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Abstract-The generality, scope, and limitations of Impedance Spectroscopy (IS) are discussed, with 
emphasis on unsupported conditions in ionic systems. For such conditions, the maximum reaction rate 
which can be determined from IS data is limited. The finite-length-Warburg diffusion frequency responses 
of unsupported and supported situations are simplified and compared, and similarities and differences 
emphasized. Two types of ambiguity possibly present in fitting IS data to equivalent circuits are discussed, 
one intrinsic and the other associated with distributed circuit elements. Powerful new features have been 
added to the author’s complex nonlinear least squares (CNLS) fitting program, and the results of a Monte 
Carlo simulation study of bias and statistical uncertainty in CNLS fitting of equivalent circuit data are 
discussed. The program now incorporates new variable weighting choices which can greatly minimize such 
bias. It also allows two unknown weighting parameters of the error variance model to be automatically 
estimated during the least squares fitting, thus best matching the weighting to the data and yielding most 
appropriate estimates of the parameters of the fitting model. 
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INTRODUCTION 

Although a number of reviews exist of the burgeoning 
field of Impedance Spectroscopy (IS), many of them 
are primarily concerned with supported situations, 
those where a high concentration of indifferent elec- 
trolyte is present, rather than with unsupported 
ones[l-131. Although applicability only to supported 
situations is not always explicitly stated in these 
works, this restriction may often be identified by 
their concentration on liquid electrolytes and their 
assumption of electroneutrality, rather than their use 
of Poisson’s equation. But solid materials, and even 
some liquid electrolyte situations of interest, are not 
supported and their analysis requires satisfaction of 
the Poisson equation throughout the material. 

It is convenient to partition IS into two sub- 
categories, Electrochemical IS (EIS) and everything 
else. EIS deals with materials for which ionic conduc- 
tion predominates, includes both supported and un- 
supported situations, and may involve either ionic 
motion and/or ion-vacancy motion. Besides liquid 
electrolytes, other ion-containing systems, such as 
superionic materials, non-stoichiometric ionically 
bonded single crystals, ionically conducting glasses 
and polymers, and fused salts, may also be included 
in this category. But it is worth emphasizing that IS, 
including its measurement and analysis methods, 
applies to other types of materials as well. In partic- 
ular, it applies to materials exhibiting predominantly 
electronic conduction, such as single-crystal and 
amorphous semiconductors and polymers, and to 
solid and liquid dielectrics, whose electrical character- 
istics are associated with dipolar rotation. Now obvi- 
ously most of these materials are unsupported, and in 
the whole area to which IS is applicable, there are 

many more unsupported than supported situations. 
But, as mentioned above, the distinction between 
these possibilities is not always made clear, and one 
often finds equations and equivalent circuits which 
were derived and used for supported conditions 
also used without comment for the analysis of 
unsupported (usually solid) materials. One aim of 
the present work is to provide a brief history of 
theoretical analyses of unsupported situations and to 
compare some supported and unsupported equations 
and predictions. 

In addition, the problem of two types of ambiguity 
in IS analysis will be discussed, and much attention 
given to complex nonlinear least squares (CNLS) 
analysis of small-signal UC data. Important improve- 
ments in the author’s CNLS fitting program will 
be described, including a new and powerful method 
of automatic weighting choice, and representative 
bias in CNLS parameter estimates, derived from an 
extensive Monte Carlo CNLS simulation study, will 
be illustrated and discussed. 

First, however, it is worthwhile to dispose of 
several minor points of usage. In recent years, it has 
become relatively common for writers in the IS field 
to refer to a “Nyquist diagram”, taken to mean a plot 
of the values of the real and imaginary parts of a 
complex quantity, such as impedance, in the complex 
plane. Such usage should be discouraged. A quantity 
such as impedance is basically derived from measure- 
ments of current and potential at a single (input) port. 
But Nyquist’s work[l4] dealt with two-port measure- 
ments of feedback in amplifiers and involved input 
and output voltage determinations. Thus, a complex- 
plane Nyquist plot is intrinsically quite different from 
an impedance or admittance plot in this plane. In- 
stead of “Nyquist diagram of impedance response,” 
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a better description would be, “complex-plane 
impedance plot.” 

