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ABSTRACT 

We describe novel , analytical , data-analysis , and Monte-Carlo-simulation 

studies of strongly heteroscedastic data of both small and wide range. Many dif­

ferent types of heteroscedasticity and fixed or variable weighting are incorporated 

through error-variance models. Attention is given to parameter bias determinations, 

evaluations of their significances , and to new ways to correct for bias . The error­

variance models allow for both additive and independent power-law errors , and the 

power exponent is shown to be able to be well determined for typical physical­

sciences data by the rapidly-converging, general-purpose, extended-least-squares 

program we use. The fitting and error-variance models are applied to both low- and 

high-heteroscedasticity situations, including single-response data from radioactive 

decay. Monte-Carlo simulations of data with similar parameters are used to eval­

uate the analytical models developed and the various minimization methods em­

ployed, such as extended and generalized least squares. Logarithmic and inversion :~~': : ." 
' ,] ., 

transformations are investigated in detail, and it is shown analytically and by simu- :i:·: ' .. : 
~ .' , !~ 
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lations that exponential data with constant percentage errors can be logarithmically 

transformed to aIlow a simple parameter-bias-removal procedure. A more-general 

bias-reduction approach combining direct and inversion fitting is also developed. 

Distributions of fitting-model and error-variance -model parameters are shown to be 

typicaIly non-normal, thus invalidating the usual estimates of parameter bias and 

precision. Errors in conventional confidence-interval estimates are quantified by 

comparison with accurate simulation results. 

"In a world in which the price of calculation continues to decrease rapidly, but the 

price of theorem proving continues to hold steady or increase , elementary econom­

ics indicates that we ought to spend a larger and larger fraction of our time on calcu­

lation." (Tukey 1986). 
j:'­

Nonlinear regression with heteroscedasticity (nonuniform error variance) and 

the use of weighting in nonlinear-least-squares (NLLS) fitting are of increasing 

interest (Ratkowsky 1983, Gallant 1987, Bates and Watts 1988, Davidian and 

CarroIl 1987, Carroll and Ruppert 1988, Beal and Sheiner 1988, Seber and Wild 

1989) , especially in the analysis of data from the life sciences. The range of such 

data is seldom greater than two orders of magnitude, often 10 or fewer data are 

available, and large errors are frequent, so that analyses usuaIly show little depen­

dence on the type ofheteroscedasticity, or even on whether homoscedasticity (uni­

form error variance) is assumed (Giltinan and Ruppert 1989). By contrast, in the 

physical sciences data typicaIly range over three of more orders of magnitude and 

may encompass a 1012 range (Norman et al. 1988); usually 25 or more data are 

available , and errors are relatively small. For example , when the errors are propor­

tional to the magnitude of the dependent variable, they rarely exceed 15%. Further, 

the appropriate fitting model is often known. 

In NLLS analyses the fitting method may significantly affect the parameter esti­

mates obtained. Here we show that the choice oferror-variance model (EVM) sub­

stantially influences the accuracy and precision of parameter estimates for typical 

physical-sciences data . We use a powerful general-purpose fitting program that ac­

commodates arbitrary nonlinear fitting models; the data may range from homo­

scedastic to highly heteroscedastic and may be of very large range ; and the fitting 
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models may require many parameters. By using this fitting program , we inves­

tigate various fitting strategies, such as extended least squares, EL S, and general­

ized least squares, GLS (Jobson and Fuller 1980, Davidian and Carroll 1987 , Beal 

and Sheiner 1988 , Giltinan and Ruppert 1989). The program allows simultaneous 

or sequential maximum-likelihood estimation of parameters in both the fitting model 

and in an EVM of quit e general form. When feasibl e, following Tukey's advice , 

we compare these estimates with analytical interval estimates and with our MC 

simulations. 

High heteroscedasticit y and ways to obtain optimum parameter estimates are im­

portant in stati stical anal yses of wide -ranging data , but they have been seldom in­

vestigated. Therefore , major emphases in the present work are: exploration of 

several models ofheteroscedasticity; analysis of their asymptotic properties ; effects 

of transformations of data and fitting model ; new bias-reduction possibilities; and 

extensive Monte-Carlo (MC) simulations against which the theoretical analyses are 

rigorously tested. High-precision Monte-Carlo simulations (typica lly 200 ,000 

samples) also allow us the examine the robustness of parameter estimates for var­

ious transformation and fitting approaches. 

