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When the small-signai ac frequency response of a dielectric or conductive system is known, either
functionally or as data, it is shown that the corresponding response of an associated conductive or
dielectric system may be immediately obtained through the use of new duality relations. A specific
model is considered which involves thermally activated capacitance and/or resistance, with an
activation energy probability density exponentially dependent on energy. Previous frequency
response analyses of such a continuously distributed model involve inadequate approximations
and lead to erroneous predictions. Correct immittance results are presented in three ways:
analytically, by means of complex plane plots, and through the use of three-dimensional
perspective plots. Results are given in general form but apply to both dielectric and conductive
systems which involve the same functional dependence on activation energies. Low- and high-
frequency-limiting responses for a given system are found to be associated with the same simple
equivalent circuit. In intermediate frequency ranges a power-law frequency response somewhat
like that of the constant phase element may occur. Differences between the power-law exponents
for dielectric and conductive systems are ciarified, and the types of possible temperature
dependence of the exponents explored. Exponent values are not limited to the range between zero
and unity. The overall response of the present normalized three-parameter model is similar to that
often found experimentally for both dielectric and conductive systems and similar to but more
general than that of other normalized distributed-element (two-parameter) models such as that of
Williams and Watts and that of Davidson and Cole.

I. INTRODUCTION

Work in the area of continuously distributed activation
energies began with the paper' of Gevers and du Pré who
assumed that relaxation times of a dielectric system were
thermally activated and a given relaxation time 7 could thus
be written as

7 =17, explE /kT), (1)

where E is the appropriate activation energy. They then in-
troduced the concept of a continuous distribution of activa-
tion energies (DAE), leading to a continuous distribution of
relaxation times (DRT). For the amorphous materials in
which they were interesied, they essentially took the DAE
function, a probability density, as a constant, independent of
E. They then discussed the frequency response of the system
following from approximate treatment of the integrals in-
volved. At the same time, Garton? also examined the DAE
situation in order to find under what conditions it could lead
to a nearly frequency-independent ¢”(w), where the complex
dielectric constant € = €' — je” andi = — 1. Such depen-
dence for €” has often been observed experimentally. He
found, after various approximations, that again a DAE func-
tion independent of activation energy was required.

Next, Macdonald? showed that most of the usual DRT
functions, including those of Cole and Cole,* and Davidson
and Cole,” were inconsistent with a DAE. Although every
DAE is associated with a DRT, most DRT’s are not consis-
tent with a DAE. Yet it is often more probable that a DAE is
present and leads to a DRT than that the preexponential
factor 7, alone is distributed and yields a DRT. Further
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work of Nowick and Berry® and Macdonald’ considered
various combinations of independent and dependent distri-
butions of 7, and E. The present author® discussed the im-
portant case where 7,=7,, exp(S /k ) and the entropy S and
the activation energy (actually enthalpy} E were taken as
possibly linearly related, with their distributions arising
from that of a common structure factor. Such a relationship
between E and S is often found experimentally.*'®

The first exact treatment of a specific DAE situation
with a plausible choice for the activation energy probability
density function seems to be that of Ref. 9, which dealt en-
tirely with transient response and found ¢ ~ ” behavior over a
wide range of ¢, where ¢ is the time variable and the exponent
n was found to have a specific form of temperature depen-
dence. A somewhat similar yet entirely independent treat-
ment later led to the same dependence.'® Time dependence
of the above sort has often been observed for a wide variety of
dielectric-material experimental situations,’!! usually with
0<ngl.

The next significant work is that of Dutoit et a/.'* and
Laflére er al.'” who did not refer to the earlier work of Refs. 3
and 6-9. These authors developed a dielectric-system DAE
treatment to explain the frequency dependence observed for
various semiconductor/electrolyte interfaces. This depen-
dence was of the form

Re(Z)=b+av™", (2)

where g and b were independent of frequency v and they
found 1 <7 <2. Here Z is the measured impedance of the
system. It is worth noting that this is just the response to be
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expected from a frequency-independent resistor and a con-
stant phase element (CPE) in series.*!* When the CPE ad-
mittance is written in its usual forms as

Y opp =Aliv)"'=liwT,)"
= Aw"{cos(nm/2) + i sin(rr/2)], (3)

with w==2v, one usually expects O0<n<1, however.
Now in Ref. 9 I assumed that the specific DAE probabil-
ity density function was of the form

F(E)=Nexp(—7,E), (4)
or, equivalently,
F(&)=Nexp(— 4 %), (5)

where N is a normalization constant, #=E /kT, and
A;=kTrn;. I have simplified the results here by identifying
the structure factor directly with E. Two different 4;’s were
defined for different parts of the &< £ <& _ range over
which F {#) was taken to be nonzero. The choice of an expo-
nential probability density was somewhat justified in Ref. 9;
it is analogous to the introduction of a set of traps distributed
exponentially in energy below the conduction band in semi-
conductor work; and it is made more plausible by some of
the considerations of Ref. 15. Further, several of the DAE’s
derived from transient response data on protein systems'®
are approximately of the form of Eq. () for a finite & range.
Although exponential dependence is an assumption, it is
further justified in the transient response case by being the
only form of a DAE which leads to the experimentally ob-
served ¢ ~ " response. For the present work I shall again use
this form but without the added generality of two 4;’s and so
will take a single A, ==4. Results following from the more
general choice will be investigated in later work.

An exponential DAE was assumed without comment in
the Dutoit and Laflére work,'*!3 where they took a single A
and implicitly assumed &, =0and & _ = «. To carry out
their analysis they required — 1 <A <0. But taking 4 nega-
tive, so the probability density increases with increasing &
over the entire range to & — o is physically impossible, al-
though it is not impossible for a finite range of €. For this
reason we have written Eqs. (4) and (5} with negative expo-
nent signs and will usually restrict attention to the 4 >0 case.

Although Dutoit and Laflére indeed obtained frequency
response of the av~" form of Eq. (2) from their analysis,
they stated that their results were restricted to the low-fre-
quency range, wr<1. But because of their £ = oo choice,
their results actually only apply for =0 and are therefore
not useful (see Appendix A). For these reasons a correct and
more general analysis of DAE frequency response with the
of F{&)of Eq. (5)and A;=4 is needed and is provided below.

But first, there is a further valuable paper which largely
followed the Refs. 12 and 13 approach but introduced an
important new element. Specifically, McCann and Badwal'®
split the thermally activated = of Eq. {1) into two parts
through the relation r==RC and took both R and C separate-
ly thermally activated. In the present notation they thus
wrote

R =R, expla¥) {6)
and
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C=C, exp(B%), (7)

where @ and [ were taken temperature independent.
McCann and Badwal were concerned with a DAE associat-
ed with a continuous distribution of thermally activated ele-
mental R ’s and C’s in series and thus implicitly treated what
we shall identify here as a dielectric system. Now 7 may be
written as

7=RC =7, exp(y&), (8)
where

=a + f3, 9

7,=R,C,, and all quantities with “a” subscripts are taken

frequency and temperature independent.

McCann and Badwal made the same approximations
and E, =0, E_ = « assumptions as those in Refs. 12 and
13 and, in addition, implicitly took 4 = 0, thus taking the
same probability density for the full 0<E< o range. This is
the same constant DAE function originally used by Garton.?
With the A = O choice, McCann and Badwal obtained fre-
quency response of the form of a CPE, Eq. (3}, though their
results were not so identified. When one combines the limit-
ingrranges for n found separately for the real and imaginary
parts of their theoretical admittance, it is found that
0 < n < 1. But again their results actually apply only for w=0
{see Appendix A).

It is often expected and frequently found that all, or the
dominant part, of the thermal activation of 7 arises from that
of R, with little or no temperature dependence of C. There
are instances, however, where the temperature dependence
of both R and Cis of importance and £ is not = 0. For exam-
ple, consider the electrolyte double layer situation where the
reaction capacitance, i.e., the diffuse double-layer capaci-
tance, is proportional to cy’* and the reaction resistance is
proportional to ¢, '. Here ¢, is the bulk concentration of the
electroactive mobile charged species. If ¢, is itself thermally
activated and we consider temperature effects arising only
from such activation, then we may set @ = 1 in Eq. (6) and
B = —0.5in Eq. (7), so ¥ = 0.5. We shall consider only the
¥ > 0 situation in most of the rest of the paper.

In the following work we present an exact analysis
which corrects and generalizes the work of Refs. 12, 13, and
16, show how a common approach may be used for conduc-
tive as well as dielectric systems, and examine and plot the
various frequency responses predicted by the theory. In ad-
dition, present predictions are compared with those of other
distributed-element models; limiting high- and low-frequen-
cy equivalent circuits are derived for DAE dielectric and
conductive systems; and an approach to DAE system data
analysis is outlined.

