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ABSTRACT

The origin of finite-length-Warburg-type impedances in supported and unsupported systems is examined within a
common framework and with reference to previous exact and approximate results. While close agreement is found be-
tween an approximate treatment based on bulk electroneutrality and an exact solution of the Nernst-Planck-Poisson
equation system for unsupported systems of many Debye length thicknesses with rapid electrode reaction kinetics, the
approximate treatment is unjustified when the electrode reaction is slow or the electrode separation is less than or compa-

rable to the Debye length.

In the years since Warburg (1) published his classic
study of diffusion under ac conditions in a supported elec-
trolyte placed between kinetically reversible electrodes,
response functions of the Warburg type have been ob-
tained by numerous authors for a wide range of systems
inveolving both supported and unsupported electrolytes.
Among recent theorefical treatments, especially those
dealing with finite-length effects, differences in notation,
approximations, and terminology have tended to obscure
both similarities and differences between the situations
considered and the results obtained. In particular, pub-
lished discussions of thin layer effects often assume that
while electrode separation is small compared to the effec-
tive diffusion length for the electrolyte, it is still large com-
pared to the Debye length. While the latter condition is al-
most always met in systems with agueous electrolytes, it
need not apply in solid materials and membrane situa-
tions. Further, quite similar results have been obtained in
treatments which both include and explicitly neglect Pois-
son’s equation. In the present brief communication we
compare three different approaches leading to a finite-
length Warburg impedance of the form

Zy(w) = Zw(0) [tanh GAYIAP? (1]

where A is proportional to the angular frequency o.
Specifically examined are cases of (i) a supported electro-
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lyte placed between kinetically reversible parent ion elec-
trodes, (i1) an unsupported electrolyte with similar elec-
trodes with electroneutrality assumed, and (iii) a
treatment of the latter case based on an exact solution of
the Nernst-Planck-Poisson equation system. We use a con-
sistent notation throughout and comment upon related
treatments to be found in the literature.

Supported Systems

Consider a supported electrochemical system of the
form

M|M?*, supporting electrolyte| M [2]

where the planar electrodes are parallel and a distance d
apart. The supporting electrolyte allows us to neglect the
migration term in the Nernst-Planck equation

Jp = ~Dp(dc/ox) + ppc E [3]

since the electric field E is very small within the electro-
lyte. Here J,, is the flux of the M** ion, D, the diffusion coef-
ficient, for the ion, ¢, its concentration, and p, its electrical
mobility. On setting E = 0 in Eq. [3], we obtain Fick’s first
law of diffusion. Under small-signal ac conditions, the sys-
tem variables may be separated into steady-state and time-
dependent parts, i.e.

Cp = Cpo + Cp; €XP (lwt) [4a]
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and

Jp = dpo + Jp1 exp (iot) [4b]
On substituting these forms in Eq. [3] and equating the
time-dependent terms, one obtains

Jo1 = —Dy(de,y/dx) [5]

If M** does not participate in any bulk chemical reaction,
Fick’s second law then can be written in the small-signal
form (2)

iG)Cpl = Dp(dch]/d.rz) [6]

It may be noted that it follows from the linearity of the first
term in Eq. [3] that Eq. [5] and [6] hold even when ¢,y varies
with position. The general solution of Eq. [6] may be
written

co1() = A sinh [(iw/D,)*%x] + B cosh [(io/Dy)**x]  [7]

where A and B are constants which must be selected to sat-
isfy the boundary conditions. For the system under con-
sideration here one constant may be eliminated by a sym-
metry argument. Place the center of the system at x = 0, so
that the electrolyte extends between x = —d/2 and x = d/2.
Note that the physical situation at any time t will be the
mirror image of that at time t — w/w, i.e., the electrodes will
have reversed polarity and the current will be equal in
magnitude but opposite in direction. With the coordinate
system chosen, this behavior requires from Eq.[4a] that
Coi(—X) = —cpi(x) and thus that B = 0. The constant A can be
related to the magnitude of the time-dependent part of the
applied potential difference, V ;.1 exp (int). We assume
that this potential difference is evenly divided between the
two interfaces and can be described by Nernst’s equation
which, after linearization of the logarithmic term, yields (3)

