Analysis of ac conduction in disordered solids
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Dyre [J. Appl. Phys. 64, 2456 (1988) ] has recently stated that the random free-energy barrier
model of ac conduction in disordered solids, solved in the continuous time random-walk
approximation: with the effects of the maximum jump frequency eliminated, is quantitatively
satisfactory in describing hopping conduction for a large number of solids. Here, predictions of
this model, equivalent to the long-used box model, which posits a distribution of equally
probable activation energies, are examined in depth, both without and with an upper cutoff. it
is first demonstrated that the type of log-log plot on which Dyre appears to base his conclusion
of guantitative adeguacy does not allow adeguate discrimination to be made between box-
model predictions and those of other models, such as the Kohlrausch~Williams—Watts model,
even when exact data are used. The resulis of numerous complex nonlinear least-squares fits of
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exact box-model data, and of such data containing substantial proportionally added random
errors, to the box model, the WW model, the constant-phase-element model, and the
Davidson—Cole {J. Chem. Phys. 19, 1484 (1951) ] response model make it clear that when
using this fitting technique, cne can identify the correct model, discriminate against incorrect
ones, and obtain good parameter vaiue estimates for the correct model. Further, when the
highest frequency of the data exceeds the maximum jump frequency, its vaiue can be
accurately estimated. It is concluded that the case for the quantitative adequacy of the box
model remains unproven. Future data fitting using complex nonlinear least squares should,
however, allow a best-fit model to be selected unambigucusly from those compared.

§. INTRODUCTION

The field of electrical conduction in disordered solids is
an important and growing one. It is therefore timely and
useful that Dyre’ has recently reviewed work on the random
free-energy barrier model (RFEB) for ac conduction in
such materials, including smorphous semicondcutors, con-
ducting polymers, and ionically conducting glasses. In his
interesting and valuable paper he compares theoretical solu-
tions of the RFEB model using the continuous time random-
walk (CTRW) approximation and the effective medium ap-
proximation {EMA) and shows that they vield nearly
identical results for the frequency dependence of the real
part of the complex conductivity o'(w). For this reason,
most attention is given to the simpler hopping CTRW solu-
tions and its predictions. Dyre concludes that it predicts all
qualitative features of ac conduction in disordered sclids and
that it also vields quantitatively satisfactory agreement when
compared to experimental resulis for a large number of sol-
ids. Nevertheless, Dyre rejects the possibility of quasiuniver-
sality for the experimental resuits in the present field and
points out the lack of quantitative agreement between the
predictions of the RFEB mode! and some dielectric loss
data. Because the physics underlying the RFEB model (and
some of its generalizations) and the CTRW and EM ap-
proximations has been discussed by Dyre’™ and others,>*?
the present work will be principally concerned with RFEB-
CTRW frequency response predictions and their use in ex-
perimental analysis of ac response data.

Clearly, in carrving out the important task of identifying
and quantifying the microscopic conduction parameters of
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discrdered solids, 1t is of utmost importance to use the most
applicable theory available to describe the conduction pro-
cess. But which theory, of ail those available, is the most
applicable for a given situation? Dyre® has stated that be-
cause all disordered solids have similar ac properties, “only
little can be learned about a solid from measuring its fre-
gquency-dependent conductivity.” The learning, however,
comes primarily not from the measuring but rather from the
subsequent analysis and interpretation of the measureiments.
As Socrates might have said, “The inadequaiely examined
dataset is not worth generating.” Dyre’s counsel of despair
can perhaps be transformed to one of hope by replacing it by,
“Inadeguate analysis naturally leads to litile, inadequate, or
incorrect knowledge.” But, is adequate analysis possible in
the present area? An aim of the present paper is to demon-
strate that it is. Perhaps such analysis will show that the
similar properties mentioned by Dyre are largely conse-
guences of analysis methods of inadequate power and dis-
criminatory ability rather than of the underlying physical
situation.

It is the thesis of the present paper that the guantitative
agreement claimed by Dyre is not sufficiently justified and is
thus an inadequate ground on which to base a conclusion as
to the adeguacy of the REFEB-CTREW model for describing
the frequency response of disordered solids. As Dyre! points
out, with only slight exaggeration, because “anything is a
straight line in a log-log piot,” one must take care in deduc-
ing power laws from apparently straight lines in log-log
plots. Dyre’s own comparisons are cast in the form of log-log
plots oflog{ o’ (w) /() ] vs log (w), and one might gener-
alize the above caution as, “many different models with two
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FIG. 1. Relations between the EDAE fractional-power, freguency-re-
sponse exponents, 2, and #,, and the basic EDAE exponent parameter ¢ for
two different » values.

or three adjustable parameters can appear to fit ac response
data for solids in such a log-log plot.” But such appearances
can be deceiving, and, in my opinion, conclusions based on
them often represent 2 procrustean forcing of model predic-
tions into an inappropriately sized bed. While reasonable or
even good agreement between theory and experiment in such
plots is of qualitative and illustrative interest, model adequa-
¢y conclusions should not be based on them.

