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ABSTRACT 

The origin of finite-length-Warburg-type impedances in supported and unsupported systems is examined within a 
common framework and with reference to previous exact and approximate results. While close agreement is found be- 
tween an approximate treatment based on bulk electroneutrality and an exact solution of the Nernst-Planck-Poisson 
equation system for unsupported systems of many Debye length thicknesses with rapid electrode reaction kinetics, the 
approximate t reatment  is unjustified when the electrode reaction is slow or the electrode separation is less than or compa- 
rable to the Debye length. 

In  the years since Warburg (1) published his classic 
study of diffusion under  ac conditions in a supported elec- 
trolyte placed between kinetically reversible electrodes, 
response functions of the Warburg type have been ob- 
tained by numerous  authors for a wide range of systems 
involving both supported and unsupported electrolytes. 
Among recent theoretical treatments, especially those 
dealing with finite-length effects, differences in notation, 
approximations, and terminology have tended to obscure 
both similarities and differences between the situations 
considered and the results obtained. In  particular, pub- 
lished discussions of thin layer effects often assume that 
while electrode separation is small compared to the effec- 
tive diffusion length for the electrolyte, it is still large com- 
pared to the Debye length. While the latter condition is al- 
most always met in systems with aqueous electrolytes, it 
need not apply in solid materials and membrane situa- 
tions. Further, quite similar results have been obtained in 
treatments which both include and explicitly neglect Pois- 
son's equation. In the present brief communicat ion we 
compare three different approaches leading to a finite- 
length Warburg impedance of the form 

Zw(r = Zw(0) [tanh (iA)~ ~ [1] 

where A is proportional to the angular frequency o~. 
Specifically examined are cases of (i) a supported electro- 
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lyte placed between kinetically reversible parent ion elec- 
trodes, (ii) an unsupported electrolyte with similar elec- 
trodes with electroneutrality assumed, and (iii) a 
t reatment of the latter case based on an exact solution of 
the Nernst-Planck-Poisson equation system. We use a con- 
sistent notation throughout and comment  upon related 
treatments to be found in the literature. 

Supported Systems 
Consider a supported electrochemical system of the 

form 

M I MZ§ supporting electrolyte I M [2] 

where the planar electrodes are parallel and a distance d 
apart. The supporting electrolyte allows us to neglect the 
migration term in the Nernst-Planck equation 

Jp = -Dp(OCp/OX) + p.pcpE [3] 

since the electric field E is very small within the electro- 
lyte. Here Jp is the flux of the M z§ ion, Dp the diffusion coef- 
ficient, for the ion, % its concentration, and ~p its electrical 
mobility. On setting E = 0 in Eq. [3], we obtain Fick's first 
law of diffusion. Under  small-signal ac conditions, the sys- 
tem variables may be separated into steady-state and time- 
dependent  parts, i.e. 

cp = %o + %1 exp (icot) [4a] 
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and 

Jp = dp0 + Jpl exp  (loot) [45] 

On subs t i tu t ing  these  forms in Eq.  [3] and equa t ing  the  
t i m e - d e p e n d e n t  te rms,  one  obta ins  

Jpl = - Dp( d % , / d x )  [5] 

I f  M z§ does  no t  par t ic ipa te  in any bu lk  chemica l  react ion,  
F ick ' s  second  law t h e n  can be  wr i t ten  in the  small-s ignal  
form (2) 

i(~Cpl = Dp(d2%1/dx  2) [6] 

It  m a y  be  no ted  that  it fol lows f rom the  l inear i ty  of  the  first 
t e r m  in Eq.  [3] that  Eq.  [5] and [6] ho ld  e v e n  w h e n  %0 var ies  
wi th  posit ion.  The  genera l  solut ion of  Eq. [6] m a y  be  
wr i t ten  