Further, there is little reason to refer to “UC 
impedance” rather than just “impedance.” Although 
one might define a higher harmonic impedance or 
even an indicial transient response impedance, these 
are uncommon in the IS area, and “impedance” may 
be taken, in its standard definition, to mean the 
quotient of vector voltage and vector current calcu- 
lated from small-signal sinusoidal UC measurements. 
Any other type of impedance would require adjectival 
qualification. Also, impedance defined as above (see 
also Ref.[lZ], pp. 5, 134 and 169) needs no qualifier 
as “complex.” Impedance is complex by definition, 
and when it is only real it is called resistance. As 
usual, let “immittance” mean any of the four quanti- 
ties of major use in IS: impedance, Z; admittance, Y; 
complex modulus, M; and complex dielectric con- 
stant, c or E*. It will be denoted by Z = Z’ + il”. 
Proper usage should distinguish between the meaning 
of a superscript asterisk as indicating a complex 
conjugate quantity (as hereafter) or just a complex 
quantity. Because of this ambiguity, its use for the 
latter purpose should be avoided when possible. It is 
desirable, however, when no asterisk is employed, to 
use the “complex” modifier for A4 and c to avoid 
ambiguity. Clearly, IS can, most properly, stand 
for “Immittance Spectroscopy”, rather than the 
less general “Impedance Spectroscopy.” Although it 
is customary in the IS field to plot -Z” on the 
imaginary axis US Z’ on the real axis and term the 
result an impedance plane (or impedance complex 
plane) plot, rigorous usage, which seems excessive, 
requires the designation “complex conjugate 
impedance plot” or Z* plot. Finally, note that pre- 
sentation of IS data in Y, M, and c form, as well as 
Z, either as complex plane plots or, even better, 
as 3-D perspective plots, can often yield improved 
resolution (see Fig. 1) and/or highlight errors in the 
data not otherwise apparent ([ 121, pp. 174-179; [13], 
pp. 28-3 1). 

ANALYSIS OF UNSUPPORTED AND 
SUPPORTED SITUATIONS 

General background 

Theoretical analysis of the small-signal UC response 
of unsupported materials essentially began with the 
work of Jaffe[l5] and Chang and Jaffe[ 161. Because 
of the complexity of the equations governing such 
response for a material with charges of both signs 
possibly mobile, able to recombine, and possibly 
partly or completely blocked at an electrode, the 
following short precis of work in the area shows that 
it progressed over a period of some 25 years through 
approaches which, until the last, involved various 
approximations, simplifications, and special cases for 
ease of calculation. 

Chang and Jaffe’s failure to ensure full satisfaction 
of Poisson’s equation was corrected in Ref.[ 171, which 
dealt with completely blocking electrodes, with posi- 
tive and negative charges of equal valence numbers, 
zi and zr, with arbitrary diffusion coefficients, D, 
and D,, and included dissociation-recombination 
possibilities. Soon thereafter, Friauf [ 181 presented a 

similar treatment which involved partially blocking 
electrodes using Chang-Jaffe (CJ) boundary condi- 
tions, often appropriate for solid materials and even 
useful for many liquid material situations. This work 
and most of that discussed below thus best applies in 
the EIS area to materials with parent-ion or com- 
pletely blocking electrodes, not directly to those with 
redox reactions. Several physical situations for which 
the assumption of parent-ion electrodes is pertinent 
are discussed by Buck[l9]. Beaumont and Jacobs[20] 
later investigated the response of a partly blocking 
system with charge of only a single sign mobile, 
results thus only strictly applicable to solids. Next 
came the first accurate treatment of the UC response 
of a fully dissociated, completely blocking situation 
with arbitrary z;s and DIs[21]. Reference [22] was the 
first to show finite length Warburg (FLW) diffusion 
response for an unsupported situation with equal Dis 
and equal zi)s and with charge of a single sign free to 
discharge at an electrode. General FLW response, at 
the impedance level, is of the form: 

Z,(w) = Zw (0) [tanh[i/i]“.S/[i/i]o.~], (1) 

where n is given by (I/&)2. Here, 1 is the separation 
between identical plane, parallel electrodes, and 1, 
is the diffusion length, proportional to W-O.’ (see 
below). 

Further work on FLW and other response possi- 
bilities appeared in Refs[23,24]. Reference[3] pointed 
out that the main physical processes possibly impor- 
tant in general IS response are, for either supported 
or unsupported conditions, bulk, electrode reaction 
(including discharge of ions at parent-ion electrodes), 
specific adsorption, generation-recombination, and 
diffusion effects. When these processes are loosely 
coupled and thus appear in different frequency 
regions, it was noted that they each lead to a separate 
arc when overall impedance is plotted in the complex 
plane. The first four arcs, but not that associated with 
diffusion, were shown as semicircles with their centers 
on the real axis, although their centers may be 
displaced below this axis if there is a distribution of 
relaxation times present for the process involved 
([12], pp. 16-17, 34-36, 87-94; [24]). These con- 
clusions turned out to be false in one respect. Gener- 
ation-recombination effects do not, in fact, lead to 
semicircular response in the Z plane. Recent work for 
general unsupported conditions[25] shows, however, 
that they do lead to all sorts of multiple arc shapes 
when plotted in the complex dielectric constant (or 
complex capacitance) plane for a completely blocking 
situation. 

