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The equations governing the small-signal response of relaxing, nonresonant systems which may
be described by a distribution of relaxation times (DRT) and/or a distribution of activation
energies (DAE) are summarized and generalized and their implications discussed for several
popular distributions. Much past work, both experimental and theoretical, associated with
these distributions is discussed. A distinction is made between physically realistic distributions,
which involve finite shortest and longest relaxation times, and the usual mathematical
approaches which involve limiting zero and infinite relaxation times. The Lévy DRT, which is
of the latter character and which leads to the popular stretched exponential (SE) time and
Williams-Watts (WW) frequency responses, is inconsistent with a temperature-independent
DAE, reducing its range of applicability for a thermally activated situation. The SE-WW
response has been termed universal; it is not, both because of the above facts and also because
it does not lead to the often found symmetrical log-frequency response. Both Gaussian and
exponential DAEs can lead to both symmetrical and skewed results, and can involve either
temperature-dependent or temperature-independent DAEs. However, the Gaussian DAE does
not yield fractional power-law time or frequency response over a finite, nonzero range,
behavior found in nearly all distributed data. However, all DAEs involving exponential
probability densities do lead to such behavior and provide, as well, an explanation of the
temperature dependence of power-law exponents. In addition, it appears that the response of
systems involving an exponential DAE can fit that of virtually all previous models, including
the SE-WW, and thus can fit ail data for thermally activated systems which have been fitted by
these models. Problems in data fitting and many sources and types of ambiguity and their
resolution are discussed. Special attention is devoted to the distinction between parallel,
sequential, and hierarchical microscopic-model structure and response, and the various
different, but, surprisingly, equivalent ways the overall response can be represented
mathematically or by means of equivalent circuits of different connectivity.
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1. INTRODUCTION

The measurement and analysis of the smail-signal elec-
trical (or mechanical) relaxation of a dielectric or conduct-
ing material has a long history and has proven valuable in
elucidating and even quantifying the physical processes in
the material associated with the relaxation. Measurements
may be made in either the time (transient response) or fre-
quency (frequency response) domain. For smali-signal
measurements, where the response is linear, the same infor-
mation is contained in either type of result if they cover e-
quivalent time-frequency spans. Nevertheless, for both ex-
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perimental and analysis reasons, it is often more convenient
to measure in one domain rather than the other. When both
techniques are available, the total response span covered can
usually be extended by combining results from both do-
mains.

Analysis of relaxation resuits has often employed em-
pirical response functions such as those Cole and Cole' and
Davidson and Cole? introduced for analysis of dielectric re-
laxation frequency domain data. All reasonable response
functions, empirical or not, may be associated with a contin-
uous or discontinuous distribution of relaxation times
(DRT) (alist of acronym definitions is provided at the end
of this paper) function,® say G(7), where 7 is the relaxation
time for an elemental process in the material. This associ-
ation may only be a mathematical transform of no obvious
physical significance, or it may be associated with actual
physical processes leading to such relaxation times. When
the apparent DRT found from analyzing small-signal data is
very wide and temperature dependent, as it often is, the DRT
is likely to arise from a distribution of activation energies
(DAE). When the relaxation process response is thermally
activated (Arrhenius temperature response of the 7’s), the
response may be analyzed in terms of a distribution of bar-
rier heights, generally termed a distribution of activation en-
ergies,*’ although usually the distribution actually consid-
ered is that of the Gibbs free energy and enthalpies.*®
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We shall be primarily concerned here with the structure
more than the direct physical content of various approaches
to analyzing linear relaxation processes in the relatively low-
frequency region. The reason is that many different physical
theories can lead to virtually the same kind of response, an
ambiguity which usually requires more data to allow resolu-
tion than that present in single-temperature frequency re-
sponse, no matter how wide. Although we shall not consider
these microscopic-model to macroscopic-model theories in
detail, they will be referred to in pertinent places throughout
the paper, allowing the reader to follow up on those of partic-
ular interest. In addition, much relevant experimental work
will also be mentioned. Although it is not a requirement of
physical realizability that a DAE be temperature indepen-
dent, it is a likely and plausible first assumption to use unless
disproved by experimental results. It turns out’ that whileall
temperature-independent DAEs may be associated with a
DRT, not all DRTs lead to a temperature-independent
DAE. In fact, the DRTs of most of the empirical relaxation
fitting functions used in the past are inconsistent with such a
DAE, although much of the data analyzed with them did
involve thermal activation. In the present work, several such
inconsistent and consistent response functions will be dis-
cussed, various important ambiguities pointed out, and the
distinctions between different types of model structure and
response brought out and emphasized. We begin by general-
izing some standard continuum response equations in two
ways so they apply to either dielectric or conductive systems,
and include possible thermal activation effects associated
with energy storage as well as with dissipation. Next, various
important distribution functions—Pareto, Gaussian, Lévy,
and exponential—are introduced and compared in terms of
their associated response functions and fitting ambiguities.
Finally, various kinds of microscopic-mode!} structures are
discussed and compared to connectivities, structures, and
mathematical approaches commonly employed in analyzing
distributed-property materials.

1. DISTRIBUTIONS AND RESPONSE
A. General

For added generality, it proves useful®’ to represent the
relaxation frequency response associated with a single, pos-
sibly distributed, dispersion region of either dielectric or
conductive systems by means of a single, normalized, dimen-
sionless response function 7, (w), where w is the angular fre-
quency. To do so, first let us introduce the subscript j which
can take on the values ¢ (dielectric response) or Z (conduc-
tive response). Then let U, (w) represent either such kind of
response. Specifically then U, (») =Z (w), the impedance of
aconductive system, and U, («) =€(w), the complex dielec-
tric constant. The definition of I; (@) is then

I(w)=1]() +il](w)
={U(0) - U, 1/(Uy —U,). (1)
Here Upy=U;(0) and U;, =U;( ), and w— « indicates a
frequency region where the relaxation processes of interest

are too slow to follow a sinusoidal input in this frequency
range, not actual infinite frequency. Equation (1) is intend-
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ed to represent the response of a single, usually distributed,
relaxation process. When many such separate processes oc-
cur in different frequency ranges for a given system, several
I;(w) functions must be used, with the U, of the lowest-
frequency one equal to the Uy, of the adjoining process, etc.
Such response may involve ionic, dipolar, and/or electronic
processes or a combination thereof. Here we shall be general-
ly concerned with a relaxation frequency response range of,
say, 107*-107 Hz and primarily with a single dispersion re-
gion.