The outline of the paper is as follows. After presenting definitions and models 

in Section 2, we discuss in Section 3 the detail s of the fitting methods used, and our 

MC simulation procedures. In Section 4 we present two data and model transform­

ations relevant to data of very large range : logarithmic and inve rsion (reciprocation). 

Section 5 describes our anal ysis of several heteroscedastic data sets, either drawn 

from experiment or simulated, and described by exponential models. 

2. DEFINITIONS AND MOD ELS 

We first define general notation and models. Principal acronyms and symbol 

definitions are given at the end of the paper. Let Xj be an exact element of the 

independent-variable vector data , x, with i = 1,2 ,.. . ,N, and let the corresponding 

depend ent- variable vector be y , having general element Yt- The fitting model is 

denoted Y(x , 8) .. Y, with representative elem ent Yj. Here 8 is the con verged set 

of fitting parameter estimates who se mth element is 8m. The set of exact-model 

parameter values is 80 , with components 80 m , In = 1,2, ... .P. Since we are not 

concerned with errors ari sing from incorrect choice of fitting model , we have 
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Y(X, 80) '" Yo' We designate exact values, as used in MC simulations, with a 

subscript " 0 " , and denote single-fit or MC estimates by the parameter itself. 

Wherever such notation is ambiguous, a caret is used to distinguish an estimate 

from its exact value. 

.~ _~. 'i: 

2.1 Error Models 

We define the error mo'del as 's (x, Yo) '" e with representative element 

c(Xi,Yoi) '" ell where Yoi'" Y(Xi, 80 ) , The ith data element is then 
.~~ 

Yj= Y(xj, &!)+ et x ; Yod'" YOj + e, » Y(xj,8) es }j (2. I) 

Fitting the Y data with the Y model yields the estimated parameter set 8. The error 

model is intrinsically unknown except in simulation studies, whereas an error­

variance model (Section 2.2) is our best guess to account for the unknown errors, 

ei. Although these are taken as just e(Xi) in homoscedastic linear-least-squares fit­

ting, the present more general dependence on Yoi is necessary to allow adequate 

treatment ofheteroscedasticity. We always ensure that Ele (Xi, Yoi)] = 0, and thus 

ElYj] = Y(xj, 80 ) (2 .2) 

There are two types of unknowns in Eq. (2.1) : the 80 vector and the error 

model, e(Xi, Yoi). Our fitting method , described in Section 3.2, automatically takes 

account of a common type ofheteroscedasticity and is therefore robust with respect 

to heteroscedasticity in the sense of Beal and Sheiner (1988). The particular ELS 

fitting method we use allows one to obtain NLLS estimates of the 8m parameters 

that are as clo se as possible to the unknown exact 80 m , at least for normally­

distributed errors , where the solution is a maximum-likelihood one . 

We now specify an error model appropriate for both low and high heteroscedas­

ticity. Data of extensive range often have proportional errors (constant percentage 

errors), so that the errors are associated with a probability distribution whose stan­

dard deviation is proportional to true model values, Yoi. More generally, the pro­

portionality may be a positive power of the IYoi I (Finney and Phillips 1977 , Beal 

and Sheiner 1988, Carroll and Ruppert 1988). There will probably also be an inde-
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pendent. minimum set of additive errors from limited measurement resolution and 

other random effects. Such errors will dominate proportional errors for sufficiently 

small IYoi I. 
In order to account for both possibilities and thus to allow more-realistic situ­

ations to be considered , we take an element of the general erro r model for 

generating errors in our MC simulations as 

(2.3) 

where PlO,!iJand P2(O,!iJare random variables with values drawn from indepen­

dent , uncorrelated probability distributions Pl0,!) and P2(O,!) with zero means 

and unity standard deviations. We use uniform , norm al , or Poisson distributions 

for PI or P2 , but we select normal distributions unless stated otherwise . In Eq . 

(2.3) h is an element of the unit vector I, so that Ii= I for all i, while a n On and 

~o (with ~o usually in the range 0.5 to 1.5) are known , positive constants. 

Estimates of arand Or will be denoted by ;;1and a To ensure accurate bias esti­1• 

mates in simulations, we enforce standardization on each sample ofN random num­

bers . In Beal and Sheiner and in earlier treatments, no ar term was included. 

When Or = °and a, *-0. the error distribution is homoscedastic and add itive, as it 

is for ar = 0 , Or *- 0, and ~o = 0. 

2.2 Least Squares and Maximum Likelihood 

We now discuss the relation between least-squares minimization and maximum­

likelihood criteria for defining a best fit. Although this relation is well-known for 

weight s that are the inverses of (presumed -determined) variances at each point , the 

connection is less clear when one allows the weights to contain fitting parameters . 

as we do . 