Ambiguous circuit and element response 

If one were able to analyze IS data with an 
appropriate mathematical model derived directly 
from discrete microscopic analysis, there would be 
little or no ambiguity present. But this is rarely if ever 
possible for unsupported-situation data, and fitting to 
an equivalent circuit, preferably by CNLS, is the 
remaining option. For such fitting there are two 
possible types of ambiguity. The first arises because 
there are situations where different geometric con- 
nections of the (ideal) circuit elements of a fitting 
equivalent circuit can yield, with appropriate element 
values, the same impedance over all frequencies. The 
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Fig. 1. Four possible ambiguous circuits (D, A, C, J), a circuit containing a distributed element (E), and 
comparison of some of their complex plane response curves with Debye response for the parameter values 
listed in Table 1. The top Z and M curves apply for D, A, C, and J, and the bottom one for the E circuit 

normalized to yield IA,, = 1. 

matter is discussed in the literature ([12], pp. 95-99; 
[ 13,26,27]). All equivalent two-time-constant RC 
circuits of this type which allow some dc conduction 
are shown in Fig. 1 (designated D, A, C, and J), 
and they and the E circuit will be discussed later. 
Ambiguous circuiti involving inductance are also 
discussed in[26]. 

A considerable CNLS study of the theoretical 
response of an unsupported system was carried out 
in[26], and it was found that the circuit of Fig. 2, with 
Z, and R,, omitted and Z, taken as a FLW, was 
most appropriate. For this circuit, C, and R, 
account for bulk effects, C, and R, for electrode 
reaction effects, and C, and R, for adsorp- 
tion-reaction processes. Now it is found both exper- 
imentally and theoretically that the RA-CA 
adsorption-reaction arc may involve either capacita- 
tive or (apparent) inductive effects: that is, it may 
appear above the real axis in a Z*-plane plot or 
below it. Although an inductive element has been 
used to model such below-axis response, it should not 

Fig. 2. General, approximate equivalent circuit for unsup- 
ported conditions. The element Z,, when present, may 
account for diffusion of uncharged species in the electrodes, 
and Z, will be zero when charge of only one sign is mobile. 

be interpreted as the usual real inductance, one which 
involves circulating currents and energy storage in 
magnetic fields, but instead as a pseudo-inductance: 
something which yields the needed phase shift. 

Further, an inductive-type phase shift associated 
with a below-axis arc can also be produced by a 
negative differential resistance in parallel with a neg- 
ative differential capacitance[26]. Thus, instead of 
using a pseudo-inductance of large value, such nega- 
tive RC elements can yield exactly the same frequency 
response. Although it is entirely a matter of taste 
which approach to use, and either is as physically 
reasonable as the other, I find it preferable to make 
the latter choice in the interest of maintaining conti- 
nuity. The R, and C, are often positive (arc above the 
axis), but as adsorption rates change the arc may 
move below the axis. By allowing negative as well as 
positive values for these differential RC elements, 
such response can be represented by R, and C, under 
all conditions, rather than requiring a change from 
R, > 0 and C, > 0 to the use of a positive resistance 
and a pseudo-inductance for below-axis response. In 
the theory of specific adsorption presented in[26], the 
values of R, and C, indeed change from positive to 
negative as adsorption conditions change. This paper 
also showed that expressions for R, and C, are 
independent of whether CJ or the more realistic 
Butler-Volmer (BV) boundary conditions, which 
take overpotential into account, were used. In addi- 
tion, a useful transformation method was described 
which allows response theories using the simpler CJ 
conditions to be converted to ones appropriate for 
BV conditions. Applications of the method for treat- 
ing unsupported diffuse and compact double layer 
effects appear in[27] and[28]. 

In a single set of IS frequency response measure- 
ments, there is no way to avoid intrinsic circuit 
ambiguity when it is present. Then why does it 
matter? It matters because one particular geometric 
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arrangement of the circuit elements is more likely to 
model better the actual connectivity of the physical 
processes present than are the other possibilities. 
Expressions for the circuit elements in terms of 
microscopic quantities will be simpler for this most 
appropriate arrangement and will generally show 
simplest and most physically reasonable dependencies 
on temperature, potential, and electrode spacing, 1. It 
is thus clear that if measurements are carried out for 
a range of temperatures, potentials, and/or I values 
and are fitted using CNLS to the various equivalent 
circuits, then this type of ambiguity may be resolved. 