. SYSTEM RESPONSE: DEFINITIONS AND RELATIONS

There are four frequency-response immittance func-
tions which have been found useful in the analysis and mea-
surement of the electrical response of solid and liquid materi-
als under small-signal conditions. In addition to the
impedance, Z=Z "+ iZ ", admittance, Y=Y ' +iY ", and
complex dielectric constant, e==€¢" — i€”, we may define the
complex modulus function M =M’ + iM "=iwC_Z, where
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TABLE 1. Relations between the four basic immittance functions. Here
u=iwC..

M Z Y €
M M nz uY ! €'
z u'M z y—! ple!
Y uM ! z! Y ue
€ M- u 'zt u 'Y €

C. is the capacitance of the measuring cell without the mate-
rial of interest in it. Now let u=iwC.. Then the matrix of
Table I shows all the interrelations between the four basic
immittance functions. For example, we see that M = ¢~ .

Clearly if theoretical or experimental results are ob-
tained on a given model or system, e.g., the / system, at one of
the four levels, say Z,, then the M,,Y,, and ¢, results for this
system immediately follow from the Table I relations. But
now we want to discuss some connections which may be
established between the response of a given system and that
of its different but associated system. Suppose, for example,
that theoretical or experimental results (frequency-response
function or data) are available at the Z level, defining Z, and
thus the Z system itself through its response. Then, of
course, M,,Y,, and €; may be immediately calculated. On
the other hand, consider e-system results yielding M, ,Z.,Y,,
and e, . If the Z, and €, measurements were actually all on
the same physical system, then of course Z, = Z,, etc. Now
it turns out that given either Z, or €, {or M,, or Y}, a
duality transformation applied after suitable dimensionless
normalization allows one to obtain an €, response (and thus
M_.Z ,and Y, )from Z, and vice versa. Of course the result-
ing Z, #Z, since these reponses now refer to different sys-
tems, but the systems themselves are related or correlated by
the connecting duality relations. The same sort of connec-
tions allow M-system response to be obtained from Y-system
response and vice versa. These important results imply that
given frequency response {for a specific material-electrode
system) of any functional or experimental form, a new and
different frequency response is implied and may be calculat-
ed for a different but associated system.

So what? It turns out that these relations prove very
helpful in, for example, allowing one general theoretical
treatment to yield results for two different but allied systems.
Further, all previously known e-system theoretical models,
for example, immediately yield possibly useful related Z-
system models. We shall illustrate these matters in the fol-
lowing for specific Z- and e-system results of particular ex-
perimental interest. Let us define a conductive system (C
system) as one whose intrinsic dc conductivity is nonzero. It
still remains a C system when, e.g., blocking electrodes or
series blocking capacitors are added. If it actually exhibits
nonzero intrinsic dc conductivity, it may be termed an ideal
Csystem. Alternatively, define a dielectric system (D system)
as one which exhibits no intrinsic dc conductivity. It remains
a D system even when a dc path (e.g., a parallel resistor) is
added to it, but if there is no such path, it may be termed an
ideal D system. These two types of systems and system re-
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sponse have been widely studied for many years but not al-
ways with a clear distinction made between them since a
general C system may show no actual dc conductivity and a
general D system may show some. A C system is most simply
defined at the Z level and a D system at the € level. In the
following work we shall show how general D-system results
imply associated general C-system ones and then will carry
out a general DAE analysis which includes both ideal C- and
D-system response.

IIl. ANALYSIS
A. Distributed dielectric system

Let us now define a distributed D system as one in which
the elemental unit is a resistance and capacitance in series. In
more general terms, the resistance element is associated with
the presence of energy dissipation and the capacitance ele-
ment with the presence of energy storage. Both processes are
present in relaxing systems. There are, in the continuous
limit, an infinite number of these units in parallel. Thus such
a system has no dc conductance as long as no elemental C’s
are infinite. Similarly we may define a distributed C system
as one in which the elemental units are each composed of a
resistance and capacitance in parallel, with an infinite num-
ber of such differential units in series. Such a system may
have a nonzero dc conductance as long as no elemental resis-
tances are infinite. We shall distinguish between quantities
calculated for the two different types of systems by using a
subscript D for the dielectric one and a subscript C for the
conductive system.

These parallel and series structures, where the order of
RC elements is immaterial, have hierarchical counterparts
which can yield the same overall impedance-frequency re-
sponse as the parallel or series ones. Thus, they cannot be
distinguished from each other by small-signal ac measure-
ments at constant temperature. Of course, for the hierarchi-
cal or ladder network structures the ordering of the elements
is definitive. We can associate with the parallel structure a
hierarchical ladder network made up of series C’s and paral-
lel R ’s; both have zero dc response. Similarly, with the series
structure, we can associate a ladder network made up of
series R ’s and parallel C’s; here both circuits conduct at zero
frequency. Although frequency response for these pairs can
be identical, the connectivity of the elemental physical pro-
cesses involved on a microscopic level is quite different for
the two members of a pair. For example, hierarchical struc-
ture may be associated with fractal behavior and parallel
structure with many independent parallel paths. Although
the following work involves parallel and series continuously
distributed structures, the above discussion shows that the
overall macroscopic results, but not the microscopic pro-
cesses leading to them, can be considered to represent either
parallel or series structures or their associated hierarchical
counterparts.

Let us initially consider a nonideal D system. The admit-
tance Y for asingle R and Cin series and all in parallel with a
conductance G,,Y,, may be written

Y, =ioC /(1 + iwRC) + G,. (10)

We may now write for the complex dielectric constant €,
associated with ¥,
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€p = Yp/(iwC,) = (C/C,)/(1 + iwRC) + (G, /iwC,),
(11)

Here C /C.=¢,, the w—0 value of €}, when G, is zero or is
removed. But we see that for w—w, Eq. (11} yields
€p = €, = 0. Thus for more generality we need to introduce
anonzero €_ . We shall assume that the € , for the dielectric
system is not associated with a DRT or DAE. Then the more
general €, may be written as

€p =(C_/C.)+ [(Co—CV/C.}/[1+iwR(Cy—C,)]
+ (G, /iwC,), (12)

where C /C_ ==¢_ . We may now consider a distributed sys-
tem based on Egs. (6), (7}, and (12) and introduce the DRT
function ¥ ,(7) by writing

© CY p(rMdr
o 14+ iwRC
where 7,,,=C./G,. In a pure DRT treatment, in which Cis
taken independent of 7, the C term in the numerator could be
removed from under the integral sign in the usual way,'' but
for the present DAE analysis this would be improper. Cor-
rect w—0 limiting behavior of [€, — (iwTp,)~'] can be en-
sured by selection of the normalization factor included as a
part of % (7). In a more general case, the single-time-con-
stant (iw7p, )" quantity in Eq. (13) might be replaced by a
continuously distributed C-system DAE term, yielding a
parallel combination of D and C system responses.

Many different heuristic DRT expressions have been

suggested for & ,{7), e.g., Refs. 1-7, 9, 11, 17, and 18. The
one of most relevance to the present work is''

Gplry=4r", (14)

where A4 is a constant and ¥ ;,(7) is taken zero outside the
range 7,<7<7_ . The DRT frequency response following
from using this expression in Eq. (13), with C independent of
7and G, = 0, has been investigated by Matsumoto and Hi-
gasi.'” When one considers a DAE, however, and uses the
relation ¥ ,,(7)dr = Fp(%)d#, which follows from conser-
vation of probability, one finds that Eq. (14) for % ,{7) and
Eq. (8) for 7 lead® to a F, (£) of just the form of Eq. (5). Thus
thereis a close connection between the DRT work of Ref. 17,
the present DAE analysis, and that of Ref. 9. [t is also worth
remarking that the & ,, {7) DRT expression of Eq. (14) is just
that which leads to CPE response when the 7 range is taken
as 0<7< oo . But an important defect of the CPE is that it and
its DRT are not normalizable.'' See Appendix A.

For the DAE case, we shall assume that R and C are
both associated with the same DAE. On transforming the
variable in Eg. {13} from 7 to & and using Egs. (5}, {6}, (8), and
(12}, one finds

ep=€,+C! + (fwTp,) (13)

C,N, )
C

<

€D=€w +(

XJ‘& exp[{B — A& 1d&
#, 1 +iwr, exp[y®]

+ (fwTp) ™" (15}

Here N, is the D-system value of the normalization factor N
of Eq. (5). Asshown, the finite range 7,< 7<7_, assumed for 7
leads to the range % ,<& <& _, over which F,{#) is non-
zero. There is, of course, no mathematical reason why &,
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may not be set to zero although this choice makes 7, = 7,.
On the other hand, the integral of Eq. (15} will only converge
when & | = oo for (B —A)<0.

