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ABSTRACT 

Much past work on equilibrium properties of the electrical double layer is discussed. Particular 
attention is given to attempts to explain the differential capacitance of the double layer, with and without 
specific adsorption. Many theories of the inner and outer parts of the double layer are discussed, 
including continuum discrete, and lattice gas models. It is concluded that although adequate theories of 
the diffuse part of the double layer exist, none available so far is entirely adequate for the inner layer 
because of the strong lateral interactions present in it. 

(I) INTRODUff ION 

This paper deals with the electrical double layer (EDL - see list of acronyms at 
end of the paper) in thermal equilibrium. It is thus primarily concerned with the 
structure of the double layer, interactions between its discrete ionic and molecular 
components, and with its quasi-static, measurable differential capacitance. By 
contrast, the succeeding paper involves the steady-state, small-signal ac response 
(without or with dc bias) of systems involving double layers near electrodes. Such 
response, and its analysis, has been termed Impedance Spectroscopy [1,2]. When 
measurements are not limited to equilibrium conditions, important kinetic effects 
may occur. Long ago, Frumkin [3] first pointed out the importance of the EDL in 
affecting heterogeneous electron transfer reactions. The presence of an EDL affects 
the reaction because the electric field conditions in the reaction region near the 
electrode are different from those in the bulk of the material. 

The present paper is concerned primarily with nearly zero frequency response, 
and the second one with response covering a frequency range from low, and 

* Part of the present work was presented at “The Robert A. Welch Foundation Conference on Chemical 
Research. XXX. Electrochemistry”, which was held in Houston, TX, 3-5 November 1986.0022- 
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possibly very low, frequencies up to a MHz or so. The two papers are thus 
somewhat complementary as well as loosely coupled. 

The electrical double layer present in nearly all solid and liquid materials, in 
which charge motion and translation are possible, is a complicated beast and its 
behavior is by no means fully understood theoretically. In its simplest form it 
involves a space charge region (the diffuse part of the double layer) beginning at the 
boundary of a conducting material and decreasing away from the boundary into the 
material. The charge involved may be electronic, ionic, or mixed and the resulting 
polarization may involve mobile charges of a single sign or of both signs. The 
distributed charge in the material is balanced by an equal and opposite charge on 
the surface or on an electrode if one is present. One general definition of the EDL is 
[4] “An electrical double layer is a non-homogeneous region of finite thickness 
containing significant variation in charge density across its thickness which conse- 
quently produces a potential drop across this dimension; the non-homogeneity 
invariably arises as a consequence of the competition between entropy and energy 
effects in the system’s attempt to minimize its free energy”. 

The EDL plays an important role in the electrical behavior of semiconductor and 
electrochemical systems. The latter can include single crystals with intrinsic disorder 
and/or aliovalent doping, polycrystalline or composite solid electrolytes, fused salts, 
aqueous solutions, colloids, membranes, and even living cells. The interface at which 
an EDL appears may be that between the conducting material and air or vacuum 
(the resulting EDL is known as a Frenkel layer in solid materials); it may be an 
internal interface in the material; or it may appear between the material of interest 
and an electrode. In this work, the main emphasis will be on ionic EDLs in liquid or 
solid electrochemical systems with metallic electrodes, and more attention will be 
paid to unsupported than to supported systems. 

The EDL is often studied under essentially equilibrium conditions, achieved by 
the use of a completely blocking (ideally polar&able) electrode. Because there have 
been many reviews dealing with the EDL [e.g., refs. 4, 5 (and references therein), 6 
(contains a listing, often with some evaluation, of all major reviews to the date of 
writing), 7 and 81, the present discussion is selective rather than exhaustive, dealing 
with a birds-eye view of a few specific areas and emphasizing still unsolved 

problems. 

(II) THE EQUILIBRIUM DOUBLE LAYER 

To begin with it is worthwhile to make some distinctions between various types 
of equilibrium EDL models (m): continuum (c) or discrete (d) models and primitive 
(p) or non-primitive (n) (civilized?) models. In recent years a primitive model has 
come to mean one in which the solvent molecules are replaced by a dielectric 
continuum with dielectric constant e,. The ions may be treated in the continuum 
approximation (a continuum primitive model: cpm) or discretely (dpm). Thus the 
cpm is a full cm. In contra-distinction, the nm is a full dm since both solute ions 
and solvent molecules are treated discretely, with the molecules usually taken as 
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having permanent dipole moments (usually of inifinitesimal length: i.e. ideal point 
dipoles). If more than one conceptually different part of the EDL is defined, these 
characterizations may need to be applied separately to the individual parts, adding 
further complexity. 

(II.a) Continuum models 

The earliest models of the electrochemical EDL involve several simplifying 
assumptions. First, a continuum approximation is made: mobile ions are taken to be 
of infinitesimal size and their charge is smeared out, eliminating all ionic discrete- 
ness effects. Only quantities averaged over planes parallel to the electrode thus 
appear. Second, the solvent is represented by a uniform dielectric constant es, often 
taken as the bulk value of the solvent material, ea. Thus one is dealing with a cpm. 
Finally, the charge on the (metal) electrode, taken flat and smooth, is assumed to be 
confined to the electrode surface plane (ESP), a region of zero thickness. Thus the 
character of the electrode, assumed to be a perfect conductor, plays no role in the 
response. Progress in double layer theory has involved the gradual transcendence 
and elimination of these idealizations as more and more interactions are included in 
the analysis. 