It is frequently impossible, unfortunately, to obtain 
a reasonable fit of IS data to an equivalent circuit 
which involves only a small number of R’s and C’s. 
The vast majority of such data involve at least one 
appreciable frequency region where impedance or 
admittance shows fractional frequency response and 
is thus proportional to w *‘, where 0 I n I 1. In the 
absence of an exact response solution at the micro- 
scopic level, behavior of this kind is best handled by 
using an equivalent circuit containing one or more 
distributed circuit elements (DCE’s). Such elements 
include, for example, FLW response, more general 
diffusion response, the constant phase element (CPE), 
Havriliak-Negami response, Williams-Watts (WW) 
response, and distribution of activation energies 
(DAE) response[ 12, 13,29, 301. The necessity of using 
equivalent circuits containing such elements leads to 
the second kind of ambiguity present in the fitting of 
IS data. It turns out, at least to first order, that any 
DCE which leads to symmetrical response in the 
impedance plane, such as ColeCole (denoted ZC for 
conductive systems), can be well fitted by any other 
symmetrical DCE. Further, nearly any DCE which 
leads to unsymmetrical response can be at least 
reasonably well fitted by any other such 
DCE[ 12, 13,29,3 l-351. Space limitations forbid illus- 
trations of these ambiguities herein. They are not 
intrinsic, however. For a response region which is 
well separated from those of other processes and with 
sufficiently accurate data and/or data which extend 
well away from peak response in both frequency 
directions, CNLS fitting does allow adequate 
discrimination to be made, provided appropriate 
weighting is used. See especially the results described 
in Ref.[35]. Of the various DCEs available, the ones 
which can best fit the others and a wide range of 
experimental data involving thermal activation are 
the DAEs[29,31-351. They further have the virtue 
of providing specific and physically meaningful 
predictions for the temperature dependence of the 
fractional exponent n or its equivalent. 

Recently, much effort has been devoted to develop- 
ing fractal theories of rough electrode response, 
eg [36-391, to explain CPE-like behavior, Z a (iw)-", 
for either supported or unsupported conditions. 
Although there may indeed be instances where 
electrode-interface response is primarily associated 
with fractal structures, they may be rare. Consider the 
following. First, it seems somewhat unlikely that 
typical electrode roughness and pores could involve 
the necessary self-similarity over more than three to 
four levels, thus not leading to a good approximation 
to full self-similar behavior. Second, there are numer- 
ous other theories which lead to CPE response[29], 

including many physically based ones which are 
associated with such response in solids. Thus, before 
ascribing CPE behavior to fractal structures, one 
should first establish that this behavior is indeed 
associated with intensive electrode-interface regions. 
But even when this has been verified, the matter 
remains unproven. Bates et a/.[401 have carefully 
compared measured CPE response for electrode- 
interface regions with well characterized electrode 
roughness profiles and found no correlation between 
the CPE fractional exponent n and the fractal dimen- 
sion of the rough interface. An approach possibly 
preferable to the fractal one which may still yield 
CPE response may involve a detailed analysis of the 
effect of pore shapes and size-shape distributions, 
eg [38]. It seems likely that analysis of deviations from 
exact CPE response will help allow discrimination 
between the many various theories which lead, at 
least approximately, to such response over a limited 
frequency range. 

Some differences in unsupported and supported 
response 

The exact continuum treatment of small-signal IS 
response of unsupported situations without dc bias 
culminated in the work of Ref.[41]. Mobile positive 
and negative charges were assumed present having 
aribitrary Q’s and z,‘s and general CJ boundary 
conditions were used. The charges were taken to arise 
from intrinsic dissociation and/or from extrinsic 
donor or acceptor centers. Arbitrary dissociation- 
recombination parameters appear for all three types 
of charge generation. The results are appropriate for 
either solid or liquid materials between plane, parallel 
electrodes and apply for either ionic or electronic 
conduction. All five physical processes discussed 
above in reference to[3] contributed to the overall 
response. Because of the complexity of the situation 
and its solution, not all the implications of the latter 
are even yet fully clear. But the exact response for 
completely blocking conditions has recently been 
examined in detail[25]. A few further results are 
discussed below. 