Now a relaxing system must both store and dissipate
energy. These processes at an elemental level may be concep-
tually represented in the electrical case by an elemental ca-
pacitor C and an elemental resistor R, respectively. The cor-
responding elemental relaxation time is 7 = RC; for it to be
thermally activated R, C, or both must be thermally activat-
ed. It is conventional to assume that only R is activated, but
there are instances where C may also be.® Toinclude all these
possibilities, we may write in the thermally activated case®

R; =R, exp(a,;E /kT) (2)
and
C, = C, exp(B,E/kT), (3)
SO
7, = R,;C,; exp[ (a; + B,)E /kT ]
=7, exp(y,E/kT). (4)

Here R; and C,; are temperature-independent quantities, E
is the barrier height or activation energy variable, , and §3,
are strength parameters which may possibly be temperature
dependent, 3; may possibly be negative, and y, =c; + ;. In
the conventional thermally activated case, one takes ; = 1
and §; = 0, the situation where R is thermally activated and
Cis not. In the absence of thermal activation, @; = 8; = 0, so
this case is included as well in the following.

Now we wish to obtain an expression for I] (w) which is
appropriate when both thermal activation and a distribution
of activation energies may be present simultaneously in ei-
ther a dielectric or conductive situation. Simplification of
earlier work® leads to

i & &)d
J (@) ___f exp(y; )f‘( yd¥% (5)
0 1+ iwr,
and
I (@) =J,(2)/7,(0). (6)

Here y,=f..xz=0a, and & =E /kT. The quantity F(&)
is a DAE function or probability density. Physically plausi-
ble F( &) functions should be normalizable. But note that all
finite-size linear systems with time-invariant physical prop-
erties should have a minimum relaxation time, 7,, greater
than zero, and a maximum relaxation time, 7_, less than
infinite.>'® Thus, we may take the realistic range of % in the
thermally activated situation as ,< & <& _ , where & ;>0
and & _ < oo. Outside this range F(# ) will be zero. Many
conventional response functions used in the past do not satis-
fy these conditions® although their response may not be well
distinguished from that of functions which do when com-
parison is made, as it usually is, over a rather limited fre-
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quency or time range. It should be emphasized that the actu-
al &, and ¥ _ quantities applying to a given dispersion
region and the 7, and 7, associated with them through Eq.
(4) are not necessarily the absolute minimum 7, and maxi-
mum 7 possible for the system but those that define a given
dispersion region, asin Eq. (1). Note that a zero value of &,
does not yield a nonphysical zero 7, (zero response time). It
is, of course, implausible to take & _ infinite since no real
finite-size system requires infinite energy for even dissolu-
tion. Although the use of sharp cutoff values of € ,and &
(and thus of 7y and 7, ) is likely to be only an approximation
in most real systems, it is certainly a good one in the frequen-
cy range considered here (no inertial effects included), and
is more realistic than the procedure often used in DRT or
DAE calculations of taking 7,=0 and 7 = o, and/or
#,=0and & _ = oo. Thus, the resulting DRTs often have
a finite relaxation time probability density for arbitrarily
large and/or small 7."!

Now by conservation of probability, we may set
G(7)|dr| = F(&)|d% |, and convert the DAE expression in
Eq. (5) to the new DRT result

o 8
J(w) = f 59 7
o 1+ iwT

where 6, =y,/7;. Although both dielectric and conductive
response are included in Eqgs. (5) and (7), it is important to
underline the basic difference in the two responses, particu-
larly when B, = O and there is then no thermal activation of
the energy storage process, the usual situation. Because 6,
involves &, in thej == Z conducting situation, and B, in the
J = e dielectric case, even when B, = O the value of §; in Eq.
(7) s different for the two cases, leading to important differ-
ences in response. For example, notice that 8, is zero in the
absence of thermal activation and also in the special dielec-
tric case when j = € and B, is taken zero. This is the usual
dielectric situation (only R thermally activated) and the au-
thor knows of no experimental results in this area for which
it would be necessary to assume that C is thermally activat-
ed, thus leading to SB.#0. For the conducting system
(j = Z) situation, on the other hand, thermal activation of
R alone leads to a nonzero y, = a, thus 8, 0 even though
B~ = 0. Experimental results for the temperature depen-
dence of the fractional frequency exponents usually found to
be present in small-signal frequency response data for con-
ducting systems usually require ., 0, consistent with ther-
mal activation of the dissipative processes present,’ a natural
requirement. Fractional-exponent temperature response is
further discussed in Sec. II E.

By taking a Laplace transform of I;(w), one readily
finds that the transient response, 4, (¢), of the system to a
step-function stimulus applied at ¢ = 0 may be written in
normalized form as®

Aj(t)/A}(O)=K](t)/K_,(O+ )1 (8)

where
Kj(t)_==_u0(t)J‘ rjs" ]G(Tj)exp( —t/7;)dr,, (9
(4]

and u, () is the Heaviside unit step function. This equation
may be transformed so that it involves & and F(#) in the
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same way that we passed from (5) to (7). The */”” subscript
will be omitted for simplicity from now on with the under-
standing that results can apply to either dielectric or conduc-
tive systems. Note that if F(&) is a temperature-indepen-
dent probability density, as is often likely, there is always a
plausible DRT associated with it, G(7), in the thermally
activated case.” When B;=0in Egs. (7) and (9), standard
results® are recovered and the response may or may not be
associated with a DAE.

It is sometimes suggested that the distribution functions
G(7) or F(# ) be derived from specific data rather than de-
riving them from analysis at the microscopic level, or by
using a form associated with a convenient and useful empiri-
cal response function such as that of Cole and Cole,' or by
assuming 2 DRT or DAE ab initio. There are two main rea-
sons why such an approach is generally impractical. First, a
functional form of G(7) involving only a few parameters is
easier to use than a many-point numerical definition. More
importantly, the deconvolution of an equation such as (9) to
obtain G(7) involves the inversion of the Laplace transform,
a notoriously unstable process.'” The problem is not particu-
larly helped by deriving G(7) through inversion of an equa-
tion such as (7) instead. It is well known that transient or
frequency response calculated using a G(7) is extremely in-
sensitive to the details of the G(7). Examples are given in
Refs. 11 and 13. Thus, the problem of obtaining G(1) even
when “many measurements are taken at very closely spaced
frequencies over a very large range of frequencies” is a recal-
citrant one since it *“‘greatly magnifies the inevitable experi-
mental errors.” ' Three different approaches to the problem
have been recently published,'*'® but it seems generally im-
possible to obtain a unique or closely defined G(7) from
ordinary experimental data. A corollary is that quite differ-
ent G(7)’s can often lead to the same time or frequency re-
sponse within normal experimental error. We shall discuss
specific examples below.