The prototype theory embodying the above assumptions is that of Gouy [9] and 
Chapman [lo]. A very important quantity which is often used to characterize the 
equilibrium EDL is the total differential capacitance of the system, Cr, usually 
expressed as capacitance per unit area of electrode, a practice we shall follow here 
by generally suppressing the distinction between total capacitance (or charge) and 
capacitance (or charge) per unit area, the more significant theoretical quantity. For 
a diffuse layer with total net charge Qd and a total potential difference across it of 
Gd, the corresponding differential capacitance, Cdl, is just - dQd/d#a. This quantity 
may often be determined from measurements and is easy to calculate from the 
Gouy-Chapman (GC) theory. Unfortunately, theory and experiment only approach 
good agreement in the limit of small ionic concentration. 

The next major advance in the area was made by Stem [ll] who took some 
account of finite ion size by introducing the assumption that the distance of closest 
approach to the electrode of the diffuse layer ions (taken of equal size, diameter 2ri) 
is ri, the distance between the centroid of ionic charge of ions nearest the electrode 
and the ESP. Finite ion size was, however, neglected in the rest of the diffuse layer. 
This model, the GCS, is perhaps most appropriate for solid electrolytes at relatively 
low ionic concentration. For liquid electrolytes, however, diffuse layer ions nearest 
the electrode are solvated (in the absence of specific adsorption), and it is thus 
usually assumed that there is a single layer of solvent molecules between the nearest 
ions and the ESP [12,13]. In later work [14], it was assumed that the ESP lies 
somewhat inside the physical surface of the metal to account for field penetration 
into the electrode, adding a small additional increment (d,) to the effective 
electrical thickness of the charge-free inner layer next to the electrode. The outer 
Hehnholtz plane (OHP) marks the boundary between this layer and the diffuse 
space charge region. 
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Fig. 1. Schematic representation of the EDL (reprinted by permission of John Wiley and Sons, Inc., 
copyright 0 1967 [6,15]). 

In the presence of specific adsorption (defined in crude terms as the existence of 
partly chemically bound solute ions located as close to the ESP as allowed by steric 
constraints), even the completely blocking situation is more complicated. Specifi- 
cally adsorbed ions have lost their solvation shells in the direction of the electrode 
so that the effective distance between the ESP and the charge centroids of such ions, 
located at the inner Helmholtz plane (IHP), is d, + r,. The situation is shown 
diagrammatically in Fig. 1 and with pertinent quantities defined in Fig. 2 (see refs. 5 
and 16 for justification and more detailed discussion of the EDL model implied by 
this figure). In Fig. 2 the ES are local dielectric constants (generally much smaller 
than es because interactions in these planar regions are quite different from 
ordinary bulk-material interactions); the us are charges per unit area; and the 4s 
are local potentials. It is quite clear from Figs. 1 and 2 that the EDL in liquid 
electrolytes is far from being just a simple two-component layer made up of the 
diffuse region and compensating charge on the electrode, When specifically ad- 
sorbed ions are of appreciably different sizes than solvent molecules, the model 
must be made even more complex [5]. 

ESP IHP 
I I 

Fig. 2. Definitions of various quantities in electrode-interphase region of the EDL [5,16]. 
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(II. a. 1) No specific arisorption 
(a) Ear& work. In the absence of adsorption the GCS model predicts that the 

total differential capacitance, Cr, is related to the inner layer capacitance, C,, and 
the diffuse layer differential capacitance, Cd,, through the equation 

C,’ = C,’ + C,-’ 

where y may be taken zero and C, = Cs in Fig. 2 for this situation. Thus if CT is 
derived from quasi-equilibrium measurements and C,, is calculated from an ap- 
propriate theory, C, may be obtained. Note that in the present situation CH should 
be concentration independent. No geometric capacitance, Cs, need appear in eqn. 
(1) because we are concerned only with single-electrode effects here. Now modem 
analysis of the electrochemical EDL may be said to have its inception and 
underpinning with the work of Grahame, especially his careful and accurate 
measurements on NaF in an aqueous solvent for a range of temperatures, applied 
potentials, and electrode charge [17,18]. NaF is particularly appropriate because it 
shows less specific adsorption on anodic polarization than most other solutes. 
Grahame used ordinary GC diffuse layer theory and eqn. (1) to derive C, as a 
function of the above variables; some of his results are presented in Fig. 3. It is 
particularly noteworthy that C, is very far from being independent of electrode 
charge, a,( = -cd), and temperature. It is the detailed structure of CH which leads 
to much of the interest and challenge in understanding the equilibrium EDL. 