It turns out that Eq. (15) may be appreciably simplified if
we define

W=r/ro=exp[p(& — &,)] (16)
and

S=wT=0T, eXp{y & o), (17)
where s is a normalized frequency variable. Note that
@R C =wr=sW. One then obtains

€p =€, + [C,Npy™ ' expl,¥& )/C. ]

whtdaw _
= l m—— + (ISTDX/TO) N (18)
where
bp=(B—A)Vy=B—-AV(B+a), (19)
and
r=W_=r_,/To=exp[N¥_ — &,l]. {20)

For r— « the integral only converges for ¢, <0. Ats =0,
we require [€, — (is7p, /7o)~ '] = €, the zero-frequency-
limiting value of € for an ideal D system. This condition
allows us to evaluate the normalization factor N, , assuming
that €, is a known parameter. One finds

€p =€, + (€ —€.)[dp/(r* = 1)]

r dp—1
X{ w dw
J1

A+ (isTp /To} ™ 2}
s/ 21)

which yields proper s—0 and s— oo limits. Finally let us
write

"Wl dw

1T oW + (isQp) ™ (22)

= [¢o/tr"~1)]
where /,, is a normalized immittance, here the normalized
complex dielectric constant « ,, equal to unity at s = 0 when
Qp=(C, — C_)/{1;G,) = o oris removed.

Now although the admittance Y, associated with €, is
given by iwC €, it will be convenient to define the normal-
ized admittance Y,y as

Yon=siskp, {23)
which excludes the C_ ==C,e_ contribution. Let us also
only consider ideal D systems from now on and thus take
Q5 = . We shall use the subscript “N " to denote that a
guantity normalized to unity at s = 0 is involved, but for
simplicity will omit it from /; and «,. The s— oo limit of Eq.
{23} is just

Yone =Y iowe = [#5/i¢p — VL7 = 1/(% ~ D],
(24)
The electrical circuit associated with €, thus involves a ca-
pacitance C_, in paralle! with a distributed element whose
s—0 limit is the capacitance (C, — C_ ) and whose s— o0
fimit is a conductance given by (w/s)C. (€, — €} ¥ pn., - This
high-frequency conductance may therefore be written as
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Gp., =R 5, =[{Co—C V7] ¥Ypno,- (25)
Pertinent low- and high-frequency-limiting equivalent cir-
cuits are considered in more detail in the final section. Al-
though the distributed ideal dielectric system properly yields
no dc conductance, it will generally be dominated at suffi-
ciently high frequencies by the conductance G . The re-
sults shownin Eqgs, (22), (24), and {25) are only meaningful for
r = o when ¢, <0 since Eq. {18) for an ideal D system can-
not be normalized when 7 = « unless ¢, <0. Problems in
previous work arising from taking r = « with ¢, >0 will be
discussed later and in Appendix A. We shall consider the
behavior of x, for the region 0<s< o in Sec. IV.

B. Distributed conductive system

Although the following treatment is closely analogous
to that in the last section, it has not been carried out in the
present way before and leads to results different from but
related to those above. We start by considering the imped-
ance of a single R and C in parallel, all in series with a block-
ing capacitor C,,

Ze =R /(1 + iwRC) + (ioC,) ™. (26)

In analogy with the treatment of a distributed dielectric sys-
tem, let us here consider a nonideal C system with a nondis-
tributed high-frequency-limiting resistance R_ and a dis-
tributed element in series with R_  whose
zero-frequency-limiting value with the (iwC,)~' term re-
moved or zero is (R, — R_ ). The w—0 limit of Z for the
full ideal C system is thus R, assumed given. We can now
write an equation analogous to Eq. {13) involving the con-
ductive-system DRT function'! 4 (7} as

© RY Aridr
Jo 1+ iwRC

again the R term in the numerator must not be taken outside
the integral if a DAE is present. On substituting Eqs. (6} and
(7)into Eq. {27) and writing ¥ .(7)d7 = F (& }d& = N exp
(—A&)E with F. only nonzero in the interval
#,<&<E ,one finds

Ze=R, +{R,Nc)

* .
= explla —A}&1d¥ . - 2
% Lo 1 + iwT, exply®) G 28)

Ze=R, + + (€)Y (27)

For &_ =, [Z;—(iwC,)"'] only converges for

{@ — A) <0. Let us now introduce as before the W, s, and r

definitions into Eq. (28), obtaining
Z.=R_ + [RaNC7/~] exP“ﬁc?’go)]

rwteldw )
XJ{ e sCu ) , (29)
where
po=la — A )y =la—AV{a+PB) (30)

For r— o the integral without the C, term only converges
for ¢ <0. The normalization factor No may be obtained
from the condition [Z. — (isC, /7o) '} =R, for s=0.
Further, let us introduce the normalized immittance I de-
fined in the same way as the 7, of Eq. (22). Then,
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Ice=Z y=(Z. -R_)/(Ry—R_)

— | $c i’ W¢C— ld w . -1

[/ —1)] CTITEW + (isQc) ™, (31)
where Q.=C, (R, — R )/7,. Note that when the single-
time-constant Q. term is replaced by a continuously distrib-
uted D-system DAE term, one obtains normalized response
which is a series combination of D- and C-system DAE re-
sponses.

C. Combined systems

Comparison of Egs. (22) and (31) shows that they are of
exactly the same form and become equal if ¢. = ¢, and
Qc = @,. We do not, in fact, need exact equality here in
order to apply the duality relation mentioned earlier which
connects Z and € systems and responses; equality of form is
sufficient. Let the subscript i = C or D; then a general equa-
tion for the general /; function equivalent to Eqgs. (22) or (31)
may be immediately written which involves ¢, and Q;. This
equation yields both D- and C-system DAE response and
can be further generalized, as mentioned above, to represent
the combined response of a D system and C system in parallel
or in series. From now on, for simplicity we shall consider

only ideal pure system response and thus take
Qp = Qc = «. Then we may write
"Wt ladw
Lis,d,) = [./1r% =1 f———— 32
(s.8:) = [¢:/( 1] Ry (32)

where ¢, is either ¢, or ¢.. Unfortunately, the integral of
Eq. (32) cannot be expressed in closed form for arbitrary ¢,.
It is possible, however, to so express it for various specific
fractional and integral values of ¢; . Appendix B summarizes
results for ¢, = 3/2, 1, 2/3, 1/2, 1/3, 0, and — 1/2. This
series could be further extended at both ends if desired. For
values of ¢; for which no closed form is known, one must
resort to numerical integration. Although I, is actually a
function of r as well as s and ¢,, we shall replace I,{s,¢,,7) by
I.(s,¢,;) and often use I;(s) or I,(¢,) when the context makes it
clear which parameter is meant.

In general [,==I| 4 iI ], which is either a normalized
dielectric constant or a normalized impedance, will have a
negative imaginary part for most measurements on liquid or
solid C or D systems. Let I * be the complex conjugate of 1;.
We shall be interested in the frequency response of I* for
various ¢, and r values and of other normalized immittances
in the D and C cases. In our present situation we must appar-
ently deal with eight quantities and their relations, since the
four basic immittance functions may be subscripted with ei-
ther a C or a D. But because we need consider only I; and its
related normalized immittance functions, we need to use
only four general functions to represent the full normalized
M, Z, Y, and € response of both the Cand D systems. Table Il
shows the correspondences which follow when properly nor-
malized functions are defined and introduced. In addition to
the general /; function, we have introduced three others,
simply related to I;, which like /; may be used to represent
normalized C- or D-system response. The definitions of these
new general functions follow from the Table I relations, with
u redefined for simplicity as {is). Then for a fixed value of ¢,,
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TABLE II. Relations between normalized immittance quantities for con-
ductive and dielectric systems and the normalized quantities L,,,, I, S,,,,

and T,

Conductive system General Dielectric system
Menp - Lipe haand Yonu
Zey — I; — Kp
Yenu haiaad Sim haatiand Mopnn
Kem - = Tine hanliand Zom
L,=isl,, (33)
Ly=L,/L;_; (34)
S=I", (35)
Sm=S./S[.; (36)
and
T,=L." (37)
Ta=L 5" (38)

We have aiready normalized I;(s) so ,(0) = 1. Therefore,
S;(0) also equals unity. But what about L /(co)=L ;_  and
S/ 7 We shall use the subscript “M > to denote quantities
whose real parts have been normalized to unity at s—co.
Thus Ypna=Ypn/Ypn.,=Lpy. The general quantity
L., =L is thus given by Eq. (24) for Y, with ¢,
changed to ¢;.