B. Pareto distribution and CPE response

The wusual Pareto DRT' may be written
G(7) = (7/7,) 7, with O<v<l, 7, 2 scaling factor, and
G(7) =0 for 7 <7,. When one considers the above G(m)
with such truncation, or without truncation, over the above
full 7 range, it is non-normalizable™® but leads to transient
response proportional to (z/7,) ~" and to frequency re-
sponse, at the impedance level for a conductive system and at
the complex dielectric constant level for a dielectric system,
of the form (iwr,)" ™. Since the ~0 and w — co limits do
not exist, the normalized response functions /() and 4(¢)/
A(0) cannot be given for this response. Nevertheless, it is of
great importance because very nearly all small-signal data
which involve more than a single relaxation time (i.e., nearly
all small-signal data) show a finite-length region of ¢ ="
and/or w” "' response. One form of such response in the
frequency domain has been termed that of a constant phase
element (CPE), a circuit element which is associated with
some kind of property distribution which leads to the above
G () form. The name CPE follows because the phase angle
is independent of frequency as long as (iw7,)* ' response
holds.*10:1®
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Some recent theoretical work leading to CPE response
appears in Refs. 19~22 and in the reference cited in the pres-
ent Ref. 9. However, many treatments do not limit CPE
response to a finite frequency range, necessary for physical
realizability. It is not well known that Schrama®® long ago
showed that the CPE with v = 0.5 could be related to an
infinite ladder network (see later discussion) with allthe R ’s
and C’s the same. He then demonstrated that in the contin-
uvum limit the response was completely analogous to that of
an infinite-length uniform transmission line, equivalent to
uniform diffusion in a right half-space. Similarly, for v#0.5
he first derived a discrete lattice network approximation and
then showed that in the continuum limit the response was
that of a specific nonuniform transmission line, or nonuni-
form diffusion. When v50.5, the resistors and capacitors in
the ladder network approximation show scaling behavior for
successive R s and C’s, with the R ’s increasing when v > 0.5
and decreasing for v < 0.5. The successive C’s show opposite
behavior. Still, another different model for the CPE was de-
veloped independently of Schrama’s work by Scheider.”* He
found that a CPE response could be modeled by various
kinds of branched (hierarchical) infinite ladder networks
with constant series resistance and parallel capacitance ele-
ments per unit length. In one type of network he replaced
each elemental parallel capacitance of the ladder network by
another branched ladder network. He also discussed branch-
ing of these first-order branches as well. He found that the
admittance of such systems involved CPE-like behavior with
discrete values of v for the range 0 < v<0.5.

As already mentioned, it is physically unrealistic for the
CPE response to extend to the extremes of time or frequency.
This problem may be avoided by defining a Pareto G(7) as
nonzero only over the physically plausible range
0<71eK7<T,, < w. Such a doubly truncated distribution
corresponds directly to a type of exponential DAE (EDAE)
when thermal activation is present, one which is discussed in
Sec. Il E. We shall further discuss the physical/statistical
rationale for these associated distributions in that section.

C. Gaussian distribution

The use of a Gaussian distribution for G(7) involving
the vaniable In(r/7 ), often called the Wagner distribution,
goes back a long time.”® So also does the corresponding
Gaussian DAE,*’ but it has been independently employed
recently’®! with the implicit or explicit assumptions 6, = 0
and 0<7< w0 or 0 < 7< 0. Note that a Gaussian distribution
has finite moments of all orders. Although the use of a full
Gaussian distribution in Eq. (5) formally requires the limits

— o and « for &, itisactually only necessary for the lower
and upper limits of & to be sufficiently smaller and larger,
respectively, than some central ¥ = & .(>0) that the
Gaussian function be negligible outside the resulting range.
Thus, when we speak subsequently of a Gaussian distribu-
tion it should be understood to mean such a truncated func-
tion with limits of & between and including 0 and « or a
lesser finite range. Because of the use of a logarithmic vari-
able in the Wagner distribution, a temperature-independent
F(#%) of Gaussian form leads to the Wagner G(7), also of
Gaussian form. But note that a Gaussian DAE (GDAE)
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may either be temperature independent or temperature de-
pendent.

A Gaussian distribution describes the behavior of a sum
of very many independent, identically distributed random
quantities. One physical model appropriate for the GDAE
situation is that where there is a Gaussian distribution of
barrier heights and the specific barrier seen by a particular
relaxor at a given instant arises from the sum of random
contributions from neighbors of the given relaxing entity,
these contributions are taken to be independent and thus
uncorrelated. Clearly, these assumptions will not always be
physically plausible for either dielectric or conductive sys-
tems. However, it is worth mentioning that Van Weperen et
al.* presented a theory in 1977 of dipole-dipole interactions
which predicted a very nearly Gaussian distribution of acti-
vation energies.

Since the present author has recently published a pa-
per”® where the predictions of a Gaussian F(# ), along with
a 6, parameter possibly not zero, together with a finite extent
for the Gaussian distribution, are explored in detail (general
GDAE), compared with corresponding predictions of a
general exponential distribution of activation energies situa-
tion (EDAE), and also used to analyze experimental data,
only a few general results will be mentioned here, It is found
thateven when @ = 0, responseresultsfor — 7 "(w) vs [ (@)
or vs log (@) may be unsymmetrical when the distribution is
itself unsymmetrical (limits not symmetrical about & .).
Much actual response data are indeed found to be unsymme-
trical, a result which does not generally follow from Eq. (5)
with a Gaussian F(&) in the conventional approach in
which &, is taken zero and & _ infinite. Further, and quite
surprising, it is found that even when 6, #0, exactly the same
kind of unsymmetrical response obtained with 6, =0 is
found but, nevertheless, this parameter may be estimated
from response data.

Finally, it should be pointed out that a Gaussian distri-
bution can never lead to power-law (¢/7,) " and
(iwTp)” ' behavior over a t or w range of finite length, even
when 6, #0, except, of course, at the extremes of frequency
where single-time-constant behavior dominates. Neverthe-
less, as shown elsewhere,>® the GDAE model can approxi-
mate power-law behavior for a limited frequency range and
thus Gaussian distributions should certainly not be eliminat-
ed from consideration when fitting new data.

D. Levy distribution and SE-WW response
1. General

The Lévy a-stable DRT (which involves a parameter v,
here again restricted to 0 < v < 1), like the Gaussian distribu-
tion, also describes the behavior of a sum of independent,
identically distributed random variables.**® But unlike the
Gaussian distribution, the Lévy distribution defined over the
range 0<7< « has no finite moments, an impossibility for
processes occurring in a material of finite size. In addition,
this distribution is inconsistent with a temperature-indepen-
dent DAE, thus limiting its range of applicability. Inciden-
tally, the 7—0 asymptotic form of the Lévy distribution is
just the Pareto distribution. The Lévy DRT probability den-
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sity has been derived'' for v = 0.5, and, in the present
notation, the corresponding normalized® G(7) is
(477, 7) V2 exp( — /41, ), where 7, is a constant relaxa-
tion time and 0<7< w0

In spite of the above anomalies of the Lévy distribution
from a physical point of view, it, and the response associated
with it, have been of great interest for analyzing small-signal
transient and frequency response in recent years. In this sec-
tion we shall take 6, identically zero since no response has
been calculated thus far using the Lévy distribution with
6; #0.

