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This paper is concerned with the small-signal time and frequency response of anomalous dispersion and distributed circuit 
elements in either conductive or dielectric systems. In the course of responding to recently published comments and criticisms of 
Dissado and Hill, a detailed discussion is presented of high and low frequency limiting response possibilities, with a special 
consideration of such response for a single broad dispersion region. For such a region the Dissado-HiU criticisms are shown to be 
either incorrect, inappropriate or irrelevant. The usefulness of  distribution of relaxation and distribution of activation energy 
approaches is demonstrated and the response of  a general exponential-distribution-of-activation-energies model is compared with 
that of a relaxation response function which was derived by Dissado and Hill in two different ways, with the two approaches based 
on different physical assumptions. It is concluded that the Dissado-Hill response function does not lead to the necessary low and 
high frequency limiting response for a single broad dispersion region, is essentially limited to dielectric materials and cannot 
describe intrinsically conductive ones which can pass DC, and is severely limited in its temperature dependence possibilities. By 
comparison, these limitations and restrictions do not apply to the distribution of activation energy model, one which has been 
shown capable of fitting a great variety of conductive and dielectric system experimental data for thermally activated situations. 

1. Introduction 

It is a truth universally acknowledged, that noth- 
ing is forever. Likewise, nothing is instantaneous. 
Between these two infinities lies the ~11. Much of this 
paper is about the small part of the all concerned with 
the form of the limiting long and short time small- 
signal electrical response of material systems which 
involve a single broad relaxation region. I wish to 
particularly acknowledge the work of Drs. Dissado 
and Hill [ 1 ] who have recently criticized some of 
my earlier statements [2] concerning the present 
subject. By doing so they afforded me the present op- 
portunity to try to clarify certain aspects of  the sub- 
ject and to correct some misapprehensions. 

It is worth mentioning that although my paper [ 2 ] 
- - - - - . - - I . .  ^,~, ,o~,~,-i  ,~,;*h ~h~ cm~ll_eignal  iota. 

quency response of conducting systems, a point ex- 
plicitly recognized by Dissado and Hill at the 
beginning of their work, and was published in a jour- 
nal devoted to ionically conducting materials, the 
Dissado-Hill (DH hereafter) discussion is nearly 
entirely devoted to dipoles in non-conducting di- 

electric materials, situations and theories. Much the 
largest part of their discussion, in fact, deals with the 
DH cluster model (CM) of dielectric response [ 3-5 ] 
(see section 6). A list of acronyms used herein is 
given at the end of section 6. 

It is important to note at the outset of the present 
paper that while the limiting response matters dis- 
cussed by DH and below are of theoretical impor- 
tance, they often may be of  little or no practical 
significance, particularly for conducting systems, the 
field of  my earlier paper [ 2 ]. This difference arises 
because of measurement limitations inherent in real 
experimental situations. Such limitations are asso- 
ciated with practical limits on measurements at very 
high or low frequencies (or short or long times) and 
on residual noise and stability levels. For example, 
even when apparatus and techniques are available 
which allow measurements to be carried out at ex- 
tremely low frequencies, there is usually no point in 
taking such data if the basic characteristics of the 
material change appreciably during the measure- 
ment time and/or if the intrinsic noise level of the 
experiment has already been reached at higher men- 
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surement frequencies. Thus, the common practice of  
the theorist of discussing to = 0 and o9 = oo response 
limits, or even asymptotic response, must be treated 
with caution when applied to practical situations. 
Here to is the angular frequency. 

Before getting ".'nto details, two disparities need to 
be mentioned. First, the DH criticisms deal directly 
with topics discussed in only one paragraph of my 
short paper. Second, although many of the points ac- 
tually raised by DH are based on matters not dis- 
cussed in my paer, I shall nevertheless respond to 
them as appropriate. An important distinction, not 
made dear  by the DH discus~;_on, is that I, and most 
other writers concerned with the small-signal ae re- 
sponse of conductive (and even dielectric) systems, 
deal only with relaxation processes, not with reso- 
nant ones. Thus, inertial properties and effects of  
electrons, ions or dipoles, which usually manifest 
themselves at very high frequencies, are excluded 
from the theoretical analysis, and it applies only for 
times longe," than that required for the kinetic energy 
to reach equilibrium, the Smolochowski limit. 
Therefore, high-frequency limiting behavior is taken 
to be that of a relaxing system, an idealization cer- 
tainly, but one of little or no importance in the usual 
frequency response range of impedance spectros- 
copy [6] (acronym: IS), say 10 -4 to 10 s Hz, or pos- 
sibly even higher. 

Further, it should be emphasized that the theo- 
retical analysis developed and discussed in my work 
[2,6-11 ] always deals with a single, usually broad, 
dispersion (relaxation) region. In many experimen- 
tal situations, one finds two or more such regions, 
often considerably overlapping [ 61. Clearly, in the 
overlap region of two dispersions the approach to 
asymptotic low frequency response of one such re- 
gion is obscured by the overlap with the high fre- 
quency response of the other. Thus, one is precluded 
from accurately determining either of these limiting 
~esp~mses exper',a,cntally ,~s long ~ such overlap is 
present. Co~ipiex nonlinear least squarc~ ,r,~,r~ ~ 
tilting [ 12] can aid greatly in resolving, parameter- 
izing and characterizing twr such overlapping re- 
sponses, but even it usually cannot help identify the 
forms of limiting responses in an overlap region 
unambiguously. 

2. Dissado-Hill specific criticisms 

DH have stated [ 1 ] that my work [2] is based on 
the following assumptions and that none of them is 
valid or can be validated. In addition, they have im- 
plied that they are not based on "sound physical 
phenomena.'" 

(a) The limiting low and high frequency asymp- 
totic behavior ofimmittance loss peaks involve to + t 
and to-~ response, respectively. 

(b) All immittance behavior can be represented 
physically in terms of parallel summations of Debye- 
like relaxation elements whose relaxation times are 
gives by series resistance/capacitance time constants, 
with the individual resistances and capacitances being 
the microscopical responses of the fundamental ele- 
ments within the system. 

They have also asserted that 
(e) "The assumption of a parallel summation of 

relaxing dements, the distribution of  relaxation times 
approach, is ... no more than a mathematical trans- 
formation of  experimental data." 
A statement related to assumption (a) is indeed 
mentioned in my paper, but assumption (b) or any- 
thing like it does not appear there and is not a basis 
for my work. Statement (c) will be discussed in sec- 
tion 5.1. Finally, DH state that I suggested (in an- 
other paper [9]) that their CM is "a zero tem- 
perature theory." In fact, I said "its range of appl- 
icability may be only for very low temperatures," a 
different statement. All the above matters and ones 
related to them will be discussed in some detail below. 