We also need an expression for S/ . ForsW» 1, Eq. (32)
leads to

IL—{: /0% — )V Hs72[ ("2 — /(g — 2)]
—is~ e = a8 - 1] ) (39)

In this limit 7 decreases with increasing s much faster than
does I!. Therefore,

S =\ — AP+

-»1;/1;'2 - i(I;')". (40)
In the limit,
St,=[0" =18, 1[0 = 1/, — 2]
x [g — )"~ = D]2 (41)

It follows that S/ (I — n)=S,_(1 + n); S/_ (¢} reaches a
maximum value >1 atg, = I;and S| ()= 1. The quanti-
ty 75, which may be interpreted as either ko, =«cL_ Or
Zpy =ZpLy_, is here normalized to unity at s—oo. It
should perhaps be normalized to unity at s = 0 but cannot be
because T,,(0) = oo, refiecting the effects of a nonzero «,
and a nonzero Z at s = 0. We have included the function
T.» primarily for completeness since it is generally less in-
teresting than the other three functions.

D. Power-faw exponents and possibfe temperature
dependence

Al the relationships shown in Table LI arise because /-
and I, may be written in 2 common form. They hold when-
ever this is the case, independent of whether or not a DRT or
DAE is involved; they are thus completely general and do
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not depend on the particular DAE choice of Eq. (5). Table II
shows that to investigate the response of such associated D
and C systems one need only calculate I;, and the L, and S,
functions which follow from it, in order to obtain the re-
sponse of all eight related normalized immittance functions.
This will be done in the next section. Because of our normali-
zation choices, all I;,L,,,, and S,,, results will have rea] parts
which fall between O and 1. All Table II relations also hold
without s— o normalization.
We have defined both ¢, and ¢, related by ¢ = ¢,
+ (@ — B)/{a + B). It turns out in the next section that there
are finite-length regions in the L,,, and S; plots which close-
ly approximate (is)" behavior when #; is not too far from 0.5,
response characteristic of a CPE. The corresponding DAE
factor n; is then given by

np=¢p=1—4¢,=(a+4)(a+p) (42)
and

ne~¢c =la—Ai)(a+p) (43)

Although ¢, and @, are not restricted by the present analy-
sis to the range between 0 and 1, as we shall see later when n;
begins to depart appreciably from 0.5, DAE (is)™ response is
no longer always found, although individual real and imagi-
nary parts of a given response function may still show power-
law frequency dependence, but with somewhat different ex-
ponent values.

One important virtue of the present DAE analysis, as
opposed to a DRT model based only on Eq. {14), is that it
yields information on the form of possible temperature de-
pendence of the n;’s. Although several somewhat micro-
scopic theories, based on hopping coniduction, free volume,
percolation, etc., have been derived which lead to {is)" depen-
dence over a limited frequency range, they usually yield no
predictions of n, temperature dependence and never lead to
such dependence involving basic microscopic model param-
eters. In the present DAE situation, it is physically reasona-
ble to take the 7 of Eq. (4) temperature independent™'?; then
A = kTpn, directly proportional to absolute temperature.

The possible dependence of @ and  on T may be more
complicated. If only E is distributed, @ and S are tempera-
ture independent if ordinary thermal activation behavior is
present. Then

L/ID=A1+B.T (44’
and
e =4,—- BT, (45)

whered,=a/|a + f)and B,=kn/{a + ). Whena > Oand
B =0, ¢, increases linearly from unity at 7 = 0 to larger
values for nonzero T, and ¢, decreases from unity in the
same way. [t is, in fact, very often found experimentally that
n; decreases with increasing T for conductive systems.'?
Further, response of the form n, = B, T~ has been found
experimentally for a dielectric system.'® An n; exponent de-
creasing with increasing temperature is usually associated
with a C system and the opposite behavior with a D system.

Now consider the more complicated but not unlikely
case where the entropy of activation 45 and the activation
enthalpy 4 H, here E, are both distributed and are linearly
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related,* ' so AH = T,AS. The temperature T}, is usually
appreciably above any experimental temperature possible
without phase or structure change. Then a and S are each
proportional to {1 — (T /T,)], where T, may possibly be dif-
ferent for each one. It follows that 4, may be temperature
dependent (if the T’s are different), and B, will be. Experi-
mental and theoretical resuits of this kind have been given
previously.®'° Finally, the material considered may exhibit a
glasslike transition and thus satisfy a type of William~Lan-
del-Ferry (WLF) equation,® and may also involve a linear
relation between AS and 4 H as well. In this most complicat-
ed case, one must introduce another temperature constant
T , the Vogel temperature, usually 10-100° absolute below
the glass transition temperature. Then for the range
T, < T < T, both a and B may be of the form

v =x(7 ——T‘—) (1—:—(—;;—/7)) (46)

where y,=a,y,=8, and y,;=a4,Y::=8,.- Here ¢, and S,
are the origina! temperature-independent ¢ and £ which
would apply if To— « and T —0 (no relation between AH
and 4S5 and no glass transition). We shall not attempt to
show curves of the possible temperature dependence of ¢,
and ¢ given by Eqs. (44) and {45) since in the worst case they
involve the seven parameters T, T, ;,Yo;» and 7. In princi-
ple, values of these parameters may be estimated using ex-
perimental n; values and nonlinear least-squares fitting. In
most cases of interest, however, T ; will be zero and
Ty, = Ty = Ty; then only T, e, By, and 77 will need to be
determined. A final simplification occurs in cases where the
capacitance is not thermally activated and 5, = 0.

1t is important to note that since — oo <@; < oo, the
quantity ¢, is not limited to the O-1 range of the usual n,
exponents, and so ¢, can depend directly on T in ways im-
possible for these exponents. In future work, approximate
relations will be discussed between the n;’s associated with
various conventional fitting expressions, such as that of Da-
vidson and Cole, and the DAE ¢, parameter. Such relations
can be used to interpret directly measured n; temperature
dependence for such empirical models in terms of the tem-
perature dependence of the physically realistic DAE model.

IV. DISCUSSION OF RESULTS
A. Two- and three-dimensional response for /* and ,,

In the next sections we shall present and discuss results
for the response functions / *,L ,,, and S; obtained using the
exact expressions of Appendix B. Both two-dimensional
compiex plane plots with frequency as an implicit variable
and three-dimensional plots with perspective, which include
frequency variation explicitly,?® will be presented. We shall
begin by considering I * and L,,, 2D plots. For such plots we
find that a symmetry relation holds and reduces the need to
show both types of results for all values of ¢, of interest.

The relation, which follows from the form of Eq. (32), is

Lipylgb) =17 (s,4,), (47)
with

¥ +¢,=1 (48)
and
1961 J. Appl. Phys., Vol. 58, No. 5, 1 September 1985

0.0 0.2 0.4 , 0.8 0.8 1.0
i
FIG. 1. Complex plane plot of I ¥ for ¢, = 0.5 and a variety of r values. Solid

circle: points at which s = s, =r~"?; cross: points where s = 5, =r"".

g=(rs)™". (49)

Because of these equations, 2D I ¥(¢;) curves may also be
considered to be L,,,(1 — ¢;) curves with the frequency di-
rection reversed. Therefore, we need not show separate 2D
L, curves. Figures 1 and 2 show how the shapes of I'*
plotted in the complex plane depend on 7 at constant ¢; and
on ¢; at constant r. The dashed-line 2D curves shown here
and later are for simple Debye response, that which follows
in the present analysis when »—1 forany ¢,, or for ¢,— + o
for any ». They are included to show how > 1 curves with
finite ¢; values differ from single-time-constant response.
The arrows show the direction of increasing frequency.

Equation (49) shows that there is a single frequency,
s=s,=r" "2 at which ¢ =5, the one frequency where
I1*¢,;) and L,,(1 — ¢;) will have equal real and imaginary
parts. Such equality occurs at different frequencies other-
wise. To provide some indication of frequency dependence,
we shall mark the s, point on many of the 2D plots as a solid
dot and shall also show the s = s,=r"" point with a cross
symbol. Note that 5,7 = 1 is equivalent to w7 _ = 1. Thus
below this frequency single-time-constant response domi-
nates. We see from Fig. 1 that as 7 increases the shape of the
curve has almost reached its 7— o0 limiting value (here well
represented by 7 = 10°) by » = 10°. But note that the s, point
will occur at lower and lower frequencies as r increases, even
though the shape stabilizes. Thus, as already stated, as r— o
and there is thus no finite maximum activation energy, all
the response is forced to the s—O0 frequency point, leaving
nothing measurable. The figure also shows that when
¢, = 0.5 all the s, solid-dot points lie on the specific 45° line
for which ¥ =13}".