%1(x) = A s inh [(ir176 + B cosh  [(io)/Dp)~ [7] 

where  A and B are  cons tants  wh ich  m u s t  be  se lec ted  to sat- 
isfy the  b o u n d a r y  condi t ions.  For  the  sys tem unde r  con- 
s idera t ion here  one  cons tan t  m a y  be e l imina ted  by a sym- 
me t ry  a rgument .  P lace  the  cen ter  of  the  sys tem at x = 0, so 
that  the  e lec t ro ly te  ex t ends  b e t w e e n  x = - d / 2  and x = d/2. 
Note  that  the  phys ica l  s i tuat ion at any t ime  t will  be the 
mi r ro r  image  of  tha t  at t ime  t - ~/r i .e.,  the  e lec t rodes  will  
have  reve r sed  polar i ty  and the  cur ren t  will  be  equa l  in 
m a g n i t u d e  bu t  oppos i t e  in direct ion.  With the  coord ina te  
sys tem chosen,  this  behav io r  requi res  f rom Eq. [4a] tha t  
%l(-X) = -%1(x) and thus  that  B = 0. The  cons tan t  A can be 
re la ted to the  m a g n i t u d e  of  the  t i m e - d e p e n d e n t  part  of  the  
appl ied  potent ia l  difference,  V~ppl,1 exp  (io~t). We assume  
that  this potent ia l  d i f fe rence  is even ly  d iv ided  be tween  the  
two interfaces  and can  be desc r ibed  by Nerns t ' s  equa t ion  
which,  af ter  l inear izat ion of  the  logar i thmic  term,  yields (3) 

V~ppl,1 = ( R T / z F % o ) [ % l ( - d / 2 )  - %1(d/2)] [8] 

where  R is the  gas constant ,  T the  abso lu te  t empera ture ,  
and F the  Faraday.  This  quan t i ty  is the  l imi t ing potent ia l  
d i f fe rence  for e x c h a n g e  rates of  po ten t i a l -de te rmin ing  
species  tha t  are  rap id  in compa r i son  wi th  mass  t ransport .  
I t  is cons i s ten t  w i th  t he  e lec t rode  kinet ic  mode l s  of But ler-  
Vo lmer  and Chang-Jaffd,  for example .  When we calculate  
the  electr ical  cur ren t  (per uni t  area), Ii = zFJp~, and divide 
into Vappl,1, we  find the  i m p e d a n c e  (also per  uni t  area) 

Z(m) = [2RT/z2F2%o(io~Dp)~ t anh  [(ir176 [9] 

On c o m p a r i n g  Eq. [9] wi th  Eq.  [1] we  find that  A = 
oJ(d/2)2/Dp, which  m a y  also be  wr i t ten  as A = (d/2)2/L~i~, 
where  Ld~ff -= (DpAo) ~ is the  ef fec t ive  di f fus ion length,  at the  
f r equency  of  measu remen t ,  for the  e lec t roac t ive  ion. The  
reason  that  the  sys tem leng th  appears  as d iv ided  by two is 
the  s y m m e t r y  of  the  sys tem,  wh ich  requi res  cpL to be  zero 
at the  center.  The  d iv isor  of  two  was  unfor tuna te ly  omi t t ed  
by two of the  p resen t  au thors  in a recen t  rev iew (4). An ex- 
press ion  in the  form of  Eq.  [1] appears  first to have  been  de- 
r ived in a b iological  con t ex t  by Labes  and Lul l ies  (5). An 
express ion  of  the  same  form, bu t  wi th  a factor d (rather 
than  d/2) appear ing  in the  a r g u m e n t  of  the  tanh  func t ion  
was ob ta ined  by Llopis  and Co lom (6), who  cons idered  the  
di f fus ion of  a s ingle e lec t roac t ive  species  th rough  a Nerns t  
layer of  th ickness  d es tab l i shed  at a s ta t ionary e lec t rode  in 
a s t i r red electrolyte.  There  is no s y m m e t r y  of  cp~ in this 
case because  Cp~ is zero at the  solut ion side of  the  Nerns t  
layer. A s imilar  resul t  was ob ta ined  by Drossbach  and 
Schul tz  (7). S luyters  (8) e x a m i n e d  the  ac behav io r  of  a th in  
layer  of  suppor t ed  e lec t ro ly te  wi th  identical ,  k inet ical ly  re- 
vers ible ,  e lec t rodes  and bo th  r educed  and oxidized species  
di f fus ing wi th in  the  electrolyte ,  and obta ined  a resul t  
equ iva l en t  (2) to p lac ing  two i m p e d a n c e s  of  the  form of  Eq. 
[9], in series,  one  wi th  a di f fus ion coeff ic ient  equa l  to that  
of  the  r educed  species,  the  o ther  wi th  the  di f fus ion coeffi- 
c ient  of  the  ox id ized  species.  An  i m p e d a n c e  of  the  form of  
Eq. [1] can  also arise w h e n  a neut ra l  p roduc t  species  mus t  
diffuse th rough,  or  a long the  in ternal  pores  of, an e lec t rode  
to e x c h a n g e  wi th  the  amb ien t  a tmosphe re  (9, 10). In this 
case we  have  A = (~d~/D~, where  d is the  th ickness  of  a sin- 