3. Some simple response functions 

In order to provide a concrete basis for later dis- 
cussion and comparison, it is useful to consider first 
two simple immittance response functions, the De- 
bye model and the empirical ZC model. With usual 
dimensionless normalization [6,8-10], one deals 
with the normalized immittance frequency response 
fu.~ction i(o~), a quantity which approaches unity at 
sufficiently low frequencies and approaches zero at 
sufficiently high frequencies. It can represent either 
the response of a conductive system (oae containing 
mobile charge carriers) at the impedance level or the 
response of an ideal dielectric system (no mobile 
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charges present) at the complex dielectric constant 
immittance level. For example, for a conducting sys- 
tem considered at the impedance level, 
I z -  ( Z - R ~ o ) / ( R o - R ~ ) ,  where Z = Z '  +iZ"  is the 
impedance response and Ro and R~ are the low and 
high frequency limiting values of Z' for a single dis- 
persion region. With such normalization, the Debye 
model leads to 

l ( s ) = l l + i s ] - ' ,  (1) 

where s is a normalized frequency defined as to'[D. 
Here ~v is the Debye relaxation time of  the system, 
a quantity which may formally be written as a time 
constant, the product of  a resistance R and a capac- 
itance C. Note that these elements, whose signifi- 
cance will be discussed later, are required to be in 
parallel for a conductive system and in series for a 
dielectric one. For a conducting system in which R 
and C describe bulk effects, R would be the bulk re- 
sistance of the sample and C its geometric 
capacitance. 

Now let l ( s ) = r ( s ) + i l " ( s ) ,  so that /*(s) 
= r ( s )  - i / " ( s ) .  Then one readily finds from eq. (1) 
that for large s, I" approaches s -  ~ behavior, and for 
sufficiently small s it approaches s +~ behavior. In 
addition, eq. (1) leads to 

S ~ -  - d I " / d r  = 0 . 5 ( s - s  -1 ) . (2) 

When the imaginary and real parts of eq. (1) are 
plotted in the usual/* complex plane for the full span 
of  frequencies from 0 to co, a semicircle with its cen- 
ter on the real axis is obtained. Eq. (2) shows that 
as s--,0 the slope S~ approaches - c o  and for s-,ov S~ 
approaches oo. In other words, the arc approaches 
the real axis vertically at both extremes. Such bulk 
(as opposed to surface) semicircles have been found 
for many conductive (see e.g. ref. [ 13 ]) and dielec- 
tric (see e.g. ref. [ 14]) liquid and solid systems. Thus 
Debye respuns¢ does exist even for condensed mat- 
ter. For such simple Debeye response, assumption 
(a) of section 2 is indeed weU satisfied for all prac- 
tical purposes (such as characterization of  the ma- 
terial in the single relaxation region considered). It 
is thus both valid and validated by experiment for 
such situations. Since Debye frequency response im- 
plies simple exponential time decay in the linear re- 
sponse regime [ 15], such response can also be 
observed over a wide time span for relaxing systems. 

Although single-time-constant Debye behavior is 
not very rare, especially for conductive systems, ex- 
periment very often yields a broader relaxation re- 
gion, particularly for liquids, glasses, polycrystalline 
and amorphous materials. When such results are 
plotted in the complex plane, they often again yield 
a symmetrical arc of a circle, but one for which the 
circle center lies below the real axis. This is termed 
Cole-Cole response for dielectric situations [ 6,14], 
ZARC response for conductive ones [2,8], and has 
been denoted as ZC response when both situations 
are considered together [2,9]. The general l ( s )  func- 
tion for the ZC is 

1(s) = [ 1 + ( i s ) " ] - ' ,  (3) 

where here s= toZc  and Zc is a characteristic relax- 
ation time whose inverse is equal to the angular fre- 
quency at the peak of  - l " ( s ) ,  top. The quantity n 
satifies 0 ~< n ~< 1, and of course ZC response degen- 
erates to Debye response when n = 1. As n decreases 
from unity, the dispersion region becomes broader 
and broader. 

Eq. (3) shows that as s--,0, I'--,1 and I"--, 
- s" sin(0), where 0 -  n~/2. On the other hand, when 
s--,oo I ( s ) ~ ( is ) -",  constant-phase-element (CPE) 
response [2,8-10,15-17], that where the phase an- 
gle is frequency independent. CPE behavior has 
sometimes been taken as a separate type of response, 
applying over all frequencies. As we shall see later, 
such response over the full frequency domain is 
physically up~l i s f ie  and cutoffs are needed at both 
frequency extremes. Nevertheless, CPE response over 
a limited frequency region is very common indeed 
and may often be observed to apply over many dec- 
ades of  frequency [6]. The s~ov  asymptotic ZC re- 
sponse, i.e. CPE response, yields 1' ~ s - "  cos(0) and 
1 " ~ - s  -n  sin(0) behavior. The ratio of these two 
quantities is frequency independent: constant phase 
behavior. Finally, one can show that eq. (3) leads to 
s ~ O  and s ~  S~ limits of - t a n ( 0 )  and tan(0), re- 
spectively. Unless n--- 1 the ZC arc thus does not ap- 
proach the real axis vertically at either extreme of 
frequency. Since the ZC approximates CPE behavior 
for large s, it too is physically unrealistic in the limit 
of high frequencies. 
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4. Limiting response within the relaxation regime - 
general considerations 

Response of a physical system will always be lim- 
ited at the high frequency end by finite-speed-of-light 
considerations associated with the time required for 
subsystems to communicate and for a signal to travel 
from the input to the output [ 18]. Further, if the sys- 
tem involves the motion of microsocpic elements 
with mass, as those under consideration here do, in- 
ertial effects will limit the high frequency response 
even further. 

There are other effects which can lead of cutoffs. 
For example, it has recently been shown [ 19] that 
fractal roughness properties of electrodes can lead to 
surface-associated CPE response behavior.. But it is 
clear that such fractal structure is limited on the 
small-size end by the dimensions of electrode atoms 
and on the large-size end by the finite size of any 
possible experimental sample/electrode system. These 
cutoffs of fractal structure will bc reflected in devia- 
tions of the frequency response from otherwise ideal 
CPE behavior over the entire frequency spectrum and 
they render the resulting response physically realiz- 
able. If the full unlimi~ezl fractal spatial behavior is 
expressed in terms of a distribution of relaxation 
times (DRT), always mathematically possible, the 
resulting DRT will be the Pareto distribution 
[8,11,20], a fractional power law in r, the relaxation 
time variable. Now necessary cutoffs of the fractal 
spatial distnbution will lead to corresponding low 
and high ~ cutoffs of  the associated DRT. In turn, 
these cutoffs, beyond which the DRT function is zero, 
will lead to transitions from CPE to Debye behavior 
at the frequency extremes [ 8,9,17 ]. Such cutoffs will 
be discussed in more detail below, but it is worth em- 
phasizing that whether or not one is considering 
fractal structure, relaxation behavior will be largely 
determined for sufficiently long times or low fre- 
quencies by the cutoff associated with finite sample 
size if no other cutoff occurs at higher frequencies. 
Some other cutoffprocesses have been mentioned by 
DH [51. 