Although the above thesis will be further justified in the
rest of this paper, a few of its foundations are worth mention-
ing at this point. First, I agree with Dyre' that, “It should be
emphasized that...results Bike Fig. 1 strongly suggest that
any model for ac conduction should somehow be buiit on the
assumption of a distribution of energy barriers.” The RFEB
model is needed so built, but it probably represents the sim-
plest out of an infinite number of such possible models. It
would be surprising indeed if nature, in ifs virtually infinite
variety, limited itself to just this particular model for the ac
response of disordered solids. Furthermore, there already
exist many other different theoretical models for such con-
duction which lead to fractional exponential ( Kohirausch~
Williams-Watts or WW) response,'™'? often without the
explicit inclusion of a distribution of energy barriers, or
equivalently, a distribution of activation {or free) energies
(DAE) (see Refs. 9, 1416 for further references to such
theories}. And, of course, WW response is generally quite
different from that of the RFEB model, yet it has been used
to fit an appreciable amount of experimental data in the pres-
ent area. Finally, log-log graphical comparison of oaly
o' (») omits examination of the response of the imaginary
part of the complex conductivity, ¢” {w). Because of the ubi-
quitous presence of experimental errors, analysis of either
the real or imaginary part is not equivalent to that of the
other, even though they are connected holistically by the
Kramers-Kronig relations. By using complex nonlinear
least-squares (CNLS) fitting,'” one can fit the full complex
function at once, obiain useful estimates of the model param-
eter values and their uncertainties, and avoid the low resolu-
tion inherent in log-log plots.
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Although no exact microscopic model exists which
leads directly to a distribution of energy barriers and thus, to
the RFEB or a more complex DAE model, such models fall,
in some sense, between macroscopic and fully microscopic
approaches, and, in the absence of exact N-body solutions,
play a useful role. The distinguishing feature of the RFEB
model is its assumption of equally likely free-energy barriers
ranging from & minimum energy E; to a maximum £_ . In
the usual thermally activated situation, one has, for a typical
relaxation time,

r=r17, exp(E/k,T). (1

This equation associates with £ and £ the minimum and
maximum relaxation time of the system, 7, and 7, respec-
tively. As before,*® define their ratio r as r=7_ /7,, usually
alarge number. In a hopping model,’ ris also the ratio of the
maximum to the minimum hopping rate. As discizssed else-
where,*>'® r satisfies 0 < 7,<7<7_ < oo. Thus, the RFEB
maodel involves a continuous probability density function for
£ with a flat top and cutoffs at each end, and so is equivalent
to the well-known box distribution. Dyre gives reference for
this distribution going back to 1946. It i worth adding 4 bit of
additiona! information. In fact, the box distribution was
used in ferromagnetism in 1939, in describing polymer re-
sponse in 1948 and later,”*?' in the dielectric response field
from at least 1949 onwards,?”~** and for photoconductors in
1951.7° Furthermore, detailed consideration of the transient
response of a dielectric system involving a single- or double-
exponential DAE (and so inciuding the box case) appeared
in 1963,” and frequency response treatments applicable to
both dieiectric and conducting materials and involving these
DAFs, as well as a Gauossian distribution, were published®®
in 1985 and 1987.

1t was perhaps first pointed out by Fricke®® that in
agueous electrolytes the real and imaginary parts of the ex-
perimental frequency response generaily involve fractional-
power frequency behavior. The ubiquity of such response
has been emphasized by Jonscher,?’ particularly for solid
dielectric materials, but it is found for amorphous semicon-
ductors and solid electrolytes® as well. Thus, it necessarily
appears, over at least a limited frquency range, in nearly all
response theories {except the RFER model). More specifi-
cally, if c(w) =0’ (w) + iog” (v), one finds that ¢’ (©) ™
and o” () « ", again over a limited but possibly wide fre-
guency range. Here, the real and imaginary part fractional
exponents, which are often equal or nearly equal, satisfy
0 < n< 1. Because such behavior is do endemic, it would
clearly be desirable for the RFEB model to yield it. Although
as Dyre' points out, there is no exact power-law response
present in RFEB-CTRW model predictions, it turns out that
expansion for wr> 1, where Dyre’s ris the present 7__, yields
n,=1 — 2/In{wr), a somewhat frequency-dependent frac-
tional exponent. For 107 <{e1) <10° where 10° is the upper
limit of the data presented by Dyre, this expression yields a
r, varying from about 0.57 to 0.91. Such frequency-depen-
dent variation is rarely, if ever, apparent in the actual ¢’ data,
but, if present, may be obscured by unavoidable errors in the
data and the widespread use of log-log plotting. Further-
more, actual reported exponents are generally not taken to
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be frequency dependent but often are found to be essentially
constant over many decades of frequency. To my knowi-
edge, there have, in fact, been no unambiguous comparisons
between RFEB predictions and data for disordered solid
which confirm this model as the best-fitting choice. Again,
part of the problem arises from data errors, but another part
is associated with the acceptance of model-fitting decisions
based on the use of graphical comparisons rather than on
more powerful procedures.

The above conclusions is not meant to rule out the possi-
bility that some real data may be most appropriately fitted by
the RFEB model, but instead to suggest that the case for this
model remains unproven thus far. Furthermore, since both
the WW and more general DAE models, such as the expo-
nential distribution of activation energies (EDAE) model,
directly yield fractionsal exponents which may be frequency
independent over a wide range and whose possible vaiues fall
in the full range 0 < n<1, it seems inappropriate to iry to
force the RFEB model to yield approximate fractional expo-
nents to save the model.