gle e lec t rode  and D the  diffusion coeff ic ient  of  the  dis- 
charged  species  in the  e lect rode.  

One  of  the  p resen t  au thors  has ,extended the  t r ea tmen t  
of  the  ac r e sponse  of  the  paren t -meta l - type  cell  to the  case 
whe re  the  e lec t rode  reac t ion  occurs  wi th  arbi t rary and dif- 
ferent  po ten t i a l -dependen t  rates at the  two  e lec t rodes  (2). 
In  this t rea tment ,  Bu t l e r -Volmer  reac t ion  kinet ics  were  as- 
s u m e d  and the  d i sp l acemen t  cur ren t  t h rough  the  compac t  
doub le  layer  was expl ic i t ly  inc luded.  The  exac t  i m p e d a n c e  
resul t  is cons i s ten t  wi th  Eq.  [9] for ident ical  e lec t rodes  and 
wi th  the  Llopis  and Co lom resul t  (6) w h e n  one  e lec t rode  is 
k inet ica l ly  revers ib le  and the  o ther  not. Resul t s  for non- 
p lanar  e lec t rode  geomet r ies  are g iven  by S luy te r s -Rebach  
and Sluyters  (11). 

Unsupported Systems, Eiectroneutrality Assumed 
The t r ea tmen t  in this sect ion is based  on the  approach  of  

B u c k  (12). Cons ider  n o w  an u n s u p p o r t e d  sys tem 

MIMX, solvent  IM [10] 

where  the  salt  MX is ful ly dissoc.iated into M z+ and X ~- 
ions, wi th  concen t ra t ions  deno ted  by cp(x) and cn(x), re- 
spect ively.  The  t ranspor t  of  cat ions is desc r ibed  by Eq. [3] 
as before,  whi le  the  t ranspor t  of  anions  is descr ibed  by a 
second  Nerns t -P l anck  equa t ion  

Jn = - Dn(Oc,/Ox) - ~ncnE [11 ] 

The  mobi l i t ies  ~p and  ~, are  genera l ly  t aken  to be  related 
to the  co r re spond ing  dif fus ion coeff icients  th rough  the  
Eins te in  re la t ion ~i = D~zF/RT.  

I f  e lec t roneut ra l i ty  is a s sumed  to hold, it fol lows that  
% = cn and tha t  Jp and Jn are equa l  e x c e p t  for a spatial ly in- 
var iant  t e r m  re la ted  to the  faradaic cur ren t  If 

Jp - Jn = I f / z F  [12] 

On set t ing cn = Cp in Eq. [3] and [11] and e l imina t ing  the  
concen t ra t ion  grad ien t  terms,  one  obta ins  the  electr ic  field 
in the  e lec t roneut ra l  r eg ion  as 

R T  Jp/Dp - J J D n  
E - [13] 

F 2 z %  

Alternat ively ,  on us ing  Eq. [12] to e l iminate  J ,  f rom Eq. [11] 
and then  c o m b i n i n g  Eq. [11] and [3] to e l iminate  E, one 
finds 

Jp = Ds(O%/Ox) + tp I f / zF  [14] 

or, us ing  Eq. [12] again and no t ing  that  c,  = Cp 

J~ = Ds(OCn/OX) - t f l f / z F  [15] 

Here  

D~ = 2 D , D p / ( D ,  + Dp) [16] 

is the  coup led  dif fus ion coefficient,  and tp = DJ (D .  + Dp) 
and t~ = 1 - tp are the  t ranspor t  n u m b e r s  of  the  posi t ive  
and nega t ive  species,  respect ively .  