The transient response associated with the Lévy DRT
(LDRT) is readily obtained and turns out to be of the form
of a stretched exponential (SE),

q(t) =goexp| — (£/7.)"], (10)

where ¢(¢) might describe the decay of electric polarization
of a charged dielectric material when it is shorted. An
expression of the form of Eq. (10) was suggested in the me-
chanical relaxation area very long ago by Kohlrausch.”” The
derivative of Eq. (10), proportional to a current, is just

A(t) = —v(qo/7 )t /r) " exp[ — (¢ /7)1, (11)

yielding Pareto-type (1/7.) '~ response for t<r,.
Thus, the short-time (not long-time) tail of the response is a
power law. Note that 4 (0) does not exist, indicative of one of
the problems of the LDRT without cutoff. An interesting
comparison has recently been given®® of three theories for
disordered systems involving quite different physical mecha-
nisms but all leading, at least under some conditions, to SE
or nearly SE response.

Although, as we have seen, the LDRT transient re-
sponse, the SE, is simple in form, it turns out that the asso-
ciated /(w) response is not. It can be expressed in terms of
slowly converging series or as difficult integrals whose inte-
grands oscillate very rapidly for some ranges of interest.
Thus, it has been generally impractical to obtain accurate
values of the LDRT I(w) function for arbitrary v, 7, , and w
values for fitting to experimental frequency response data.
However, use of approximate J{w) results for such fitting
was first carried out by Williams and Watts*® (WW) some
time ago. Thus, we shall use the acronym WW to refer to the
LDRT frequency response and shall use SE for the corre-
sponding time response. Recently, accurate tables of WW
response have been published,*® but they alone still do not
allow accurate small-signal frequency response fitting to be
carried out. Of course, without the availability of a means of
accurate fitting, one cannot make a sensible decision as to
whether a particular set of data is best fit by WW or by some
other type of response. We shall return to this important
matter and its solution for WW response a little later.

2. Fitting, limitations, and ambiguity

The SE-WW response functions have been used for the
analysis of data from a remarkable range of materials involv-
ing mechanical,””*"™ dielectric,?*** NMR,* dynamic light
scattering,*® and spin-glass remanent magnetization*’*® ex-
periments. This is an illustrative but not inclusive listing.
Much of the experimental work has dealt with amorphous
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materials, e.g., polymers and spin glasses. Unfortunately,
however, it is fair to say that none of the fitting carried out
thus far has been definitive, either because the data extended
over too narrow a range and/or because no alternative fitting
models were considered. Furthermore, much of the fitting
has been carried out for thermally activated systems which
are likely to have a temperature-independent DAE, even
though SE-WW response is formally inconsistent with such
a DAE. Although fitting of temporal data to Eq. (10) can be
readily achieved using a weighted nonlinear least-squares
procedure, it is essential to verify that Eq. (10) is more ap-
propriate than other possible choices. If one makes the rea-
sonable assumption that the g(¢) range covered should be at
least 0.01<¢(1)/9,<0.99, one finds that the data must cover
somewhat more than five decades of time for v = 0.5 and
more than 13 for v = 0.2!

It is always desirable to fit putative SE data to more than
one fitting equation, not just to Eq. (10). The problem is well
illustrated by results of Lindsey and Patterson*® who com-
pared g(t) response for two models by least-squares fitting
the SE equation to Davidson-Cole? (DC) ¢(¢) resuits, They
found that although the DR Ts themselves are very different
for the two models, the ¢(¢) curves for them were nearly
indistinguishable, especially for v > 0.4. Thus, only with very
accurate data can one hope to distinguish between the two
such fitting equations and be able to choose the most appro-
priate one.

An example of fitting ambiguity in the time domain aris-
ing from too narrow a range of measurement time for ade-
quate discrimination is afforded by recent work of Ahar-
oni.>® He showed that data®’ for the decay of remanent
magnetism in a spin glass can be fitted very well by a function
arising from the assumption of a gamma DRT. But the data
fit a SE equally, as well. A range of only three decades of time
was available and the above ¢ () /g, conditions were very far
from being satisfied since the v used in the SE was only 0.175!
Incidentally, it is worth noting, since it was not mentioned
by Aharoni, that the gamma distribution in untruncated
form, as employed in his work, has been used, or proposed
for use, in the relaxation area much earlier,’'>* and even
earlier still in truncated (on the larger-r side) form.>>*%°
Further, these distributions are also inconsistent with a tem-
perature-independent DAE.

Luckily, discrimination between WW and DC response
is somewhat easier in the frequency domain, as shown by
Lindsey and Patterson®® and in Fig. 1. Here we have fitted
accurate, normalized WW data*® with the DC response
function using complex nonlinear least squares (CNLS), a
procedure which fits both real and imaginary parts simulta-
neously.”® The results are shown plotted in the complex
I*=1I'—(I" plane. The frequency response data clearly do
not need to be as accurate as the transient data to allow
adequate discrimination, at least in the present WW-DC sit-
vation. Here ¥y, is the present v, and ¥ is a correspond-
ing exponent parameter appearing in the DC equation. The
direction of increasing frequency is shown by the arrows.

One reason we have stated that no SE-WW fitting car-
ried out so far has been definitive is that little or no such
fitting has compared alternate model predictions, and be-
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FIG. 1. Complex plane comparisons of accurate WW “‘data” with results
obtained from CNLS fitting using the Davidson—Cole response model.

cause, until recently, accurate CNLS fitting of frequency re-
sponse data to the WW model (LDRT) has been impracti-
cal. Usually, approximate fitting of U/ " (@) vs @ alone has
been carried out, e.g., see Refs. 27, 57, and 58. But this proce-
dure may add even further ambiguity, even if the model can
be evaluated quite accurately, because it is sometimes found
that in fitting a model with several parameters to range-lim-
ited U " (@) data alone, more than one set of different param-
eter values will yield a good fit, ambiguity which is eliminat-
ed when U'(w) and U"(w) are fitted by CNLS
simultaneously to the same model over a considerable range
of frequencies.

Although the WW and DC model predictions may be
well discriminated in the frequency domain, other models
can indeed mimic WW response closely. Figure 2 shows
CNLS fit results of the general exponential distribution of
activation energies (EDAE) model, discussed later, to accu-
rate WW “data.” Figure 3 shows some of the same fitting
results plotted in 3D perspective form,” indicating the good
fit in frequency obtained, as well as the complex-plane curve
shape. Again discrimination of even excellent real data using
CNLS would be most difficult even for the ¢yw = 0.3 set of
Fig. 2.