Figure 2 shows more I * 2D curves for other ¢, values in
the large  region (r = 10%). It is found that for ¢, = — 0.5,
where the basic integral, Eq. (32), converges when r— 0, not
only does the shape stabilize but the frequency distribution
along the curve stabilizes as well. Thus for this single curve
(or any others with ¢; < 0] it is appropriate to show absolute
normalized frequencies as well as s, and s,. The result for
¢, = O is a transitional one. As 7o, the value of (I ¥”),..
decreases as [In(#)] ™', although the s, point remains in the
center. Thus as » increases the shape never entirely stabilizes
but the flat portion becomes longer and its height smaller.
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0.6f ¢ =1 (c) 0.6 ¢:=0 (d)
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0.0 0.0
0.0 0.2 0.4 _, 0.8 0.8 1.0 0.0 0.2 0.4 0.8 0.8 1.0
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FIG. 2. Complex plane I * plots for r = 10® (solid lines) and a variety of ¢, values, Dashed-line curves for r = 1.

Again in the r— o limit there will be no measurable re-  Egs. (47}-(49) ensure that the projection curves in the Im-
sponse. For all ¢, >0 values, the shape stabilizes at large r log(s) plane are mirror images of each other around this
and thes = s, point remains at the same position. Thus again  crossover point. Because each 3D curve in Fig. 3(c) is sepa-
all curves for ¢, >0 collapse into the frequency origin as  rately symmetric about its center at s = s,, the two mirror-
r—w. The angles which the straight-line parts of such  image curvesin the Im-log(s) plane degenerate to a single one
curves as Figs. 2(b) and 2(f) make with the horizontal axisare ~ for this case. Note that the ¢, = 0 choice is the one which
approximately given by (¢, 7/2). approximates as well as possible Garton’s” original goal of

Let us now consider 3D perspective plots for /*{¢,)and  finding conditions that lead to €” (here I *”) independent of
L, () response for different @, values, all with r = 108, Fig-  frequency.

ure 3 shows such curves, where for each separate graph we Although even 3D plots with perspective don’t show the
have plotted two 3D curves (heavy lines) and their projec-  shapes of the complex plane projection curves perfectly
tions. The viewpoint is nearly the same for all these curves.  (without using stereoscopic pairs), these shapes are shown

The grouping used is such that curves satisfying the symme-  exactly, along with other information, in Figs. ! and 2. For
try relations, Egs. (47) and (48), are together. The dashed  all linear 3D plots shown, the zeros of the real and imaginary
projection curves are for I*(@,) and the solid ones for  scales are at the origin and the scale unit is 0.1 (all curves
L, (¥;). This grouping, of course, yields identical x-y and  normalized to unity at s—0 or s> ). The unit of the log(s)
complex-plane projections, as shown. The point at which the  scale is always | (factor of 10), and its origin is as stated on
two 3D curves cross is at s = 5, . The symmetry relations of  each plot.
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Log (s) origin: =10

Log(s)

Log(s) origin:-9 Log(s) origin: ~10

L.og(s) origin:-10

LoglRe n
Log(s) o)

Log{s) origin:-I0
Log(s)

Log(s) origin:-9

FIG. 3. Three-dimensional projection curves with perspective for I }(#,) (2D projections shown dotted) and L, (¢,) (2D projections shown solid) for » = 10*
and a variety of ¢, = 1 — ¢, values. Part (h) uses log,, rather than linear complex plane scales.
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There are, of course, two disparate physical interpreta-
tions of the 3D curves in Fig. 3. If a D system is being consid-
ered, then I, (¢, )=k, and L pp, (¥/5)=Y prs; thus one of the
two curves represents the (normalized) complex dielectric
constant with ¢, =1 — ¢, and the other a (normalized) ad-
mittance for the same ¥,=1 — ¢,,. But aithough the ¢,’s
are the same, the curves do not represent the complex dielec-
tric constant and admittance of the same material, except for
the Fig. 3(g) results. Since Y,y=L, = isI=iskp, if say
k5 5”7 in a certain frequency range, then Y,y will be
proportional to s*? in this range. The definitions of Eqgs. (33)~
(38) show that curves at various levels which are all associa-
ted with the same material involve the same ¢, or ¢,,. Thus
the I,( — 1/2) curve of Fig. 3(a} is associated with the
L. (— 1/2) curve of Fig. 3(b). Alternatively, for a C system
the results of Table II show that the two 3D curves of say
Fig. 3(a) may be interpreted as I.(— 1/2) = Zoy(— 1/2)
and L, (3/2) = M ppe(372); the Z( — 1/2) curve is asso-
ciated with My, ( — 1/2) and the Z.,(3/2) curve with
Mcyp(372).

The log-log 3D plot of Fig. 3(h) is included to demon-
strate several important points. First for this » = 10® log-log
1*(1/2) curve and its projections, we see that there are three
separate straight-line regions. To a good approximation we
find for the Jog(Im) — log(Re) plane that there is a unity slope
region extending over more than three decades of /' and
1 *” variation in the mid-frequency range, a rapid dropoff at
low frequencies, and a high-frequency region of slope 0.5. It
can be readily shown from the integral representation, Eq.
(32), that as s—0, I*” becomes proportional to s and
(1 — I*")«s* for any ¢, . Similarly, for s—c0, I *” ccs™! and
I'* x5~ 2, independent of ¢; . The slopes in Fig. 3{h) are con-
sistent with these results. Note especially that Im(/ *} and
Re(/ *) show CPE-type s~ % =s"1/2 behavior over more
than seven decades of frequency, with the actual number of
decades of such response proportional to log(r). This long
straight-line response corresponds, however, to only about
three decades of straight-line variation in the corresponding
complex plane plot. Of particular importance is the s—c0
response. For a C system it is consistent with that of a resis-
tor and capacitor in parallel and for a D system the high-
frequency response is the same as that of a resistor and ca-
pacitor in series, proper results for these two kinds of
systems. Full limiting equivalent circuits will be discussed
later. It is noteworthy that the CPE and several other models
for D or C small-signal frequency response (see later discus-
sion} do not show such physically plausible limiting behavior
but continue to exhibit s~ * response (at the I * level) for
arbitrarity high frequencies.

B. Comparison with response of other distributed
elements

A great deal of C- and D-system data accumulated over
many years for many different materials lead to complex
plane and 3D frequency response results qualitatively and
often quantitatively similar to the results of Figs. 1-3 for the
present DAE system.*>'+1618.21-29 Reqults are most often
found which yield a region of CPE-like, straight-line com-
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plex-plane behavior of the kind seen in Figs. 3(e), 3(f), and
3(g) for ¢, = 1/3, 1/2, and 2/3. On the other hand, the re-
verse sort of behavior, where the straight line appears at the
low-frequency side, as in Fig. 3(a), is also sometimes found.*®
Both types of behavior also appear for C-system Y plots fora
material having both positive and negative charges mobile
with different mobilities.*°

One reason the present DAE model can lead to 2D and
3D curves of the type exhibited by a wide range of C- and D-
system data is that its predictions, when ¢, and r are both
disposable, are similar to those of several other models (DRT
ones or otherwise) which have commonly been used to fit
such data quite well {though only a small amount of fitting of
both real and imaginary parts of data simultaneously by
complex nonlinear least squares®>?® (CNLS) has been car-
ried out thus far’*?%¥]. These distributed-element func-
tions will be given in general /; form so they may be applied
to either C and D systems. The ones of most interest are

I, =(is)” % (50)

Ly = [1+(i)"] 7, (51)

I, = (is)~ ¥ tanh(is)", (52)

Iy= 1 +is)” Y, (53)
and

I, = Williams-Watts response. (54)

In all these results s is an arbitrary normalized frequency,
not necessarily the specific s of the present DAE model. Al-
though there need not be any relation between the ¥, and
¥ of these equations, in the few instances where the same
form has been applied for both D and C systems it has been
customary to take ¢, == 1 — /. This makes frequency-de-
pendence exponents the same for Y,, and ¥ [see also Egs.
{42) and (43)]. All the expressions above hold for 0<y; < 1,
and all but that of Eq. (52) also hold for ¢, <1.

