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New expressions are presented, simplified, and discussed for the smali-signal-frequency
response of systems involving distributions of activation energies with either exponential or
Gaussian probability densities. The results involve the possibility of separate but related
thermal activation of energy-storage and energy-loss processes, and apply to the response of
both dielectric and conductive systems. Response with a Gaussian distribution of activation
energies (GDAE) may be either symmetric or asymmetric in log frequency, and typical
GDAE responses are compared with those associated with several exponential distributions of
activation-energy (EDAE) models, using complex nonlinear least-squares fitting. The GDAE
model does not fead to the frequently observed fractional-exponent power-law response in time

or frequency as does the EDAE; thus, the GDAE cannot fit any EDAE response well which
involves an appreciable range of such behavior, but it is found that, conversely, the general
EDAE model can often fit a GDAE response very well over a wide frequency range. Recent
(KBr)qs (KCN), 5 dielectric data covering a range from 7' = 13.7 to 34.7 K are analyzed with
the Cole-Cole, EDAE, and GDAE models, and the GDAE is found to yield the best overall
fits. The results of the GDAE fits are analyzed in detail to illustrate the application of the
GDAE model to real data. Contrary to the conclusions of an eariier analysis of the same data
using an idealized, symmetric, and approximate GDAE model, we find that much of the data
are better fit by a somewhat asymmetric, exact GDAE model which may involve a
temperature-independent, finite-width Gaussian probability density. The present analysis
suggests an alternative to the earlier results and suggestions that the width of the probability-
density distribution increascs with decreasing temperature and that the activation energies or
barrier heights themselves depend linearly on temperature. The present data fit yield estimates
of the lower limit of the temperature independent distribution of activation energies E; and of
the more or less central activation energy E,, but only set a lower limit for the value of the
maximum activation energy of the distribution, £ _ . There is some evidence from the fitting
that there may be a glasslike transition below about 4 K, but other effects outside the GDAE
model may intervene before that temperature region is reached.

I INTRODUCTION

The description of electrical (or mechanical) relaxation
in a single crystal, liguid, or amorphous solid should ideally
be based on the solution of an appropriate microscopic
many-body model. Because of the complexity of such mod-
els with long range interactions, no accurate, analytic solu-
tion currently exists for any such real situation. Much of the
earlier theoretical work in this area is listed in Ref. 1. There
are currently virtually no accurate solutions of microscopic
models which contain only microscopically defined param-
eters. The idealized models which have been treated usually
invoive one or more empirical parameters, ones without a
detailed microscopic basis and either without specific tem-
perature dependence or with such dependence only heuristi-
cally determined. A list of acronyms and major symbol defi-

itions is included at the end of this paper.

Until realistic microscopic-model solutions become
available, it is worthwhile to use semimacroscopic models. It
has recently been shown®™ that such a model involving a
double exponential distribution of activation energies
(EDAE) can fit very well “*data” derived from various ear-
lier empirical refaxation expressions such as those of Cole
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and Cole,” Davidson and Cole,® Havriliak and Negami,’
Williams and Watts,® and the “universal dielectric re-
sponse” functions of Jonscher.® Thus the EDAE can, by ex-
tension, fit the vast number of smali-signa! frequency re-
sponse data for dielectric and conductive systems which
these expressions were originally used to fit. Unlike them,
however, the EDAE model, which is based on a thermally
activated response, predicts specific temperature depen-
dence for its parameters, dependence of the form usually
found experimentally.

In the meantime, however, several papers have recently
appeared'®’? which deal with relaxation or diffusion re-
sponse by introducing a Gaussian distribution of activation
energies (GDAE). An early discussion and use of the
GDAF appeared™ in 1942, but it has been introduced inde-
pendently many times since then,

The GIDAE assumption has the advantage that in some
sense it is more “natural” than the EDAF, although the
latter can be related to stochastic processes as well.»>* Al
though no detailed comparison between the frequency re-
sponse predictions of the GDAE and EDAE models was
available before the present work, it seemed likely at the
beginning of this work that the EDAE could better fit more
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temporal and frequency-response data than could the
GDAE. In particular, the EDAE model always leads to re-
sponse regions involving a (possibly fractional) exponent
fortorw=2mv,e.g.,! "and w* ™, where we take n and m
as positive guantities. Such behavior is found to be virtually
endemic in dielectric and conductive-system experimental
data. But the GDAE model does not lead to response regions
of finite length for which » or m are independent of ¢ or w.
Nevertheless, as will be shown, the two models can yield a
response which is guite similar in appearance if the response
isn’t extended very far into its tail regions.

Since the GDAE approaches used so far have been
somewhat approximate, haven’t systematically investigated
the types of responses possible, and have not compared
GDAE and EDAE responses, it seemed worthwhile to fill
these gaps. A generalized GDAE model is presented and
discussed, and both approaches will be used to analyze some
{KBr),s (KCN), ; dielectric-response data.'™'”

. DERIVATION OF MODEL EQUATIONS

A. General response and activation-energy probability
densities

By using properly defined and normalized gquantities, it
is possible to obtain both dielectric and conductive-system
frequency responses from a single analysis.>* The normal-
ized dimensionless-response function for a single, possibly
distributed dispersion region /,, is defined as

Liw)y={Ulw) = U, j/(Uy~U_), (1)
wherej = cor Z. Here Uy and U, arethew ~Oandw— o
limits of U (@)=U"+{U". When more than one disper-
sion region is present, clearly the U, of the lowest frequen-
cy region must be the U, of the next dispersion region, and
sc on. With these definitions U, =€ = &' — ie"=¢' + i€
and U, =Z =2"'+iZ", an impedance. We shall derive
expressions for I, which apply for either dielectric or con-
ductive systems and yield either the EDAE or GDAE re-
sponse.

Assume that the relaxation process of interest is ther-
mally activated but may possibly involve a more complex
response than simple Arrhenius behavior. Any such process
must involve both the storage and dissipation of energy. In
the present quasimacroscopic approach we assume that
& =FE /kT is distributed with a probability density F(% ),
where F is an activation energy {enthalpy) for an elemental
process such as dipole rotation, hopping of charges, etc.
Now let us describe energy dissipation by means of a ther-
maily activated elemental resistance R, and energy storage
by a thermally activated eiemental capacitor C.

We may write™*

R, =R, exple; 7)), (2)

¢ =Cyexp( B, £, =
and

=R, Ci=v, exp(y; &), 4

where R, C,;, and 7,; are assumed temperature indepen-
dent. The guantities & and 3, however, may be temperature
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dependent, yielding nonArrhenius behavior. '™ In conven-
tional treatments, ; is usuaily taken as unity and 5, as zero;
the present approach is more general, and 8, may even be
negative for some processes. Finally, introduce a y; such that
Y.=F. and y.,=c,.

We may now write an expression for the response func-
tion /, for arbitrary F(#'). Itis®*

* exply, §)YF(&E)YLE
[j((u}:‘[. ] pXJl_{__la:/r

; (3)

where & is taken >0 for physically realistic situations. From

row on for simplicity the j subscript will be omitted with the

enderstanding that the f(«) results apply to either a dielec-

tric of a conductive systemn. Normalization is assumed to be

apart of F{ &) so that 7(0) = 1, in agreement with Eq. (1).
In the general EDAE case, we may write

F(&)=F (%)
0, & <%,

Nexp(—4, %), F,<ELE,
Nexp{(d, —4) &, -4, ], & ,<¥<F,
0, >,

(6)

£

where we have assumed 0<% ,< ¥ <¥ _ <, and N is a
normalization factor. The minimum activation energy &,
may possibly be zero but the maximum value ¥ must be
finite for any real linear system, in agreement with the re-
quirement that such a system has a longest refaxation time
7, and a shortest relaxation time, 7, The quantity
E\=kT ¥ implicitin Eq. (6) isaconstant, possibly central,
activation energy. In the above expression A, =19, k7, with
n = 1,2, and it is often reasonable to assume that the 7, ’s are
temperature independent, thus making F{% )/ indepen-
dent of temperature. We then deal with 2 temperature-inde-
pendent distribution of activation energies (TIDAE). Note
that we may then write 5, = (kT ,, ) 'sothatd, = T/T,,,
where 7, is a constant temperature related to the strength
of the exponential probability distributions.
For the GDAE situation we have

F(%)=F(%)

Oy g><27(’0
Nexpl — (& — & )/81,, F,<ELKF
G, E>& .