Some of Grahame’s NaF Cr data are presented in Fig. 4. The dashed line shows 
a fit using GC diffuse layer theory alone. It is clear that it is inadequate and thus the 
effects of an inner (or compact) charge-free region must not be neglected. The first 

-.-. -. T.0.C 

_ -.-.-_. T, 25.C 
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--- T=65’C 

- T.65.C 

20 - 

16-, , , , , , , , , ,- 
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Fig. 3. Differential capacitance of the inner layer, cI = CH, vs. electrode charge (q = CT,,,) (reprinted with 
permission [5,14]). Data calculated by Grahame [17,18] from his experimental results using a dropping 
mercury electrode and assuming no specific adsorption. 
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vo I v 
Fig. 4. Total differential capacitance of the EDL, d 3: CT, vs. applied p.d., Vc = +,, based on data of 
Grahame [18] and showing diffuse layer fit (- - -). 

full analysis of the Grahame C, data was produced by the present author [13] and 
was later improved and extended [14]. The first treatment was carried out com- 
pletely in the spirit of the continuum approximation and involved the assumption of 
dielectric saturation in both the diffuse layer and the inner monolayer of water 
molecules next to the electrode. In addition, compression of this monolayer under 
the high electric field in the inner region was included as well. Such electrostriction 
leads to a dependence of inner layer solvent number density on a,. A defect of this 
kind of approach, however, beyond its neglect of discreteness effects, is the presence 
of several semi-macroscopic parameters, applied to a microscopic situation, along 
with the necessity of determining some parameter values from the data themselves 
rather than from other independent measurements. Nevertheless, good fitting results 
were obtained using physically reasonable parameter values, shedding some light on 
inner layer behavior. The separate effects of dielectric saturation and layer compres- 
sion are illustrated in Fig. 5, as well as the overall fit obtained for cathodic 
polarization when both effects are present. 

The approach of ref. 13 was improved in various ways in ref. 14 and fitting 
carried out for a variety of temperatures. An important improvement over the 
earlier phenomenological calculations of inner-layer dielectric saturation was the 
treatment of the dielectric behavior of the inner layer in a somewhat more discrete 
fashion by approximating the water molecules as point dipoles able to rotate 
continuously under the influence of the effective electric field. But only average 
dipole behavior was treated, still a cm. In addition, imaging of dipoles in the 
electrode (single imaging) or in the electrode and the diffuse layer (infinite imaging, 
also called conductive-conductive imaging) was considered, as well as the presence 
of a “natural” field causing the dipoles to line up more in one direction than others 
even in the absence of applied fields (i.e. at the ECM potential, 4, = V, = 0, the 
point of zero electrode charge, pzc). Some possible sources of this field have been 
discussed in refs. 6 and 14, and the presence of such a natural field or potential has 
often been independently suggested since the earlier work (e.g., refs. 19, 20). 

A weakness in the ref. 14 inner layer model is its neglect of dipole-dipole 
interactions; in addition, the assumption of arbitrary dipole orientations may be less 
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Fig. 5. Comparison of Grahame 25 o C NaF Cd’ E CT results with continuum theory, showing effect of no 
compression and no dielectric saturation (n = b = 0), no compression ((Y = 0), and saturation and 
compression both present [13]. 

realistic in some real situations than the assumption that only a few orientations are 
possible. These matters will be discussed further below. In spite of the model’s 
apparent weaknesses, it yielded excellent agreement with Grahame’s data, better 
overall than that of any later treatments. Results are presented in Figs. 6 and 7; here 
curves for different concentrations have been successively displaced for clarity of 
presentation. The effects of some of the main physical processes included in the 
model are summarized in Fig. 8. The discrepancies apparent at appreciable positive 
potential differences (p.d.s) may arise from the presence of specific adsorption of F 
ions, behavior not included in the theory. 

(b) Dipoles in the inner layer and the Cooper-Harrison “catastrophe”. There have 
been many treatments of the inner region of the EDL which approximate it as a 
single layer of solvent molecules whose electrical effects are modelled by point 
dipoles with n orientational states allowed. We have already discussed the early 
n = 00 case [14], one which led to very good agreement with experiment over wide 
ranges of concentrations, temperatures, and applied potentials. At about the same 
time, Watts-Tobin [21] independently treated the n = 2 situation, although his 
comparisons with experiment were far less extensive. In addition, n = 3 [22] (with 
the effect of surrounding dipoles replaced by a mean field) and n = 4 [23] state 
models have been investigated. Weshall not discuss these and other dipole models 
in depth because this has recently been done by Marshall and Conway [24], and by 
Marshall [25] in great detail. 
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Fig. 6. Comparison of Grahame 0°C CT results with continuum theory (reprinted with permission 

[5,141). 

One of the major problems in many of these studies, besides that of determining 
the most appropriate value of n to use, is how to take dipole-dipole interactions 
into account properly. One approach, an extension of the n = 00 theory discussed 
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Fig. 7. Comparison of Grahame 85 o C CT results with continuum theory (reprinted with permission 

[5,141X 
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Fig. 8. Summary of main phenomena influencing CT in the continuum theory [l]. 

above, includes both induced and permanent dipole moments (no explicit dielectric 
constant introduced) and treats interactions approximately but self-consistently by 
means of a modified cutoff disk method (to be discussed below for the specific 
adsorption case), including some dipole imaging [6,26,27]. Mean field and other 
approximate statistical mechanical treatments of interaction have been used by 
some, but Schmickler [28], in connection with a recent investigation of models with 
different ns and of a cluster model, concluded that “the strength of the dipole-di- 
pole interaction precludes the use of simple approximations like the mean field 
approximation” [29]. Further, he found, on the basis of an approximate Monte 
Carlo treatment of a monolayer of point dipoles, that the n = cc model with exact 
dipole interactions for nearest neighbors and mean field interactions beyond, was 
much superior to those with n = 3 and n = cc with more approximate interaction 
relations [29]. 