Alth )ugh DH discuss very h i ~  frequency intertial 
effects in some detail [ 1,3-5], they seem to do so 
without ,-~,-,;,.;,h, ; . . . .  " ~:-~ ~^~, ...... , ..t,luuu~llt~, the masses or mo- 
ments of inertia of the relaxing elements of their sys- 
tem. But this is not important in the present 

discussion for the following reason. Insofar as pos- 
sible, it is desirable to discuss my relaxation ap- 
proaches and relaxation response functions (RRF) 
for the same conditions for which those derived by 
DH for a CM apply. My work under discussion is 
sdely concerned with a single broad relaxation re- 
gion and thus includes no oscillatory inertial reso- 
nance effects. Therefore, inertial and speed of light 
limitations and effects are not germane to this ap- 
proach since they are only important at frequencies 
far above the region of interest for a single relaxation 
process of  the kinds considered. I am at fault for not 
always having made this point clear in my work. Al- 
though DH discuss inertial effects in their various 
papers, their actual theoretical response functions 
(e.g. eqs. (Ta) and (Tb) of ref. [ 1 ]), those that they 
have compared with experiment and claim to be 
widely applicable, do not directly include such ef- 
fects. Therefore, their final relaxation functions, like 
mine, also seem to apply for a single relaxation, not 
relaxation and resonance, region. Thus m--,0 and 
co~oo asymptotic response should apply only for 
such a single relaxation region, though this has not 
always been made clear. 

In connection with their RRF, DH have discussed 
asymptotic behavior at short and long times [ 1,3,4], 
asymptotic behavior at the limits of  high and low fre- 
quency [4], "instantaneous steady state distribu- 
t ion(s)" [3], the "zero time region" [1,5], and 
infinite time response [ 21 ]. But of  course neither zero 
nor infinite time is attainable, even if the entire sys- 
tem response over all frequencies were only that of  
a single relaxation region. In the limits of high and 
low frequency, DH state that their response function 
involves loss (susceptibility: Z") proportional to co" - i 
for co > cop and to co m for co < cop, where we can set 
cop, the frequency at which the loss is maximum, 
equal to ~71, where Tp is a relaxation time. Here the 
fractional exponents satisfy [4] 0 < n < l  and 
0 < m < 1. But the above co > cop asymptotic behavior 
is inconsistent with the presence of  inertial effects. 
Although DH were aware of  the need of cutoffs at 
frequency extremes, they evidently did not incor- 
porate them into the analysis which led to their sus- 
ceptibilty function. Thus their response functions are 
applicable only for a frequency range where neither 
inertial nor an't other limiting effects are important. 
It is therefore worth emphasizing that their "'asymp- 
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totic" expressions "at the limits of high and low fre- 
quencies" only apply within a limited frequency range 
where such effects play no role, certainly not to ac- 
tual zero and infinite frequencies. 

S. Response to criticisms and general discussion 

5.1. Distributions o f  relaxation times 

Consider first assumptions (b) and (c) of  section 
2. Although neither of  these statements, nor any- 
thing like them, appeared in paper [ 2 ] which DH 
criticize, some material related to them does appear 
in refs. [8-10],  however, which are the basis of my 
recent work on response of systems with distribu- 
tions of activation energies (DAE). I agree with DH 
that the DRT approach may be considered a math- 
ematical transformation, not necessarily, however, 
just one of experimental data, as they state, but par- 
ticularly a transformation of the form of linear re- 
sponse laws. The important point is surely one of 
whether such a transformation and approach is a 
useful one, not necessarily whether in every case 
considered there can be proved to be an objective 
physical reality to the relaxation times involved in 
such an approach. Because it is much easier to prove 
a negative statement than a positive one, however, 
a more realistic question, consonant with the usual 
pracuce of expressing physical laws in negative terms 
(e.g., material bodies cannot travel at the speed of 
light), would be to ask. "can one prove that there is 
no actual physical distribution of  relaxation times in 
any given situation?" Since probaly hundreds of pa- 
pers ~re published every year which use the nR T  an. 
proach, and have been for many years, it appears that 
many people continue to find it useful. Further, I shall 
show below, in terms of some of DH's own exam- 
ples, that it has proven useful even in situations where 
a "parallel summation of Debye-like relaxation ele- 
ments" is not present in the physical situation. 

DH have stated [ i ], ':oniy when a ulsfflbut|on ~an 
be determined by a different physical investigation 
can it be associated with the material under study. 
Until this is done, and to our knowledge it has ac;'er 
been done, the assumption (of a DRT) remains un- 
verified." In fact, such alternate determinations of 
the presence o f a  DRT have indeed been carried out. 

For example, for dielectric systems the effects of  a 
DRT or DAE can often be observed by small-signal 
ac measurements, by nuclear magnetic resonance 
measurements, and by thermally stimulated current 
(ITC) measurements. The presence of a DAE, (dis- 
crete or continuous) for example, is clearly neces- 
sary to explain many ITC results. It has been found 
that, as the concentration increases of the dipolar 
impurities in a solid which lead to the electrical re- 
sponse, the response broadens because of  the inter- 
actions between dipoles which are at various 
distances from each other. Such interactions and their 
distance distribution have been shown [22] to lead 
approximately to a Gaussian DAE. At sufficiently 
high concentrations, physical clustering has been in- 
yoked [23]. 

DH have severely criticized the entire DRT ep- 
proach by saying [ 24]" ... the determination of such 
a distribution from the spectral response (i.e. the ex- 
perimental data) [does] not add to our knowledge 
of  the problem." In fact, the accurate determination 
ofa  DRT from typical experimental data is generally 
mathematically unsatisfactory [ 11,25] (ambigu- 
ous) and is usually not what one does in a DRT ap- 
proach. Instead, one either derives or posits a 
theoretical time or frequency response function and 
calculates the associated DRT probability density, 
G(z)dr,  associated with it, or instead, one assumes 
a particular form for G(z)  and investigates the re- 
sponse associated with it [6,8-10,i5]. 

An approach closely related to the DRT one is that 
involving a DAE. Although a DAE implies a DRT 
and vice versa for thermally activated systems, it 
turns out [26] that most DRT G(T) functions used 
in the past (e.g. that for the ZC) are inconsistent with 
a temperature-independent DAE, the most likely 
type. Two important DAE-DRTs where there need 
be no such inconsistency are discussed in ref. [ 10]. 
In spite of DH's broad assertion that the presence of 
DRTs has never been (microscopically) experimen- 
tally verified [ 1 ], enough data fitting results exist to 
_.1.~ • ^ ~ .  ,~,~, ,-,,^a,~l~ based on nAF~ yi !d the 
best available explanation of much data (e.g. expo- 
nential band tails and trap distributions in semicon- 
ductors [ 27-29]; see also the section 6 discussion). 
Thus, the likely existence of DAEs leads to the likely 
existence of the corresponding DRTs. 