(7

This result follows from the standard form of the normal
distribution'* with vartable £ and parameters £, and 0. It
follows that 8==+20/kT. Incidentally, the parameter o of
Ref. 10, say 0, is related to the present o by o = /20, Here
the standard deviation ¢ is a width parameter; as ¢— 0, sin-
gle time-constant Debye response is approached. Note that
when &, = — w0 and & | = o, the normalization factor N
is just the usual (o/2Z7) . Certainly, we will never have
% o < O for any physical DAE case of interest, but when the
range parameters (£, — E,)/o and (£, — E,}/o exceed
three, the above result for & will hold very accurately. Since
these conditions will not always apply for the situations dis-
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cussed below, we shall not use the above result for NV but will
handle normalization in another more general way to avoid
possibie loss of accuracy. If ¥,(# )/N is a temperature-in-
dependent probability density, o must be temperature inde-
pendent, and we may then define T,=\2¢/k; then
& = T/T, compare the corresponding inverse parameters
Ay =T /Ty, of the EDAE.

B. EDAE-response models

Now in order to find a form of the EDAE 7, (@) which
involves a minimum number of separate parameters in the
integral and to reduce the intercorrelation of parameters toa
minimum, it proves convenient to introduce the new vari-
able x=9(¥% — &,). Further, from Eq. (4} we may
define the  relaxation  times 7 =7, exp(yr&_),
=1, exp{y &,), and r,=71, exp(y &,). In previous
work>* we have defined the relaxation-time ratios
r=r,=T1, /T and ry=1,/7, Here we shall alsc deal with
the natural logarithms of these quantities: Xg=In(r,}
=p(F, — & and X, =ln(r)) = (&, — &,). The im-
its of & are &, and & _; the corresponding x limits are
Y(Eo— &)= —X, and Y(% , — & ,)=X,. Notice that
the relation X5 = X, + X, follows from these definitions,
as of course it must, since Xy is a measure of the full span of
the & distributions. The 7in Eq. (5} may now be rewritten
as 7, exp(x). Finally, the normalized frequency variable is
defined as s=wr,. In the carlier work the less appropriate
choice s=wr, was employed.

Using the above definitions, substituting Eq. (6) into
Eg. (5), and selecting ¥ so that [(0} = 1, one obtains

L(sy=J,(s)/4,(0), (8)
where
$ix Xy pox
Jn,m:f0 o dx +f o dx )
—x; } 4 ise” o 14 ise”
and

J 0y =¢; '[1 —exp( — ¢, X, )]

+¢:  exp(4, Xy ) — 1] (10)
In these equations
$=r" (X —4,) n=12, (11)

in complete agreement with the earlier work.>* Although

Egs. {8)~(10) may seem different from the equivalent equa-
tions given earlier,* they yield exactly the same numerical
resuits and only differ in their parameterization. Note that
when ¢,>0, Eq. (9) is only convergent for X, < o0,” thus
requiring & | < 0.

For calculational purposes, it is better to rewrite Eq. (9)

1. —J‘XL e*eﬁ.xdx +J<Xu 2 gx [9’)
¢ o 14ise=* Jo 14ise” )

as

with Eq. (10) remaining the same. Equations (8), (9'), and
(10) define the most general form of EDAE response. It
directly involves the five parameters ¢,, ¢,, 7, X, , and X .
If the system is thermally activated, r; will show such activa-
tion and values of 7, will then lead to separate estimates of 7,
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and ¥ & . Note that although X, =y(¥, — &) involves
v & as well, it is only equal to y & | if ¥ ,=0.

In the general case, estimates of all the basic quantities
Eo ELE_,m, 9, 7, @ and £ cannot be directly obtained
from data fitting at 2 single temperature. When data are
available for a variety of temperatures, however, one can
calculate estimates of the above eight basic parameters, espe-
cially when the forms of the temperature dependencies of ¢,
and ¢, are known. Note that when F, (€ ) /N is temperature
independent, as well as 7; and 7,, the expected situation for
many materials, then Ey, E,, E_, and X, /X, will all be
temperature independent. Further, comparison of the E; es-
timate obtained from v, values with an (&, — E,) estimate
obtained from X, values will indicate whether E,, is zero or
not.

Although the general EDAE result above can fit a great
deal of data,® there are two simplifications of it of interest.
The first, the EDAE,, generally gives asymmetsic I” vs
log(s) and U"” vs U’ curves, and applies when F, (%) in-
volves only a single exponential. Then ¢, =¢,=¢ and
X, =Xp=Xy/2. Itfollowsthat & A — &= 2(& | — &,)
or, equivalently, r, = #. Then 7_ /7, = 7,/75 =Jr, = ,.
Equations {9') and (10) reduce in thiscasefor & _ < o to

7.6 =ersﬁﬁ—, (12)
o 1-+is,e %
and
J1.(0) = [1— exp( ~ 6X;) }/8, (13)
where s, =sexp(X/2) =wr, exp(y & ) = wr_. Since

%, is not of importance in this case, it is not a parameter in
(12) and (13) asitisin (9'). The EDAE, has the virtue that
it involves two fewer free parameters than does the general
EDAE but it is only appropriate for certain types of asym-
metric data.

Another EDAE form, the EDAE,, applies when data
lead to symmetry in log(s) around (U, | fand thus in
U'{@) aswell]. It alsoinvolves two less free parameters than
the EDAE. In this case we may again take X, = X, = X/2

but let ¢, = — $,=¢. Then Egs. (9') and (10} become
Xg/2 1 i
Je(5)=f é’_’”( : + A)dX, (14)
o P 4+ise™ 1 ise”
and

J.(0) = 2[ 1 — exp( — ¢X5/2)}/4. (15)

Here it turns out that when o = w,, the frequency where
U "(@)| is a maximum, thens =5, = 1,80 @, 7, = 1. Ina
symmetric case like this, one can thus obtain an estimate of
7, directly from @, without the need for detailed complex
nonlinear least-squares (CNLS) data fitting."® It is worth
noting that there is another simplification of the general
EDAE which involves one more parameter than the EDAE,
or EDAE, and leads to asymmetric response like, but not the
same as, that of the EDAE, unless X, = 0. For this model,
the EDAE,, we take ¢, = — ¢, asin the EDAE, but do not
set X, =X,. As we shall see, taking different values of X,
and X, can aiso lead to asymmetric response for the GDAE
maodel, one commonly thought to vield completely symmet-
ric response.
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The condition s, = wr,_ = 1in Eq. (12) does not vield
a value of @, because of the #-dependent asymmetry of the
EDAE, curve.® For ¢ > 0, the peak occurs at the low-fre-
quency side of say a complex-plane plot of — U" vs I/,
between s, =1 and 5, = \j;;, or, equivalently, between
o =77 "and @ = 7 . Note that at the point w = 7!, in
the present case U’ exactly equals — U". For ¢ <, on the
other hand, it occurs between s, = 0.1 and s, = 1 for > 1.
When ¢ is temperature dependent, it is thus inappropriate in
the EDAE, case to examine w, for thermal activation since
it depends on 6, v, and X. it is more sensible to obtain a
+ . estimate directly from CNLS data fitting at several tem-
peratures of Egs. (8), (12), and (13) and then test the re-
sults for thermal activation.