. BACKGROUND: THE EDAE, AND RFEB-BOX-
DISTRIBUTION MODEL RESPONSE FUNCTIONS

Experimental measurements in the present impedance
spectroscopy”? area usually result in values of the imped-
ance, Z{w) = Z ' (@) + i€ "(w), or its inverse, the admit-
tance, Y(w)=[{Z(w)) 7! =¥ (@) + ¥ "(w). Two other
response functions are often of interest, the complex dielec-
tric constant, €{@) = € (w) — ie” (v}, and its inverse, the
complex modulus function, M{w)} =M (&) + iM "{(w),
probably first considered by Schrama.”® Let us define the
capacitance of the empty measuring cell as C,, a guantity
which involves the vacuum permittivity e,. Then,
e(@y=Y{ew)/(inC,.}. But for the materials considered
here, the dec or low-frequency limit of ¥{w ), the conductance
¥'(0) =G{0), is not zero, and its leads to a possibly undesir-
able term in e(w)} given by G(0)/(iwC.)=0(0)/(ive,}.
Here, 0(0) =0'(0) is the low-frequency Hmiting value of the
real part of o{w ) = ¥(w}/(C./€,), the complex conductiv-
ity.

For plotting dielectric constant results in the complex
dielectric constant plane when G(0) 20, it is customary to
consider 2 modified dieleciric constant €,, (@), defined as

& (@)=[Y(o) — GO}/ (iwC,), (2)

provided that the effect of any nonzerc €,,{ 0w ) =€{ w0 ) is
included in ¥{w): see discussion below. It is alsc then con-
venient to define the dielectric strength parameter as
Ae={¢, (0} — €(0} ]. The above subtraction of the G(0)
term keeps €], (w) from approaching infinity as w—0; the
transformation from e€(w) to €, (@) is unnecessary, how-
ever, if one deals with M (@) [or Z(@) or ¥(@) ] rather than
e{w), or if one is concerned only with CNLS fitting. Fur-
thermore, although there is no problem in subtracting G(0)
from a theoretical expression for Y{w), the subtraction of a
(0), itself derived from experiment, from experimental
data in order to obtain values of €, {w) will, necessarily,
introduce some error in the result because of the uncertainty
in the estimated value of G{0).
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With this background, let us now consider the detailed
response of the RFEB, or box-distribution model. It is in-
structive to start with the single-exponential distribution of
the activation energies modei, the EDAE,, more general
than the box model. In normalized terms, one finds, ™ for

(ﬁj#oa
4, ) f( exp( — ¢,»)dy ) 3)
t—pr %) do N1+ ik exp( — )]

}} (Q)‘éj) = <
where (=wr,, ye=In(r), and ¢; whick satisfies
— 00 <¢; < w0, is a characteristic exponent of the theory; it
depends on the strength factor of the exponential distribu-
tion. When ¢, is unity, the exponential distribution reduces
to the box distribution. The integral cannot be expressed in
simple closed form for arbitrary values of ¢;, but can be® for
various integral and fractional values of ¢,. Although it can
be written as a hypergeometric function, it has been found
easier to evaluate it by numerical integration when it is need-
ed in the general and powerful CNLS fitting program’’
available at nominal cost from the author’s department.

The subscript / appearing in the above can be either Cor
D, designating either an intrinsically conductive or an intrin-
sically dielectric situation, since the same normalized re-
sponse function can represent either one.® Here, we shall
eventually be dealing with a conductive situation, but it will
be useful ic mainiain the generality of the j subscript for a bit
longer. The normalized immittance function 7, (£2,4;) is de-
fined as
LOg={U{0) - U(x)/[U0) -~ U(x)], &)
where U (w)=Z(w) and Uy{w)=¢e(w). In the present
conductive situation, £ (§8,4. ) is thus a normalized imped-
ance response function, and when electrode-interface resis-
tance is negligible, we have Ug{o0) =0 and U.(0)
=Z(O)=R{O=[G(O)] .

For the REFB box-distribution situation, one sets
#; = 1 in Eq. (3) and integration leads to®

L, = [0 - D1 (1 + i)/ + D],
(53

aresult in agreement with that of Dyre"? and with the earlier
box-distribution treatments already cited. Also of interest
(since its real part is the quantity primarily considered by
Diyre) is the normalized admittance® or complex conductiv-
ity, S;(0,1)={L(0,1}]7’, here equal to [¥(w)/
G(0)] = [olw)/c(D)]. Now Dyre has suggested that one
should try to eliminate completely all the effects of the maxi-
mum jump frequency {here, equivalent to the minimum re-
laxation time 7). To do 30, he effectively lets r— o, leading
to the simple result

Se, (1) = i/l + i), (6)

Unfortunately, the RFEB-CTRW mode! leads to an expres-
sion for o(0) which goes to infinity as 7— oc. This infinite-
conductivity catastrophe is an illustration of the nonphysical
character of the r— o0 assumption.®*® To avoid its implica-
tions and still use Eq. (6) as an appropriate fitting model,
Dyre' takes o(0) a a free-fitting parameter (as, in fact, we do
here as well), since, in real conducting situations, it is not
infinite. In ftting actual data, the fitting resulis themselves
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can be used to determine whether or not the 7 = « approxi-
mation is appropriate and adeqguate, rather than prejudging
the matter. But note that even with a finite 5(0), Eq. (6), but
not Eq. (5), leads to infinite conductivity as @ — oo, a further
nonphysical result, although one not fully amenable to ex-
perimental test!