As in the  suppor ted  case, the  concen t ra t ion  and other  
sys tem var iables  can  be  separa ted  into equ i l i b r ium and si- 
nusoida l ly  vary ing  parts. Specifically,  Eq.  [4] can still be 
a s sumed  to hold  and, s ince Ill does  not  vary  wi th  posit ion,  
Eq.  [6] and [7] b e c o m e  

i(o%1 = D~(d2cpJdx  2) [6] 

and 

%1 = A s inh [(ir176 [7] 

where  again a s y m m e t r y  a r g u m e n t  has been  used  to elimi- 
na te  one  cons tan t  of  integrat ion.  

The  potent ia l  drop  V~ppl,~ across the  sys tem is taken,  in a 
s e g m e n t e d  potent ia l  m o d e l  (12), as the  sum of  the  Nern- 
st ian potent ia l  difference,  V~.i.t, c rea ted  by the  concentra-  
t ion per tu rba t ions  at the  e lec t rodes  and g iven  by Eq. [8], 
and the  potent ia l  drop,  V~ .... across  the  e lec t roneut ra l  re- 
gion, wh ich  can  be  obta ined  f rom Eq. [13]. When one  then  
subs t i tu tes  Eq.  [14] and [15] into Eq.  [13], l inearizes, and 
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then integrates across the thickness d of the electrolyte, 
one finds 

Y l  en  - -  - -  ' 2zFcpo - ~  [%,(-d/2) 

so that 

RT + t,, I - %1(d12)] + - -  If~d [17] 
2z2F2cpo \Dp D , /  

V1 - - 4 R T t ,  A sinh [(iLolDs)~ 
zF 

+ + Ifld [18] 
2 z2 F2 cpo 

To evaluate A in the present case, one may set Jpt = If~/zF 
at x = -+ d/2, since the flow of negative charge is zero at the 
electrodes, and thus from Eq. [14] 

D~( dCpJdx) = tnIfl/ZF [19] 

so that A = -t~Irl/zF (io~D~) ~ Then, on taking the ratio Z = 
V~/If~, one obtains the impedance 

4RTt~ 2 
Z(~) = 2 2 0 ~ tanh [(ir176 

z F cp0(icoD~) 

RTd  
+, [20] 

z2F2%o(D . + Dp) 

where the first term is a finite-length Warburg impedance 
and the second term may be recast, using the Einstein rela- 
tions, as 

R| = dl[zF(cpo~p + c~0~,)] [21] 

the bulk resistance of  the electrolyte. In the low-frequency 
limit, Eq. [20] reduces to Rp = d/zFcpo~p, the dc resistance of 
this system. In the high-frequency limit, the first term van- 
ishes and Eq. [20] reduces to R=. 

In earlier work Buck (12) obtained the approximate 
result 

Z(r = [4RTtnlz~F2cpo(ic~D~) ~ tanh [(i~fD~)~ [22] 

in a t reatment  which parallels the present one but ignores 
(sets to zero) the last terms in Eq. [12], [14], [15], [17], and 
[18]. This result is identical to the first term in Eq. [20], with 
the single except ion of the factor t~ which appears here to 
the first power rather than the second. While Eq. [22] re- 
duces to Rp in the dc limit, it fails to yield R| in the limit of 
high frequencies. Since Eq. [22] yields the proper behavior 
in the dc limit, we will refer to the approximations em- 
ployed as the "quasi-static" electroneutral approach. 