Equations {9'), (12}, and (14} are ali much preferable
to the forms presented earlier. For example, when exact
“data” generated from the model, or such data truncated to
three or four decimal places, are fitted by CNLS, the present
forms generally yield beiter convergence, lower parameter
intercorrelations, and smaller estimated relative errors of the
parameters. Response curves for the EDAE, EDAE,, and
EDAE,, have been presented earlier.”™

. The general GDAE-response mode!

A general expression for the GDAE [ (w)=J/,(w0)/
J, {0) response function is obtained when one substitutes
Eg. (7} into Eq. (5). The result may be written

Y E - [(& — & 21 79
Jg(w)=j‘ exply & — (& — %,)/5)°}d¥

- - » (16}
#o 1 +iwr, exp(y &)

with

&,
J (0 =Jﬁ exply & — [(¥ — &,)/81°d%. (17)
%,

In most earlier GDAE approaches no y term appears, often
an appropriate choice for dielectric systems but not for con-
ductive ones, and it has been conventional to set €, =0 or
even — oo and & | = oo. Our present GDAE model obvi-
ously involves a truncated Gaussian distribution.

We have already pointed out that although the assump-
tion & | = o« is not physically realistic, there are conditions
where it and &, = 0 lead to negligible loss of accuracy in
(16). First, take y=0. Then if (¥, —&,)/6 and
(&, — & )/8 areboth 24 or so, one may set & = o
and &,=0 without appreciably affecting the value of
I, (@). Under these conditions, (16) leads to a — /(@)
result which is closely symmetric in w around the w = w,
point, where @, is the frequency at which |7 (w)] is a maxi-
mum (peak frequency), namely @, 7, = 1. Further, Eq.
(17) then accurately yields the conventional result /7, (0}
= .[78. Since the symmetry conditions above are not always
applicable, however, the GDAE can yiekl asymmetric
curves as well as symmetric ones even when y=0.

When the transformation x =y{& — &) is introduced
into Bqg. (16) and we take s=er7,; as before, one obtains

KXoy . 2
~X; 1+ ise*

where 9=y/v and £=y8=y J2o/kT. Notice that unlike
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the EDAE situation, the & and & (or £ ~!) terms do not
combine to yield a single ¢ parameter. Thus there are still
five free parameters in Eq. (18) just as therearein (9°). Itis
easy to see from (18) that whea §=0, 7] (s) will be com-
pletely symmetric in 5 around the s = { point provided
X, =X, =X;/2. Such perfect symmetry is independent of
the value of &, but only when X, = X, — oo does one obtain
exactly J, (0) = \rr £ from Eq. (18} with s = 0.

Let us define the response produced by Eg. (18) with
arbitrary 6, X\;, and X; values as general GDAE response.
In analogy {c the EDAE, situation, we may also define ex-
actly symmetric GDAE, response as that obtained from
(18) when 6=0 and X;; = X, =X;/2. The value of @,
where —J7, and —J; are maximum, is again at
s=g5, = 1,and thus @, = ;"' in this case.

Although experimental dielectric or conductive-system
data often lead to symmetric response, it is also very com-
mon in both fields to find asymmetric response data, nearly
always with the peak toward the low-frequency side [i.e,

— I (w,} occurs when 7 ’(a)p ) >0.5]. Asymmetry arises
whenever X ;% X, and/or when 6 $20. Before discussing
asymmetric behavior, to be identified as GDDAE, response, it
is useful to simplify the J, (and {,) expressions further.
Evenwhen Xy, = X, but 8 #0, it is found that not only is the
response no longer symmetric but that s, # 1. For apprecia- -

le @ and £ values, 5, in fact differs very strongly from unity.
It is thus desirable to introduce 2 new normalized frequency
variable, for example, 5., which will have a value s, at the
peak of the — I” vs s, curve much nearer to unity than s,
when & %0, Let us therefore define the new time constant
7. =7, ¢, where the most appropriate choice of 4 will turn
out to be 0.56£ 2. Thus 7, # 7, unless & = 0. It follows that s,
=wr, = se?, 505 =35, ¢ " * Then J, (5. ) may be written

(X” expidx — (x/£)*1dx
J-x, 1-+is, exp(x —A4) '

T () = (18)

Finally, set y=x — 4. It then surprisingly turns out that
when 4 =0.50£ 2, as above,

I (s )=J,(s,)/7, (0}, (19)
where now
Ja={ " eel=yE’dy (20)
& —x vy b4is &

We see that the above transformations have allowed I, to be
expressed in conventional GDAE form (with possibly une-
qual limits) even when @ 0. Further, it is clear that only
when (X, — 4) = (X, + 4) will the response be fully sym-
metric.

Let us define new limit parameters of the integral as

X o=X, +A=y(8, — &) +0.58E7 (213
and

X=Xy —A=9(8_ — &) —056% (22)
These expressions are very different from the conventional
limit choices, 0 and oo, and clearly contain important re-
sponse information. It is now cbvious that exactly symmetri-

cal GDDAE, response will ccour in the most general (8 5£0)
case when X, = Xy, of
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WE , — &) =2, — &) +0.50 %] {23)

Notethat (X, , + Xy ) isstillequal to X when @ £ 0since &
does not affect the time-constant maximum ratio,
ry=71_ /7, In Gtting data with Egs. (19) and (20), there are
now two possible approaches. First we may fit with only the
four disposable free parameters, X,,, Xy, £, and 7,. But
these quantities do not allow 6, ¥, & _, and 7, 1o be sepa-
rately calculated. Thus, it is proper to use instead the free
parameter set: X, , X, £, 7., and &. I the fitting results indi-
cate that 8 = 0, it can then be eliminated as a separable vari-
able in further fitting.

The temperature-dependence behavior of X, and X,
is of special interest. Consider first the simplest case, that
where 8, «, and § are temperature independent. Then

TX, o =a+ 5T}, (24)
TXyp =c—bT 7, (25}

where 4, b, and ¢ are temperature-independent constants.
When y designates either o or §, their possible temperature
dependence is of the form>*

X=Xl (Lo =T/ T} [TAHAT—T )}, (26)

where y, is temperature independent, T, is a parameter spe-
cifying a possible linear relationship between activation
enthalpy and activation entropy, and T is the Vogel-
Fulcher temperature of a glassiike transition. When Tj)— o
and 7 -0, y -y, When T, and/or T piay a role in the
response, TX;, and TX, will depend even more on T ™'
than the simple dependence shown in Egs. (24) and (25).