The first of the above functions is the CPE. Because it
cannot be normalized at s = 0, when it appears alone it can-
not be interpreted as a normalized I; of the form of Eq. (22)
or Eq. (31). For convenience, we nevertheless writeitasan /;
with the understanding that for this case only /; is just a
dimensioniess form of a complex dielectric constant or im-
pedance. The second formula is just that for the Cole-Cole*
response function when interpreted for a D system, and it is
what may be called the ZARC function for a C system.>'-**
Further, for a C system it may be represented by a CPE and
resistor in parallel and for a D system as a CPE and capacitor
in series. We shall designate it here as the ZC model. It leads
{for O <, < 1) to complex plane € or Z plots which are arcs
of a circle whose center is displaced below the real axis. Al-
though such symmetrical curves are in fact often found ex-
perimentally for both D and C system response over a limited
frequency range, it is perhaps more common to find unsym-
metrical response of the present DAE type, response which.
yields an approach to the real axis with a 90° slope at suffi-
ciently high or low frequencies. Such response implies the
presence of a shortest and a longest time constant for the
system, necessary resuits for any real system.
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The third function is, for #; = 0.5, just finite-length
Warburg response, associated with one-dimensional uni-
form diffusion in a finite space.*® Here we have generalized
such response by introducing an arbitrary #,(0<¥; <1) in
order to allow comparison with the other functions and, per-
haps, approximately represent diffusion in an inhomogen-
eous region.*® The generalized response function will be de-
noted the GFW. For I.. the function is a normalized
impedance whose analog for 3. = 0.5 is a short-circuited
uniform transmission line, while /. for ¥, =0.5is a nor-
malized complex dielectric constant function whose analog
response is that of an open-circuited transmission line.>**’

The function 7, was originally introduced by David-
son and Cole® (DC) and yields®'® asymmetric response rath-
er like the present DAE except for s— o . The corresponding
I, function has not been introduced or used heretofore at
the impedance level. Williams-Watts (WW) frequency re-

sponse®*# is associated with transient response of the form

exp( — ¢ /75)* and is thus often termed fractional exponen-
tial response. There are closed-form expressions for I, avail-
able for only a few specific values of y; but series expressions
for I, have been given.>® Williams—Watts response was ori-
ginally introduced for D systems and has been primarily ap-
plied for fitting small-signal ac dielectric data. It has also
been introduced through its approximate DRT at the M lev-
el (same results as for a DRT at the Z level}, however, for
conductive systems.*° Kenkel has shown that D-system WW
frequency response can be reasonably well approximated by
a circuit consisting of a CPE in parallel with a resistor and all
in series with an ideal capacitor.*! One difference between ail
the functions mentioned is that if they are normalized to
unity ats = O, then they all exhibit somewhat different maxi-
mum values of / *” {maximum height in a 2D complex plane
plot). These heights for ¢, = ¢, = 0.5 are found to be ZC:
0.207, WW:0.274; present DAE: 0.315; DC: 0.354; and gen-
eralized finite-length Warburg (GFW): 0.417. The result for
the DAE is that for r>» 10%; a larger maximum value appears
for smaller r.

The GFW, DC, WW, and DAE expressions all lead to
asymmetric curves in the complex plane when ¢; or ¢; are
between 0 and 1. It turns out that although the curves have
different normalized heights when all the ¢, and ¢;’s are
equal they may nevertheless be made to fit each other reason-
ably well without additional circuit elements, provided the
exponents are not very small, by taking the exponents une-
qual and adjusting the heights. Thus, for example, CNLS
fitting of ¢, = 0.5 DC “data” with the DAE, or vice versa,
leads to quite close fits over a wide frequency range, often
within the accuracy of typical experimental data. This possi-
bility of fitting one model by another or by more than one
will be examined in detail elsewhere.

C. S, response

Thus far we have not shown any plots of S; or S;;,. We
find that the quantity S;, which is unity at s = 0, is especially
useful in helping distinguish between models, particularly
for the low-frequency region. But S }’, which represents ei-
ther Y 2y or M },,isunlimited in magnitude as s increases.
It is therefore not possible to show complete 2D curves

1965 J. Appl. Phys., Vol. 58, No. 5, 1 September 1985

Im(S;)

(a)

Log(s) arigin:-10

Log (S

P
Log (s)
Log(s) origin: -9

FIG. 4. (a) Three-dimensional curve and projections for §; with ¢, =1/3
and r = 10% (b) Log-transformed 3D curve and projections for the same
conditions as in (a).

graphically, and we shall use log-transformed as well as lin-
ear plots to cover a wide frequency range. Figure 4(a) shows
the low frequency end of 3D S, response for ¢; = 1/3 and
r = 10®. Here the common x and y unit is 1.9. The complex
plane curve shows the characteristic angie with the real axis
of (¢, w/2)~30°. Figure 4(b) is a log plot covering much wider
frequency and magnitude ranges. Its x and y axis origins are
at 0 and — 2, respectively. Like Fig. 3(h) it exhibits three
straight-line regions for the 3D curve and its projections.
Note especially the final rise where .S/ has reached its final
value of about 371 and §'{ is increasing proportional tos. For
the C-system choice it is thus exhibiting response associated
with a constant high-frequency-limiting capacitance.

It turns out that much significant detail and discrimina-
tion can be achieved with 2D S, plots, linear and log. Figure
5{a) shows low-frequency linear 2D S, curves for ¢, = 0.5
and various r values (solid lines). In addition, the corre-
sponding Debye curve is shown dash-dotted, the CPE
dashed, and the ZC as a dash, dot, dot line. Here ¢, = 0.5 for
the CPE and ZC models. This plot shows very clearly indeed
the differences in the low-frequency behavior of the various
models. The DAE yields a Debye response for =1 and
approaches a limiting curve falling between the CPE and the
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FIG. 5. Complex plane plots of S; for the low-frequency region near the
§;(0) = 1 origin. The curves for CPE, ZC, DC, and GFW distributed-ele-
ment response are all for ¢, = 0.5. In (a) the DAE curves are all for ¢, = 0.5
and r is variable; in (b) 7 = 10® and @, is variable.

ZC as rincreases indefinitely. Note that neither the CPE nor
the ZC approaches the real axis at 90° for s—0 as the other
curves do. Figure 5(b} is also a linear 2D §; plot with several
DAE curves, all for » = 10® but with different ¢,’s, and in
addition, Debye, GFW, CPE, DC, and ZC response curves
are also included. For the last four curves ¥, = 0.5 again.
Note the characteristic overshoot of the GFW curve and the
odd behavior of the ¢, = — 0.5 curve. If actual frequency
response data can be plotted in the present way for sufficient
Iow frequencies to show the finat approach to s;(0} (here uni-
ty), the detailed shape near the origin should greatly help in
identifying the most appropriate model to represent the
data.

Figures 6(a) and (b} present log-transformed DAE re-
sponse only. Figure 6(a} is for ¢, = 0.5 and various ’s. Note
that as 7 increases a longer and longer region with approxi-
mately unity log-log slope occurs. Figure 6(b} is for r = 10*
and various ¢,’s. Clearly the stopes of the inclined straight-
line parts of the curves remain near unity for 0 < ¢, < 1; there

1966 J. Appi. Phys., Vol. 58, No. 5, 1 September 1985

f 1.0 2.0 3.0
Log(S))

10,0 1
r=10® i

FIG. 6. Log-transformed complex plane plot of S;. (a} ¢, = 0.5, r variable;
(b) r = 10%, ¢, variable.

is no appreciable intermediate-frequency straight-line re-
gion for ¢, = — 0.5; and the ¢, =0 and 1.5 curves show
regions with a slope of two.

£}. Slope and exponent resuits

The matter of linear and log slope factors reguires some-
what more discussion because log slopes (power law expo-
nents} are aiways calculated when small-signal frequency re-
sponse data yield straight-line regions and because there are
various slopes of interest which can be defined for response
such as that of the present DAE system. Let us continue to
use the symbol *‘n”" to represent a freguency response power-
law exponent or semilog-plot slope, particularly at the S,
Jevel. Thus Eq. (50} for the CPE leads to S,cpg = (is)”, and we
may set n,.pp = Yicpg. But such a simple relationship does
not hold exactly for the DAE, as we shall see below. Second,
let us use the symbol “m” to represent the slope of a straight-
line region in the ordinary linear complex plane plot. For the
linear region then m==Em/Re. Let the associated angle in the
compiex plane be denoted by §. Then m=tan({ ), and from
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TABLE II1. Log and linear slopes derived from straight-line response re-
gions of log (S ) and log (S 7') plots for r = 10%

é; ng n; P §(deg.)
173 0.345 0.375 1.09 316

172 0.496 0.512 1.03 453

2/3 0.645 0.663 1.03 58.9

1 0.811 0.909 112 76.2

32 0.497 1 2.01 85.7

the S;cpe expression one finds m =S pe/S icpe

— tan({ ) = tan(gcre7/2).