In 1975 Cooper and Harrison [30] pointed out that the n = 2 dipole model could 
lead to non-physical negative differential capacitance values for reasonable values of 
the relevant parameters of the model. Much attention has been directed since then 
at this Cooper-Harrison catastrophe (CHC) [31], and numerous papers have been 
devoted to discussing and even explaining it. It has been ascribed, for example, not 
to an incorrect method of calculation but instead to the approximation of real 
molecules as point dipoles [28]. Another recent paper concludes that the CHC is 
avoided if the dipole-dipole coordination number is greater than 14.5 [32]! Never- 
theless, the CHC is a non-problem, a pseudo-catastrophe arising from an error in 
elementary electrostatics. Again we need not discuss the matter in detail because 
that has recently been done, for various values of n, by Marshall and Conway [24]. 
Here it is sufficient to summarize and extend their conclusions somewhat. 

These authors have pointed out that the CHC disappears, for all the models 
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considered, when (i) calculations ensure the continuity of dielectric displacement 
across the electrode/inner-layer interface; when (ii) dielectric displacement continu- 
ity is maintained across the inner-layer/solution interface; and when (iii) continuity 
of the potential is ensured between the inner layer and the solution. Although 
Marshall and Conway point out that the n = cc treatment of Macdonald and 
Barlow [14] does not involve a CHC because the proper continuities are maintained, 
they did not mention that this was also the case in even the 1954 phenomenological 
treatment of the EDL by the present author [13]. The matter may be closed, it is to 
be hoped for good, with the following quotation from p. 27 of the Marshall thesis 
[25]: “The importance acquired in the literature by the catastrophe since publication 
of ref. 16 (the present ref. 30) suggests that Cooper and Harrison and subsequent 
authors were unaware of the purport of the earlier work of Macdonald and Barlow 
(present ref. 14)“. 

(II.a.2) Specific adsorption 
Consider Fig. 2 once more. Since the use of a dielectric constant (a semi-macro- 

scopic concept) at all in a microscopic region is a considerable approximation, it is 
usually scarcely worthwhile to distinguish between the quantities es and E? of Fig. 2. 
If one does not and takes their common value as E*, then C’= ~*/47r/3 and 
C, = ~*/4ay. Although these quantities should depend somewhat on a,, they are 
often taken independent of it in specific adsorption calculations. When they are, it 
turns out that a fully self-consistent expression for the total differential capacitance 
associated with the Fig. 2 model is possible [16]. Although this treatment has been 
explicitly developed for the aliovalent ionic single crystal situation (e.g., for AgBr), 
it applies as well to the liquid electrolyte case with suitable redefinition of the 
quantities involved [5]. 

The analysis first yields the more or less conventional expression [33], 

C,’ = C$ + C,-’ + C,i’ + (CY-’ + C,;‘)(da,/da,) (2) 

which is often presented without the C,;’ terms. Here, C,, = -du,/d#,. But the 
ratio (du,/du,) may be expressed as 

(du,/du,,,) = (C,-’ - CT’) C, (3) 

where C, = -du,/d$,. The presence of the CT’ term in eqn. (3) provides a 
feedback factor. When eqn. (3) is substituted in eqn. (2) and the result solved for 
CT’, one finds that the overall differential capacitance Cr is exactly represented by 
the simple electrical circuit of Fig. 9, a result necessarily contingent on the 
applicability of the Fig. 2 model but nevertheless not well known in the electrochem- 
ical area. When one assumes that the work of adsorption does not involve the 
transport of the ion to be adsorbed through the diffuse layer, C, may be defined 
as - du,/d(+, - qd). One then finds C$’ = Ci’ + (C, + C,,)’ + C,;'/(l + C&;‘), 
a result which does not lead to a simple equivalent circuit made up of capacitors in 
series and parallel like that of Fig. 9. 
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Fig. 9. Exact equivalent circuit for CT associated with the model of Fig. 2 [16]. Here $ = J//V,, where 
VT = kT/e, the thermal potential. In addition, CD0 = C,,. 

To apply the Fig. 9 circuit self-consistently, one must also use the simple 
equations which follow from ordinary electrostatics with continuity of dielectric 
dispacement and relate E,, a, and $,, #,, I/J,, [16]. In addition one must introduce 
an adsorption isotherm, u,(JI,), which relates the amount of (average) adsorption to 
the (average) local potential at the IHP and so yields an expression for C,(#,). 
Finally, some model of the diffuse layer must be used to provide an expression for 
the potential-dependent diffuse layer differential capacitance C,( Gd) = C,. Some 
specific choices for these sub-models will be discussed in the next section. Note that 
it is unnecessary to iterate to obtain full self-consistency for the Fig. 9 circuit if one 
considers Ga as the known variable [16]. It is worth emphasizing that Fig. 9 shows 
that it is improper to take C, and C, in series electrically when C’ is non-zero, as 
has sometimes been suggested. The requirement of self-consistency in the present 
approach clearly leads to a more complex situation. When an expression for C,, is 
available, comparison of experimental C, data with Fig. 9 circuit predictions should 
allow C’ to be calculated as a function of a,,., or a,. Such results, in turn, may then 
be used to calculate the adsorption isotherm a,(#$). Finally, recent work shows that 
when the Fig. 9 circuit is applicable for potential-independent C’ and C,, it also 
applies when these quantities are potential-dependent and are defined as differential 
capacitances. 