Vapprn = RT/zFepllcy(—d/2) — ¢,,(d/2)] [8]

where R is the gas constant, T the absolute temperature,
and F the Faraday. This quantity is the limiting potential
difference for exchange rates of potential-determining
species that are rapid in comparison with mass transport.
It is consistent with the electrode kinetic models of Butler-
Volmer and Chang-Jaffé, for example. When we calculate
the electrical current (per unit area), I, = zFJ,;, and divide
into V1.1, we find the impedance (also per unit area)

Z(w) = [2RT/2*Fcyo(iwD,)*%] tanh [(iw/Dy)*%(d/2)] 9]

On comparing Eq. [9] with Eq. [1] we find that A =
o(d/2%/D,, which may also be written as A = (d/2)¥Lg
where L = (D,/w)"? is the effective diffusion length, at the
frequency of measurement, for the electroactive ion. The
reason that the system length appears as divided by two is
the symmetry of the system, which requires c,, to be zero
at the center. The divisor of two was unfortunately omitted
by two of the present authors in a recent review (4). An ex-
pression in the form of Eq. [1] appears first to have been de-
rived in a biological context by Labes and Lullies (5). An
expression of the same form, but with a factor d (rather
than d/2) appearing in the argument of the tanh function
was obtained by Llopis and Colom (6), who considered the
diffusion of a single electroactive species through a Nernst
layer of thickness d established at a stationary electrode in
a stirred electrolyte. There is no symmetry of ¢, in this
case because c,, is zero at the solution side of the Nernst
layer. A similar result was obtained by Drossbach and
Schultz (7). Sluyters (8) examined the ac behavior of a thin
layer of supported electrolyte with identical, kinetically re-
versible, electrodes and both reduced and oxidized species
diffusing within the electrolyte, and obtained a result
equivalent (2) to placing two impedances of the form of Eq.
9], in series, one with a diffusion coefficient equal to that
of the reduced species, the other with the diffusion coeffi-
cient of the oxidized species. An impedance of the form of
Eq. [1] can also arise when a neutral product species must
diffuse through, or along the internal pores of, an electrode
to exchange with the ambient atmosphere (9, 10). In this
case we have A = wd?D,, where d is the thickness of a sin-
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gle electrode and D the diffusion coefficient of the dis-
charged species in the electrode.

One of the present authors has extended the treatment
of the ac response of the parent-metal-type cell to the case
where the electrode reaction occurs with arbitrary and dif-
ferent potential-dependent rates at the two electrodes (2).
In this treatment, Butler-Volmer reaction kinetics were as-
sumed and the displacement current through the compact
double layer was explicitly included. The exact impedance
result is consistent with Eq. [9] for identical electrodes and
with the Llopis and Colom result (6) when one electrode is
kinetically reversible and the other not. Results for non-
planar electrode geometries are given by Sluyters-Rebach
and Sluyters (11).

Unsupported Systems, Electroneutrality Assumed

The treatment in this section is based on the approach of
Buck (12). Consider now an unsupported system

M|MZX, solvent|M [10]

where the salt MX is fully dissociated into M#** and X*
ions, with concentrations denoted by c,(x) and c,(x), re-
spectively. The transport of cations is described by Eq. [3]
as before, while the transport of anions is described by a
second Nernst-Planck equation

Ju = —Dy(3¢,/8x) —ppcE [11]

The mobilities p, and p, are generally taken fo be related
to the corresponding diffusion coefficients through the
Einstein relation p; = D;zF/RT.

If electroneutrality is assumed to hold, it follows that
¢p = ¢, and that J, and J, are equal except for a spatially in-
variant term related to the faradaic current I,

Jp — Jy = LIt/zF [12]

On setting ¢, = ¢, in Eq. [3] and [11] and eliminating the
concentration gradient terms, one obtains the electric field
in the electroneutral region as

_ RT JyD, - J/D,

13

F 2zc, (12l
Alternatively, on using Eq.[12] to eliminate J, from Eq. [11]
and then combining Eq.[11] and [3] to eliminate E, one
finds

Jo = Dydcy/ax) + t I/zF [14]
or, using Eq. [12] again and noting that ¢, = ¢,
Jn = DJ@cyfax) — t, I /zF [15]
Here
D, =2D,D,/(D, + D) [16}

is the coupled diffusion coefficient, and t, = DD, + D)
and t, = 1 — t, are the transport numbers of the positive
and negative species, respectively.