Now the DAE does not aiways yield the linear relation
between Im and Re which applies for the CPE. Instead one
finds straight-line regions in log{im), log{Re) log-trans-
formed complex plane plots which can be well represented
by Im = 4,(Ref’. For the CPE one finds that p =1 and
A, = tan({ ) = m, but these results do not apply exactly for
the DAE. Table III lists » and p values determined from
least-squares fitting of frequency response results limited to
the straight-line regions appearing in Fig. 6{b) for various ¢,
values and r = 10®. The exponents n, and n, are defined by
the relations S/ = 4,(s)"* and S" = 4,{s)"". From these rela-
tions it foliows that p = n,/ny . We see that although ny and
n, values approximate ¢, ones, ng,n,, and @, are clearly
different quantities except when 7, becomes very large; then
these quantities closely approach one another for 0 < ¢; < 1.
Although the calculation of m values is only appropriate
when p = 1, we have found that for frequency values nearer
s = O than those which led to the ng ,n,, and p values shown,
there are regions which yield good straight lines on a linear
plot, as in Fig. 5(b). The values shown for £ = tan™ '(m) are
calculated for these nearly linear regions, but it should be
cautioned that m values tend to increase somewhat as re-
gions further from the origin are sampled, with such increase
associated with the p > 1 values present for larger s regions.
Particularly for the larger ¢; values as ¢; increases, the ade-
quacy of a linear fit decreases. At ¢, = 3/2 a square-law
curve is being approximated by a linear one but because the
slope is so great in the linear plot, a reasonably good straight
line can nevertheless be fitted over a limited range. The range
used for the ¢, = 3/2 £ value shown was 107 '<s< 1075 if
one uses 107°<s< 10~ instead, one finds £ ~89".

As ¢, —0, the DAE and CPE models yield different but
somewhat similar results. Consider C-system response. For
éc = 0 the CPE Z.y equals unity, a pure resistor with no
imaginary part or frequency dependence. As Figs. 2(d) and
3(c) show, ¢ = 0 DAE response for r = 10® can lead to a

wide frequency range where |Z [\ | is very small and con-
stant, but over this range Z [, varies as [log(1/s)}/8 from
about 0.8 to 0.2. Although DAE response in the intermedi-
ate frequency range is somewhat like that of the CPE for
0<¢; $0.6, when ¢, = 1 the CPE leads to pure capacitance
response for both i = D and i = C. On the other hand, as we
have seen, e.g., Fig. 6, S DAE response involves a frequen-
cy-dependent conductance and frequency-dependent ca-
pacitor, which, at high frequencies, reduce to a frequency-
independent conductance and capacitance. But for ¢, > 2,
the conductance rapidly approaches no variation at all. For
example, S, =1 and S; =11/5, 4/3, and 16/15 for
é; =2, 3, and 5, respectively, for r>10% For large ¢,, S;
may thus be well represented over the entire frequency range
of interest by its s— oo limiting response, described by the
simple equivalent circuits discussed below. In an approxi-
mate sense, we can take ¥,cpg and the ¢, for the DAE nearly
the same for 0<¢; 5 0.6, but above 0.6 ¢; is stretched so that
response approximately like that of the CPE with ¢,cpg = 1
only occurs when ¢, 2 3.

Finally, it is of interest to compare approximate fre-
quency dependence exponents 7 for all the real and imagi-
nary parts of the four general functions for a reasonably wide
range of ¢; values. Table IV presents such results for very
large . We see from these results and those in Table Iif that
for ¢; not too far from 0.5, S; and L; involve n=¢, expo-
nents but the situation is more complex for ¢; values further
removed from 0.5. The line of results for ¢, >3 is the same as
that obtained for simple Debye response. The symmetry,
with sign changes, apparent in this table, e.g., compare ap-
propriate ¢, = — 1/2 and ¢, = 3/2 resuits, is, of course,
associated with the symmetry relations of Egs. {47}-{49).

E. Limiting equivalent circuits for D and C systems and
an approach to data analysis

Next it is useful to consider the equivalent circuits
which represent ideal D- and C-system response as s—0 and
s-+oo. From Egs. (22), (23), and Y, = iwC.€,, one may
write

Yp = io{(Co— C,Mp +C.. . (55)
Similarly, Eq. {31) leads to
Zc=Ro—R_)Jc+R,. (56)

We shall use the minimum 7, 7o==s/w, the & = &, value of
; see Eqgs. (8) and (17). Now one finds that expansions of Eq.
(32) in the s~»0 and s— oo limits lead to expressions for I
and I, in these limits which, together with Egs. (55) and (56),
yield the equivalent circuits of Fig. 7 and the specific limiting

TABLE 1V. Frequency dependence exponents. Approximate values of » for intermediate-frequency-region response of the form 5" .

i
&, I I s Ssr Lr T’ rr ne np
— 0.5 0 0.5 0 0.5 1 —0.5 -1 - 0.5 1.5
0.5 —05 —0.5 0.5 0.5 0.5 — 0.5 — 0.5 0.5 0.5
1.5 —15 —1 0.5 1 — 0.5 (4] — 0.5 1.5 - 05
>3 -2 ~1 0 1 —1 1] -1 »3 <—2
1967 J. Appl. Phys., Vol. 58, No. 5, 1 September 1985 J. Ross Macdonald 1967
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FIG. 7. Equivalent circuits for full dielectric (a) and conductive (b) system
response for the #—0 and w->c limits. Parameter expressions for these
cases are given in Table V.

parameter values listed in Table V. Note that the same equi-
valent circuit is appropriate for a given system for both low
and high frequencies, although circuit element values are
different in these two limits. In Table V the various N’s are
defined by

N=(g, +j)/r" ™ —1). (57)

Thus the S_ quantity of Eq. (41) is just (N2, /(NoN_,).
Since we are dealing with D and C systems having the same
formal DAE’s and DRT’s, the low-frequency time constant
T is the same for both systems, as is the high-frequency one,
7, - Incidentally, the s—0 results hold well for s =5, and the
s— oo ones hold for s 2 10. For a real C system, the Fig. 7(b)
circuit should be augmented by adding a C_, element in par-
allel with it. Such an element is always present because
€. > 0for any system.
From Table V we may form the additional ratios

T/ Tiw = (NN_1/N\N_y)—r, (58)
Reo/Re, =Cpo/Cp,, =S/, —>\/;/3, (59)
Rpo/Rp,, = CCD/CCm = N(Z)/(N—~ 1N|)“""3/2/3, {60)

TABLE V. Expressions for the o—0 and @— o limiting capacitances and
resistances of Fig. 7 for associated dielectric and conductive systems.

i=DorC Dielectric system Conductive system
Rp [TO/(C_Cm AN/ N} (Ro~R.)

Co (Co—C.) [7o/Ro — R, )J{No/N,)
o Tl No/N\) TolNo/Ny)

R,, [76/(Co— CLNMUN_1/No)  (Ro— R, )NN_o/N2. )
C.. (Co— C)NGN_/N? 1) [7o/(Ro — R, )N _/No)
Tiee TN _o/N_)) ToN_2/N_)

1968 J. Appl, Phys., Vol. 568, No. 5, 1 September 1985

where the arrows lead to the large-r limiting values appropri-
ate for ¢, = 0.5 only. For large r and ¢, > 1, however,
Rpo/Rp,, for example, goes to ¢7/[(d, — 1)d; + 2)],
which approaches unity as ¢,— . As one would expect,
T/ Ty 2 1.

Now fitting experimental small-signal D or C data to an
equivalent circuit is most appropriately carried out using
CNLS.? A CNLS fitting routine is available from the author
which includes in the equivalent circuit the choice of various
distributed element models, including that of the DAE, rep-
resented by Eq. (32). Any of these elements may be embed-
ded in a full circuit involving other capacitative, inductive,
and resistive elements. For a D-system DAE model, such
fitting yields estimates of 7, 7, ¢ 5, and Cp,, While fitting with
the DAE model appropriate for a C system, yields estimates
of 7y, 1, ¢, and Req.

Consider, as an example of possible fitting and analysis,
the C-system parameter estimates in more detail. Suppose
the results are obtained for a number of different tempera-
tures and that the DAE mode! appears to fit the data well.
Then the above four parameter estimates will be well deter-
mined, with small refative standard errors, at each tempera-
ture. But more can be learned from the temperature depen-
dence of the estimates of r=exp{{& ., — &)},
To=71, exply,) and d.=(a — kTn)/y, remembering that
E,, E_,1,, and 7 are all taken temperature independent.

Although much of the shape of say an 7 & complex plane
plot becomes independent of » for large » when ¢ >0, the
high- and low-frequency-limiting responses and the size of
Z . responses are nevertheless dependent on r, as shown by
the results of Table V and Egs. {58)-(60). Thus, if one has
accurate frequency response data for these extremes as well
as for intermediate frequencies, a good estimate of » may be
obtained from fitting, even when r is very large (say> 10%).
But, of course, the larger r the wider the frequency range
required. Alternatively, since r is generally a strong expo-
nential function of 7 ~!, one can often increase 7 until r is
much smaller.