(II. b) Discreteness and ion size effects 

In this section I shall discuss EDL approaches and models where the discreteness 
of ions and, later, solvent molecules is recognized and at least partly accounted for. 
In such treatments the finite size of these entities is not wholly neglected as it is in 
say the GC model. In the most discrete of the models to be considered, the nm, 
where the ions and molecules can move freely under the influence of their mutual 
interactions and a field arising from charge on the electrode, no explicit inner layer 
needs to be introduced. In the most general treatment, instead of using a separate, 
often ad hoc, adsorption isotherm, which may or may not be appropriate, the 
absence or presence of adsorption should be a consequence of the basic general 
equations governing the ensemble. 



(II.b.l) Three-dimensional lattice-gas model 
One approximate way to take some account of finite ion size is to require that 

mobile charges only occupy sites of a three-dimensional lattice whose lattice 
parameter is determined by the effective diameter (p. 97 of ref. 6) of the ions 
(usually taken the same for cations and anions). Such lattice-gas models (lgm) have 
proved useful for liquids even though they involve more order than actually present. 
Intuitively, one might expect the lattice to approximate the close packing of ions 
which tends to occur near the electrode in liquid electrolytes at high applied fields 
and to have little or no effect far from the electrode where charge density is low. 

A lgm has been developed and applied primarily to aliovalent alkali halide single 
crystals [16], a situation for which the lattice assumption is fully warranted. It 
involved “non-interacting” lattice gas statistics for the mobile charges. Thus the 
only interactions between them arise from the constraint that they can occupy only 
available sites. Each site is therefore either “empty” (filled with a solvent molecule) 
or is occupied by a positive or negative entity. Except for this constraint, this lgm is 
essentially a cm since it involves ea, rather than the discrete electrical effects of the 
individual solvent molecules, except in the inner region (see Figs. 2 and 9). It can be 
applied as an approximate model for the EDL even for liquid electrolytes and 
includes the possibility of specific adsorption arising as an integral part of the 
analysis. For comparison, note that the CG theory is that of an ideal-gas model 
(igm), one involving non-interacting charge carriers of infinitesimal size. 

It is interesting to note that the lattice gas statistics of the above treatment lead 
to an expression for average ionic concentration as a function of the average 
potential at the point in question which may be identified as a three-dimensional 
Langmuir isotherm [16]. In addition, the analysis assumes that there are a limited 
number of single-occupancy surface lattice sites available for ions (specific adsorp- 
tion sites in the liquid electrolyte situation). Then Gibbs free energy minimization 
yields an adsorption isotherm of exactly the form of the usual two-dimensional 
Langmuir isotherm. Under reasonable conditions the dependence of a, on +!J, is of 
the tanh form, essentially the same form as the polarization charge of the two-state 
model of point dipoles in the inner layer [24]. Thus, the possibility of confusion 
should not be overlooked. When the lgm results are used to quantify the elements in 
the Fig. 9 circuit, C, may be readily calculated. Thus far, however, calculations and 
results have been presented [16] which are most appropriate for the single crystal 
case rather than for aqueous electrolytes. It is worth mentioning, however, that 
without the separate introduction of a natural field, adsorption is not zero at the pzc 
and a large region is found where u, depends linearly on a,, as illustrated in Fig. 10. 

(II. b.2) Specific adrorption and the modified cutoff disk method 
Thus far we have considered $,, the potential which is associated with specific 

adsorption at the IHP, to be an averaged, local potential. But it has long been 
recognized (e.g., refs. 34 and 35) that the actual potential which “produces” 
adsorption is that at the adsorption position in the absence of the adion itself, a 
micropotential. A great deal of effort has been devoted to calculations of such 
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Fig. 10. Adsorption isotherm for the lgm; Q, and Q, are normalized adsorbed charge and charge on the 
electrode, respectively [16]. 

quantities as the micropotential, which are associated with charge discreteness, and 
the area was reviewed through 1966 in ref. 6. More recent work, particularly on 
specific adsorption, has been discussed recently by Marshall [25]. When the micro- 
potential, rather than the average potential, is used in an adsorption isotherm such 
as that discussed above, more realistic results will be obtained. One approximate 
method of micropotential calculation is the use of the Grahame cutoff disk model 
(gcdm [36]). Charge adsorbed in the IHP is taken averaged, and a disk of radius r,, 
centered at the adsorption position, is taken free of charge, with r, determined by 
charge conservation. The potential at the center of the disk, an approximation for 
the micropotential, is then relatively readily calculated, even in the presence of 
single or infinite imaging. 

In the more accurate modified cutoff disk method (mcdm [6,27]), the radius of 
the disk, rb, is taken to be a more complicated function of adion number density 
than in the Grahame case. This allows the approach to yield virtually exact 
micropotential estimates in the two limiting occupancy regions: that where the 
adions are sufficiently close to each other that Coulomb repulsion ensures that they 
lie on a hexagonal array, and that where they are so far away from each other on the 
average that they may be taken as moving independently and are randomly ordered. 
Thus tedious lattice sum calculations are avoided. 