The theoretical work of[41] showed that the circuit 
of Fig. 2 with Zw , R,, , and Z, omitted was virtually 
exactly applicable for the common fully dissociated 
intrinsic situation with charge of only one sign 
mobile and free to discharge at the electrodes. This 
hierarchical-response circuit has been widely used for 
both supported and unsupported situation data 
fitting. Under the above conditions, no FLW 
response associated with the mobile charge appears, 
but such response may still arise from diffusion of 
uncharged (discharged) entities in the material or the 
electrodes[42,43]. But later CNLS fitting of the exact 
response for arbitrary Di values, but with charge of 
one sign completely blocked showed[44] that in the 
absence of specific adsorption (and presumably in its 
presence as well) if R, is the usual reaction resistance, 
then an additional non-zero, non-reaction resistance, 
R Rffi, is necessary, as well as a possible FLW response 
element for Z,, for unsupported situations. Thus 
RR, is a necessary element of the circuit even in the 
limit of infinite discharge rate, where RR = 0. Its 
presence in the present ambipolar diffusion situation 
arises from the drag of charges of one sign on 
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those of the other sign. Since RRm was found to be 
proportional to L,/l, the larger the mobile charge 
concentration and the larger the electrode separation 
the smaller it will be. Here, L, is the Debye length. 
Nevertheless, for fixed conditions it sets an upper 
limit for accurate estimation of the reaction rate 
constant from IS measurements on unsupported 
systems, a limit which decreases proportionally as the 
mobility of the reacting charge decreases[44]. 

Another important difference between supported 
and unsupported IS response appears when diffusion 
effects are important. The exact solution in the 
unsupported case[24,26,41] shows that a diffusion 
arc may appear when charges of both sign are mobile 
and at least one or the other of them is partly or 
completely blocked at the electrodes. It is not present 
for completely ohmic electrodes or for complete 
blocking of charges of both signs[25]. The expression 
for the A of equation (1) is, in the notation of 
these papers, A = M2 bwR, C, , which becomes on 
expansion[41]: 

A = (01 ‘e/4kT) he + zh 
ZI PIP, + Z2P2% 1 

x (h/P2)+2+(P2//4) 

[ 1 (z,/z2)+2+(~2/z,) ’ 
(2) 

where pe and n, are equilibrium values of the mobile 
charge and p1 and p2 are their mobilities, respectively. 
The quotient e/k may be replaced by F/R, the 
Faraday and gas constants. Now the use of the bulk 
electroneutrality condition, z,pe = z2n,, and the 
Nernst-Einstein relation, Dj = (kT/e) (pi/z,), leads to: 

A =(u*~/4)[D,;~~;,;,l 

X 

[ 

(~,~,/~2~2)+~+(~2~2/~1~,) 

(z, /z2) + 2 + (z2 h ) 
1. (3) 

On factoring this equation, one obtains the new 
simplified symmetrical results: 

A = (01z’4) [ 

az, + &z2 

(0, D,)(z, + z2) 1 
appropriate for use in equation (1) for sufficiently low 
concentrations that one need not introduce activity 
coefficients. 

Fitting of IS data to a model in order to obtain 
model parameter estimates is crucial to the identifi- 
cation, interpretation, and quantification of the 
physical processes leading to the data. The most 
powerful available fitting method, which also yields 
goodness-of-fit and parameter standard deviation 
(SD) estimates, is CNLS[52-561. Since the various 
CNLS approaches have been described and com- 
pared in[56], here only recent improvements to the 
author’s CNLS program will be discussed. The latest 
version of this program, LEVM, may be obtained 
from the author’s department for a nominal fee, and 
old versions will be updated free upon request. 

For the supported case, FLW results which are Figure 3 shows some of the main fitting circuits 
consistent with equation (1) seem first to have been available in LEVM. In these circuits, “DE” indi- 
derived by Labes and Lullies[4547] in the biological cates a DCE, and “DAE” a DCE involving a 
membrane area. Because of the decoupling associated general exponential (EDAE) or gaussian distribution 
with the indifferent electrolyte which supplies the (GDAE) of activation energies, or the exact small- 
support, one obtains the same result for a charged signal blocked-electrode model[25]. All the circuits 
(parent-ion electrode) or uncharged diffusing entity allow the input of impedance of the measuring instru- 
([12], p. 105; [19,41]). If its diffusion coefficient is ment to be included when appropriate. In addition, 
D and the charged species is univalent, then when desired, the actual fitting can be carried out for 
A so12/4D, in agreement with equation (4) when the combination of a given circuit and a known 
D, = D, E D and z, = z2 = 1. When there are two reference impedance, as in a frequency response 
charged species present in a supported situation, both analyser. A very important feature of these circuits is 
free to discharge, each species leads to the presence that only those elements which are taken non-zero in 
of a separate FLW contribution of the form of the CNLS fitting appear in a given circuit. These may 
equation (l), as in the redox situation, where there are be defined as fixed in value, free, or free and positive 
both reduced and oxidized mobile species in the only. Because of this feature, the five circuits shown 

electrolyte ([ 11; 121, p. 106). Then, unsupported and 
supported response may be quite different. 