Finally, let us explicitly consider the conditions which
ailow the GDAE integral of Eq. (18") to be closely approxi-
mated by the full Gaussian, Eq. (20) with X,, and Xy,
taken as infinite. Let us define the ratios

Ro=X,o/E= (1) "H(E, — Ey)/o} + (k)" yo}

(27)

and

Ry=Xy/é = (D H[(E, —E)/e} — (kT)"* yab
(28)

It turns out that X; , may bereplaced by o« when R, R Jor4
and, as well, X, replaced by « when R, 2 3 or 4. We may
take the lower limit of discrimination (LLD) as R, = 3.
Thus when X, 2 3§, CNLS fitting with X, 4 a free param-
eter will be unable to yield a well defined estimate of X, ,. We
may then set X;, tc a fixed value for which R, >3 or 4.
Larger values will not affect the accuracy of the fit and the
estimates of the other parameters. The same considerations
apply to the upper limit of discrimination (ULD) which we
can set at R, = 3. Again when X, cannot be well deter-
mined from the data, it should be set to a large fixed value for
which B, > 3 or 4. It is clear from Egs. (27} and (28) that
the LLD and ULD will be temperature dependent when
¥ #0; the sign of y determines which one increases and
which one decreases as 7 increases. In the dielectric case
where y=0, when §> 0 (the usual situation) R, will in-
crease and R ;, decrease as the temperature decreases. When
y=0and X, =X, =X /2=X_, as in the GDAE,, the
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0.6

GDAE, &=
8-

“o.0 0.2 04 . 08 08 (o

FIG. 1. Complex-plane plot showing symmetric GDAE, I{w) response
for @ =0, £ = 5, and various X; = X; values.

common limit of discrimination (CLD) is just Ro =X/
=3,

iii. RESPONSE POSSIBILITIES AND GDAE-EDAE
COMPARISONS

A. GDAE response

Although it is impractical to illustrate all the possible
GDAE-response curve shapes, a few representative com-
plex-plane results are presented in Figs. 1-4. Curvesof — 7"
vs log,,(s) will be presented later. The first two figures show
various GIDAE, symmetric response possibilities, while the
fast two ilinstrate two types of asymmetric, skewed re-
sponses. The results shown in these figures indicate that as
&—0and/or as X; and X, -0, single-time-constant Debye
response is obtained. Note that the CLD is exceeded for sev-
eral of the curves presented here.

Figure 4 shows typical >0 results; for negative 8 val-
ues, lefi-skewed curves would result. Although the curves of
both Figs. 3 and 4 are skewed, and both could be described
by taking 6 = 0 and X, and X as different values, the non-
zero @ values of Fig. 4 result in simultaneocus changes in both
X,, and Xy, Thus for 8=0.5, X;, = 16.25, and Xy,

=3.75, whilefor 6 = 1.8, X;, = 32.5, and X, = — 12.5.

It has already been mentioned that the EDAE leads to
power-law frequency response over a finite-frequency range
while the GDAE dces not. It is worthwhile to explore this
difference. For the EDAE, let us define the power-law expo-
nents #, and #, as being associated with & = " response for the

0.6

GDAE, ¢

FIG. 2. Complex-plane plot showing GDAE, response for &=0,
X, = X, =§, and various £ values.
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0.6
GDAE §=0

Left skew: . Right skew:
=40

4

_I”

Q.2

FIG. 3. Compiex-plane plot showing asymmetric GDAE left- and right-
skewed response for 8 = 0 and various £ values.

real part I ' and the imaginary part — 7 * respectively. The
plus sign applies for the EDAE,, EDAE,, and the general
EDAE in the frequency region below that of the — 7" peak,
and the minus sign for the EDAE, and general EDAE above
this frequency, whenever @ * " response regions appear.

Figure 5 shows typical results for the EDAE for two
values of 7,. We see that z, is not exactly the same as #,,
especially for the smaller , curves. For r, = 10", however,
the quantities are virtually the same in the range 0.2<0.8 and
are both close to ¢. In this region of ¢, the EDAE can yield,
for large r,, a response essentially the same as that of
the constant-phase element (CPE) whose (nonrealizable}
impedance over all frequencies may be writien® as
Z = [A4,(iw)"} ' Forlarge 4, n, —» 2 and #, — 1, as required
by the approach to single-time-constant Debye response as
¢ — 0. 3,4

The presence of @+ " response leads to straight lines
when the functions §=7 ~' and log(S"), and log(S "} are
plotted in the complex plane.® Note that in the dielectric case
the general function S{w) becomes the complex modulus
function, M{e).? Figures 6 and 7 show such results for the
GDAE, and for asymmetric GDAE situations. The low-
frequency limitis at.5 ' = I here. Figure 6 shows continuous-
ty curved lines; thus S’ and S " are not proportional to the
same function of frequency. Figure 7 shows log resultscvera
much wider range. At sufficiently high frequencies, S’
reaches a constant value as required by physical realizability
but even for £ = §, this value is not approached until s ~ 10'%,
Qnly as £ becomes quite large does the slope of the complex-
plane line approach unmity, necessary if, for example,

0.6

GDAE

-1

FIG. 4. Complex-plane plot showing GDAE response for X, =X, = 1§,
& =3, and several & values.
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FIG. 5. The relations between EDAE fractional-power, frequency-response
exponents, #; and 1,, and the basic EDAE, or EDAE, parameter ¢ for two

different », values.
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FIG. 6. Complex-plane plot showing GDAE S(w) = [Z{w) ] ~' response in
the low-frequency region for different £ values and symumetric and unsym-
metric situations with ¢ = 0.
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FIG. 7. Log-log complex-plane plot for the GDAE S(w) function with
& = 0 showing high frequency limiting behavior.
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S« KoYl and §” « { Aw)]", and n, = n,. The results
of Figs. 6 and 7 should be compared with corresponding
ones for the EDAE, in Ref. 3.

B. Width resuits

As we have seen, the guantity ¢ in the EDAE is closely
related to the frequency-response power-law exponent.
There is, however, no such analogous parameter in the
GDAE model since it does not lead to such response. In-
stead, one may relate the standard-deviation parameter o to
the width of the — {"{w) response curve in log{w/w, )
units. As customary, we shall take &, = 1 s and suppress
it hereafter.

Birge et al.,'? in their fitting with an idealized GDAE
dielectric model, have introduced a width, which we shall
term w,, defined as'’

(29)

where @, is that frequency above or below the peak frequen-
cy w, for which €/'/€; = e . Here ¢ is the base of natural
logarithms. But as we have demonstrated, the GDAE need
not yield symmetric response, and a half width such as that
above is inappropriate for asymmetric response. Let us
therefore define the general full width as

w, Elogl()(wp/we )a

(30}

wherew . and w _ are the frequencies above and below @, at
which I "/I 7 = ¢~ . If we again consider a symmetric situa-
tion and pick ¢ =e¢, then W, - W, = 2w,. But it is more
common to use ¢ =2 than ¢ = ¢ for the definition of a
width (half-power points). With this choice, let W, - W.
We shall consider both W and W, for the symmetric GDAE
situation (GDAE,) here.

What is the best way to estimate ¥ or W, from given
data? Since real data are always contaminated with error,
and usually only a relatively few I " () data values are avail-
able, one should use all the data, where possible, to obtain a
W estimate. If the data can be well fit to an appropriate
model, such as the GDAE by nonlinear least squares or
CNLS, then one can use the resulting best-fit parameter esti-
mates 1o generate a large number of values of I (@) in the
region e <@_ tow > . in order to determine { " (w0, ), @ _,
w.,,d"(w_},and I " (@, ) very accurately, thus using all the
available data to obtain #,. This approach is particularly
usefnl for very wide 7 “ (@) curves such as those analyzed in
Ref. 10,

The above procedure has been employed to calculate
very accurate values of (&) and W, (&) for the present
exact GDAE, model. Results are presented in Fig. 8. Note
that as £~ 0, single-time-constant Debye response is ap-
proached; in this limit one readily finds that ¥'=0.7656 and
W, =2 1.4396. The curves also show that the widths approach
constant values as £ increases for finite X, = X=X val-
ues. Note that the large value r, = 10%* corresponds to just
Xo=27.6. Only as r,— o, not physically plausible, do the
curves become completely straight lines in the large £ region.
In this limit one finds

W0.511£

and

W, =logglw. /o),

(31)
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FIG. 8. Log-log dependencies of the two width measures, ¥, and W, on £
for various , values.