Unsupported Systems, Exact Treatment 
In 1973, J. R. Macdonald obtained an exact  solution (14) 

to a well-defined mathematical  model  of the small-signal 
ac response of a slab of unsupported electrolyte placed be- 
tween two identical plane parallel electrodes. The model  
included Nernst-Planck and continuity equations for both 
negative and positive mobile charge, and involved full sat- 
isfaction of Poisson's  equation and full consideration of 
the Maxwell  displacement current throughout  the electro- 
lyte. The system was assumed to be free of intrinsic space 
charge layers in the absence of an applied potential differ- 
ence, and allowance was made for a possible uniform 
background of immobile  charge. In later work Macdonald 
and Franceschett i  extended the model  to allow the time- 
dependent  generation and recombinat ion of stationary 
and mobile charge (15). The electrode kinetics were incor- 
porated through the assumption of boundary conditions of 
the Chang-Jaff~ type 

Jp = +_ kp(cp - %0) [23] 

with a similar condit ion for negative charges. 

Although the Chang-Jaffd boundary conditions do not 
possess the same degree of physical realism as the equa- 
tions of  Butler-Volmer electrode kinetics, they lead to pre- 
cisely the same form in the small-signal dc limit, and in the 
limit considered in this paper where the rate constant kp 
becomes infinite (15). By making the rate constant com- 
plex and frequency-dependent,  it is possible to take into 
account the occurrence of one or more adsorbed interme- 
diate states for the discharging ion and to allow for the dif- 
fusion of a neutral product into the electrode or into the 
electrolyte (8, 16). 

The full solution obtained by Macdonald is quite compli- 
cated, and Macdonald devoted several subsequent  papers 
to exploring equivalent  circuit representations of various 
limiting cases (16, 18). An important  result (14, 18) in the 
present context  was the first expression for A which in- 
volved arbitrary valence numbers,  z~ and zp, as well as arbi- 
trary diffusion coefficients, Dn and Dp. In the condensed 
notation of the earlier work, the expression is A = 
M2bcoR| It can be readily expanded and becomes (19), 
on using the Einstein relation and the bulk electroneutra- 
lity condition, znc~o = ZpCp0 

I Dnzn + Dpzp 1 [ ~nl+ ~Pll [24] 
A = (~d2/4) L ( ~ ) ~  + ~ ) J  = (")d2F/4RT) L-~; ~ + z~ - ~  J 

a result in full agreement  with the A term implicit  in 
Eq. [22] when zn =- Zp =- z. 

Franceschett i  and Macdonald (15) obtained an approxi- 
mate hierarchical ladder network circuit which was 
broadly applicable in the case in which only one of the mo- 
bile species reacts at the electrodes and the electrolyte 
thickness includes many Debye lengths. For  the present 
case of equal charges and very fast electrode kinetics, this 
circuit reduces to three elements, the bulk resistance, 
Eq. [21], in series with the finite-length Warburg element, 
expressed in that work as 

Zw(~) = (RJ~m) tanh (io~TDHN2)O'5/(iW'rDHN2) ~ [25] 

the combination being in parallel with the geometric ca- 
pacitance of the electrolyte 

Cg = ~/4~d [26] 

Here e is the dielectric constant of the electrolyte, ~r~ = 
~n/~p = D,/Dp is the mobili ty ratio, TD = R| is the dielec- 
tric relaxation time, and 

HN =(d/4LD)(~ 1 + 2 + ~)0.5 [27] 

where L D is the Debye length 

LD = [eRT/8~rF2z2%o] ~ [28] 

for the present fully dissociated equivalent  case. 
Although Eq. [25], taken together with Eq. [27] and [28] 

bears no striking resemblance to the finite-length Warburg 
impedance derived in the previous section, we shall now 
show that the result is identical. Using the Einstein rela- 
tions for ~, and ~p and the definition ofD~, Eq. [16], we can 
easily show that 

HN2 = d2(Dp + Dn)/(8LD2D S) [29] 

and then using Eq. [21], [25], and the Debye relation to re- 
late TD to L d, we find that 

T D H N 2  = d2/4Ds [30] 

With this substitution in Eq. [24], expressing R= and ~m in 
terms of Dn and Dp and a little further manipulation, one 
finds that Zw(r is now identical to the first term in Eq. [20]. 
Thus, with the exception of the geometric capacitance, 
which is frequently negligible in practice, the approximate 
circuit developed by Macdonald and co-workers from the 
full solution of the Nernst-Planck-Poisson equation sys- 
tem is, for a system of the type discussed here, with many 
Debye lengths between the electrodes and kinetically re- 
versible electrodes, identical to that obtained in the previ- 
ous section. 
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2.0 