{kl. SOME FITTING RESULTS FOR THE r= o BOX-
DISTRIBUTION RESPONSE FUNCTIONS

Piots of the normalized response functions f; (1,4, ) and
S, (2,4, associated with Eq. (3) have been given® earlier for
a variety of finite r values and many ¢,’s, including ¢, = 1,
the box DAE. Because of Dyre’s claims of quantitative
agreement with experiment of the simple r= w0, ¢, =1
expression of Eq. (6) for conductive situations in disordered
solids, it is worthwhile to carry out some CNLS fitting com-
parisons with the predictions of this response model. This
will first be done omitting any €( o0 ) effects; later their influ-
ence wiil be included explicitly.

Eqguation {6) leads, for the present conductive situa-
tion, o

Y (@) =ior G0}/ In(l + iwr_ ), (6")
and
Z_ (w) :R(O)[ln(l+iw7m)]/(ian’w). 7

There are two parameters in these equations, the scale factor
G(0) or R(0), and the maximum relaxation time, 7_ . Al-
though, we have elected here and in the following to deal
with admittance rather than with complex conductivity,
since admittance may be measured directly, the results ob-
tained are not affected by this choice. We first ask how well
exact “data” calculated from these expressions can be fitted
by two other different but important distributed response
models: Williams-Watts (WW), and constant phase ele-
ment (CPE).* Since the real and imaginary WW frequency
response functions cannot be expressed in closed algebraic
form and are very difficult to evaluate directly as integrals,
an accurate approximation for them was developed®' and
incorporated in the CNLS fitting program mentioned above.
The expression used for CPE response at the V level is just

(iw7e) ", There are three free parameters in a WW fit: P,, the
scale parameter; £,, a WW relaxation time 7y and £, the
WW fractional exponent #,.. Only the parameters P,=r7,
and P,=14_ are present in a CPE fitting.

Before discussing fits of the WW and CPE models to the
oredictions of the r = o box-distribution model, it is worth-
while considering some earlier but relevant results® for the
general EDAE of Eq. (3}, 1,(&,¢; ). InFig. 1, the fractional
frequency response expenents 71, and #; are plotted as a func-
ticn of the EDAE ¢ (here ¢, ) for two different values of ».
These values apply to regions of I,(£},4,) response where
constant-exponent behavior is an excellent approximation.
The curves show that although ¢ may readily exceed unity,
n; does not.

For simplicity in comparisons, the values of the param-
eters in Eqs. (6) and (7} were set to unity, and data were
calculated over an appreciable range of {}. Again for simpli-
city, we shall omit parameter and data units herein. Data sets
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FIG. 2. Impedance-plane plots of CNLS fitting results, for proportional and
unity weighting, of the Williams—-Watts model to exact data calculated from
the box-distribution model with » = «. The points where the normalized
frequency {} is unity are indicated.

were generated from the above equations for the range of §)
used by Dyre for some of his data-model comparisons:
0.1 <1< 10% For WW fitting there were 43 {1 values, distrib-
uted uniformiy on a logarithmic scale with 6 points/decade.
But, CPE response, which leads to a constant slope of the
real and imaginary parts of a response function on a log-log
plot, is only appropriate for the approximate straight-line
part of log-log Dyre box response. To obtain an approximate
fractional exponent, Dyre himself used the range
10°< 1< 10% and found a value of about 0.8. We shall thus fit
the CPE only to this part of the Eq. (&'} data, the top 19
points of the full range. It is worth noting that although we
shall use O=w7r_ as the frequency variable of the exact
data, the related quantity wry,, where 7y is obtained from
WW fitting, is generally unegual to £3.

The results of many different fits appear in Figs. 2—4 and
in Table I. Although these results are largely self explana-
tory, a few additional definitions are needed. The fit-type
choice C indicates CNLS fitting of a complex function; &
designates nonlinear least-squares (NL3Q)} fitting of the
real part only; and £ applies for NLSQ fitting of the imagi-
nary part only. Two basic types of data weighting'’ have
been used in the fits: unity weighting ( U/ or UWT) and pro-
portional weighting (P or PWT). For PWT the uncertain-
ties used in calculating the weights are taken proportional to

5]
I INPUT DATA: DAE Ye(D)
] eIe=e ww FIT RESULTS with FPWT
o e W AT RESOLTS with UWT
> 4 ol
p— J
O
O b
- 1
2-
] :
‘ 3
04 H —1
] dn=1 LA
] ] r=

" 250  3.50  4.50
LOG(Y¢)

-2 ~T y i
~-0.50 0.80 1.50

FIG. 3. Admittance-plane plots of CNLS fitting results, for proportional
and unity weighting, of the Willilams-Watts model to exact data, calculated
from the box-distribution model with 7 = 0.
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FIG. 4. Logarithm of ihe real part of the admittance, the conductance, vs
the logarithm of normalized frequency. Results are shown for NLSQ fitting
with proportional weighting of both the Williams-Watts model and the
constant-phase element model (o exact data calculated from the box-distri-
bution model with r == co.

the individual real or imaginary data values, while they are
taken unity for UWT. Thus, PWT is appropriate when the
random errors in the data are a constant percentage of the
data values themselves. Then, &l data points are important
in the fitting, the very large as well as the very small, but for
UWT only the largest values dominate.

