appropriate? Although CNLS fitting of the same 
data set with these two forms will yield exactly the 

same fit, the actual parameter calculations and uncer- 
tainties will generally turn out differently. Of course 
the fit with the lowest estimated parameter correla- 
tions and parameter standard deviations is preferable. 
Such fitting on the 113 K Na H-alumina data mentioned 
above gave smaller standard deviations with the first 
form, and the correlation between R 0 and 70 was 
found to be -0.57, while fitting with the second form 
produced a correlation between R 0 and A 0 of -0.98! 
Similar results have been found for fitting of the data at 
other temperatures. 

It has been recently pointed out [15] that when stan- 
dard dimensionless normalization is employed, any re- 
sponse function derived at, say, the complex dielectric 
constant level may be employed in exactly the same 
form, but possibly with different parameter values, at 
the impedance level and vice versa. Of course such dual 
response implies two different materials, one showing 
dielectric system response and the other conducting 
system response. Let us define a general normalized 
immittance function I k ~- I~ + iI~ as 

~,~-~(u k - u k ~ ) / ( C ~ o  - c ~ ) ,  (5) 

where k = e or Z ,  U e = e* - e' + ie",  and U z = Z .  Here 
Uko and Uk= are the low and high frequency limiting 
values of U k . The general expression corresponding to 
the ZARC, eq. (4), when k = Z, is then 

I k = [1 + ( icorkO)nk]  -1  . (6) 

When k = Z, we may take n Z = n .  If one choses n e = 

1 - n, then the admittance corresponding to/Z = 
( Z  - R = ) / ( R  0 - R = )  and that corresponding to I e =- 
(e* - e~)/(e 0 - e~) both involve the same (ico) n 
power-law frequency response when ( corko )  nk >> 1. 

The first choice leads, of course, to the ZARC, the 
second to just the standard Cole-Cole dielectric re- 
sponse function [10]. But as eq. (6) shows, plots of 
I e in the complex dielectric constant plane or o f l  z 

in the impedance plane yield exactly the same shape 
when n Z = n e. It seems appropriate to term the gener- 
al function, eq. (6), which subsumes both ZARC and 
Cole-Cole response, the ZC function. Note that the 
composite representation of the Cole-Cole function 
is that of a capacitor (C O C~) in series with a CPE. 

Although the distribution of relaxation times func- 
tion associated with the unitary ZC is normalizable 
[10], unlike that of the CPE alone [7,13], the ZC 
does not generally exhibit response proportional to co 
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as ~ ~ 0 and to ~ - 1  as w ~oo, response required of  
all physical systems since real systems necessarily have 
a shortest and a longest response time [15,16]. Such 
response requires that the arcs in complex plane plots 
must approach the real axis vertically at the frequen- 
cy extremes even when arc centers are displaced below 
the real axis [ 17]. A theory of  small-signal frequency 
response applying for either a dielectric system or a 
conductive system, which involves a distribution of  
activation energies, has recently been proposed 
[ 15,18]. It can lead to either curves symmetrical in 
the complex plane like the ZC, to unsymmetric in 
the curves like those predicted by the empirical 
Davidson-Cole [19] and Williams-Watts [20] equa- 
tions, or to curves which are well approximated over 
a limited frequency region as the parallel or series 
combination o f  two CPE's. For the k -- e dielectric 
situation, one of  the Jonscher "universal dielectric 
response" empirical equations is indeed of  the form 
of  two CPE's in parallel [18]. Unlike all these empiri- 
cal equations, including all the Jonscher "universal 
dielectric response" equations, the new physically rea- 
sonable model does indeed lead to 60 -+ 1 response at 
the frequency extremes and can well represent the be- 
havior of  any of  the earlier empirical equations except 
at the frequency extremes, regions often beyond the 
range o f  usual measurements or where the response is 
complicated by the presence o f  other processes. This 
model thus seems preferable to all the empirical equa- 
tions, especially since it leads to specific predictions 
o f  the temperature dependence o f  power-law expo- 
nents, predictions in agreement with experiment for 
both conductive and dielectric systems [ 15,18], 
while none of  the other equations does so. 
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