Results for the normalized mcdm radius, R, = r-,//3, vs. the normalized hexago- 
nal array nearest neighbor distance, RI = t-,/P, are presented in Fig. 11 for a 
particular situation. Since no accurate values of R, are available in the transition 
region, several empirical bridging curves are shown; of these, curve b is probably 
most appropriate. Future Monte Carlo studies should allow this part of the curve to 
be well determined. Note that R, is temperature dependent; in particular, the R, 
values where the transition region begins and ends depend directly on temperature. 
The dashed line in the figure, the normalized Grahame prediction, is clearly much 
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Fig. 11. Normalized disk radius, R,, vs. normalized hexagonal lattice spacing, RI, for the modified 
cutoff disk method. Quantities normalized with the distance fi (reprinted by permission of John Wiley 
and Sons, Inc., copyright 0 1967 161). 

less accurate over the available occupancy region than is that of the mcdm. In recent 
work on the depolarization of adions arising from their neighbors in a plane [37], 
the gcdm and lattice sum calculations were separately employed to calculate the 
micropotential instead of using the simpler mcdm approach. 

A serious, largely unsolved problem with usual micropotential calculations in the 
liquid electrolyte area, including those discussed above, is that it is likely to be a 
poor approximation to represent the solvent molecules in the neighborhood of 
adions by just a small field-independent dielectric constant, as above, or even by 
one which decreases with increasing field. The discrete effects and interactions of 
both adions and solvent molecules in the inner layer should be simultaneously 
accounted for, with the molecules at least replaced by hard spheres with permanent 
embedded point dipoles. An approximate mean field calculation of these effects has 
been carried out recently by Marshall [25], but the results are unsatisfactory, 
probably in part because of the inadequacy of the mean field approach. Altema- 
tively, some recent work [38,39] on adsorption isotherms has considered dipole 
effects and adion interactions more from a continuum standpoint. Incidentally, 
when the adsorption capacitance C, is defined as - duJd+i, where $,, the micro- 
potential, is used in place of the average potential JI,, the simple Fig. 9 circuit for 
C, still applies, with an effective C,, when the micropotential parameter A [6] is 
taken charge independent. 
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(II. b, 3) Discrete primitive model and electron overlap 
In this model the ions are represented by charged hard spheres, the solvent as a 

medium of uniform dielectric constant cs, and no inner layer is included. The model 
thus applies only to the diffuse region of the EDL and is more applicable to fused 
salts, and possibly solids, than to liquid electrolytes. It has been analyzed in recent 
years through the use of sophisticated statistical mechanics, often involving com- 
plicated, though approximate, integral equations in an attempt to account properly 
for ion-ion interactions. Recent reviews [8] contain summaries of the approaches 
and references to much of the work in the field. Unfortunately, because of the 
complexities of the analysis it has generally been impossible to extend results to the 
region of large electrode charges and applied potentials. The results of the various 
theories, all using z, = ~a (taken as 78.5 for water at T = 298 K), have been 
compared with Monte Carlo simulations of Torrie and Valleau [40,41]. These 
comparisons show that while the gem is relatively poor, good fitting is found for 
several of the statistical theories, at least over the limited range for which they yield 
results. Henderson [S] has pointed out, however, that the present model is mainly of 
theoretical interest because it is insufficiently realistic. 

Recently the quantum mechanical nature of the conductive properties of the 
metal electrode used in EDL experiments has been recognized and taken into 
account explicitly [8,19,42,43]. The main effect is electron spillover from the metal 
into the solution, with such spillover being slightly sensitive to the direction of the 
field in the region next to the electrode [43]. Because of spillover the effective ESP 
lies in front of, rather than behind, the physical surface of the electrode. For the 
inner layer picture, such overlap thus causes the thickness correction, d, of Section 
II.a, to be negative rather than positive. The theory is complicated, approximate, 
and involves several parameters, but its results indeed lead to better agreement with 
experiment than if d, is taken zero or positive [8]. 

(II.b.4) Modified lattice-gas model 
A model also applicable only to the diffuse region, like that above, is obtained if 

we add mean field corrections to the diffuse region solution obtained from the 
lattice-gas model of Section II.b.1. To do so, we add pair interaction energy terms of 
Coulomb form to the free energy of the lattice gas system and then minimize 
[44-461. These terms involve a dimensionless parameter (Y which measures the 
strength of the interaction. It is positive for repulsion between charges of the same 
sign, and its presence renders charge calculations implicit, requiring iterative solu- 
tion. Figure 12 shows results for several values of a compared to both the gem and 
the Monte Carlo results mentioned above. The dotted vertical line marks the limit 
over which the dpm discussed above has been compared for the same one molar 
situation. Clearly, this model has not been tested against the Monte Carlo results 
over much of their range. On the other hand, the present model, marked LLGM in 
the figure but designated mlgm hereafter, yields excellent agreement over the full 
available range when a = - 3, agreement to better than a single standard deviation 
of the simulation results. The mlgm is also far simpler to use than any of the 
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free-ion statistical approaches of the dpm, yet applies even up to the saturation 
region. As Henderson [8] has remarked, finite-size ion packing effects become 
important even when the packing is only about a tenth that of a close-packed 
monolayer (see, e.g., the dependence on 8 in the present Fig. 11). Although the 
mlgm is more averaged than the dpm, it seems much superior for use in the diffuse 
region if one assumes that the Monte Carlo results in fact well represent the actual 
situation there. 