Thus far we have dealt with response for flatband 
conditions: ones where, in the absence of any applied 
pd, the concentrations of mobile charged species are 
uniform throughout the region between electrodes. 
But even in the absence of an applied pd, a Frenkel 
space charge layer can be produced near an electrode 
because of the difference of work function between 
the electrode and conducting material. Further, an 
external static pd, can also lead to nonuniform 
concentration. For such situations the small-signal UC 
continuum equations cannot be solved exactly. Yet 
these situations are often of great experimental 
importance. Response has therefore been calculated 
for a few situations by numerical methods. In 
addition to work on supported situations[48], Buck 
and Brumleve[49] and Franceschetti an’d the author 
have applied such methods to the unsupported 
case[50, 511. For a binary electrolyte, both blocking 
and partly blocking electrode conditions were investi- 
gated using both CJ and BV boundary conditions 
with charge of both signs or of only one sign mobile. 
Without specific adsorption effects included, it was 
found that the circuit of Fig. 2, with only C, , R,, 
CR, and R, non-zero, was able to fit the results quite 
well for an appreciable range of positive and negative 
applied dc bias. The elements of the circuit depended 
on the bias in ways which were consistent with the 
presence of accumulation and depletion layers near 
the electrode(s) [5 11. No such circuit fitting is available 
for comparison in the supported situation. 

COMPLEX NONLINEAR LEAST 
SQUARES FITTING 
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Fig. 3. Five general equivalent circuits for use in forming simpler circuits for CNLS fitting with the LEVM 
program. Here DE indicates one of many distributed circuit elements, and DAE denotes a full distribution 

of activation energies distributed element. 

actually encompass tens of thousands of circuit pos- 
sibilities. In addition, there are ten different DCE 
choices available for any DE, each involving up to six 
parameters[56]. The input data may be in any of the 
four basic immittance forms, either rectangular or 
polar, and may be fitted in any other form desired. 
The program may also be used to fit WW, EDAE, 
and GDAE transient response. 

A new feature of LEVM is optimization for com- 
plex data fits. When invoked, it automatically adjusts 
the weighting of the real and imaginary parts of the 
data in order to make them contribute optimally to 
the final fit. Another important addition is the choice 
of robust regression fitting rather than least squares 
fitting. It is particularly appropriate when errors are 
large. Even more important are the new fixed and 
automatic weighting options. First consider the form 
of the errors likely to be present in IS data. Let Z,(o) 
denote experimental IS data, Z,(w) the corresponding 
error-free data (generally unknown), and Zr(w, 6) 
denote a fitting model involving the parameter set 6. 
Further, take Zrc(w, 0) as the correct fitting model and 
let 0, represent the set of exact parameter values. 
Then Zfc(w, 6,) = Z,(w). Now the data, models, and 
errors, cj E 6; + icJ’ (not the complex dielectric con- 
stant), may be related, for j = 1,2,. . . , N, by: 

Ze(Wj) z Z:(Wj) + iI: = Ifc(Wj, 00) + 43 (5) 

which is to be fitted, using CNLS, by the model 
Z,(o,, O), which may or may not be the usually 
unknown Z,(oj, 0). We now make the plausible 
assumption that the errors may involve independent 
resolution and power-law components ([57], pp. 5 
and 57) of the form 

6; = a,Prj(O, 1) + U,Pzj(O’ 1) 

xsgn{Z&(oj,e,)}[IZ;,(wj, b)lc”l. (6) 
and 

c; = u,P,j(o, 1) + a,P,j(o, 1) 

xsgn{Z~(wj,e,)}[lZ;,(oj, 60)lcoi. (7) 

The P’s are independent probability distributions, 
assumed normal here, of zero mean and unity SD, 
and Pj is a random member of P. Thus ~1, and 6, are 
the SD’s of the additive resolution errors and of the 
power-law contributions, considered separately. For 
6, = 0 and a, # 0 one thus has additive errors, while 
for u, # 0, x, = 0, and c,, = 1 the errors are of propor- 
tional form, For some situations, the choice P2 = P, 
is appropriate. 