Function-proportional weighting (FP or FPWT) is just
iike PWT except predicted function values rather than data
values are used in calculating the weights. It should be em-
phasized that if the actual errors in experimental measure-
ments involve a random distribution having zero mean
which is multiplied by a consiant fraction of the absolute
values of the true error-free model predictions (exact data
values ), then, this is the often expected situation of constant
precentage errors. I the correct response moded is fitted to
data containing such errors, then FPWT and not PWT is the
appropriate weighting choice. Unpublished Monte Carlo re-
sults of the author show that in such conditions FPWT leads
to very much smaller bias in parameter estimates than does
PWT. The final type of weighting listed in Table I involves
the letter O, standing for optimization. It is only appropriate
for complex fitting, is applied after UWT, PWT, or FPWT
has been used, and involves iterative adjustments to all real-
part weights and to all imaginary-part weights designed to
lead to equal contributions of the real and imaginary fit stan-
dard deviations to the overall standard deviation of the fit.
The final result is that whichever part originally fits worst
contributes less to the final fit and thus io the parameter
estimates, and vice versa, FPWT and optimization have not
been described previously in the present context but often
prove very useful. In this paper, the decision was made to
present only fitting resulis for the kind of weighting (U or
UG, or P, FP, or FPO) which led 1o the smallest parameter
estimated standard deviations for each particalar type of fit.
Although the differences found with different P or U types of

TABLE I. CNLS fitting results for ¢, = 1, r = 0 DAE model “data.” For the WW fitting model, 0.1<€2< 107, while for the CPE, 10°<{1<10°

Fit Data Fit
maodel form type wT S, P, P,
WW Y. C FP 0.203 0.342/6.1 x 1077 0.323(8.3x 1072 0.848{6.6x 1077°
U 56.1 0.027)2.6x 107’ 0.003{2.8 10! 0.926/3.9x10
I P 0.100 0.73316.9x16~* 0.353|7.8x 10" 0.858/4.5x 1077
3] 27.4 1.46]524 0.261|567 0.924|6.0x 10~*
R P 0.955(2.2x 1072 0.302(4.3x 162 0.774(5.9x 16 7*
U 1.7012.3x 10" 0.026]2.8x 107" 0.845]1.4 1077
Z. C FPO 1.125]2.2¢ 1072 ¢.370)2.8x 10 2 0.8684.3 1073
uo 1.3 L0016 107 0.430)1.6x 1073 0.773{1.1¢107*
7 FP 0.103 1.081]12.3% 1072 0.39013.0x 102 0.852[5.5> 107
3] 8.3x 107 1.004[1.0x1077 L4297 x 1077 0769115107
R FP 0.230 0.878!18.0x 107°% 0.208)1.1x 107! 0.894/6.0x 107
U L3x107 1.000(8x 167 0.430(2.7x 10 ? 0.77511.8x 1073
CPE Y. C FPO 0.110 0.225]1.8% 1077 0.905{1.9x 167
o 92.6 .177]7.1x 10 0.926/6.0x 10 *
I P L7167 0.22312.0x 1077 6.906{2.1x 1077
u 41.5 0.179]1.0x 102 0.92418.4x 10" ¢
R FP 3.8 1072 0.290{2.4 < 10 7? 0.807)5.2x 102
19 12.8 0.227|1.2 1072 0.8452.2x 1073
Z C FPO 0.120 0.234[2.0x 107 2 $4.902(2.2 107
uo 2.6x107° 0.298/1.0x 102 0.869]1.8x107*
I P 2.1xi07?2 (.236[2.2x 1077 0.901(2.5x10°
U 1.1x107° 0.292{1.3x 107 0.872]2.2>10 77
R FP Lixio™? 6.3x107°2.0x 107 0.999911.2 10" °
U 2.8x 1078 3276 “‘58.1}’ 1072 0.999912.6 X 10 -5
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weighting were often small, they were sometimes apprecia-
ble. Finally, notice that resuits are presented in this section
only for Y(£}) and Z(£}), not for €(£2) and M(DD). Al-
though this decision was made partly to save space, more
importantly, it turns out!” that CNLS fits of Y{() and €(£})
for any P-type (but not U-type) weighting yield exactly the
same results, as do such fits of Z(§)) and M().

The quantity S, in Table [ is the estimated standard
deviation of the overall fit. Its values for the fits involving
UWT may be compared, as may those involving any type of
PWT, but the S,’s for the two different weighting types are
not comparable. The parameter estimates are presented in
the form A4 [ B, where 4 is the parameter value estimate and B
is its relative standard deviation estimate, sometimes called
the coefficient of variation. When B is of the order of 0.5 or
greater, the parameter value involved is poorly determined.

Figures 2 and 3 present complex plane plots of Z, and
Y. which compare CNLS WW-fit results with the original
data calcuiated from Egs. (6") and (7). The original data
points are shown explicitly in Fig. 2; the = 1 point is iden-
tified; and the curves were plotted with spline fitting between
points to avoid the straight lines which would otherwise con-
nect adjacent points. The arrows show the direction of in-
creasing frequency. Note that the FPOWT WW curve of
Fig. 2 is quite far from the original data while the UOWT
curve seems to indicate an almost perfect fit. Certainly, these
results indicate that one would be entirely unable to distin-
guish between the RFEB box model and the WW model on
the basis of this UOWT fit. Such discrimination would be
even more difficult, of course, for real data containing mea-
surement errors. But the situation is quite different when one
carries out a fit of the data at the Y level. Figure 3 shows
results for such fitting in a log-log complex plane plot. For
this plot it is the FPWT curve, rather than the UWT one,
which seems to agree better with the data. But remember the
earlier strictures about log-log plots! Note that the UWT
result, while agreeing appreciably better with the data at
high €, is hopeless at low €} values because with this weight-
ing the fit is essentially determined only by the region where
the data magnitudes are large. These results indicate that
unless actual experimental data had very large errors indeed,
one could certainly distinguish between the two models.
Model discrimination is further discussed and illustrated in
Sec. IV.