The magnitude of (Y found above is far smaller than that for full Coulomb 
interaction because most of the necessary Coulomb interactions have already been 
implicitly incorporated in the solution through the local satisfaction of Poisson’s 
equation. The negative sign of a! implies, in fact, that Poisson’s equation overcom- 
pensates the interaction slightly, requiring the addition of a small residual attraction 
between ions of like sign [44]. Fits have also been carried out between the present 
model and Monte Carlo results for M = 0.1 and 0.01 as well as the present M = 1. 
Although there are fewer simulation results available for the lower concentrations, 
good fits were also obtained for these concentrations with (Y = - 3, independent of 
concentration as expected from mean field theory, but such fits required that the 
basic lattice spacing parameter of the model increase slightly with decreasing 
concentration. These results thus suggest that the approximation of a fluid situation 
by a lattice model is improved by an increase in lattice step size at low concentra- 
tions. 
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(II. b.5) Non-primitive model 
In this fully discrete model (the run), the ions are taken as charged hard spheres 

and the solvent molecules also as hard spheres but with embedded permanent point 
dipoles. The dipoles are assumed to be fully orientatable, the n = cc situation. No 
explicit inner layer region is included, or needs to be included, in this model. 
Unfortunately, no simulation results for this system exist, probably because of the 
strong interactions present which are not reduced by the factor l/r, as they are in 
the pm. Although this is possibly the most realistic model thus far considered for the 
EDL, it is still appreciably idealized. In particular, the actual steric interactions in a 
real system are more complex than those represented by hard spheres; point rather 
than more realistic finite-length dipoles or multipoles are considered; no induced 
polarization of molecules and ions is included; specific adsorption is not included; 
and no imaging is present. 

Recent work on the nm has been discussed and summarixed by Henderson [8]. 
The statistical mechanical problem presented by this model is very difficult, even 
when all interactions are not included and a linear approximation is employed. Even 
under these conditions, Henderson [8] has stated that the solution is “hopelessly 
implicit”. Thus far, results have only been obtained for low concentrations at the 
pzc. These results are in good agreement with experiment at this point when a 
negative d,, ascribed to electron spillover, is included. In view of the complexity of 
the model, its remaining idealizations, and the presence of very few disposable 
parameters, this is indeed a substantial achievement. 

(II. b. 6) Some layered lattice-gas models 
The lg and mlg models are pertinent only for single crystals when there are many 

crystal planes contained in a Debye length, L,. Only then is it appropriate to 
include the averaging over microscopic regions implicit in the use of a differential 
equation such as the Poisson equation, a continuum approach. Similarly, for a liquid 
electrolyte these models will only be reasonable approximations when L, is much 
larger than the ionic diameter, or lattice spacing when the lattice gas approach is 
used. But this condition is not necessarily satisfied for the local Debye length in a 
high-field region near an electrode where a very high concentration of ions of one 
sign is possible. It then becomes appropriate to replace differentials by differences 
and differential equations by difference equations, thus taking discreteness more 
into account. 

The above considerations led to the development of layered lattice gas models 
(llgm [45,47-501) for the EDL. Again a three-dimensional lattice, lattice spacing a, 
is employed with its (100) plane parallel to the electrode. Then the electrical effects 
of each plane in the lattice parallel to the electrode are considered individually, with 
appropriate electrical continuity relations maintained from plane to plane. Each 
plane is thus treated as a two-dimensional lattice gas, and electrical conditions in 
every plane are closely coupled in an overall self-consistent way to those in 
adjoining planes (and so to those in all planes). Let A = a/L,,, where L, is the 
bulk Debye length. It was found that for A > 0.01, significant differences began to 
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appear between the lg and llg models. Of course as A approaches zero the two 
models approach full equality. In actual calculations with the llgm, double, nested 
iterations are needed to achieve self consistency. First, iteration is needed for each 
individual layer to find its self-consistent average charge and potential; then an 
overall iteration is carried out to ensure electroneutrality for the entire system. We 
generally extended this iteration until the local potential for the ith layer was less 
than lop6 of the applied electrode potential, yielding a very good approximation to 
electroneutrality. Incidentally, an analytic solution with no iteration necessary 
applies in the weak field limit. 

Three different llgms have been developed. The first and simplest involved only 
ions in each plane, with the solvent represented by es in the usual pm fashion. It was 
found that this model could fit the Monte Carlo diffuse layer simulation results very 
well at all three available molarities without the need for the mean-field correction 
of the mlgm. Unfortunately, however, the parameters derived from the fits were 
somewhat anomalous [45]. The second llgm model [47,48] represented an initial 
attempt to take the dielectric effects of the solvent molecules into account in a more 
realistic way. Their polarizability was represented by a small dielectric constant em, 
taken as 6 for water, and the effect of their permanent dipole moments by an 
approximate continuum treatment of saturable finite-length dipoles. A statistical 
mechanical free energy minimization was carried out to determine the (average) 
occupancy of each lattice site by a positive or negative ion or by a molecule. Thus 
while the first llgm was primitive, the second represented a step toward a non-primi- 
tive model treatment. 