W, - [2loge(e)14. (32)

It is also of interest to express these relations in terms of o as
well as £, One then finds

o=1.383(kT /)W, (32)
and
o= m10)/ 221 KkT /)W,
=0.8141(kT /Y W.. (34)

Thus, given an estimate of ¥ or ¥, in the approximately
straight-line region, one can estimate o as well if v is known.
We may finally convert Eq. {34) to the Ref. 10 parameters
o and w, and obtain

op = [ (AT /¥)w,. (35)

This result differs in two ways from that presented and used
in Ref. 10: first, no y is present there since the implicit as-
sumption ¥ = | was made; in addition, the Boltzmann & fac-
tor is missing from the Ref. 10 expression,

C. GDAE and EDAE comparisons

Figures 9-12 show some comparisons of GDAE and
EDAE responses. To carry out these comparisons many
GDAE I{w) values were accurately calculated and these
“data” sets were fiited as well as possible by the EDAE mod-
el using CNLS. Two types of weighting were employed. In
the P weight (PWT) situation, the uncertaintiesin f 'and § "
values are taken proportional to the values themselves and
the weighting for say a given J’' value is calculated as
W, =s; % wheres;. is the estimated uncertainty for an 7’
value, Conversely, for U weighting (UWT), the uncertain-
ties are all taken as unity. Fitting with U weighting empha-
sizes the larger — " (w)} regions at the expense of the
smaller ones (tails) and yields smaller refative residuals in
the large — 7 ” regions compared to those in the smaller 77
regions. Thus it yields a better fit for peak regions and a
worse one for tails. On the other hand, P weighting tends to
equalize relative residuals over the full data range. The PWT
fitting results then appear worse on a linear plot and often
better on a log plot. With negligible errors in the data and an
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oe - =EDAE, P Weight

————— EDAE, U Weight

——— GDAE,

e

0.0 .2 Q.4 0.6 0.8 1.0

FIG. 9. Compiex-plane plot showing comparisons of CNLS-EDAE, fits to
GDAE, data of Fig. 2. P weight involves uncertzinties proportional
to data value magnitudes. U weight involves equal uncertainties.

appropriate fiiting model, the two types of weighting will
yield essentially the sarne parameter estimates. Fitting with
these two types of weighting is illustrated in the next few
figures.

Figure 9 is a complex plane presentation of the results of
EDAE,, CNLS fitting to the GDAE, curves marked A and
B in Fig. 2. Perfect fitting of course occurs for the Diebye
curve, but we see that 2 nearly perfect PWT fit was obtained
for the large-& B curve. As expected, U weighting gives a
better appearing linear-plot fit for the smaller-§ A curvethan
does the PWT choice. Figure 10 shows the same fitting re-
sults withlog,,( — I ") plotied versuslog,,(s), whereherer,
was taken as unity. Although the UWT curve fits very well
for the first decade or so of reduction of ~ J” from its peak
value, — 7], the fit is systematically worse for smaller
I"/1,; values. As shown, opposite behavior is found for P
weighting. Even with either of these weightings for the curve
A situation, guite accurate data would be required to allow
one to discriminate adequately between GDAE and EDAE
models here using CNLS fitting.

Figures 11 and 12 show EDAE fitting to the asymmetric
GDAE curves marked a, b, and ¢ in Fig, 3. We found that
better fits were obtained with the general EDAE model than
with the EDAE,. A PWT EDAE, fit is included, however,

-3.0 -2.0 -1.Q 0.0 1.0 2.0 3.0
Log, (s)

GDAE,
o EDAE, P Weight
————— EDAE, U Weigh!

-3.0

FIG. 10, Plots of log o{ — ") vs log,,(s) for the various conditions of Fig.
9 showing the ability of the EDAE, model to fit GDAE, data.
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0.8

GDAE

————EDAE P Weight
————— EDAE U Weight

FIG. 11. Complex-plane plot showing comparisons of CNLS-EDAE and
EDARE, fits to asymmetric GDAE dats of Fig. 3.

for the b curve of both Figs. 11 and 12. No UWT fit is shown
for this curve, but one sees that for ali the general EDAE
curves shown both PWT and UWT resulis are so close that
one can not expect to be able to discriminate between the
GDAE and EDAE models for any real data of this character
extending over the present five decades of frequency.

Although the EDAE can fit the G AE excellently here,
we would not expect such good fits of the reverse situation:
GDAE fitting to EDAE “data” which included @ *" re-
sponse over appreciable frequency ranges. Further, we find
that the EDAE fit to the GDAE “data” does not yield
EDAE parameter estimates well correlated with those used
to calculate the GDAE points. For example, the curve-c
GDAE-input parameter values were v, =1 5 =0,
X; =40, X, = 0,and & = 10. Notice that R, = 4 here, well
above the LLD. Thus, even a GDAE fit {0 the very accurate
GDAE synthetic data could do no more than establish that
X, was greater than 20 or so. The PWT CNLS EDAE pa-
rameter estimates and their estimated standard deviations
were 7, =(594+073x107° 5, X, =11.93 +0.13,
Xy =960+ 0.11, ¢, =0.2819 4 0.0024, and
¢, = 0.1064 + 0.0022. U weighting yielded slightly different
values with similar error estimates. Although the X, and X,
estimates are quite different from the input ones, it is prob-
ably significant that X = X, + X, is greater than 20 here
for the EDAE fit.

~-2.0 ~.0 0.0 1.0 2.0 3.0 4.0 3.0
Logya (s}

GDAE
=== EDAE P Weight
----- EDAE U Weight

=~3.0 .

FIG. 12. Plots of log,o{ — I ) vs logo(s) for the various conditions of Fig.
11, again demonstrating the excellent fitting ability of the EDAE model.

J. Ross Macdenald 707

Downloaded 17 Nov 2005 to 152.2.181.221. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



The present results suggest that in many cases of interest
the EDAE can well fit GDAFE synthetic or real data, making
discrimination difficult. But if the data include an apprecia-
ble region of fractional power-law frequency response, as
most data do, we expect that the EDAE model will yield
much the better fit.

IV. ANALYSIS OF (KBt} (KCN),, DATA

It is worthwhile to illustrate the use of the present gener-
alized GDAE model by fitting some data likely to be appro-
priate for the model. Since the data of Birge er al.”’ on
(KBr},s (KCN),, has already been analyzed by these
authors with an idealized GIDAE, these data seemed espe-
cially suitable. It is of particular interest to investigate to
what degree the new features of the present GDAE model
allow more information to be derived from fits of real data
than is possible with the idealized model. In particular, here
we investigate the possible effects of €, 0, & _ < o0, more
exact normalization, and the infiuence of the possibly tem-
perature dependent quantities &, 5, and y=o + B. Because
we are dealing with dielectric system data here, U (@)
=U, =¢l(w)=1 (o), and =y /vy =8/7.

Unfortunately, only €”"(w) data for a wide variety of
temperatures were available!; that for €' () mentioned in
Ref. 10 was not provided. Thus, CNLS fitting was preciuded
and only NLS fitting could be carried out using the relation
€' (@) = (& — €} (@) which follows from Eqgs. (1) and
(5). We initially investigated the fits possible using the data
sets for T'== 17.7-34.7 K, the range over which e =c"(w,)
fell within the measured frequency span.