Finally, Fig. 4 presents a log-log plot of the kind used by
Dyre and others in the past. Since past comparisons of mod-
eis and data in the present area have not usually involved the
imaginary part of the data at all, we show here the results of
NLSQ fits of the real part only. We see that even with good
data one would not be able to distinguish, on the basis of such
a plot alone, between the RFEB and the WW models. Fur-
thermore, the dashed CPE fit results, present only at the
higher frequencies, are virtually indistinguishable on the
log-log plot from the (exact) data. These results show why it
was reasonable, on the basis of plots like these, for Dyre to
claim guantitative agreement between theory and experi-
ment. Hopefully, the present analysis should convince the
reader that such a conclusion should not be based solely on
comparisons of this type.
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The foregoing plots are all consistent, of course, with the
quantitative fitting results listed in Table I, but this table
includes many fits not plotted. What conclusions can we
draw from these fit resulis? First, that U and Pweighting can
lead to appreciably different resulis for parameter estimates
when an inappropriate model is fitted to the data. Second,
that Yand Z fits, even with the same weighting type, can also
vield appreciably different results here. These systematic er-
ror differences are inmediate and important signs that one is
fitting the wrong model to the data. Fitting the right model,
even with realistic data containing random errors, would
lead to smalier differences and to a much more consistent
overall picture. Some results of such fitting are presented in
the next section.

Three specific results included in the table are worth
particular mention. First, note that although most of the P,
scale factor estimates are close to the RFEB value of unity,
none of the P, time constant estimates are close to the RFEB
7 input value of unity. This is not surprisingly since 7y, and
7, apply to different models than does the present r_, and
thus they are not fully comparable. Next, note that the real-
part FPWT CPE fit at the Y level yields a value of the frac-
tional exponent ¢, of about 0.81, close to the value of 0.8
found by Dyre for the same fitting region. But note all the
other estimates of ¢, and ¢, listed in the {able, ones differ-
ent from 0.8. Again, their variation arises from fitting the
wrong model to data, data which in fact do not involve a
constant power-law fractional exponent at all. In procruste-
an fashion, the CNLS and NLSQ fits do their best to match
wrong models to the data but at the expense of consistency.
Finally, note the last fand R ¢, results in the table, those for
CPE fitting at the Z level. These values, particularly those
for P weighting, yield the individual slopes of the imaginary
and real response curves in log(real) or log{imaginary) vs
log(frquency) plots and should be compared with the », and
n, ¢ = 1 values shown in Fig. 1. Although there » = 10% or
102 and here » = 10%, we see that agreement is excellent, as it
should be since the same quantities are being compared.
Note, however, that Fig. 1 shows the pertinent relations
between 7, and n, and # not just for the present ¢ = 1 but for
a large range of ¢ values.

V. COMPARISONS AND FITS FOR NONZEROD e{ )

Dyre! has argued that data in the present field should be
presented in terms of ¢’ {w) rather than M(@)} because the
latter jand Y(w), £(@), and £, (o) as well] mixes in the
effect of a high-frequency dielectric constant €  associated
with atomic polarizability, while its effects do not appear in
o' (w). Let us consider the matter in more detail and move
toward a more realistic model of real data. Certainly real IS
data always involves capacitative response associated with
the geometrical capacitance of the bulk material between
electrodes, even when there is no distribution of activation
energies present and/or the material is nonconducting. This
bulk capacitance, C, =&, C,, neglected thus far in the pres-
ent work, is frequency independent in the usual experimen-
tal frequency range and appears in parallel with an admit-
tance circuit element arising from any dispersion process
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present. When it is included in the response, Eqs. (2), (4),
and (5) lead to

€n () =€ + (LT — 77/l (1 + €8 /(L + i )]}
— (i)Y H, (%)

where
H=[r, G0)/C.1=[r, 0(0)/¢,] . )

We have, for simplicity, omitted the f = Csubscript and will
do so hereafter. The expression for €({}) is the same as that
of Eq. (8) except the (i{}) ' term does not appear. It fol-
Iows from Eq. (8) that

€,(0) =& + [(1L+r")/21H, (10)
and

e{lw) =65+ [(1 —r YY/In(»iH. (1)
Thus, when r < o, 28 it always is in reality, there is an addi-

tional contribution to €{ «o } beyond that associated with 5.
The dielectric strength parameter is then

Ae={{(1+r /2] -1 —r Y/ InN1} H. (1)

Note that Ae -0 as r— 1 as it should, and that it approaches!
H /2 as r— w. Because of the presence of the In(#} term,
however, the result is not very well approximated by H /2
even for r values as large as 10.%°

It is now of interest to express such quantities as ({1}
and M(}) in terms of Ae rather than H, since there exist
appreciable data for the Aes of ionically conducting glasses
{see citations in Ref. 1). Let us define D= Ae/¢y, a quantity
which usually falls in the range of about 0.2-30 or so, and