Then is all lost? No. If results are available for a range of
temperatures as well as frequencies, one will generally be

4
0.6+ 6.5 Frequency decades WW "DATA" Yy
———DAE Fit: [4:.
rp=10° r,2
0.4} $=0.707
L ¢,50.565
' Vw07 ¢ =0.481 __$p=-0162 r,Z-l.I?xIO‘H
0.2 0.5 N =8.69x106
03 —"¢,20234  $,=-0.33
1, = 9.08x10%
0.0
0.0 0.2 0.4 0.6 0.8 1.0

T

FIG. 2. Complex plane comparisons of accurate WW “data” with results
obtained from CNLS fitting using the general EDAE model. Here ¢y is
the v of Eq. (10).
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FIG. 3 Three-dimensional perspective plot showing the comparison of ac-
curate WW response (solid lines) with response obtained by fitting the
EDAE model to the data with CNLS (dashed lines). Here s=wr, is a nor-
malized frequency.

able to discriminate between ambiguous models such as the
WW and EDAE on the basis of the temperature dependen-
cies found for some of the parameters of the models (see Ref.
9 and Sec. II E below). Further, when distributed data are
available over a sufficiently wide frequency range, one will
expect to see the appearance of limiting single-time-constant
response at sufficiently low and high frequencies (assuming
that the distributed response of interest is well separated in
frequency from any other response present). In such regions
the finite-range distribution has run out of relaxation times.
The transition to such response has actually been observed in
some conductive systems.®® But response functions such as
those of Davidson and Cole and the WW response do not
exhibit such behavior at both extremes, and thus will usually
yield poorer CNLS fits than an allied “‘ambiguous” model
such as the EDAE, one which does involve such limiting
responses.

Perhaps in part because of the apparent good, but usual-
Iy far from definitive, fitting success of the SE-WW in the
time and frequency domains, there have been many theoreti-
cal statistical or semimicroscopic models proposed which
lead to the SE, or to something close to it, for physical pro-
cesses occurring in one to three dimensions.®'~"* Again, this
is a representative but not exhaustive list. However, such
theories do not usually lead to quantitative dependence of v
on temperature unless they involve a DAE. Nevertheless, as
Shiesinger and Montroll®® have pointed out, the (apparent-
ly) successful use of the SE-WW mode! by many investiga-
tors to fit their data has led to its establishment as ““a ‘univer-
sal’ model for a wide class of materials, especially polymerics
and glasses.” However, since the fitting on which this con-
clusion is based has generally been inadeguate, the conclu-
sion is not necessarily well justified.

Thus, in spite of the undoubted usefulness of the SE-
WW model, particularly for limited data ranges, and the
current interest in it, it should not, in fact, be considered a
“universal” model. There are several interrelated reasons.
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First, and perhaps least important, is that it is associated
with a nonphysical DRT, the LDRT. But this deficiency
may be readily eliminated by restricting the range of 7 over
whichthe LDRTisnonzeroto 0 < r,<7<1 , with 7, possi-
bly even infinite. Second, the LDRT is inherently inconsis-
tent with a temperature-independent DAE, certainly a de-
parture from “universality.” More important, in spite of the
lack of really definitive fitting of the SE-WW model to data,
it is obvious that there is a great deal of real response data
that this model can never fit. As shown by Figs. l and 2, WW
response is inherently skewed to the right (forO <v < 1), but
much data lead to symmetric curves and even a little to left
skewing.’

1t is worthwhile to conclude this section with a brief
discussion of recent developments in WW fitting techniques.
Even though no useful, exact closed-form expressions for
WW /I '(w)and " (w) response exist, it is now possible to use
CNLS to analyze U(w) data sufficiently well to yield direct
(U,— U, ), 7, and v=1ly,, estimates accurate to about
0.1% for good data.

Recently, Weiss, Bendler, and Dishon*® have used accu-
rate WW tabular data*® to develop an analysis method
which uses only a few points of U " (w) data to yield separate
estimates of the above parameters sequentially. Thisisnota
least-squares method, and it uses only a small part of the
total data. Nevertheless, it can yield helpful initial parameter
estimates for use in the following true CNLS approach.” It
has been found that a simple addition to the empirical Havri-
liak-Negami”® frequency response function allows the result
(the HNC) to fit WW response exceedingly closely. Some
results are shown in Fig. 4 and ones for a wider range of Yyw
appear in the original paper.”® By means of a reparametriza-
tion of the fitting model, its use with CNLS fitting yields very
accurate direct estimates of the above parameters (and their
estimated standard deviations). The CNLS program incor-
porating this fitting model, and many more, is available from
the author. Only by comparing experimental results to pre-
dictions of several different theoretical models by some pow-
erful procedure such as CNLS can one hope to establish
which model is the more appropriate, and thus find the most
plausible set of parameter estimates with which to character-
ize and interpret the response.

0.61 6.5 Frequency Decades WW "DATA": Yyw
———HNC Fit
0.4
b 0.7
n Vw0
0.2 0.5
0.3
0.0
0.0 0.2 0.4 0.6 0.8 1.0

1

FIG. 4. Complex plane comparisons of accurate WW “data” with results
obtained from CNLS fitting of a modified Havriliak—-Negami response
model (HNC).
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E. Exponential distributions and response
1. General

Here we shall be concerned entirely with DAEs related
to the doubly truncated Pareto power-law DRT discussed
earlier. When the system is thermally activated and thus 7 is
given by an equation of the form of (4), then the DRT leads
directly to a DAE; conversely, the assumption of a DAE
with exponential probability density (EDAE) implies a Pa-
reto-type DRT. Montroll and Shlesinger,’® in a treatment of
long-tail distributions, have shown that essentially the Pare-
to distribution follows from a log-normal distribution, one
where overall “success” requires the execution of numerous
independent subtasks, each of which must be successful for
overall success to occur. Further, the Pareto distribution im-
plies self-similar scale-invariant behavior over its range of
applicability. Further rationale and theoretical work leading
to an EDAE are discussed in Sec. II E 2 below.

Suppose we start with a single exponential DAE
{EDAE,) and take, for & ,<& <% _,

F(&)=Nexp(—nE)=Nexp(—18), (12)

and F(%) = 0 otherwise. Here A=kTw, N is a normaliza-
tion constant, and 7 is a probability density strength param-
eter which must be temperature independent to yield a tem-
perature-independent DAE. Then the relation G(7)|d7]

= F(%)|d# | along with Eq. (4) for 7 leads directly to the
associated DRT

G(T)=N17'_(1+7")'), (13)

where N, is a new normalization constant and comparison
with the Pareto form of Sec. II B yields v = (¥ + A)/7, cer-
tainly not a temperature-independent quantity, even when ¥
and 7 are, unless 7 =0 (implying a constant probability
density over a finite range).