Fits were carrted out with the present GDAE, and, for
comparison, with the EDAE, and the Cole-Cole DRT
{(CCDRT), whose I{w) expression s>

Hew)y = [1+ (is3?] " (38)
This J(w) leads only to symmetric response. Most of cur
fitting has been carried out with PWT, consistent with the
assumption that the percent error in measured €” values is
roughly constant. For many of the fits, parameter estimates
were relatively insensitive to the choice of PWT or UWT.

Values of s5,, the standard deviation of the best overall
fit, are shown in Table I for the temperatures and models
considered. Both P and U weight results are given for
T = 34.7 X because P weighting was unsatisfactory for this
temperature. We see that for many of the temperatures there

TABLE L Values of 5, the standard deviation of the fit, for several models
and temperatures.

sp{X10%)

T(X) Weight GDAE EDAE CCDRT
17.7 P 3.85 322 5.97
19.7 P 1.83 2.27 3.22
21.7 P 2.30 2.66 4.08
23.7 ¥ 1.93 3.65 1.30
257 ¥4 1.95 3.80 2.34
29.7 P 2.04 5.10 8.40
34.7 P 10.8 3.17 10.8
34.7 U 1.01 209 2.63
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FIG. 13. Nonlinear least-squares fits, using various models with PWT, to
the (KBr)os (KCN), dielectric data of Ref. 10 for 7= 17.7 K.

is not a very large difference between the s,’s of the three
models, although the GDAE does indeed seem preferable,
across the board, to the other two models.

Figures 13-15 show results graphically for the two ex-
treme temperatures and for one where o, falls near the cen-
ter of the frequency span. Figure 15 illustrates the poor be-
havior of the GDAE- and EDAE-PWT fits for T= 34.7K.
A much better GDAE fit was obtained with U weighting, as
shown. Its results are used in the following. It should be
noted that the GDAE-UWT fit is not really very good in the
low-frequency tail, however. For example, at v = 1072 Hz
the data value of €” was 0.00912 while the fit prediction was
0.004 27.

Various trial fits of the €” (@) data using the Eq. (20)
GDAE model with 8 a free parameter showed that it was

0.8
T=237K
N % % % % DATA
o7 GDAE
——— EDAE

==~ CCDRT

} 1 n 4 ! i

-2.0 0.0 2.0 4.0
Log,, (v}

FIG. 14. Nonlinear least-squares fits, using various models with PWT, to
the (KBr),, (KCN), dielectric data of Ref. 10 for T'=23.7 K.
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FIG. 15. Nonlinear least-sguares fits, using various models with PWT and
UWT, to the (X Br), s (KCN) 5 dielectric data of Ref. 10for 7= 34.7K.

impossible to determine any definite @ values. Similarly, no
X e values were well determined by the data; they were all
above the UDL; thus X,, 240 at = 177K and X, 2 20
at T'=357 K. We therefore used a constant value of
Xyp == 100 at all temperatures. Note that the refatively large
values of Xy, iroplicit in the data by no means imply the
appropriateness of the physically unrealistic values
Xyo = oo and & = «o. For the present data the ¢” values
have arbitrary units. Fitting vielded direct estimates of the
scale factor (e, — € } for each temperature. It was found
that the final results were themselves quite well fitted by the
empirical equation

(6o —€, ) = (684 +0.13) + (40.0 4+ 3.1)7 7, (37)

with a s, value of 0.07. Again the units of the quantity
(6, — €, } are arbitrary.'®

Although no well determined values of Xy, were ob-
tained from fitting with this guantity free, it was possible to
obtain sensibie X, estimates for the lower five tempera-
tures. The result that & { = £ /7 here) was not directly deter-
minable from the data suggested that 4 = 0 [Eq. (21)], and
thus X, = X, and X, 4 = X, . The matter was resclved by
noting that the fit values of TX,, did not show the 77 *
behavior required by Eq. (24) when & #0 and 4 is nonnegli-
gible. Thus, we take § = O hereafter, as well as X, =X,
Xyo = Xy = 100, and ¥ = . Although X, shouid be within
the LLD for all seven temperatures considered, judging from
fits at the lower four or five termperatures, it did not turn out
to be possible to obtain good estimates of X, at 7= 29.7 and
34.7 K, and the fixed value X, = 100 was used for the final
fits at these temperatures. Thus final fits using Eqg. {18} in-
volved the free parameters (¢, ~¢€_), 7y, X, and &, or
(e, — €, 3,7y 8nd £ only,

Because of the large width of the ¢” (@) data curves in
log,o(@), Birge ef al.'’ simplified the full GDAE expression
by assuming that the Gaussian-width contribution dominat-
ed that from the Debye width. They thus took the latter
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contribution as a deita function of the form 8 {(wr — 1), lead-
ing'® to the following approximate resuit:

€"(w) = (7/2)(w, 7))~ [logis(e) ] (o — €, )

Xexpl —w, ! loglw/w,) 1%, {38)
where w, is related to o; by Eq. (35). Thus €" (w) is forced
to be symmetric in log,o(w/e, ).

Fitting with Eq. (38) was carried out’™ with NLS us-
ing'® UWT, with the three free parameters (6, —€_ ), w,,
and@, ( = ;" '}. There is thus no possibility of obtaining an
X, estimate; full, symmetric Gaussian normalization was
employed; and 7, equals 7, exp(E,/kT") here since no 7 pa-
rameter was introduced. These authors obtained generally
good fits of the data, but their estimates of (¢, — €, ) are
guite approximate, in part because the #/2 factor of Eq. (38)
was not actually included in their work. In the present in-
stance, where the units of ¢ are arbitrary, the matter is of
little conssguence. The needed #/2 factor is consistent with
the Krdnig-Kramers equations and, of course, with Eqg.
{38) fits of symmetric “data’” calculated from the exact
Gaussian-response function with X./£ > 4. Further, while
w, is the exact half width for the approximate equation, it is
only exact for the full GDAE model in the £ — oo limit. To
avoid misinterpretation of w,, it is better to replace the w,’s
in Eqg. (38) by £ log,,(e), since £ is the more fundamental
guantity.

Equation (38) with w, and (&, — € ) taken as free pa-
rameters gave very good PWT fits to exact symmetric
“data” for & = 21, approximately the & value found for the
T = 13.7 K data, the widest data set'® considered here. The
vaiue of o, found was still reasonably good but was about
100 times larger for £ = 7, near the T = 34.7 K data-set val-
e found for this parameter. The fit value of £, calculated
from estimated w, values, was only about 0.6% too high at
& =21, increasing to about 5% too large, however, at & = 7.
Thus, Eg. (38) is not a very close approximation for sym-
metric curves having £ values corresponding to those found
at the higher temperatures for the Birge et a/.'* data.

The preseat GDAE fits were found to be somewhat
asymmetric at the lower temperatures. LetJ, (0) be the val-
ue of the integral of Eq. (18) with 6 equal to zero, X, = 100,
and X free. LetJ,  (0) bethe same quantity with X, = X,
=X, = i000r . Its exact value is /7 £. We found that the
quantity J, (0)/J, (0} varied from 0.981 to 0.984 as the
temperature went from 17.7 to 25.7 K. Thus ideal Gaussian
normalization is a reasonably good, but not perfect, approxi-
mation for most of these data.

It is of interest to note that when the 17.7 K data were
fitted with X, = 100 fixed, rather than free, 5, turned out to
be 4.68x 1077, about 21% larger than that with X, free.
€” {w) predictions with X; = 100 fixed were of the order of
1-2% different for the low and mid frequencies, increasing
to eight or nine percent in the high-frequency tail region. The
estimates of the relative standard deviations of X, obtained
from the fitting at the different temperatures were as low as
one percent but tended to increase with temperature.