Contrary to DH's claim [ 1 ], my work [2,8-10] is 
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not based on the assumption that all immittance be- 
havior can be represented physically in terms of par- 
allel summations of Debye-like relaxation elements, 
eacl" made up of a resistance and capacitance in se- 
ries. First, the above description is that of  the long 
known and much used ordinary DRT approach for 
a pure dielectric system. I have certainly never 
claimed that it is appropriate for both dielectric and 
conductive systems at all immittance levels [ 6,8,17 ] 
(complex modulus, impedance, admittance, and 
complex capacitance or dielectric constant). My own 
recent DAE work [8-10] for a dielectric system, for 
example, starts, with a slightly more general DRT 
expression than that described above (at the com- 
plex dielectric constant (or admittance) level), and 
transforms this to a DAE expression. I do not pre- 
judge whethe- such physico-mathematical ap- 
proaches are of particular value in representing 
experimental complex dielectric constant data phys- 
ically. Rather, I let comparison with data and with 
the results of other theories speak to that matter (see 
section 6). 

For impedance and complex modulus levels, ap- 
propriate for conducting systems, I start with a gen- 
eralized DRT model which involves the serial 
summation (integration for continuous relaxation 
time distributions) of individual relaxation ele- 
ments, each made up of a resistance and capacitance 
in parallel. Although I show that the same normal- 
ized DAE integral expression may be formally used 
for either purely dielectric systems (intrinsically non- 
conducting) and for intrinsically conducting sys- 
tems, the general response expression has quite dif- 
ferent physical content in the two disparate cases. 
Incidentally, it is worth noting that although the ap- 
proach of a conducting-system DRT at the imped- 
ance or complex modulus level which involves series 
summation (or integration) over relaxation times 
associated with resistors and capacitors in parallel 
has been introduced independently by Murnaghan 
and coworkers in recent times [30], it may have been 
first suggested in the early linear system work of 
Macdonald and Brachma,- [ 15 ]. 

DH also criticize the use of macroscopic quan- 
tities like resistance and capacitance to describe the 
response of miciu~copic systems [ 1 ]. It would cer- 
tainly be best to use an accurate, fully microscopic 
n-body theory, to de~ve the response of such a sys- 

tern without the introduction of  any macroscopic 
concepts; unfortunately such a theory for either con- 
ducting or dielectric systems is currently unavaila- 
ble. Certainly the DH CM is not such a theory (see 
section 6). An interesting approach towards such a 
theory, one concerned only with magnetic dipoles, is 
that of  Sompolinsky and Zippelius [ 31 ]. Since it uses 
the mean field approximation, it is unlikely to be en- 
tirely accurate, however. In the present context, it is 
worth reminding the reader that "dielectric con- 
stant" is itself a macroscopic concept (representing 
an average over a region of macroscopic extent). It 
is thus necessary for even a fully microscopic theory 
to include such averaging to allow comparison with 
experiments which yield small-signal electrical 
response. 

It seems to me that the conventional use of R's and 
Us in a DRT is not as serious a difficulty as DH seem 
to suggest [ 1 ] (though they themselves use the con- 
cepts of  a dispersive capacitor and of a resistive ele- 
ment coupling their clusters), and it can, in fact, lead 
to useful results. First, in the usual continuous DRT 
approach these elements are elemental and differ- 
ential [9-11 ]. Second, any relaxing system must in- 
volve the storage and dissipation of energy. These 
processes are crucial to the detailed response at a mi- 
croscopic level. I have tried to modify the perception 
of the macroscopic character of  elemental R's and 
C's by considering them as convenient ways of rep- 
resenting dissipation and storage of energy, respec- 
tively, at least at a semi-microscopic level [ 10,11 ]. 
Their use in a DRT or DAE may then be considered 
as an approximate method of taking account of the 
locally averaged kinetic and potential energy of the 
charges and/or rotators of the system and of the dy- 
namic transformation (relaxation) of these energies 
to thermal energy (phonon generation). Again, it 
seems reasonable to ask how well such approaches 
can represent experimental data and can allow quan- 
tities which characterize the material being studied 
to be estimated. These matters will also be discussed 
in section 6. 

As DH have mentioaed [ t ], the series relaxation 
approach (see above discussion and refs. [8] and 
[ 15 ]) has recently been put forward by Palmer et al. 
[ 32] for processes involving many sequential, cor- 
related activation steps. DH say [ 1] that this ap- 
proach has a "'souad physical basis from the 
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development, sequentially, of a hierarchy of re- 
sponses." Although Palmer et at. do present such a 
plausible hierarchical physical model, DH may have 
overlooked that these authors have actually calcu- 
lated their overall transient response by means of a 
sum or integral of  elemental exponential responses, 
a typical DRT approach [15]. Further, the Palmer 
et al. approach actually leads to Williams-Watts re- 
sponse. But such response is intrinsically associated 
with the Levy a-stable distribution, one like the 
Gaussian which involves a sum of independent, 
identically distributed random variables [ 11 ]. Thus 
the presence of a hierarchical, highly-correlated set 
of  physical processes is not evident from the form of 
the overall response itself [ 11 ]. It seems that there 
is some inconsistency between DH's general casti- 
gation of the DRT approach and their strong es- 
pousal of the Palmer et at. theory, one whose results 
are actually calculated by means of DRT equations. 

There is actually no problem (except that of  am. 
biguity) raised by the calculation of hierarchical re- 
sponse by means of a parallel or series DRT approach. 
As I have pointed out elsewhere [ 8,11 ], a discrete or 
continuous DRT for a dielectric system may be ex- 
pressed as a summation or integration of single-re- 
laxation-time elements taken either in parallel, or 
hierarchically (ladder network, bifurcating array). 
Similarly, for an intrinsically conducting system, the 
response may be described by means of a summation 
or integration of single-relaxation-time elements 
taken in series or hierarchically The situation is made 
clearer by fig. 1, which shows the two dielectric sys- 
tem possibilities in (a) and (b) and the conducting 
ones in (c) and (d).  Here the circuit elements which 
define individual relaxation times may either be dis- 
crete and finite in number or differential and infinite 
in number, leading to a continuous distribution. The 
(hierarchical) response of the ladder network is nat- 
urally expressed in continued fraction form. There 
even exists a theorem which directly connects re- 
sponse given as an infinite continued fraction with 
an ordinary DRT integral [ 33]. The important point 
is that since either parallel or hierarchical (dielectric 
system) or series or hierarchical structure (con- 
ducting system) can fit data exactly as well as the 
other, the Jbrm which one elects to use to fit  the data 
by no means implies that the intrinsic processes in the 
material are independent (parallel or serial form 

o-- t 
I I 

L_~: 

(o) 

(b) 

.... - ~ ( c )  

T ___TT 
(d) 

Fig. 1. Equivalent circuits with a finite or infinite number ofele- 
merits which may have the same impedance over all frequencies. 
(a) and (b): pure dielectric system; (c) and (d): intrinsically 
conducting system. 

where ordering is immaterial) or highly interdepen- 
dent (hierarchical, ladder network, continued frac- 
tion form). Conversely, the particular mathematical 
form in which the theoretical response e ra  given sys- 
tem is presented or calculated does not necessarily 
prove that the model involves the independence or 
dependence inherent in that form. Instead, it is the 
microscopic physical processes present and their in- 
teractions which determine such matters. They can- 
not be established just from analysis of  small-signal 
frequency or time response at a single temperature. 
Finally, in terms of the above definitions it is best to 
distinguish between series (or parallel) response 
(where the ordering of the elemental processes is im- 
material to the overall response) and hierarchical re- 
sponse (ordering crucial). 