Although no explicit charge-free layer of solvent molecules is necessarily present 
in any of the lgms, they nevertheless inherently involve a small charge-free inner 
layer since the first plane of the lattice next to the electrode is a distance of r, 
(= a/2), or r, = ri + d,, away from the ESP. In this sense they are thus approximate 
theories of the entire EDL, not just the diffuse layer alone. It was found [48], 
however, that the second llgm nevertheless yielded appreciably too high C, values 
at the pzc, as compared to experimental results [17,18], when the separation r, was 
employed. Even worse results would be obtained if r, were to be used with d, 
negative because of electron spillover. On the other hand, excellent agreement with 
the data was found if d, was taken as 2.9 pm (with e, = l), thus adding to the 
effective thickness of the inner layer. It is not entirely clear why additional thickness 
should be needed, but the causes are likely to be one or all of the following: intrinsic 
problems with the lattice-gas approximation, inadequate treatment of the effects of 
the multipole moments of the solvent molecules, and, most important, the presence 
of some solvated molecules between the ions nearest the electrode and the electrode 
itself. 

The third llgm [49,50] was developed to eliminate some of the approximations 
inherent in the second model. Solvent polarizability was handled either by the 
introduction of em or by the more discrete alternative of setting e, = 1 and taking 
the polarizability of the individual solvent molecules non-zero. The effects of the 
permanent multipole moments of the solvent molecules were approximated by 
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actual orientatable finite-length dipoles with n = 00 and some interaction effects 
included, a discrete, and considerably more complicated, treatment. Again an inner 
region different from the rest of the material was needed for agreement with 
experiment at the pzc. Here, however, in keeping with the more microscopic and 
discrete character of the approach, we took the first layer of the llgm as having 
finite-length dipoles with the bare dipole moment of water, rather than a higher 
value which would help account for cooperative effects and is used in the other 
planes to yield the proper dielectric properties of the bulk. Little difference in 
results was found at the pzc whether we took this first layer charge-free or allowed 
ions to compete with dipoles for site occupation. 

One of the most interesting results of this third llgm was that very little effective 
dielectric saturation is predicted as compared to more conventional treatments using 
continuum or point dipole approaches. In particular, it turns out that for the present 
finite-length dipole case it takes a field ten times or more higher to produce the 
same amount of saturation as that obtained with a smaller field in conventional 
approaches. To the degree that these results are applicable to real situations, they 
suggest that little dielectric saturation will occur in actual situations in the region 
near the electrode and that it can be completely neglected elsewhere. 

Next it is of interest to present results of this treatment for the occupancy and 
saturation of the first layer of the full many-layer llgm. Figure 13 shows, as a 
function of normalized applied potential and for two different molarities, how the 
occupancy of dipoles decreases and that of ions increases as the potential increases. 
Figure 14 shows, for a concentration of 1 mol 1-l and with a smaller permanent 
dipole moment than that used in Fig. 13, how the amount of saturation depends on 
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potential for both the competing ions and the dipoles. Here Q,, the effective 
normalized dipole charge, measures the effects of both orientation and dipole 
concentration, and Q_ is the maximum possible normalized charge density. For 
the experimental range of normalized potential, up to 10 or 20, neither the ions nor 
the dipoles are close to their maximum saturated values. Finally, it should be 
mentioned that several of the present llg models have recently been compared [51] 
with a cutoff disk non-lattice-gas theory [52], a theory which attempts to unify inner 
layer and diffuse layer treatments. The third llgm discussed above is more discrete 
and likely to be more accurate than such a cutoff disk theory, and, in addition, it 
allows calculations to be made far away from the pzc, unlike the complicated 
integral-equation non-primitive models discussed in Section II.b.5. 

(II, b. 7) Conclusions 
Now that the EDL territory has been covered in a bird’s_eye view, what 

conclusions can we draw? First, it seems apparent that the integral-equation 
statistical treatments are too complicated and too limited in applicable charge or 
p.d. range to be of practical usefulness. Second, the results discussed suggest that in 
all real situations the present mlgm is entirely adequate to describe the diffuse layer 
over the entire available experimental p.d. range. Further, this lattice gas model is 
relatively simple mathematically and can be expressed in terms of an implicit 
closed-form equation for local charge density. But there are still serious outstanding 
problems for the inner layer, the first layer of molecules and possibly ions next to 
the electrode. 

Results obtained by many workers in this field allow us to reach, with consider- 
able certainty, the following negative conclusions. The approximation of taking 
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solvent molecules as point dipoles with n states (n arbitrary) is inadequate. The use 
of even finite-length dipoles is often inadequate, and higher multipoles are needed. 
Mean-field or quasi-chemical approximate treatments of lateral interaction of 
solvent molecules are inadequate. A discrete treatment involving both near and far 
interactions is needed. Until the interaction problem can be better solved, it seems 
hardly worthwhile to devote much effort to distinguishing between two-, three-, and 
cc-state models with the solvent molecules taken as point dipoles. The situation is 
even worse in the presence of specific adsorption, and perhaps Monte Carlo 
treatments give most hope for the future. 

ACRONYM DEFINITIONS 

cm 

cpm 
dm 

dpm 
gcdm 
igm 
lgm 
llgm 
mlgm 
mcdm 
nm 
CHC 
EDL 
ESP 
GC 
GCS 
IHP 
OHP 

continuum model 
continuum primitive model 
discrete model 
discrete primitive model 
Grahame cutoff disk model 
ideal-gas model 
lattice-gas model 
layer lattice-gas model 
modified lattice-gas model 
modified cutoff disk model 
non-primitive model 
Cooper-Harrison catastrophe 
electrical double layer 
electrode surface plane 
Gouy-Chapman 
Gouy-Chapman-Stern 
inner Helmholtz plane 
outer Hehnholtz’plane 
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