As in the supported case, the concentration and other
system variables can be separated into equilibrium and si-
nusoidally varying parts. Specifically, Eq. [4] can still be
assumed to hold and, since I;; does not vary with position,
Eq. [6] and [7] become

i(nCpl = Ds(dchl/dxz) [6]
and
¢p1 = A sinh [(iw/D)%x] 7

where again a symmetry argument has been used to elimi-
nate one constant of integration.

The potential drop V,,; across the system is taken, in a
segmented potential model (12), as the sum of the Nern-
stian potential difference, V,;y, created by the concentra-
tion perturbations at the electrodes and given by Eq.[8],
and the potential drop, V., across the electroneutral re-
gion, which can be obtained from Eq. [13]). When one then
substitutes Eq.[14] and [15] into Eq. [13], linearizes, and
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then integrates across the thickness d of the electrolyte,
one finds

v RT (DS Ds>[ (—d/2)
en = ———— |—/— T T— C, -
YT 9zFey, \D, D,/ ™
RT tp tn>
— e d] + ——— [ =+ ) Iyd 7]
eai(d/2)] 22°F%cy (Dp D, o
so that
B —4RTt,

V; = ——— A sinh [(io/D)*¥d/2)]
zF

RT [t tn
— = Ind  [18]
22°F Cpo Dp D,

To evaluate A in the present case, one may set J,; = I)/zF
at x = +d/2, since the flow of negative charge is zero at the
electrodes, and thus from Eq. [14]

Dy(dcy/dx) = t,I/zF [19]

so that A = ~t,I/zF (ieDY)". Then, on taking the ratio Z =
VI, one obtains the impedance

4RTt,?

Z(m) -
222, (iwD,)0

tanh {(i0/D,)**(d/2)]

RTd

+ ——— 20

22F?co(D, + Dp) [20]
where the first term is a finite-length Warburg impedance
and the second term may be recast, using the Einstein rela-
tions, as

R.. = d/[zZF(Cyopp + Cnobin)] [21]

the bulk resistance of the electrolyte. In the low-frequency
limit, Eq.[20] reduces to R, = d/zFcy,, the de resistance of
this system. In the high-frequency limit, the first term van-
ishes and Eq. [20] reduces to R..

In earlier work Buck (12) obtained the approximate
result

Z(w) = [4RTty/22F2cp(iaDy)"%] tanh [(iw/Dy)*%d/2)] [22]

in a treatment which parallels the present one but ignores
(sets to zero) the last terms in Eaq. [12], [14], [15], [17], and
[18]. This result is identical to the first term in Eq. [20], with
the single exception of the factor t, which appears here to
the first power rather than the second. While Eq. [22] re-
duces to R, in the dc limit, it fails to yield R, in the limit of
high frequencies. Since Eq. [22] yields the proper behavior
in the dc limit, we will refer to the approximations em-
ployed as the “quasi-static” electroneutral approach.

Unsupported Systems, Exact Treatment

In 1973, J. R. Macdonald obtained an exact solution (14)
to a well-defined mathematical model of the small-signal
ac response of a slab of unsupported electrolyte placed be-
tween two identical plane parallel electrodes. The model
included Nernst-Planck and continuity equations for both
negative and positive mobile charge, and involved full sat-
isfaction of Poisson’s equation and full consideration of
the Maxwell displacement current throughout the electro-
lyte. The system was assumed to be free of intrinsic space
charge layers in the absence of an applied potential differ-
ence, and allowance was made for a possible uniform
background of immobile charge. In later work Macdonald
and Franceschetti extended the model to allow the time-
dependent generation and recombination of stationary
and mobile charge (15). The electrode kinetics were incor-
porated through the assumption of boundary conditions of
the Chang-Jaffé type

Jp = ikp(cp - ch) [23]

with a similar condition for negative charges.
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Although the Chang-Jaffé boundary conditions do not
possess the same degree of physical realism as the equa-
tions of Butler-Volmer electrode kinetics, they lead to pre-
cisely the same form in the small-signal dc limit, and in the
limit considered in this paper where the rate constant k,
becomes infinite (15). By making the rate constant com-
plex and frequency-dependent, it is possible to take into
account the occurrence of one or more adsorbed interme-
diate states for the discharging ion and to allow for the dif-
fusion of a neutral product into the electrode or into the
electrolyte (8, 16).