5.2. Asymptotic behavior and limiting Debye 
respanse 

Let us now consider assumption (a) of section 2 
in further detail. We have already discussed specific 
limiting frequency response and slope behavior of 
the Debye and ZC response functions in section 3 
and have discussed limiting response of fractal sys- 
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tems in section 4. What more can be saidin general? 
It seems likely that Schrama [34] was the first to 
point out that all response characterized by discrete 
relaxation time spectra must lead to complex plane 
plots with limiting high and low frequency curves 
perpendicular to the real axis (i.e. Debye limiting 
behavior, as in assumption (a) of section 2, applied, 
however, to a single dispersion region). In such a case 
it is obvious that the shortest or longest relaxation 
time present dominates in the extreme wings of  the 
response. Schrama also pointed out that with a con- 
tinuous DRT function which is non-zero only over 
a finite interval, ~o< z < z~, one will again obtain the 
Debye-like limiting vertical behavior. Here we can 
specify that Zo > 0 and zo~ < oo. These requirements 
are obvious for the thermally activated exponential 
DAE situation, whose transient response was first 
discussed [20] in detail in 1963. Suppose we have, 
for example, 

= Ta exp(yE/kT),  (4) 

where t', and ~, are usually temperature independent. 
Since negative activation energies are meaningless, 
the minimum possible T is ~ , -~0 when E= O. Since 
no real, finite-sized material will have an infinite ac- 
tivation energy for a process of interest in the relax- 
ation regime, we may set Emax=Eoo<~; then 
Zma~---- Z~ = ~a exp(~,EJkT). 

In the continuous distribution case, we cannot 
speak of dominance by a single largest relaxation 
time, z~o, since there will be other differential ones 
arbitrarily close to ~ .  But Syed et al. [35] showed 
some time ago that for a DRT system with a nor- 
malizable G(z) (note that G(~) for the full CPE is 
non-normalizable [ 15 ]), one obtains to ~ 0  limiting 
response of / '  proportional to to, and S~-,-oo,  again 
perpendicular limiting behavior. Thus even in this 
case, limiting frequency response is governed by an 
effective single time constant and is of  the Debye 
type. These authors also showed from general DRT 
considerations that for t o ~ ,  I" is indeed propor- 
b ~ v J l ~ A  ~,.., , J J  • I U l  t l l ~ , l ~  ~ l U V l ~ l ~ t . . I  L l l g l t  ~ "£ " ) ,  L I i ~  H V "  

erage inverse relaxation time over the relaxation time 
distribution, is finite (the usual situation for realistic 
distributions), they found that S ~  in this limit, 
again single-time-coustant " - ' -  - ~,,.,,y,. limiting response. 
In an actual system, of  course, the ~o~co limiting 
response might not be measurable or, possibly, might 

be obscured by inertial or other effects. 
The above arguments and results were the basis 

for the to +- l limiting response statement in my paper 
[ 2 ] which DH claim to be both invalid and not pos- 
sible of  validation [ 1 ]. Although the counter argu- 
ments above seem convincing, more can still be said. 
First, the above limiting behavior does not even need 
to depend on DRT considerations, even though it is 
mathematically possible to express any physically re- 
alizable response in terms of  a DRT. Consider to-~0 
behavior, for example. It is only enough to posit that 
the material under investigation has various modes 
of  relaxation response, call them relaxation times or 
not. Then because of the limited physical size of  the 
experimental sample, if for no other reason, there 
must be either a longest response mode (involving 
a maximum, non-infinite correlation length), or if 
the modes form a continuum, a cutoffin the contin- 
uum at the long-time end. Then again the response 
well beyond the longest mode or cutoff point will ap- 
proach limiting Debye frequency behavior. 

Several response theories actually lead to broad re- 
laxation regions with Debye limiting tails as above. 
In the frequency domain fractional power law re- 
sponse predict~:d by these theories transforms to lim- 
iting Debye response because the DRT and/or DAE 
involved is cut offat the extremes (yielding a finite- 
interval distribution in the Schrama sense). An ex- 
ample not directly involving a DRT or DAE is the 
conducting system model of Funke [ 36 ] which con- 
siders the forward and backward hops of charged de- 
fects and motion of the surrounding "defect cloud". 
As shown by fig. 2 it leads to the usual displaced cir- 
cular arc response except at the extremes where De- 
bye-like vertical behavior is evident. Other examples 
are the DAE models of the present author [8-10]. 
Here the limited DAE continuous spectrum auto- 
matically ensures such limiting frequency response. 
Had DH actually incorporated cutoffs in their own 
response models (assuming this to be practical), 
limiting -~ -+ I behavior would likely have resulted. 

Finally, we have already cited examples of simple 
")ebye experimental response where the co-+1 re- 
sponse rejected by DH appears. We have also shown 
how it can and should appear in physically realistic 
theories of  wide dispersion regions. It thus only re- 
mains to show that it can be observed experimen- 
tally as well. Fig. 3, taken from ref. [35], shows that 
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Fig. 2. Complex conductivity depressed arcs predicted by the 
hopping conductivity model of Funke [ 36 ] (solid lines). 

it does indeed appear even in solids. The inserts in 
the figure deafly show the approach to final vertical 
behavior at both frequency extremes. 
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Fig. 3. Complex resistivity depressed arc and limiting behavior 
found by Syed et al. [ 35 ] for an ionically conducting glass at 53 ° C. 
Numbers near data points denote measurement frequencies in 
Hz. 