Sy =lnATE 4+ )/ -7 D] [Ind)/2] — 13,(13)

where f{ oo } = 2. Then we may write
€, () /ey = 1+ DA {1 + 0 /(1 + iGr "1}

— {1/t — v H}, {14)
and
exM(§) = {1 + (DA()/In{ {3+ i)/ + iy
(13

For plotting purposes it is convenient to define some normal-
ized quantities. Let [ (¢, ({}) —€5)/€,] =¢,(f1); define
€, () as the value of €,(0) for r=c«; and let
€.x () =¢€,(02)/€,, (0}, a quantity independent of D.
Note  that M(0)=0 and M(x)=¢; {1
+ (D /Mm(r)i}~ . Next, define M,(Q)=M(Q)/
M({x). It follows from the earlier definitions that
(Cr/t Y2y = €, M(D)/L.  Now (Cp/r_)YZ{(0)
= [DA# /(1 — 31,7 ! and we may define the normal-
ized impedance as Z,{(Q)=Z({1)/Z(0). Finally, when
€p = 0, it is helpful to consider M, (Q) = HM ().

In order 10 compare €, #0 with €5 = 0 results, I first
present in Fig. 5 a three-dimensional (3D) perspective plot®?
of M, ({}) for two different 7 values. This type of plot shows
3D curves and, as well, their projecticns in the three coordi-
nate planes; thus all types of response curves are inchuded.
Here, as usual, 0.1<2 < 10° for both sets of data, and the tic
marks on the real and imaginary axes are 1.4 apart, while
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FIG. 5. 3D perspective plot, and its three projections, of exact, normalized,
complex moduivs data, M, (), for the box-distribution model with
r=10"and r = «. Here, €, = 0.

those on the log frequency axis are 1.0 apart. These results
show one very significant feature: namely, that there are ex-
tended fiat parts of the curves, regions where M " () = v/
2H, a frequency-independent value. This is an important
characteristic signature of box-distribution response and
would be much easier to identify than the appearance of a
frequency-dependent fractional exponent as in Dyre’s ap-
proach. Unfortunately, matters are more complicated be-
CAUse £, 1S NEVEr ZEro.

Figures 6, 7, and 8 show complex plane response plots
for the more realistic £, # 0 situation for two # value and two
typical D values. Although the » = 10, D = 20 curve of the
My (1) response of Fig. 6 does show a fiat region fike that of
Fig. 5, such regions only appear for large D. Note that there
are enough differences here between the curves with the
same D values but different r ones to suggest that one should
be able to determine the values of 7 if the present model
applies. Incidentally, for the r = 10* curves 0.01 <1< 105,
but since the r = o curves do not reach their limiting high-
frequency value until §} = oo, we have used the much larger
range 0.01 <1< 10" for them in all three figures.

The Z,, resuits of Fig. 7, where only the low-frequency
part of the full frequency response is resolved, show little
effect of different r values, unlike the M, resuits, where the

0.75 1 4
- ! csgec rz“,o 4
= . Pe=1
= I oo
0.50 -
1 D=0.5
] o o o
0.25: @
1 uoﬁocoao‘:aaoououa $Q6°og
b5 D=20
0.00 T ey
0.0C 3.25 Q.50 0.75 1.00

W'
FIG. 6. Complex plane plots of exact, normalized, complex modulus data

My (1) for the box-distribution model with 7= 10" and r= o« for
D= As/ey values of 0.5 and 20.
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FIG. 7. Complex plane plots of exact, normalized, impedance data Z, (€1},
for the box-distribution model with » = 10 and r = oo for D values of 0.5
and 20.

higher-frequency part of the response is emphasized. It
should be remembered, however, that although M and Z
curves will have different shapes, as will ¥ and ¢ ones, the
members of these pairs will lead to exactly the same param-
eter estimates when any type of PWT is used in CNLS fit-
ting. Finally, the €,,, curves of Fig. 8, which are indepen-
dent of D because of the normalization used, do show an
appreciable dependence on r even if they are translated to
have the same zero-frequency limiting value. Note that for
all curves with 7 < oo the final approach to the real axis at
high and low frequencies is vertical, as it should be'® for
physically realistic response.

The foregoing results suggest that it would be of consid-
erable interest for experimental data analysis in the present
field to exaniine just how well CNLS fitting can yieid good
parameter estimates for real data associated with the present
RFEB-CTRW box-distribution model and whether one can
distinguish it from other response models. To simulate such
real data, I first calculated an exact ¥(w) data set of 73
points, extending over the range 0.01<{3<10". The finite-
size, box-distribution expression for ¥ (w) was cast in the

R AP
Re(‘smN)

FIG. 8. Complex plane plots of exact, normatized, modified complex dielec-
tric constant data, €, { {1}, for the box-distribution model with r = 10%and
r= . With the normalization used, the results are independent of the val-
ue of €,.

form
Yo(w) = (iwCy) + GO iwr,, (1 —r 1)/

Inf (1 +iwr, /(1 +ior v ) }} (16)

for the calculation of the data. For such calcuiation, G(0)
and 7 were each set equal to unity, with negligible loss of
generality, and r was taken as 10°. Because of the reiation
D= (r_G(0)/ Cp) (1 —r ")/f(r}], one can readily cal-
culate D (and Ae€) given values of the other quantities. In
order to have D = 1, C,; must equal about 0.445 713 for the
present parameter value choices, and this value was used in
generating the exact data. Next, random errors were added
proportionately to the exact data. Tc do so, first two sets of
73 independent {pseudeo) random numbers were construct-
ed, each drawn from a normal distribution having zero mean
and 2 nominal standard deviation o, of 0.05. One set was
added proportionately, point by point, to the real part of the
exact data and the other to the imaginary part. The choice of
0.05 was made in order that the resulting data be of average
guality, neither very good nor very bad. To examine the ef-
fects of using data of more limited frequency range, the first
49 points of the above ¥{w) dataset, involving the range
0.01 <1< 10°% were also used in the fitting,

In the CNLS fitting, the program uses the integral of Eq.