UNSUPPORTED CONDITIONS 

Q2 
1.o 

r'-d 
I 

0 . 0  . . . . . . . . . . . .  
0.0 1.0 2.0 5.0 

z'/R  
Fig. 1. Complex plane plots for system impedance calculated from 

"quasi-state" electroneutral approach (solid circles) and exact solution 
to Nernst-Plank-Poisson System (open circles). Here Dn = 2Dp and im- 
pedance is plotted in units of R| Eq. [21 ]. The arrows indicate the fre- 
quency at which A = ~/10. Frequency increases by 10 ~ between 
neighboring plotted points. 

Discussion 
Although the approximate equivalent circuit developed 

from the exact solution of the unsupported case discussed 
above coincides with the result developed assuming bulk 
electroneutrality, it should be noted that the exact solution 
applies also in cases in which the electrode separation is 
less than or comparable to the Debye length. Bulk electro- 
neutrality cannot then be assumed. Further, when the 
electrode reaction is not very fast, the use of the Nernst 
equation, as in Eq. [8], (which describes potential drops at 
thermal equilibrium) is not allowed. In addition, the quasi- 
static electroneutral treatment leads to incorrect behavior 
at high frequencies, as is shown in Fig. 1, where the imped- 
ance functions derived from the exact and quasi-static 
electroneutral treatments are compared for Dn = 2Dp. 

In  some very recent publications, Lorimer (20) and Pol- 
lard and Compte (21) discuss corrections to the electroneu- 
tral t reatment arising from interactions between ions. 
Lorimer considers the coupling of ion fluxes and the diffu- 
sion of ion pairs. Pollard and Compte consider in addition 
the possible presence of an inert phase. While the correc- 
tions discussed by these authors may be important in 
specific situations, since both treatments assume electro- 
neutrali ty their results cannot be considered valid for sys- 
tems with electrode separations comparable or less than 
the Debye length. Further, the implication of Pollard and 
Compte that all earlier analyses of diffusion effects which 
use concentrations rather than activities, such as the pres- 
ent and nearly all earlier work, are only useful "in the limit 
of an infinitely dilute, single-phase electrolyte," should be 
put to the test of experiment. In  actuality, the dilute ap- 
proximation, which uses concentrations, is excellent for a 
great many real situations up to quite high concentrations, 
and it is rare in practice to find that a treatment using ac- 
tivities is indispensable. 
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LIST OF SYMBOLS 
c~ concentration of species i, moYcm 3 
Cg geometric capacitance of electrolyte per unit  area, 

F/cm 2 

d thickness of cell, cm 
Di diffusion coefficient of species i, cm2/s 
E electric field, V/cm 
F Faraday constant 96,487 C/equiv 
H N dimensionless quanti ty related to mobility ratio, 

Eq. [27] 
I electric current density, A/cm 2 
Ji flux density of species i, mol/cm 2 s 
k~ electrode reaction rate constant, mol cm/s 
Ldiff diffusion length, cm 
L D Debye length, cm 
M electrode metal 
R universal gas constant, 8.3144 J/mol K 
R| electrolyte resistance per uni t  area, t2 cm 2 
t time, s 
t~ transference number  of species i 
T absolute temperature, K 
V electrical potential difference, V 
x position within cell, cm 
Z impedance per uni t  area, ~ crn 2 

Greek letters 
A dimensionless multiple of angular frequency, Eq. [1] 
~h electrical mobility of species i, cm2/V s 
�9 rm mobility ratio ~n/~p 
TD dielectric relaxation time, s 
r angular frequency, rad/s 

Subscripts 
f faradaic 
n negative species, anion 
p positive species, cation 
s coupled, positive and negative 
W Warburg 
0 steady-state component  
1 sinusoidally varying component  
appl applied 
en electroneutral 
int  interfacial 
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