In many cases of interest a and £ are likely to be tem-
perature dependent. But whether they are or not, if the DAE
model applies, the quantity

In(/In(ro/7,) = (€ /&) — 1 =(E,/E)— L, (6])
should be entirely temperature independent. When r and 7,
estimates are well determined one can test this requirement

by ordinary least-squares fitting of 7, and r data to the linear
equation

In{ro) = As + Bs In(r), (62)

where A==In(7,) and B=FE /(F  — E,). If fitting with this
equation yields reasonable values for 7, and £ /E,, one can
fit the ¢ datato ¢ = (@ — kTn)/{a + ) using the Eq. (46)
expressions for a and p. Initially one might set
wa = T op =0and T, = T,z = T, and determine 7, T,

a,, and S, by nonlinear least-squares fitting. The resulting
values of a{T'} and B {7} could then be used with the expres-
sions for 7, and 7 to obtain estimates of £ and E,,.

A statistically more appropriate approach, but a more
complicated one, would be to use nonlinear least squares to
fit the 7, r, and ¢, data simultaneously. With the usual

J. Ross Macdonald 1968
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assumption that parameter standard deviations are propor-
tional to parameter magnitudes, one would use weighted
nonlinear least squares to minimize the sum of squares:

S={{1=(r/r)}* + [1 — (ro./70)]
+ {1 = (ce/dc:) ]} (63)
Here the “¢” and ““¢ > subscripts stand for “experimental”
and “theoretical,” respectively. One wouid thus obtain esti-
mates of EE_,7,,9,T, T and Yo and their standard
deviations, taking all data and interactions into account si-

multaneously. Only really excellent CNLS fitting results
would justify using this complicated approach, however.
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APPENDIX A

Here we shall outline the sort of approach used in Refs,
12, 13, and 16 to obtain closed-form expressions from an
equation like Eq. (15) with 75, = 0. Although these authors
all separated the integral into a real and imaginary part be-
fore integrating, this procedure is unnecessary and merely
complicates the analysis. Therefore, we shall eschew such
separation, as we have done to obtain the exact results listed
in Appendix B. This simplification will still allow us to dem-
onstrate the problems in the preceding work and show why
its results are inapplicable to the present situation.

Since we will be dealing with unnormalized results here,
it will be sufficient to consider just the integral of Eq. (32) for
a D system and define

¢p—1
= 22 (A1
1+pW
where p==is. In agreement with the earlier work we now take
r = o. We may rewrite the resulting integral as

*Jp="Jp, —JIpi

“w* 'dw [ w* ldw
b L +pW o 1+pW )
Although the earlier workers took 7,=0, we need not make
this assumption here since 7, only appears in the definition of
2 and scales the frequency variable.

Expressed in the present notation the earlier workers
assumed that *J, =*J,_ for sW«1 and thus implicitly ne-
glected J,,, ButsW = wr,e"® = wRC, and if the upper limit
of ris o, the sW«¢! condition cannot be satisfied for nonzero
s when ¥ > 0. There is therefore no finite frequency range
over which ©J,,  is a good approximation to =J,. Let us
continue the analysis, however, along the lines followed by
the earlier workers. The integral *J,, _ may be considered a
Mellin transform and is readily evaluated to yield

“Jp.. = lis)~**r csclmd ) (A3)

for 0 < ¢ < 1, quite different from our present I, (¢, ) DAE
results. Now it is easy to show for s = O that the basic inte-
gral of Eq. (A1) only converges for ¢, <0 whenr = . This

(A2)

1969 J. Appl. Phys., Vol. 58, No. 5, 1 September 1985

is another example of inconsistency arising from the r = o
choice together with the use of *J,,_ .

Now the admittance associated with “J,_ is propor-
tional to {({is) ®Jp,, ] which we may define as

“Kp. ={is)' " P csclmd ). (A4)

For the dielectric case considered earlier, '2131® we have de-
fined Y p =1 — ¢,. Herey, =@ + A1 )/la +F),and f =0,
a =1, and A <0 were assumed in Refs. 12 and 13, while 4
was implicitly taken zero in Ref. 16. Now we may write

“Kp., = is)*"m csclmip)
= (m/2)s""[csclibp7/2) + i seclyppm/2)],  (AS)

essentially the result of Refs. 12, 13, and 16. Very nearly this
same result was also given long ago (Ref. 11, Table [, line 4).
This equation shows the same »" frequency dependence as
the CPE of Eq. (3) and, in addition involves real and imagi-
nary parts which are properly related by the Kronig-
Kramers requirement, "' Im{*K,_ )= cta(Ypm/2)
Re(*K . ). But the presence of the csc{mif,, ) term precludes
full identification of the above result with the CPE as written
in its usual form [Eq. (3)]. When a new normalized frequency
variable s, =s] csc(mi,)]'? is defined, however, Eq. (AS) is
of just the CPE form in terms of this new frequency variable.
In spite of the complete inapplicability of the present result,
it does lead to w*” frequency response (if it actually applied
for w > 0) of the same general form predicted by the exact
analysis over a limited, finite range of w.

Now one may ask whether it is possible to obtain fre-
quency response of the form of Eq. (2), with 1 <n <2, from
any of the foregoing analyses. The theoretical work of Dutoit
et al.'? is for a D system and does not lead directly to the
constant b term of Eq. (2). A resistor in series with the D-
system impedance is needed to provide this term; the result-
ing response is then not that of a general D system. Although
Dutoit et al.'>'34? showed that their theory, which we have
seen is not actually applicable, could lead toaw ~ " term in
Re(Z ) with 1 < # < 2, this result required the implausible as-
sumption A < 0 and the neglect of the frequency dependence
of the capacitance associated with the total admittance.
Thus, these theoretical results cannot be accepted as an ade-
quate explanation of the experimentai behavior.

What of the predictions of the present DAE theory? The
results of Table IV for T, show that an ideal D system by
itself will not lead to n > 1 response for Re{Z ). Here T, is the
impedance function. But if € »(€, — €, ), so that € , domi-
nates in €', it follows that the exponents of T, and 7'}, in the
intermediate frequency range are approximately
—{1 4+ ¥p)and — 1, respectively. Thus with ¢, >0, it is
possible to obtain # > 1 response. Since here ¥, ={x + 4 )/
(@ + B), such response does not necessarily require 4 < 0. On
the other hand, the results of Table IV show that the imped-
ance function in the C-system case /- can directly involve an
I 7 exponent greater than unity. In order to obtain such re-
sponse, however, itisnecessary thatg. ={a — 1 )/(a + 3 )be
greater than unity. Although this is possible if A <0, this
condition is unlikely. But as we have seen, # may be negative.
For example, ifa =1 and § = — 0.5, ¢ =2 — 24, which
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leads to ¢ <2 for positive A. More detailed fitting of experi-
mental results such as those of Ref. 12, especially on data
obtained for two or more different temperatures, would be
needed to allow one to choose unambiguously which of the
D- or C-system responses is the more appropriate.

APPENDIX B

We list here exact closed-form results for 7;(¢;) [Eq. (32)]
for various ¢, choices. From these results Y,y and Y,
and Y.y and Y., expressions can be readily obtained.

L(1.5) = 3/is)[(Jr — /(P ~ )] [1 - 1,0.5)]; (B

L) = (Vis)r — 1)~ In[(1 + isr)/(1 + is)]; (B2)

I(2/3) = [3(is)?3(P — 1)1~ [T - L J; (B3)

1,05) = [VEWF — 1)] " tan~" (M) (B4)

1+ isyr

I,(1/3) = [6(is)! ("> — 1)] 7' [T+ L }; (B5)

I,(0) = In[ A1 + is)/(1 + isr))/In(rk (B6)
and

I(—0.5)=1— (isy/r)1,(0.5), (B7)
where

LEanI +(isr)”3)2(11 — (is)'"* + (is)*"? )} (B88)

1+ (isr)'? — (isr)' 3 + (isr?"3
and
- [3/72)is)! 3(r1 2 — 1)
T=23t 1( {y .
3 tan 1 — 0.5(is)' 3(rV2 4 1) + (is)?/3r'/3

(B9)

Care was necessary in the numerical evaluation of the
tan~' of a complex argument. Because of the multiple-value
property of tan, it was necessary to add 7 to the tan ™! func-
tion of Eq. (A9) whenever it yielded a negative real part.
Incidentally, the first quadrant roots of (i)'/? and (i)!/® were
used throughout. The above formulas have been verified by
direct numerical integration.

There are two limiting conditions which the above re-
sults must satisfy. First, they must all reduce to [;(s,¢,) = 1
fors = Oand any ¢, and r. Second, whenr— 1, F;(E ) becomes
a & function®'! involving & (W — 1), and all /,’s should re-
duce to just

L—{1 +is)™", (B10)

simple single-time-constant Debye dispersion. Both condi-
tions are satisfied by all the above expressions. Some of the
above formulas derived for I, only and with a less general
definition of ¥, appear in Ref. 17. These authors did not
realize that for most of their ¢, values the r— oo limit does
not lead to measurable results. Their expressions were de-
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rived only for a DRT while those given here apply to both a
DRT and a DAE.
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