5.3. Low frequency limiting diffusion effects 

The limiting size effect is well illustrated in the dif- 
fusion case, where one need not invoke a DRT even 
though it is possible to do so if desired. DH state [ 5 ] 
that for a conducting-system diffusion situation at 
sufficiently low frequencies both Z' and Z" (or I' and 
I") will show co-112 frequency dependence behavior, 
actually, though not referenced, that first calculated 
by Warburg [ 37 ] nearly a hundred years ago. DH set 
no lower frequency limit on the applicability of this 
response. But it was long ago shown [38-43] that in 
a sample of  finite length such "infinite-length" War- 
burg response cannot continue indefinitely to lower 
and lower frequencies. For a sample with identical, 
plane, parallel electrodes a distance I apart, it was 
demonstrated that when the diffusing particle reacts 
rapidly at the electrodes (conducting case, Z level) 
or does not react there at all (dielectric case, com- 
plex dielectric constant level) one can write 

l(s) =tanh(x /~) / (v '~s ) ,  (5) 

where s-12(to/D) and D is the diffusion coefficient 
of the diffusing particle. Note that for s>> 1, l(s) ap- 
proaches ( is)-  ,/2, CPE behavior with n= 1/2. Phys- 
ically, when s>>l the effective diffusion length, 
(D/to) '/2, is much smaller than I and the finite size 
of the sample exerts no influence on the reponse. In 
the other extreme, when s<< 3, the diffusion length 
becomes greater than l, and it has been shown that 
the low frequency limiting response following from 
eq. (5) is just that of a resistance and capacitance in 
parallel, i.e. single time constant to +' limiting re- 
sponse enforced by the finite size of the sample. It 
should finally be mentioned that this finite length 
modification is not just a theoretical result with little 
or no relevance to experiment. In fact, a great deal 
of data, particularly in the fields of liquid and solid 
electrolytes, can be very well fitted by response of the 
eq. (5) form, with data often extending well into the 
s<< l region [6]. Here is another example where the 
DH rejection of assumption (a) of section 2 must 
itself be rejected. It is perhaps ironic that although 
DH strongly abjure [1] the possibility of a~--,0 
asymptotic response proportional to to + i, their own 
fitting of data of several materials with their CM RRF 
leads [4,21] to just such dependence (i.e. m =  1 re- 
suits; see section 6). 
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5.4. Asymptotic transient response 

We have seen that there is good theoretical and ex- 
perimental reason to expect m +- t limiting behavior 
at the extremes of a wide (or narrow) relaxation dis- 
persion region. Note, however, that such limiting re- 
sponse may fall outside the range of measurement 
for a sufficiently wide dispersion region. For this rea- 
son it is often not observed and reported. Such lim- 
iting behavior is particularly evident in the theoretical 
exponential DAE (EDAE) work of the author, an 
approach which involves at the DRT level a doubly- 
truncated Pareto-relaxation-time fractional power 
law distribution [8-10,11,17 ]. For pure single-time- 
constant dielectric system Debye respon~ th~ as- 
sociated charging or discharging transient current is 
of course of pure exponential form. But when to -+~ 
behavior is present only as asymptotic response of  a 
wide dispersion region, not as part of single-time- 
constant Debye behavior, it is possible that the 
asymptotic transient response may not be a pure ex- 
ponential. For example, the above truncated Pareto 
distribution leads [20] to t~oo limiting behavior of  
t -~ exp(--t/~ma~) form, even faster decaying than 
exponential and far faster than the t-" asymptotic 
response of the DH CM. On the other hand, a dis- 
crete DRT will always lead to limiting exponential 
response. In fact, it can readily be shown that a sharp 
cutoff of a continuous DRT probability density func- 
tion (one which does not approach infinite density 
at the cutoff point) in such a way that it is zero be- 
yond a value zma~ will always lead to t --,oo limiting 
behavior of the t - t  e x p ( -  t/~%,a~) form. Thus in all 
practical cases it appears that the limiting behavior 
will be either exponential or at least no faster than 
the quasi-exponential decay defined above. 

Of course, to measure the intrinsic very-long-time 
discharge response of a dielectric material, it is nec- 
essary, if one wants to observe the full response of  
the system, to charge the sample for a time appre- 
ciably longer than the longest response mode and 
longer than any measurement discharge time. This 
is not always done. Further, one may not see the fi- 
nal exponential or quasi-exponential decay because 
earlier t -"  decay may persist over a t':me longer than 
the longest con'.'enie~t rt~easurcraent time or until 
the current has decayed to the noise level. Failure to 
observe final exponential-like decay does not, there- 

fore, prove that it does not exist at sufficiently long 
times. DH's statement [ 1 ] that "even an exponen- 
tial decay takes an infinite time to reach equilib- 
rium" is misleading. Although it certainly takes an 
infinite time for an exponential to decay to zero, this 
is both unnecessary and immaterial since it is only 
necessary for the process to decay to the thermal 
equilibrium noise level or measurement noise level, 
something that always happens in finite time for an 
undisturbed system with time-invariant material 
properties. 

Although DH cite two references to justify their 
assertion [ 1 ] that exponential decay is unphysical at 
both long and short times, these references are not 
really germane to the point at issue. First, the start 
of exponential decay at sufficiently short times, which 
is associated with to- ~ response, is often masked by 
other processes such as the beginning of inertial ef- 
fects. Of the two references cited by DH, one con- 
sidered broad relaxation regions without cutoffs of  
the types discussed above. Thus it is not suprising 
that it did not involve exponential-like behavior at 
sufficiently long times. The other article was solely 
concerned with a decay theory of  unstable quantum 
systems and dealt with radioactive decay - not at all 
the sort of relaxation we are concerned with here! 
Even this article reached the conclusion that "the ex- 
perimentally observed non-decay probabilty law is 
exponential at all relevant times" [44]. 

6. Discussion of two response models 

6.1. Introduction 

Since the relaxation response functions (RRF) of  
DH and the EDAE of the present author have both 
been claimed to fit data very well for a wide variety 
of materials, it seems worthwhile to compare them 
and to point out some similarities and differences. 
DH have stated that the CM gives "an extremely good 
description of  the different types of  response shapes 
~served over a wide frequency/time range [and 
that] its claim to generality can therefore be held to 
be valid in detail" [4]. Similarly, I have stated [9], 
"a unified dielectric or conductive distribution of ac- 
tivation-energies (DAE) physical model is proposed 
whose predictions agree remarkably well with those 
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of all the Jonscher universal dielectric response 
equations as well as with many other common die- 
lectric response equations." Can both these state- 
ments be correct? We shall see. 

6.2. Similarities 

First, what are some of the other similarities be- 
tween these models? 

(a) They each have somewhat microscopic and 
macroscopic elements; thus neither is a thorough- 
going microscopic theory. 

(b) They can both yield two connected regions of 
fractional power law behavior in frequency or time. 
The parameters which control such behavior for r'  
are denoted n and m (or p) in the CM and ¢: and 
~2 (or ~) in the JRM EDAE model. Since one or two 
such fractional slopes indeed appear in the vast ma- 
jority of  non-Debye (or anomalous dispersion) ex- 
perimental results, any theory which purports to 
describe such data must include these possibilities. 

( c )  Both the DH CM and the JRM EDAE models 
lead to RRFs which may be expressed as (different) 
hypergeometric functions. In the CM ease, calcula- 
tions of the response from the hypergeometric func- 
tion are carded out [4] using a series which is poorly 
convergent as to~top--, 1. The JRM EDAE RRF is ex- 
pressed in intergral form and may be used, with the 
proper input and interpretation, for either dielectric 
or conducting systems. It has been incorporated as 
one of the many distributed circuit elements [ 17 ] 
available for direct use in the general CNLS fitting 
program [ 12 ] available from the author. In this pro- 
gram, the integral is evaluated numerically, both 
rapidly and accurately as needed for the least squares 
fitting. 