In CNLS one minimizes the sum of the weighted 
real-uart residuals and of the weighted imaninary- 
part- ones using weights, WI and WY, which 
inverses of the approximate error vartances, 01 

are 
and 
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vy. Good parameter estimates usually require good 
variance estimates. The proper variance model for 
equations (5-7) is v; = tl f + 0: ) Ii, (co,, 0,) 1 ‘Co and 
v; = txf + a:]l;(wj, e,)] 2CQ. Even when I, is known, 
the true B0 parameter values are not known exactly 
since it is the main object of CNLS fitting to obtain 
good estimates of them. Therefore, the best one can 
usually do is to replace the Z,(w,, 0,) in vi and v; by 
Ir(o,, 0). Further, the true values of tl,, or, and &, are 
also virtually always unknown, so one must use 
estimates of them in the variance model. Since a good 
estimate of or is unavailable until fitting convergence, 
when or # 0 we use a scaled variance model, that 
above with &, replaced by its estimate t, ar replaced 
by unity, and u, by the variance parameter U, an 
estimate of (cx,/a,). Then as fitting progresses toward 
convergence, proper weighting will be approached if 
Zr equals or well approximates If,; if I/ and 5 are good 
choices, and if the final set of 0 values well approxi- 
mates the 0, set. Then, for example, Sr, the SD of the 
overall fit, will be a good estimate of Q, for the c(, = 0 
situation. 

If the errors are believed to be additive, one would 
set u, = 0 and use any constant value of U, leading to 
unity weighting (UWT). On the other hand, when Q, 
and 5 are non-zero, consider first two possible choices 
for the If, components in the variance model: com- 
ponents of If or of I,. We shall identify the first 
choice, where the weighting involves function values, 
and thus varies with each iteration as the B’s vary, by 
adding the letter “F” to the weight designation. 
Further, for either choice, when 1 II, rather than the 
components of 1, is used in both vi and v;‘, yielding 
modulus weighting, an “M” will be added to the 
designation. Thus in the common and important 
situation where t(, is negligible and 5 is set to 1, the 
constant-coefficient-of-variation model, one may 
define and use PWT, MWT, FPWT, or FMWT. 
When 5 is non-zero and free and U is zero or free, we 
may, analogously, define the general weights, GWT, 
GMWT, FGWT, and FGMWT. Thus far, only 
UWT, PWT, or MWT have been used in most CNLS 
fitting, but Monte Carlo CNLS fitting with the other 
weightings suggests that they may often be more 
appropriate. All the above weighting possibilities 
are incorporated in the new version of the CNLS 
program. 

Modulus-type weighting is primarily appropriate 
when 1 I: I and 11; I remain comparable in size for the 
full data set, often not the case. Although the UWT, 
PWT, and MWT weights involve I, and so do not 
vary during CNLS iteration, fitting with varying 
weights is essentially no more difficult than with 
constant ones. More important, PWT and MWT 
generally lead to much more bias in parameter 
estimates than do FPWT and FMWT, even when 
If = If, (see below). Only when one is quite uncertain 
about how well the fitting model 1, approximates 1, 
is PWT more reasonable than FPWT. Thus it is often 
appropriate to use PWT in preliminary fitting; then 
if a seemingly good fit is obtained, FPWT should be 
used for final fitting. 

Monte Carlo (MC) simulation CNLS fitting of the 
circuits of Fig. 1 has been carried out to quantify the 
above bias differences. Exact values of the parameters 
(in ohms and farads) of these circuits are listed in 

Table 1. Those for the ambiguous circuits D, A, C, 
and J have been selected to yield exactly the same 
response for all the N = 33 frequencies used, extend- 
ing over the range 10m4 I w I 104, for each of them. 
The impedance of the ZC DCE in Fig. 1 is 
R,/[l + (iwr)*]. Each individual k out of the total K 
simulation Z-level fits involves data with normal 
random errors satisfying equations (6) and (7), and, 
initially, with the fixed values c(, = 0, U = 0, and 
&, = 5 = 1. Let p denote the total number of free 
parameters, m = 1,2, . . . ,p, and define the relative 
error of the mth parameter in the kth fit, e,, the 
estimate relative bias of the mth parameter, b,, and 
the MC estimated relative SD of the m’* parameter, 
s ml as 

e mk = iemk - brnk ]ieomk ) (8) 

b,,,= K-’ f e,,,k, 

k=l 

s ..=U/K)k$,ledl, (10) 

wheref- 1.483 for a normal distribution and 2/J3 
for a uniform one. The first value has been used 
for the results below. It is, however, appropriate only 
for negligible bias and depends somewhat on bias 
when this is not negligible. Simulation also yields a 
linearized estimate of parameter relative SD’s sr,,,, 
which may not depend so directly on the parameter 
error distribution[56]. Now although b,,,/u, depends 
strongly on 6, for the model parameters, the ratios 
r = s am- am /a, and rr,,, = ~,/a, are independent of it for 
the D, A, C, and J circuits. To obtain well-defined 
estimates of s,, or s, one needs a K of 0( 104), while 
good b, estimates often require a K of 0(106) when 
lb,,,1 is <<I. 