In order to achieve more generality than is possible with
an EDAE with a single strength parameter 7, the earliest
work in this area, a transient response calculation® with (im-
plictly) @ = 1 and 8 = 0, considered two joined exponential
probability densities with parameters 7, and 7,. One might
ask why an EDAE should ever need to include more than the
one exponential region of the EDAE,. The reason is largely
empirical for the present: the data often require two such
regions®>’ for adequate fitting, and in particular, two regions
are needed to yield unskewed, symmetric response. Con-
versely, only two or less such regions seem to be required.
The single EDAE, model ieads to inherently asymmetrical
response in the frequency domain, response involving a fin-
ite-length region of «” behavior with p = 1, followed at larg-
er w by a finite-length region of @ ~ * response with 0<n<1.
But much data yield symmetric curves in the complex plane,
ones for which p = n=m and 0 <« m<1. Finally, consider-
able data involve response with regions for which p#n and
p <1, as well as n < 1. Such general response is asymmetric
like that of the EDAE, but cannot be well fitted by that
simple model. Recently a detailed study of the frequency
response predictions of the general EDAE has been carried
out™® without the above restrictions on a and 5. Because of
the existence of this work, we need only summarize a few
resuits and conclusions here.
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It turns out that, unlike the case for the Gaussian DAE,
the @ parameters of the model combine directly to yield the
two composite parameters

¢m Ee_y—lﬂkaE (X_'/lm )/7/’ (14)

whered,, =7, kT andm = 1,2. These parameters are clear-
ly different from v, especially since it is found that their
range is — co <@, < o« rather than 0 <v < 1. Such an un-
limited range is important here. Even when a and £ (and so
¥), as well as the 7,,’s, are temperature independent, Eq.
(14) shows that the ¢’s may depend linearly on absolute
temperature and a |@¢| may thus readily exceed unity. In the
conventional #; = 0 case (no thermal activation directly as-
sociated with energy storage processes), it turns out® that
Eq. (14) can lead, under reasonable assumptions, to
&, = BT for dielectric situations and to ¢,, = 4 — BT for
conductive ones. Here 4 and B are temperature-independent
constants., These quite different responses are indeed found
to be present in much data for these different kinds of sys-
tems (see, for example, Refs. 9 and 33, and references cited
therein).

It further turns out that when ¢,>0, meaningful re-
sponse results are only obtained for the range 0
<&, <& <& _ < o over which F(#) is nonzero although it
is mathematically unnecessary for & _ to be finite otherwise.
For convenience, three EDAE response situations have been
defined: the EDAE,, where ¢, = ¢,=¢, a simple exponen-

tial  distribution  situation, the EDAE,, where
b= —¢,=¢>0 and a central #,.=&, satisfies
(., —&)D=(8,—Fy, or equivalently,

(8 ~&,) =2(%, ~ &), and finally the general EDAE
where no restrictions are set on the ¢’s. The double exponen-
tial distribution of the EDAE, case is known as the Laplace
distribution.”” The DRT range parameters, r, and r,, are
given by ri=r/ro=exp[y(€,—~ &,)] and r,=7_/
ro=exp{y(& _, — &,) 1. For the EDAE,, r,=1/r,, and
one obtains fully symmetric response behavior. By contrast,
the EDAE, yields® skewed curves in the complex plane,
skewed to the right for ¢ > O and to the left for ¢ < 0. Further-
more, as |$| - oo, the response approaches single-time-con-
stant Debye behavior. Incidentally, although closed-form
analytical expressions can be given’ for EDAE, and EDAE,
frequency response for many specific values of ¢, these ex-
pressions are useless for CNLS fitting; thus such fitting is
carried out in the author’s fitting program for both the
EDAE and the GDAE using accurate numerical evaluation
of their integral representations. On the other hand, closed-
form analytical expressions for the corresponding EDAE
transient response are available for any ¢ values.”

Although the earlier transient response calculation® for
the EDAE involves the full composite (%) mentioned
above, it does not include arbitrary 6 values. But the pres-
ence of separate & and 3 values can be readily accounted for
and only transforms the definitions of the slope parameters
rather than changes the form of the response.

2. Fitting, ambiguity, and justification

Considerable transient and frequency domain responses
for the EDAE have already been presented.**° In addition,
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Figs. 2 and 3 show how well the general EDAE can simulate
WW response. Figure 5 shows similar CNLS fits of the par-
ticular EDAE, model to accurate WW response. We see
that, except for thyw of 0.7 or greater, there is too much
difference in the forms of the models to allow good fits. But
the added degrees of freedom of the general EDAE model do
allow good fits to be obtained.

The fitting ambiguity for the WW and EDAE models
mentioned above and earlier is by no means unique. For
symmetric frequency response data, it has been
found*®#%3378 that the Cole-Cole," Fuoss-Kirkwood,”® and
EDAE, models can all fit each other exceptionally well for
usual experimenta! ranges of variation. In addition, the
EDAE can fit GDAE data well.** Furthermore, for asym-
metric curves, the EDAE, model can fit very well that of
Davidson—Cole? and two asymmetric Jonscher “universal
dielectric response” models.>*” Thus, for ordinary data
there are a great deal of fitting ambiguities usually present.
Although the presence of some fitting ambiguity has been
known for a long time,*”® the amount and degree of ambigu-
ity has been recently extended by CNLS fitting comparison
of the predictions of the various models. Fitting ambiguity
can be reduced or removed, using CNLS fitting compari-
sons, however, if one has available very accurate data ex-
tending over a very wide frequency range. It can also be
greatly reduced or even eliminated, as already mentioned, if
one carries out measurements for a range of different tem-
peratures. If the data are found to be distributed, nearly al-
ways the case, one can next determine whether thermal acti-
vation is present. Furthermore, by examining curve shape
and the possible temperature dependence of the » exponents
in regions of @ * * frequency response, one can usually deter-
mine whether only a DRT is present or, more likely, 2a DAE
leading to a DRT. Then by CNLS fitting with several plausi-
ble models one can determine the most appropriate one and
obtain its best-fit parameter estimates.

As an example, we consider what information could be
obtained from an EDAE fit to thermally activated, distribut-
ed frequency response data. Suppose the data are for a dielec-
tric situation and are symmetric so the EDAE, may be used.
A CNLS fit at a given temperature of a circuit involving a

8 Frequency decades WW "DATA" Yryw
0.8 ———DAE, Fit: ¢
rp =102

$=0778

0.2

0.0
0.

FIG. 5. Complex plane comparisons of accurate WW ‘‘data” with results
obtained from CNLS fitting of the EDAE, model with the parameter
r,=r = 10" taken fixed.
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geometric capacitor C_ and the EDAE, distributed model
directly yields estimates of (e, —e€_ )€, .0.X¢
=ln(n) =€, — &) =27(&, — &), and 74
=71, exp(y¥%,). From this one fit, one thus obtains esti-
mates of €,,¢ 6, ¥(E, — E,) =2y(E, — E;),and 7,. Now
it has been shown® that in the EDAE, case, where
¢, = — ¢, =4¢,itisnecessarytotaken =79, = —7,>0to
obtain a peaked (Laplace) probability density. Then
¢ = (B + kTn)/(a + ) in the present case, increasing lin-
early with temperature (when a, f3, and 7 are temperature
independent), as is indeed usually found experimentally.
Such behavior is an intrinsic, measurable prediction of an
EDAE model and does not depend on the empirical assump-
tions required in other types of theories and models to obtain
such dependence. It is thus one of the most important conse-
quences of the model and can help greatly in identifying the
presence of a DAE.