6. 3. Differences 

Along with the above similarities, there are also 
many important differences between the models. 

(a) Although they have some common features, 
the two models are largely based on different phys- 
ical assumptions. The EDAE model [8-10] is ap- 
plicable for a thermally activated system and assumes 
that an exponential distribution of activation ener- 
gies, E, (distributed enthalpy and possibly entropy) 
having finite extent in E, is present in the material. 

Such a bander-height distribution might arise from 
the presence of a distribution of the values of struc- 
tural parameters of the material, as expected in an 
amorphous material. In the conducting case, for ex- 
ample, transport laws may depend exponentially on 
such parameters, leading to an EDAE. Further, ex- 
ponential density of states are common in semicon- 
ductors [ 27-29], and a double-exponential density 
of states (such as that in the EDAE2 model [ 9,10]) 
has been found from polyerystailine silicon data [ 29 ]. 
On the other hand, the DH RRF has been derived 
in two different ways: the first is based on a two-level 
system containing two types of decay mechanisms 
[21], (and it even contains a DAE assumption 
[24]!), and the second, the CM, which differs sig- 
nificantly from the first, involves a model of clusters 
of ions or molecules, each cluster having some local 
ordering with both inter and intra duster interactions. 

DH do not refer, in their derivations of the CM, 
to earlier work likely to be relevant, particularly the 
quantum many-body coupled-cluster method (see ref. 
[45] for background and references that go back ~o 
1957), and possibly the free-volume model for dense 
liquids and glasses [46] which involves a DRT for 
finite and infinite clusters, and the Schlesin- 
ger-Montroli model [47] which involves self-simi- 
lar bursts of  hopping events with intervening clusters 
of pauses (intermittency). 

Of course, the presence of two distinct, physically 
different derivations of the DH RRF means that its 
ability to provide a good ~escription of some small- 
signal data does nnt allow one to decide which of the 
two models, if either, actually describe the physical 
processes present in the material. This point is not 
addressed by DH. Again it is much easier to prove 
a negative than a positive assertion. 

(b) Although the DH and JTM RRFs lead to tw~ 
fractional power law regions (which may or may n¢: 
invoh'c a peak in - ! "  between the two regions), these 
regions continue indefinitely in frequency for the DH 
~-xzxx u u L  ~,w,~:~uu~x 3 S~O',V ,~ l~. ,~; , ,~ lhr  ~ , ~ ¢ a r v  t r a n -  

s i t i o n s  to o) -+: behavior for the JRM RRF. Because 
of the presence of these transitions, the latter func- 
tion involves the presence of one (EDAE~ and 
EDAE2 models) or two (general EDAE model) more 
parameters than does the DH RRF. These parame- 
ters determine where the transitions occur; of course 
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if the data do not include transition regions, these 
parameters need not be free. 

(c) Although both models claim to lead to RRFs 
which apply for either pure dielectric or intrinsically 
conducting systems, there is a crucial difference be- 
tween them. One form of the DH RRF applies when 
the inter-cluster interchanges carry charge, but it ap- 
parently does not involve the possibility of  a true di- 
rect current, even with completely ohmic 
(unblocked) electrodes. Instead, as to~0,  Z" in- 
creases indefinitely as co-P, where the new fractional 
exponent p satisfies 0 < p <  1. Thus, the DH RRF 
cannot represent data for intrinsically conducting 
materials adequately. Certainly, a conducting-sys- 
tem small-signal response expression should be able 
to represent the behavior of  such a system when its 
electrodes are not completely blocking; otherwise it 
is too severely limited to be of  general utility. It is, 
of  course, therefore to be expected that DH have ap- 
plied this model only to the analysis of data with no 
apparent dc conductivity [ 5 ]. Except for the formal 
transformation of m - ,  - p  the DH RRF for dielectric 
systems and the one where charge is carded are ex- 
actly the same in form. Therefore it is not necessary 
to distinguish between them further here, and the DH 
RRF designation will include both. 

The JRM RRF for a conductive system can, on the 
other hand, lead to fractional power law behavior for 
ogzp< 1 of either the to - ;  or top type (the latter giv- 
ing a peak in the neighborhood of to = z ;  J ). But even 
the former type of dependence is eventually limited 
in this model by either a finite maximum value o r e  
or by sample-size effects; it then transforms into the 
usual to + m limiting behavior. Clearly, the maximum 
value of  E involved may be determined by the finite 
size of  the sample if no other effect controls the low 
frequency limiting response. Thus for either the top 
or to-  p type of intermediate-frequency behavior, the 
model eventually yields a non-zero and non-infinite 
dc conductivity. Alternatively, the JRM RRF for a 
pure dieiec).ric system leads to no such dc conduc- 
tivity (assuming no extraneous leakage resistance is 
present) and is thus similar. ;u this sense, to both of  
the DH RRFs. 

a ~ Next, the temperature dependence of  the DH • .L 9 

and JRM RP.Fs is qui'.c different..,~lthough DH state 
[ 1 ] that the CM is not a zero temperature theory, it 
seems to be based on the presence of zero-point flue- 

tuations and the production of  virtual phonons (vir- 
tual displacement dilation modes), and none of  the 
parameters of  the corresponding RRF show temper- 
ature dependence arising from the theory itself. It 
appears that completely temperature independent 
fractional exponents,  n and m (or  p )  are introduced 
into the CM in a rather ad hoc fashion [3] and in- 
terpreted qualitatively in an ex post facto manner. 
The top parameter is, in turn, introduced as a damp- 
ing factor, 7c, with no direct temperature depen- 
dence specified [3]. In the fitting of  actual data, 
however, DH take top thermally activated whenever 
needed to fit the data, but this choice also seems sep- 
arate from the main CM assumptions. 

The situation is quite different for the EDAE ap- 
proach. There, thermal activation is a natural part of  
the theory and connects the DAE involved with a 
corresponding DRT. Thus, zp-  top ~ is thermally ac- 
tivated and of  the form ofeq. (4),  where, in certain 
cases, 7 may be temperature dependent. The 0~ and 
02 EDAE parameters determine the fractional power 
law exponents (see, e.g., fig. 5 of  ref. [ 10 ]) but are 
not generally equal to these exponents. Let nr and n~ 
be the actual fractional values for I '  and - I " ,  re- 
spectively. Then it turns out that 0<nr<2  and 
0<n~< 1 for a single CPE-like response region. But 
01 and 02 fall in the range between - oo and oo. Fur- 
ther, their temperature dependences are entirely de- 
termined by the assumptions of  the EDAE model 
itself; no ad hoc quantities or assumptions are nec- 
essary. If  7 is temperaVare independent, the simplest 
case, and there is no DAE (the EDAE exponential 
probability strength parameter, r/, is zero), then 0~ 
and 0: (and nr and n:) are temperature independent 
and only a DRT associated with a distribution of  the 
pre-exponential factor in eq. (4) is present, perhaps 
arising from a distribution of  configurationai entro- 
pies. Thus this special case can yield results very 
much like those of the DH RRF. 