The full solution obtained by Macdonald is quite compli-
cated, and Macdonald devoted several subsequent papers
to exploring equivalent circuit representations of various
limiting cases (186, 18). An important result (14, 18) in the
present context was the first expression for A which in-
volved arbitrary valence numbers, z, and z,, as well as arbi-
trary diffusion coefficients, D, and D,. In the condensed
notation of the earlier work, the expression is A =
M?bwR.C,. It can be readily expanded and becomes (19),
on using the Einstein relation and the bulk electroneutra-
lity condition, z,¢40 = 2,Cpo

Dyz, + D al + gt
A = (wd¥4) [——Z———"_zp] = (0d?F/ART) [w] [24]
(DpDy )z, + z,) zm' + zg!

a result in full agreement with the A term implicit in
Eq.[22] when z, =z, =z.

Franceschetti and Macdonald (15) obtained an approxi-
mate hierarchical ladder network circuit which was
broadly applicable in the case in which only one of the mo-
bile species reacts at the electrodes and the electrolyte
thickness includes many Debye lengths. For the present
case of equal charges and very fast electrode kinetics, this
circuit reduces to three elements, the bulk resistance,
Eq. [21], in series with the finite-length Warburg element,
expressed in that work as

Z(w) = (Ro/T,,) tanh GorpHy2)"/(iwrpHyz)™? [25]

the combination being in parallel with the geometric ca-
pacitance of the electrolyte

Cy = e/dnd [26]

Here € is the dielectric constant of the electrolyte, w, =
Ro/ie = D/D, is the mobility ratio, 1p = R.C, is the dielec-
tric relaxation time, and

Hy =(d/4Lp)(mal + 2 + 7,)"8 [27]

where Ly, is the Debye length
Lp = [eRT/8nF222c° [28]

for the present fully dissociated equivalent case.

Although Eq. [25], taken together with Eq. [27] and [28]
bears no striking resemblance to the finite-length Warburg
impedance derived in the previous section, we shall now
show that the result is identical. Using the Einstein rela-
tions for p,, and p, and the definition of D;, Eq. [16], we can
easily show that

Hye = d¥D, + D(8Ly2D,) [29]

and then using Eq. [21], [25], and the Debye relation to re-
late tp to Ly, we find that

TpHy2 = d¥4D; [30]

With this substitution in Eq. [24], expressing R.. and m, in
terms of D, and D, and a little further manipulation, one
finds that Z (o) is now identical to the first term in Eq. {20].
Thus, with the exception of the geometric capacitance,
which is frequently negligible in practice, the approximate
circuit developed by Macdonald and co-workers from the
full solution of the Nernst-Planck-Poisson equation sys-
tem is, for a system of the type discussed here, with many
Debye lengths between the electrodes and kinetically re-
versible electrodes, identical to that obtained in the previ-
ous section.
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2.0

UNSUPPORTED CONDITIONS
¥

Fig. 1. Complex plane plots for system impedance calculated from
“quasi-state” electroneutral approach (solid circles) and exact solution
to Nernst-Plank-Poisson System (open circles). Here D, = 2D, and im-
pedance is plotted in units of R.,, Eq. [21]. The arrows indicate the fre-
quency at which A = V/10. Frequency increases by 10%" between
neighboring plotted points.

Discussion

Although the approximate equivalent circuit developed
from the exact solution of the unsupported case discussed
above coincides with the result developed assuming bulk
electroneutrality, it should be noted that the exact solution
applies also in cases in which the electrode separation is
less than or comparable to the Debye length. Bulk electro-
neutrality cannot then be assumed. Further, when the
electrode reaction is not very fast, the use of the Nernst
equation, as in Eq. [8], (which describes potential drops at
thermal equilibrium) is not allowed. In addition, the quasi-
static electroneutral treatment leads to incorrect behavior
at high frequencies, as is shown in Fig. 1, where the imped-
ance functions derived from the exact and quasi-static
electroneutral treatments are compared for D, = 2D,,.