When results for more than one temperature are avail-
able, we can extract estimates of 7, YE,, YE, YE ., (B/7),
and (7/7), all of which, except possibly 7,, might, in a com-
plicated situation, be temperature dependent. But if we re-
quire that 7 be temperature independent, we can obtain the
temperature dependence of , if any, instead of just that of 7/
A. Temperature dependence of & and /3 is indeed possible if
there is a glasslike transition in the material or the often
found linear relation between activation entropy and enthal-
py,>% or both.>%3% Next, analysis of the fitting results with
or without temperature dependence of @ and/or 3 will allow
these quantities and ¥ to be determined within a scale factor.
If this can be determined from measurements of another
type on the material or by setting, say, @ = 1 in appropriate
situations, one can obtain estimates of the important S, 7,
Ey, E|, and E_ parameters of the material. Quantities such
as 7, E,, E,, and E_ , which specify the strength, shape, and
extent of the activation energy distribution, are important
material parameters of the system, and their estimation in
actual situations is a useful step towards the development of
a fully microscopic theory leading to DAE-like response.

The DAE mode! does not require that £, £,,and £ be
temperature independent, but if they and/or ¥ are not, 7,
will not in general show simple Arrhenius behavior. 1t is
indeed plausible in most cases to assume the £ ’s are tempera-
ture independent and from the fitting results determine the
temperature dependence, if any, of @ and 8. If they, in turn,
are temperature dependent, we may be able to extract from
their dependence the constant temperatures T, and/or T
associated with the linear AS,AH relation or with a glasslike
transition, respectively. The above discussion shows that the
parameter estimates which may be obtained from data fit-
ting are a mixture of macro- and microscopic quantities.
Nevertheless, they can shed much light on the possible phys-
ical processes occurring in the material.

Let us consider further the experimentally common,
distributed, thermally activated situation. The most plausi-
ble explanation for a DRT will then be the presence of a
DAE. The DAE might involve distributed state energies in-
volved in hopping, trapping, spin flips, etc. But only the
GDAE and EDAE models, of those considered here, yield
temperature-independent DAEs, and only these models, of
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all those widely used in the past, such as those of Cole and
Cole,! Davidson and Cole,? and Williams and Watts,>® also
yield plausible physically realizable response in both the
high- and low-frequency limits of the single dispersion re-
gion considered. But although both the GDAE and EDAE
models can yield either symmetric or skewed response, only
the EDAE leads to the finite-length regions of t ~"and w*”
response nearly always observed experimentally. Finally, it
has been shown®®*® that the EDAE model can very well
simulate virtually al! other empirical or semiempirical mod-
els which have been used in the past to fit small-signal data
for an exceedingly wide variety of materials. Thus, it can fit
the data as well, and in addition, leads to explicit tempera-
ture dependence of slope exponents such as the ¢,,. Thus, it
appears that the EDAE might well be considered the initial
fitting model of choice, especially when a temperature-inde-
pendent DAE is suspected, although alternative fitting with
the GDAE is also worth trying when no appreciable o *"
regions appear.

We have already seen what sort of parameters associat-
ed with a DAE may be derived from frequency-temperature
data fitting of appropriate data. Since the EDAE is a semi-
macroscopic mode], we cannot expect to use it to derive all
the microscopic parameters of the system. In the present
absence of an n-body microscopic-model solution which
yields very similar overall response (necessary for agree-
ment with experiment), the EDAE fills an important gap.
Because of its importance and the presence in this model of
features one would expect even in a microscopic model, it is
worth giving some more discussion of the statistical and
physical content of the model.

If one restricts attention to only the skewed EDAE,
model, which involves a simple exponential density of states
(EDOS), one finds considerably®*-°° less general but some-
times more microscopically based work than that in Refs. 5
and 9 (see also references in these papers ). Different kinds of
glass transitions have been predicted to yield either a Gaus-
sian or an exponential DAE.*® Although it has been stated
that power-law transient decay (Pareto distribution in 7) is
only consistent with an EDOS and is thus its signature, this
is only true if the material is thermally activated. But tun-
nelling can yield approximate power-law dependence,®* and
various models can lead to power-law response without ther-
mal activation. But when such activation is indeed present,
one expects to find characteristic temperature dependence of
the power-law exponents, yielding a way to distinguish
between a DRT alone and a DAE and its associated DRT.

It is worth noting that Monroe and Kastner®® have
found very accurate power-law response for transient photo-
current measurements on As,Se, over more than nine dec-
ades of time, involving a range parameter r, of nearly 10° and
a temperature-dependent exponent less than unity, Consid-
erable progress has been made recently in explaining the
presence of an EDOS in disordered materials,’**° but
further progress is needed for three-dimensional systems and
to explain the EDAE, Laplace distribution.

One can also give some further statistical and stochastic
underpinning for the use of an EDAE or Laplace distribu-
tion. For example, consider events occurring at random in
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time and assume that the future lifetime, x, of an individual
has the same distribution no matter what its current age.
Then the probability density of x is an exponential distribu-
tion (see Ref. 17, p. 208). Furthermore, “if a system is mod-
eled by a finite Markov chain which is ergodic, the passage
time from some specified initial distribution over the state
space to a subset B of the state space visited infrequently is
often exponentially distributed to good approximation.””*
Finally, the more general Laplace distribution mentioned
above and used in the EDAE, model may be considered to be
the distribution of the difference of two independent random
variables with identical exponential distributions.”” These
statements and their generalizations are certainly suggestive
and should find places in future statistically and microscopi-
cally based treatments of dielectric and conductive systems.

Important conclusions discussed in this section are that
experimental and theoretical DAEs have been widely used
in the past; the EDAE can fit very well the response of nearly
all earlier two- or three-parameter heuristic frequency re-
sponse models and thus as well all thermally activated data
they have been used to fit; and complex nonlinear least-
squares data fitting should be much more used in fitting
models to frequency data in order to obtain better resolution
between competing models. Although DAE models, such as
the GDAE and EDAE, are more complex than empirical
models such as that of Cole and Cole or even William—
Watts, they contain greater physical content and are more
physically realizable. The price paid is the appearance of a
larger number of parameters than present in the other ap-
proaches. But the DAE model parameters are related to real
physical properties of the material associated with its DAE.
For example, the empirical models usually contain no infor-
mation about the temperature dependence of their fractional
exponent parameters such as the v of Eq. (10) or the ¢ of the
Cole-Cole response. Because of the limitation of these pa-
rameters to the range 0-1, they cannot depend directly or
inversely on temperature over an appreciable temperature
range. But the Eq. (14) ¢,, parameters of the EDAE are not
thus limited in range and can involve such frequently found
experimental behavior.*®

Most of the heuristic response models are not fully phys-
ical because they do not involve the physical limitations in-
herent in the present DAE models of requiring finite maxi-
mum and minimum relaxation times. In the absence of other
limitations, a minimum relaxation time is set as usual by the
finite speed of light and/or by inertial effects, and a maxi-
mum effective relaxation time by the finite size of the experi-
mental sample or by the inherent noise level of the process
considered. In thermally activated situations, the limitation
of a maximum activation energy less than infinite (the model
does not and need not consider energies which lead to other
processes such as mefting) also leads to a maximum finite
relaxation time. Finally, a recent paper’* compares the pres-
ent GDAE and EDAE models in detail and uses them in
analyzing (KBr)o s (KCN), s dielectric data.”’

tl. STRUCTURE AND RESPONSE

We have already discussed and illustrated some of the
large amount of ambiguity generally present when one uses
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small-signal response data to attempt to distinguish between
different distributions or between distributed response mod-
els (i.e., mathematical fitting expressions). Here I shall dis-
cuss another important kind of ambiguity which can occur
in the relaxation area, that involving intrinsic model struc-
ture and the structure implied by the mathematical form of
the equations, or equivalent circuits, used in fitting response
data.