Figure 16 shows results of the GDAE fits for £, X, , and
W, points, with ¥, values calculated by the method de-
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FIG. 16. Least-squares fits for the parameter estimates of the GDAE model
for various functions of temperature.

scribed in the last section. Individual results are indicated
with separate symbols; the lines show various LS fits to these
derived values. With 8 = 0, the preceding definitions lead to

&= aouy/kT, (39)

X, =alE, — E}/KkT, (40}
and

T, =7, exp{aE,/kT), 41)

where o may have the temperature dependence given in Eq.
(26). It is reasonable to take y, =, = I here to set the scale
of E. In trial fits of the £, X, and 7, values to the above
formulas, we have been unable to obtain good results when
both the T and the T parameters of & were simultaneously
free to vary; further, better results were obtained with T’
free than with T, free. Thus, we shall discuss further only
possible o temperature dependence of the form

a=(1-7T_/sT", (42)

where T 1s related to a glasslike transition temperature.

We can initially eliminate the effect of any «
temperature dependence by considering the ratio
E/X, =05/(E, — E,)=4, which should be temperature
independent for a temperature-independent DAE. Fitting
with UWT yields 4, = 0.693 1 0.010, with as, of 0.66. Al-
though the fit isn’t perfect, it strongly sugpests that £ /X is
indeed a constant for these data and that (E, — E,;) and 0,
either have the same temperature dependence or, more like-
ly, are temperature independent.

Parameter estimates and estimated standard deviations
of the UWT fits shown in Fig. 16 are presented in Table I
Quantities without standard deviations given were taken
fixed. In rows -3, a=ogy/k. All b values are for 6 =T,
except those in rows 4 and 5 which are dimensionless. In
these rows the empirical formula W, = (¢/T)} — b em-
ployed by Birge ef 2l.'° was used. The results of row 4 are
theirs; those of row 5 follow from the present GDAE fits.
The remaining ¥, fits of rows 6—8 use the more physically
plausible expressions listed in Fig. 16. We see that the pres-
ence of a free or fixed {nonzero) T_ appreciably improves
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TABLE 1L Fitting results for the guantities plotted in Fig. 16.

No. Quantity a (K) 5 8¢
t £ 263.2 4+ 4.9 0.56
2 £ 2122+ 68 418+055 020
3 é 2214 1.6 3.38 0.22
4 W.p 262 —1.28
5 o5 270.14+ 5.0 — 1654022 018
6 W, 232.8 426 0.40
7 W, 1856 + 5.9 34540353 0.7
8 w, 196.4 + 1.1 3.38 0.15
9 X, 384.2 + 10.4 1.8

10 X, 293.1 + 304 4.86 + 1.57  0.87
i1 X 321.0+4.6 3.38 G.81

the fits, compared to the 7' = 0 choice, but the values of
T found show appreciable scatter. We have, therefore, tak-
en a weighted average of the T estimates determined from
71, & and X; fits, to obtain (7 ) = 3.38 K. Results for this
value, taken fixed, are also shown in Table II. We see that its
presence usually decreases the estimated standard devia-
tions of the parameter ¢ or reduces s, or both. If Eq. (32}
held accurately over the present range of £, we would find
W, =0.8686£. The results of rows 3 and 8 yield W, /¢
=0.884. Further, Fig. 16 shows that the £ and W, data
points and lines (with & free) are not entirely paraliel; thus,
Eq. (32) is not completely applicabie here, and £ {(or o) is
the more important parameter than W,. It is clear that the
X; values are less accurate than those of £ and W_, and it is
probable that the X, estimate for T = 25.7 K, approaching
the region where X, could not be obtained from the data, is
too large.

The determination of the best-fit parameters of 7, de-
fined by Egs. (41) and (42), is not entirely straightforward.
One avoids introducing any bias by fitting directly to 7, with
NLS rather than to In{r,) with ordinary LS. But what
weighting is appropriate for such 7, fitting? If the estimated
standard errors of the 7, values from the original GDAE fits
involved no systematic errors, their use in determining the
weighting (defined here as FWT) would be most appropri-
ate. Another reasonable choice would be PWT. For fitting of
In{r,) values, UWT is perhaps preferabie to PWT if the
range of In(r,) is not overly large. In the absence of other
knowledge, one might pick that weighting which vielded the
smallest estimates for the parameter standard deviations.

Fitting results for several of the above situations are pre-
sented in Table III. Here quantities ¢ and their estimated
relative standard deviations s, are shown in the form
Q /54, For cross comparison we have included both 7, esti-
mates and In{7, ) ones for both the 7, and In(r,) fits. Quan-
tities without 5,5, values are calculated from the correspond-
ing fit results. Birge er a/.'” found the foliowing values
from their fitting: 7, =3.125X 1075, In(r, } =33.4, and
E,/k =659 K. The results of rows 2 and 6 are quite compara-
ble. Comparison of the results of rows 3 ard 7, and 4 and 8
show that a nonzero free value of T, slightly improves s,
values but yields larger s, estimates here.

We may now use some of the foregoing results to calcu-
late values of o/k, (E, — E,}/k, and finally E,/k and E/k
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TABLE i1 Parameter estimates of 7, with different types of fits and weighting.

Quantity

No. fitted WT In{r,) 7, (8} E/k (X) T, (K} 8
i (5 F — 32.751 5.98% 10~ %/0.18 640/7.6% 1077
2 75 4 — 33416 307 X107 5/0.26 659/9.2% 1072 B 0.13
k] T P —31.936 1.35x 10714/0.56 589/4.2x 107 1.27/0.335 0.11
4 I3 P —29.498 1.55X 107 12/6.26 481/1.1x1072 3.38 0.19
5 Iniry) P —33.764/7.5x 1073 217X 107 667/7.5x 1672 cee e
& In(r;) u —33.377/6.8x107° 3.20x 1071 659/8.0%x 1% e 0.12
7 in{7;) U —~31.992/3.2x 102 1.28x 1074 592/8.3x 107% 1.21/8.75 0.11
8 in{r;) U ~29.472/1.0x 1072 1.59x 10~ 1 481/1.2 1072 3.38 0.19

separately. For illustrative purposes we shall use fitting re-
sults where the fixed value T = 3.38 K was employed. We
then find 0/k= 157 K, a temperature-independent guantity
asitshouldbe; (E, — E,)/k=321K, also temperature inde-
pendenti; E\/k =481 K; and E,/k= 160 K. The £, and E,
estimates seem reasonable; they certainly would not be if it
turned out that the data yielded £y > E,. No E, estimate was
possible for the Ref. 10 approach. Further, our results sug-
gest that o, the standard deviation of the DAE probability
density, is temperature independent, contrary to the conclu-
sions of Ref. 10. Although data fitting was unable to yield an
estimate of £ /k, we may set a lower limit to this quantity
by using Eq. (28) with # = 0 and taking R, = 3. The esti-
mates above then yield E_ /k 2 802 X. Alternatively, since
the curves are reasonably close o being symmetrical, the
condition X, = X; may apply reasonably well. It leads for
the above values, to £ /hk=1147 K.