But in the usual EDAE situtation there are non-zero 
values of  n~ and n2 and many different temperature 
dependences of  0r and ¢2 are possible. Note partic- 
~k.~rly ~.hat since the ranges of the ~'s are unlimited, 
they may depend linearly on temperature over an ar- 
bitrary range of  that variable, unlike the exponents 
themselves, which fall between 0 and t or 2 and are 
thus unable to exhibit such behavior except over a 
limited temperature range. 
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In the simplest EDAE case, where the ~, parameter 
of  eq. (4) is temperature independent, i.e. ordinary 
thermal activation, one finds [8-10] that 0 de- 
creases linearly with T for a conductive system and 
increases linearly for a dielectric one. But the T de- 
pendence possible is considerably more complicated 
if the material shows a glass-like transition and/or a 
linear relation between activation enthalpy and en- 
tropy [8,10,20] (the Meyer-Neldel rule [48]). In 
the dielectric case, for example, the presence of the 
latter relation leads, for the EDAE2 model, to 0- t  
proportional to (T-t - T~ ~ ), where To is a constant 
relating entropy and enthalpy. Incidentally, work of 
Dyre [49] strongly suggests that there are two types 
of  glass transition in glasses, resulting in a Gaussian 
or an exponential DAE, with Gaussian for a slow 
cooling rate and e::ponential for a fast rate. As an- 
other counter example to the DH rejection of DRTs, 
Dyre [49] states, "this may explain the ubiquitous 
appearance of gaussian and exponential barrier dis- 
tributions ... in glassy solids," (four references cited). 

Suppose one is dealing with a conducting system 
which follows the EDAEI model predictions and thus 
show A-BT dependence for 0. If sufficiently high 
temperatures could be reached, 0 would become zero 
and then negative. Is this case for alarm? DH [ 5] 
have criticized the EDAE work of Bernasconi and 
co-workers [ 50] because it leads to the fractional ex- 
ponent n going to zero at a finite temperature. But 
n and ¢~ are not exactly the same, as the more ac- 
curate EDAE work & t h e  author [8-10] has shown. 
Similarly, Maglione et al. [ 51 ] have stated that when 
n=O (which may also happen in the T-~0 limit for 
dielectric systems), the associated DRT spreads to 
infinite width. Again, the predictions of the more ex- 
act and physically realistic JRM EDAE model show 
this not to be the case. Although the 0 = 0  condition 
may indeed lead to n,=O over an appreciable range 
of frequency, that range is limited [ 8 ]. Further, as 
0 goes negative, the relevant EDAEt complex plane 
plot becomes asymmetric, with a CPE-like region at 
the low frequency side of the peak (n ,<0) ,  rather 
than the more usual 0> 0 behavior where this region 
occurs at the high frequency side of the peak ( n, > 0). 
Incidentally, as 101 becomes larger than unity, or- 
dinary simple Debye response is approached. This 
can happen, for example, when T~To for the 
( T -  ~ - T~ ~ ) behavior of 0 mentioned above. There 

are thus no problems over the entire available range 
of 0 : -oe<O<oo.  

6. 4. Comparison of model predictions 

Two sorts of comparisons have been carried out 
for both the DH and JRM RRFs. First, both func- 
tions have been compared with other frequency re- 
sponse functions such as the Williams-Watts, 
Cole-Cole (ZC), Davidson-Cole, and Jonscher uni- 
versal dielectric response functions. But the method 
of comparison used generally differed appreciably. 
DH have compared the response of their function 
with others by taking the asymptotic slopes the same, 
a procedure which usually shows up appreciable dif- 
ferences when the results are plotted in the complex 
plane [52]. Althoug I have also used such an ap- 
proach (when the actual asymptotic to ± t regions are 
outside the range of interest), I have, more often, 
generated exact "data" from one response function 
and fitted it to other functions using CNLS. When 
unity weighting is used in such a fit, agreement is best 
near the peak of the response, at the expense of exact 
power-law-region agreement. Just the opposite be- 
havior occurs with proportional weighting [ 12 ]. The 
general conclusion reached after much such fitting 
[ 7- l 0,17,53 ] is that the EDAE can fit exceptionally 
well all the other functions with which it has been 
compared. Thus it can, by extension, fit all the data 
which have been fitted by these other forms. Al- 
though no direct comparison has been made be- 
tween the DH RRF and the EDAE, it appears likely 
that except fbr the final co +-t asymptotic regions of 
the EDAE and possibly near the peak (or where 
co,,,cop if there is no peak), good mutual fitting 
should be possible at a single temperature. Inciden- 
tally, Hill shows [52] symmetrical complex plane 
theoretical cur;es for the Williams-Watts and Dav- 
idson-Cole functions, but the response of these func- 
tions is inherently skewed and asymmetric. The 
origin of this discrepancy is unknown. 

The second son of comparison is that where two 
or more different RRFs are fitted to ~ctual data. 
Considerable such fitting has been carried out by both 
DH [ 3,5,52 ] and JRM [ 10,54-56 ]. But the DH work 
does not use CNLS and thus does not provide least 
squares estimates of both fitting parameters and their 
estimated standard deviations. Further, as might be 
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expected, most of  the D H  fits are for dielectric sys- 
tems and  most of  the J R M  ones for conducting sys- 
tems. The  actual fits are generally good. 

But the big problem is that  D H  have considered 
only a limited subset o f  all possible anomalous dis- 
persion responses - that for which the to m, co -P, and  
w ' - ~  responses involve only temperature indepen- 
denl exponents. But much  data (e.g. see refs. 
[ 28,51,57,58 ]) involve temperature dependent ex- 
ponents  with dependence such as that predicted by  
the EDAE and discussed in the last section. In spite 
o f  the D H  claim [4] o f  the generality and validity in 
detail o f  their RRF, we have seen that (a)  it is phys- 
ically unrealistic because it does not reduce to to -+ i 
behavior  at the frequency extremes (not usually a 
mat ter  o f  much experimental  importance);  (b) it is 
inappropriate  for fitting intrinsically conducting L'..a- 
terials which can pass de; and (c)  it is limited to data  
for which the fractional power  law exponents are 
temperature  independent. None  of  these l imitations 
apply to the EDAE, and thus the generality o f  the 
EDAE, but not the D H  RRF,  is upheld. 

6.5. List of acronyms 

CM: cluster model, CNLS: complex nonlinear least 
squares, CPE: constant phase element, DAE: distri- 
bution of  activation energies, DH: Dissado-Hil l ,  
DRT: distribution of  relaxation times, EDAE: ex- 
ponential distribution of  activation energies, IS: 
impedance spectroscopy, JRM: J.R. Macdonald,  
RRF: relaxation response function, ZC: ZARC/  
Cole-Cole  depressed semicricle sma!!-si~t~.~ RRF.  
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