TABLE IL CNLS fitting results for ¢ = 1, r = 10" DAE model data with o, = 0.05 random errors and nonzero parallel capacitance € chosen to yield

D=1

Line Data/form

no. fit-WT S R(Q) T, In(r} gory Cy
1 Y.-C-P 0.041 0.985(0.010 0.978{0.017 47.110.98 1.0 0.4450.009
2 ¥Y.C-P 0.041 (.986}0.011 0.983{0.043 43.6)1.7 1.006,0.043 0.44210.052
3} Y.-C-FPO 0.045 0.984]0.010 0.97710.016 18.38]0.001 1.0 0.446)0.008
4 Y.-C-P 0.046 0.986/0.012 0.965[0.017 18.41/0.003 0.97210.023 0.456/0.019
5 Y. I-FP 0.049 0.76810.328 0.792(0.277 18.81{0.288 1.065(0.124 0.407|0.197
6 Y R-FP 0.042 (.984/0.011 0.966]0.017 18.40{0.002 0.97710.026 8.4 x 10°]0.6
7 Z.CP 0.073 0.983]0.011 0.96910.022 18.46]0.004 0.956]0.025 0.468/0.018
8 Z.-IP 0.050 0.97310.128 1.670,0.095 19.07]0.272 1.075]0.085 0.400]0.154
9 Z.-R-P 0.095 0.990]0.030 1.006{0.061 18.5110.006 0.951]0.031 0.474]{0.028

10 Y.-CFPO 0.276 0.925{0.096 0.339(0.110 (.731{0.008 3.50210.008

i1 Y.-C-FPO 0.314 1.105]0.112 0.664/0.120 0.712{0.009 0.500]0.008
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(3} to represent EDAE, response, and thus one fitting pa-
rameter is In(#) rather than # itself. Because for actual daia
one will not know that . = 1, as it is here, it is important to
include ¢ as a possible free parameter. The remairing pa-
rameters involved in the fit are R(0), v, and C,. For
7= 10° In{r) = 18.420 68. Tabie Il summarizes the results
of numerous fits. Lines 1-9 show results of fitting the
EDAE, model (free ¢ parameter) and DAE-box model
(¢ fixed at the value 1: lines 1 and 3) to the above admit-
tance data. The last two fines are the results of fitting with
the WW model (line 10) and the Davidson-Cole response
function. The first two lines use the 49-point data set while
the others involve the 73-point set.

The estimates of In(#) given in lines 1 and 2 indicate that
no adequate determination of r is possible when (3, is ap-
preciably less than », although the estimates of the other
parameters are excellent. On the other hand, when {3, >,
as it is for the other fits, good estimates of In(#) are indeed
possible. Notice particularly that the estimate of In(r) in line
4 and of C, in line 3 are very close to their expecteq values,
18.42 and 0.4457, respctively. As one might expect, the esti-
mates derived from separate real or imaginary part NLSQ
fittings are generally appreciably poorer than those obtained
using full CNLS fitting. In particular, the C; estimate of line
6 is meaningless since the real part of the ¥, data is unin-
fluenced by the value of Cy. Although the imaginary-part
fits of lines 5 and 8 yield generally adequate estimates, it was
found that the NLSQ iterative convergence was very slow
for these fits.

The results listed in lines 10 and 11 show that for the
present data one can very well distinguish between right-
model fits (lines 1-9) and some wrong-mode! ones. Further-
more, the wrong ones yield not only poor C, estimates but
also particulariy misleading estimates of the relative stan-
dard deviation of this quantity. Detailed examination of the
fits of lines 10 and 11 shows that the main part of the misfit
arises here from the fitting of the real part of the data rather
than from the imaginary part. The problem is that neither
the WW nor the Davidson~Cole models involve any high-
frequency cutoff and thus cannot well fit data derived from a
more realistic model that incorporates such a cutoff and in-
ciudes its effect. On the other hand, when the WW medel,
for example, s fitted to the 49-point data, where the cutoff is
much higher than the highest frequency of the data so it does
not affect the avaiiable response, one obtains a much better
fit, one with an S8 only 45% larger than that of line 4. Never-
theless, even in this case, the difference is sufficient that one
should be able to discriminate adequately between right and
wrong models.

The foregoing results justify the following conclusions:

(a) The RFEB-CTRW box-distribution model has not
been shown, as claimed, to vield significant quantitative
agreement with electrical frequency response data for disor-
dered solids or to be a particularly appropriate model for
fitting such data.
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(b) Complex nonlinear least-squares fitting of such data
allows much greater model distrimination resolution than
does complex plane or log-log plotting of the data.

{c) CKNLS fitting has been shown to allow good dis-
crimination between right and wrong models used to fit
RFEB-CTRW box-distribution data containing random er-
rors. Not only can the correct model be identified but such
fitting with this model allows excellent estimates of its pa-
rameters and their uncertainties to be cbtained.

(d} All decisions about goodness of fit of a model to data
and about the most appropriate model for the data should be
based on CINLS fitting of not just one, but of several possible
models.
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