In some very recent publications, Lorimer (20) and Pol-
lard and Compte (21) discuss corrections to the electroneu-
tral treatment arising from interactions between ions.
Lorimer considers the coupling of ion fluxes and the diffu-
sion of ion pairs. Pollard and Compte consider in addition
the possible presence of an inert phase. While the correc-
tions discussed by these authors may be important in
specific situations, since both treatments assume electro-
neutrality their results cannot be considered valid for sys-
tems with electrode separations comparable or less than
the Debye length. Further, the implication of Pollard and
Compte that all earlier analyses of diffusion effects which
use concentrations rather than activities, such as the pres-
ent and nearly all earlier work, are only useful “in the limit
of an infinitely dilute, single-phase electrolyte,” should be
put to the test of experiment. In actuality, the dilute ap-
proximation, which uses concentrations, is excellent for a
great many real situations up to quite high concentrations,
and it is rare in practice to find that a treatment using ac-
tivities is indispensable.
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LIST OF SYMBOLS
G concentration of species i, mol/cm?
C, geometric capacitance of electrolyte per unit area,

F/em?

1371

thickness of cell, cm

diffusion coefficient of species i, cm?/s
electric field, V/cm

Faraday constant 96,487 C/equiv
dimensionless quantity related to mobility ratio,
Eq. [27]

electric current density, A/cm?

flux density of species i, mol/em? s
electrode reaction rate constant, mol cmy/s
qif  diffusion length, cm

Debye length, cm

electrode metal

universal gas constant, 8.3144 J/mol K
electrolyte resistance per unit area, ) cm?
time, s

transference number of species i
absolute temperature, K

electrical potential difference, V

position within cell, cm

impedance per unit area, (! cm?

Greek letters

A dimensionless multiple of angular frequency, Eq. [1}
™ electrical mobility of species i, cm*V s

7 mobility ratio p/p,

™ dielectric relaxation time, s

® angular frequency, rad/s

mEEoe
=4

[
Skt

8

N& <3

Subscripts

f faradaic

n negative species, anion

P positive species, cation

] coupled, positive and negative
w Warburg

0 steady-state component

1 sinusoidally varying component
appl applied

en electroneutral

int interfacial

REFERENCES

1. E. Warburg, Ann. Physik., 67, 493 (1899); E. Warburg,
ibid., 6, 125 (1901).

. D. R. Franceschetti, J. Chem. Phys., 86, 6495 (1987).

. R. P. Buck, J. Electroanal. Chem., 210, 1 (1986).

. J. R. Macdonald and D. R. Franceschetti, in “Imped-
ance Spectroscopy-Emphasizing Solid Materials
and Systems,” J.R. Macdonald, Editor, p. 84ff,
Wiley, New York (1987).

. R. Iéabes and H. Lullies, Arch. ges. Physiol., 84, 738
(1932).

. L. Llopis and F. Colom, in “Proceedings of the Eight
Meeting of the C.ILT.C.E., 1956, p.414ff, But-
terworths, London (1958).

. P. Drossbach and J. Schuitz, Electrochim. Acta, 9, 1391
(1964).

. J. H. Sluyters, Rec. Trav. Chim., 82, 100 (1963).

. D. R. Franceschetti and J. R. Macdonald, J. Electro-
anal. Chem., 101, 307 (1979).

10. D. R. Franceschetti, Solid State Ionics, 18/19, 101

(1986).

11. M. Sluyters-Rebach and J. H. Sluyters, in “Com-
prehensive Treatise of Electrochemistry,” Vol. 9, E.
Yeager, J. O’M. Bockris, B. E. Conway, and S. Sa-
rangapani, Editors, p.177ff, Plenum Press, New
York (1984).

12. R. P. Buck, J. Phys. Chem., 93, 6212 (1989).

13. R. P. Buck, J. Electroanal. Chem., 46, 1 (1973).

14. J. R. Macdonald, J. Chem. Phys., 58, 4982 (1973); J. R.
Macdonald, ibid., 60, 343 (1974).

15. J. R. Macdonald and D. R. Franceschetti, ibid., 68, 1614
(1978).

16. D. R. Franceschetti and J. R. Macdonald, J. Electro-
anal. Chem., 82, 241 (1977).

17. J. R. Macdonald, ibid., 47, 182 (1973).

18. J. R. Macdonald, J. Chem. Phys., 61, 3877 (1974).

19. J. R. Macdonald, Electrochim. Acta, 35, 1492 (1990).

20. J. W. Lorimer, J, Power Sources, 26, 491 (1989).

21. R. Pollard and T. Compte, This Journal, 136, 3734
(1989).

(3] H> CO DD

[=2]

-3

=gee]