A microscopic model may exhibit one or several kinds
{or combinations of kinds) of structure (connectivity) in
space, time, and/or energy. Some possibilities are parallel,
sequential, or hierarchical (i.e., sequential with branching)
dynamics. In a parallel situation, the system might involve a
collection of independent states such that the system is un-
constrained and can pass from any overall possible configu-
ration to any other. Its response could also represent the sum
of many different processes acting independently. Alterna-
tively, one could consider a nonbranching sequential (or-
dered serial ) system where many states or processes are pos-
sibie but the (n 4+ 1)th process cannot occur until the nth
one is complete. Finally, consider hierarchically constrained
dynamics, as in the recent work of Palmer, Stein, Abrahams,
and Anderson’' (PSAA). Here various abstract levels form
abranching tree structure. A given level is defined to include
processes with a common type (e.g., functional form) of
constraint. Thus, the constraint tree has nodes at different
levels, each level involving a different constraint situation.
With the usual ordering, one can say that the system cannot
relax at the (n + 1)th level until it has relaxed at the nth
level.

But it turns out that the structure of the theory does not
usually constrain the way its overall response can be repre-
sented mathematically or by means of an equivalent circuit.
For example, the response of the hierarchical PSAA model
was actually calculated using Eq. (9), with no §; term. But
Egs. (7) and (9) formally represent the response of a con-
tinuously distributed paraliel model, the sum of independent
single-time-constant exponential processes in the continuum
limit. Alternatively, one may consider a finite or infinite
number of discrete time constants or relaxation times. The
circuit of Fig. 6(a) shows a discrete representation of such
parallel response, one involving energy storage elements
(capacitors) and energy dissipating elements (resistors) for
the PSAA dielectric system case. But it is well known that
the same response (over all times or frequencies) as that of
the Fig. 6(a) circuit can be produced by the Fig. 6(b) circuit
with proper (different) valuesofthe R ’sand C’s. But thisisa
laddar network which represents sequential, not parallel, re-
sponse! Furthermore, its response is of continued fraction
form. That the same equality between parallel and sequential
response representation holds in the continuum limit (infi-
nite fadder network ) with a sufficiently regular G () follows
from the asymptotic expansion theorem of the theory of con-
tinued fractions.” This is an important conclusion.

Since we have pointed out that the /; (w) form applies
for either dielectric or conductive systems, we must be able
to draw the same conclusions as above for a conductive sys-
tem. The two circuits which apply in this case are presented
in Figs. 6(c¢) and 6(d), one being an unordered series circuit
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FIG. 6. Dielectric model circuits, (a) and (b), and conductive model cir-
cuits, (c) and (d). With proper component value choices, the paraliel cir-
cuit of (a) and the hierarchical ladder network of (b) can exhibit the same
impedance over ail frequencies. Similarly, the series circuit of (¢) can have
the same impedance as the conducting ladder network shown in (d).

and the other a sequential ladder network.

We have already seen that the CPE/Pareto response can
be represented by a DRT,? as in Eq. (7), by a continued
fraction-ladder network,** or by a hierarchical circuit.* Yet
CPE response over a finite or infinite time/frequency range
is a common feature of many microscopic or semimicrosco-
pic theoretical models, many of which involve continued
fractions'®9>-%¢ at either the microscopic or overall re-
sponse level. A recent example is afforded by the work of
Liu.*” He considered a fractal (self-similar) model of an in-
terface in the conducting case and derived response in the
form of a bifurcating hierarchical circuit with constant capa-
citances and scaled (increasing) resistance elements. Below
a certain high frequency, the impedance of the Liu circuit in
the limit of an infinite number of hierarchical levels is just
that of the CPE. Furthermore, in this case, although it is not
mentioned by Liu, the hierarchical circuit may be more sim-
ply represented as an infinite ladder network {Fig. 6(d)]
whose impedance expression is thus of the form of an infinite
continued fraction.

Complex least-squares fitting of appropriate data to ei-
ther the Fig. 6(c) circuit or that of Fig. 6(d) (with the same
number of discrete elements) will yield exactly the same fit
and residuals, although the estimated parameter values will
differ. But by varying controllable conditions such as sample
thickness, temperature, pressure, etc., one can usually estab-
lish that ane of the two circuits yields better determined pa-
rameters with less intercorrelation and less (or expected)
dependence on the varied conditions. One can then conclude
which approach is the more appropriate. As an example, the
nested Fig. 6(d) circuit with six discrete elements was found
to be much more appropriate than that of Fig. 6(c) with six
elements for a detailed continuum model of the small-signal
ac response of solids and liquids.®®

In summary, virtually any physically reasonable re-
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sponse can be described by means of a DRT, a sum of inde-
pendent elemental processes, even when the DRT itself is
not physically meaningful and has no direct connection to
the structure of a microscopic model. When the DR T is asso-
ciated with and arises from a DAE in a thermally activated
situation, its physical and information content is much high-
er, even though DAE behavior also leads to a response which
can be represented by a circuit representing independent
(parallel or series) processes or by a ladder network involv-
ing sequential (possibly hierarchical), infinite continued
fraction response. The form of the fitting equation or circuit
alone is insufficient to allow one to conclude that actual pro-
cesses present in the material involve the same form/connec-
tivity/constraints in time, space, or energy. The map is not
the territory.
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ACRONYM DEFINITIONS

CNLS: Complex nonlinear least squares.

CPE: Constant phase element.

DAE: Distribution of activation energies.

DC: Davidson—-Cole.

DRT: Distribution of relaxation times.

EDAE: General exponential DAE.

EDAE,: Single exponential DAE.

EDAE,: Double exponential (symmetrical) DAE.
EDOS: Exponential density of states.

GDAE: Gaussian DAE.

HNC: Havriliak-Negami capacitor.

LDRT: Lévy DRT.

PSAA: Palmer, Stern, Abrahams, and Anderson.
SE.: Stretched exponential.

WW: William-Watts.
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