It is worth noting that Birge e ol.'° have discussed the
possibility of barrier heights varving linearly with 7, certain-
Iy not a temperature-independent DAE situation. Then the
present F would be replaced by E'=E 4 a5 T. It was sug-
gested that @, was likely to be nonzerc and positive, but it
could not be obtained from their analysis. This transforma-
tion would only affect our expressions for X; and X, and
would lead, for the present situation, to

X, = (E,—ay T—E)/[KT—T_)], (43)

where £, and £, are now defined as the T = 0 values of these
quantities. Because of scatter in the few X, estimates avail-
abie, we are unable to obtain sensible simultaneous estimates
of (B, — Ey)/k, ag/k, and T . But with T =0, fitting
vields (E, — E,)/ k=491 + 66 K and az/k=5.1+3.1
(thus virtually undefined), with an overall 5, of 0.93. Com-
parison of these results with those for rows 10 and 11 of
Table 11 show that the choice T 50, o, = Ois appreciably
better than the choice T, = 0, a5 0. Further, if o, were
non-negligible, the temperature independence of 4, dis-
cussed above would require that o and o; would also have to
be temperature dependent in the same way as X, a most
unlikely sitbation. Nevertheless, the present result does not
prove that ez = 0, only that this quantity is not determin-
able from the present data.

One test of consistency of some of the present results is
to compare GDAE fit estimates for the 7= 13.7 K data, not
yet used, with estimates obtained from extrapolation of the
present fit formulas for (¢, — € ), 71, X, , and §. We elimin-
ated four outlying points from the 7= 13.7 K datz and
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found that appreciably smaller s, values were obtained with
UWT. Resulis are presented in Table IV. As usual X, was
taken as 100.

In Table IV the column 1 results were obtained with ali
the parameters free to vary. Note that 7, is very uncertain
indeed here, primarily because the data did not include or
extend close to €” (@, ) so the peak frequency, 71, is nearly
undetermined. When 7, is fixed at its value extrapolated
from the results in row 3 of Table ITL, one obtains the column
2 estimates. Finally, column 3 compares extrapoiated esti-
mates obtained entirely from the fits at higher temperatures
with T free to vary. Although the column 2 5, is larger than
that for column 1, the column 2 results are much more con-
sistent with those of column 3.

These results suggest, but do not prove, that it is indeed
reasonable to use middle-range, fixed, extrapolated 7, values
in GDAE fitting at temperatures ouiside that range where
o, is included in the data. The present 7, =5 X 10° s corre-
sponds to a frequency whose period is about one vear. It is
thus impractical to make measurements which include o,
on the present material at 7= 13.7 K or below. One hopes
that extrapolated results are still appropriate at these low
temperatures, but as the temperature decreases one would
expect tunneling effects to occur eventually and change the
character of the respouse.

V. CONCLUSIONS

(General forms for the EDAE and GDAE models have
been presented and their use illustrated by fitting
(KBr), s (KCN), s small-signal response data by nonlinear
least squares for an appreciable range of temperatures. A
slightly asymmetrical general GDBAE model proved to fit the
data best. Analysis of the fit results sirongly suggested that
the activation parameter 5 of the model was zero, as well as
any linear dependence on temperature of the activation ener-

TABLE IVY. Comparison of three sets of parameter estimates for 7
= 13.7K.

Quantity 3 2 3
{gp—¢€,) 6.83 + 0.30 10.50 4 0.05 $.76
7, (8) {1.36 + 0.76) x 10¢ SxX 108 5x 10°
X, 27.78 +0.52 33.1G6 4+ 0.25 33.1
£ 16.96 + 0.3% 20.58 +0.14 22.3
o 33x107° 50X1873
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gies themselves. The data led to estimates of the lower bound
of the DAE, E,,, its approximately central activation energy
E,, and of the Gaussian probability-density width parameter
o. These guantities appear to be slightly temperature depen-
dent if the activation parameter o is taken as unity {ordinary
Arrhenius behavior). The DAE parameter E; was not ob-
tainable from the earlier analysis,'® but this work also led to
some temperature dependence for £, and o.

The temperature dependence of £, E, and o very large-
Iy disappears when a glasslike transition is included in the
model and thus o may be temperature dependent. The pres-
ent introduction of physically plausible temperature depen-
dence in a single parameter, which essentially eliminates that
of E,, E,, and o, thus leading tc a TIDAE, scems preferable
to accepting specific temperature dependence of these guan-
tities for which no alternate plausible theory presently exists.

It should be finally emphasized, however, that there re-
mains some possibility that the present generalized GDAE
model is still not the most appropriate one for the present
data and that the temperature dependence found of £, £,
and o, or of ¢, is just an indication of systematic errors aris-
ing from the choice of an inappropriate model. For the pres-
ent data, which have fairly appreciable scatter, it is thus not
yet possible to reach a completely firm conclusion that the
activation-energy probability density of the material is tem-
perature independent in the measurement range or not.
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LiST OF ACRONYMS AND MAJOR SYMBOLS

A. Acronyms

CCDRT: Cole-Cole distribution of relaxation
times.

CNLS: Complex nonlinear least squares.

CPE: Constant phase element.

DAE: Distribution of activation energies.

EDAE: Exponential DAE.

GDAE: Gaussian DAE.

LLD: Lower limit of discrimination.

LSs: Least squares.

PWT: LS weighting using proportional
uncertainties.

TIDAE: Temperature-independent DAE.

ULD: Upper limit of discrimination.

UWT: LS weighting with equal uncertainties.

B. Major symbols

A number in parentheses indicates an equation where
the symbol is used or defined.

k: Beltzmann’s constant.

m,n: A power-law exponent in time or frequency.
n;: Power-law exponent for the imaginary part
of model frequency response.
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Power-law exponent for the real part of
model frequency response.

T /To=exp[v(& , — &) ].

T/ To=exply (€ — €l |

o).

@r, .

w7, exp{4).

Estimated standard deviation of a LS fit.
@, Ty

Estimated relative standard deviation of
quantity Q.

Time.

Ref. 10 hailf width, (29).

wWE - &)

0.56£72, (21).

£/X, =ogz/(E, — Ey).

Elemental thermally activated capacitance,
(3).

Temperature independent limiting
capacitance, (3).

E/kT.

Activation energy {enthalpy); barrier
height.

Minimum activation energy of a DAE, (6).
Activation energy appearing in 7.
Maximum activation energy of a DAE, (6).
DAE probability density, (&), (7).
Normalized, general frequency response
function, (1), (5).

Main response function of 7(s), (8).
Complex modulus function, [e{w)] ™"
Normalization parameter, (8), (7).
Elemental thermally activated resistance,
(2).

Temperature independent limiting
resistance, (2).

X /&, common valueof R; and R, (6 = 0).

X10/8.

Xyo/E.

[(e)17 "

Absolute temperature.
(26).

Vogel-Fulcher temperature, (26), (42).
Frequency-response function, (1).

U@,

U(e).

Full 7" (@) vs log;(w) width, g = 2, (30).
Full 7" {w) vs log,o{w) width, ¢ = ¢, (30).
Common value of X; and X,.

In{r,) =y(&,— &,).

(21).

&, —&pn.

(223.

n(r,) =p(%_ —&,).

Impedance, Z' +iZ".

(23.

(3).

a+B.

V2 o/kT, ().
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a? g

713

Toit

Complex dielectric constant, € — fe”.

€ (@, ).

€(0).

€{o0).

n=12.1,/kT. Parameters in the EDAE
probability density.

x/v, (18}

n=12n, kT, (6}.

Freguency, w/2m.

¥8 =2 yo/kT, (18).

kTE /42 v. Standard deviation of Gaussian
probability density.

2o

Temperature independent limiting
relaxation time (4).

Value of r when & = &, 7, exp(y &¢).
Valueof r when & = &, 7, exp(y &,).
Valueof rwhen & =& _, 7, exp(y & ).
Parameter in EDAE, and EDAE, models.
n=12,(11}.

(5)7/1/6 EIBNXZ Eal'

Exponent in CCDRT, (36).

2y

Angular frequency at which |7 "(w}|isa
maximumn.
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@, Angular frequency where €/ /e) = e/,
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