The r values listed in Table 1 for each em value 
provide a measure of how well a given parameter is 
likely to be determined in a single CNLS fit: 
0,,,[ 1 + Q,,,]. They are thus concerned with potential 
precision of estimates, while a bias is a measure of the 
limits of ultimate accuracy of estimation (unless it is 
known and can be taken account of). Note that 

Table 1. Exact (0 to 2 decimal places) and approximate 
parameter values and corresponding values of the r ratios 

for FPWT fitting. T and $ apply only for E 

e n, Circuits 
rm D J C A E 

R, 0.3 1 I 0.530 106 
rd 0.47 0.13 0.13 0.22 0.20 
rr 0.43 0.16 0.16 0.22 0.21 

C, I 1 1.49 2.530 10-12 
ra 0.15 0.15 0.35 0.49 0.23 
rr 0.17 0.17 0.32 0.44 0.25 

R2 0.7 0.429 0.0463 0.947 2 x 106 
ra 0.26 0.67 1.62 1.66 0.20 
rr 0.25 0.59 1.39 1.42 0.22 

Cz.(T) 1 0.49 3.041 1.654 1 
ra 1.17 1.03 0.75 0.85 1.42 
‘r 1.00 0.88 0.64 0.73 1.20 

* - - - - 0.3 
ra - - - - 0.29 
rr - - - - 0.25 
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10 

10 

CIRCUIT E BIAS 

Fig. 4. Dependence of the bias b, estimated from simulation fitting on the mean standard deviation of 
K fits +, for the five circuits of Fig. 1 and for PWT and FPWT. Dotted lines indicate b < 0. 

parameters which are equal in value and play the 
same role in two circuits, such as J-R, and C-R,, 
necessarily have equal r values. It is found that the r 
values for FMWT are appreciably larger than those 
for FPWT (eg, for D-R,, the FMWT values of r, and 
r, are 1.93 and 1.49, respectively), and those of UWT 
are very much larger. Thus in a fit of a single data 
set, FMWT parameter estimates will actually be 
appreciably more uncertain than FPWT ones for data 
of the present type. 

Bias results us St for the five circuits are shown in 
Fig. 4 for the variance model parameter values given 
above. There are three possible sources of bias: wrong 
fitting model, wrong variance model, and the intrinsic 
nonlinearity of the fitting model. The first source is 
absent here since we take Ir(w, 0) = Ifc(w, 0). The 

figure shows that wrong weighting, here PWT, 
usually leads to bias 10-100 times or more larger than 
the residual nonlinearity bias of the correct FPWT. 
The results of Fig. 4 and Table 1 show that for 
0,~ 0.1, for the D or J circuit the PWT C, bias even 
exceeds its statistical uncertainty, s, or s,. Further, 
UWT yields appreciably greater bias even than PWT. 
Although the large PWT bias results are nearly the 
same for the four ambiguous circuits, appreciable 
differences appear for FPWT. Note also that the 
FPWT bias results are so small that generally 
(b, + Srr,,,) N S,r, for even large values of S,, and 
such bias is thus negligible compared to normal 
statistical uncertainty. 

All previous CNLS work has involved constant 
values of U and <, most often with either UWT or 
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PWT. For real situations, however, appropriate 
values of U and 5 are usually unknown. Therefore, it 
is desirable to allow them to be free parameters of the 
least squares fit as well as the 0’s. By modifying and 
extending an approach discussed in Refs.[57,58], it 
has been possible to do so, and the results, which 
usually yield U and 5 estimates with high resolution, 
are incorporated in LEVM. Most appropriately, 
the U and 5 estimates from such a fit may then be 
used as fixed values in a final fitting. For a situation 
where LY, = 0, to = 1, and 5 is free, one finds for 
the four equivalent circuits of Fig. 4 that FPWT 
yields 6; = 2.7 x 10m3, essentially independent of Q,, 
ra5 ‘5 2.63, and rrS 2: 1.52, both quite small enough 
that 5 estimates will be useful in most cases of 
interest. Results for the E circuit are comparable. 
These relative results are all independent of the data 
scaling as expected. Present space limitations, pro- 
hibit a detailed discussion of the important situation 
where both tl, and u, are nonzero and fitting involves 
both U and 5 free. MC results show, for example, that 
for the D, A, C, and J circuits U N GI,/Q, as expected, 
and s,” u 0.16, independent of Q, and Q, values. One 
finds that for these four circuits with CI, = 10e3, &, = 1, 
and tr, = 0.1, then U N 0.01, b, N 0.03, s,( = 0.08, and 
s,; N 0.07. No convergence problems appear for any 
of the circuits until IX, becomes comparable with 
o, ( 1 Z, ( max)io. Then, ordinary UWT is appropriate. 
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