Jobson and Fuller (1980) , Beal and Sheiner (1988) and others , have shown that 

for normally-distributed errors a maximum-likelihood estimate of all parameters 

may be obtained by minimizing the objective function 

N 

o = ~ [In( Yj) + (Yi- YYI Yj) (2.4) 
i ~ I 
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where the error variance Vj = «(JTj)2. This weighting factor for the ith datum is 

written with the (usually unknown) variance (J2 as a scaling factor and with all 

other dependencies assumed to be included in the function Tt. This function will 

often depend upon the fitting parameters. For example, if (J represents a scale fac­

tor for proportional errors in the model function, then T; = Yj, and this function 

therefore varies during iterative convergence of the parameter values. 

The procedure of minimizing the objective function, Eq. (2.4) , has been termed 

extended least squares (ELS) by Beal and Sheiner. As Giltinan and Ruppert 

(1989) point out , it is expected to have good properties when the data are normally 

distributed and the form of T; is correctly specified. ELS has been criticized by 

van Houwelingen (1988) when these conditions do not apply. As shown in 

Section 5, ELS is a powerful and appropriate method for fitting typical physical­

sciences data , even when the data errors are not normal. Thus , it is the method we 

use in most of the present work. 

We note that Eq, (2.4) differs from the usual least-squares criterion because of 

the logarithm terms. However, suppose that we set 

T;= Tjl ~n Tj (2.5) 

in which each Tj is non-zero and the product is over i from I to N. Then, the Ti 
do not contribute to the sum over logarithms , and only if (J is a fitting parameter is 

there any distinction between log-likelihood for normal errors and least-squares. 

The normalization procedure of Eq. (2.5) has been used in statistics in another con­

text (Hinkley and Runger 1984), and has been discussed for least-squares fitting by 

Carroll and Ruppert (1988) , and by Giltinan and Ruppert (1989). These authors 

did not , however, cite any fitting results using this approach , and they considered 

life-sciences data of quite limited range. 

The estimator of the variance is obtained directly by minimizing the objective 

function with respect to d2 : 

~ 2 N [(J = ~ .2: Yi- Yj ]2 (2 .6) 
1 = I T, 

\ 
The least-squares equations to be solved for each parameter, lpj, are: 
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(2.7) 

It remains to specify a model for the T, in Eqs. (2.6) and (2.7). Therefore, a 

model is needed for the tt in Eq. (2.5). 

2.3 Error-Variance Models 

By specifying the T! in Eq . (2 .5) we are choosing an error-variance model 

(EVM), which is equivalent to making a model for the relative weights of the data 

points in the objective function Eq. (2.4). Our model function is 

(2.8) 

in which Vand I;are parameters of the EVM , and Zj is either the data value Yi or 

the model value l'j. 

Although we use Yoj in Eq. (2.8) in generating errors for simulation studies, 

these values are unknown when analyzing experimental data. Then the EVM can 

only involve the estimates, Yj, or Yi- Often, however, as iterative fitting pro­

gresses, the Yj wiII approach their true values, so that the EVM should progres­

sively improve the parameter estimates, a beneficial feedback process. 

The justification for the dependence of Tj in Eq. (2.8) on V, Z; and I; is as fol­

lows. The quantity V is an estimator of errors that are independent of the data or 

fitting model. If only V is present, then it is has no effect on the Tj and therefore 

no effect on the fitting, which becomes a unity-weighting (UWT) situation. The 

power I; determines the relative influence of the magnitude of the data (for Z, = Yj) 

or of the model function (for Z, = Yj). For example, for V = 0, I; = I gives pro­

portional errors and I; =1/2 gives Poisson errors. The present I; parameter 

corresponds to the 8 parameter of Davidian and CarrolI (1987) , and to ?;J2 in Beal 

and Sheiner (I988). The parameters of the EVM, here Vand 1;, should be fitting 

parameters in order that their optimum values may be estimated from the data. 

For convenience in reference, we name the weighting choices associated with 

Eq, (2.8). Eight such possibilities are defined in Table I. Prefixes are D for data 

if the weighting involves the Yi values and Ffor function if the weighting involves 
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TABLE I 

Definitions of some specific weighting models discussed in Section 2.3. A * 
indicates that this variable is not applicable . 

Line Name U e Zi 

1 UWT fixed * * 
2 DPWT * 1, fixed Yi 

3 DFWT fixed fixed Yi 

4 DGWT arb . arb . Yi 
y .5 FPWT * 1, fixed 1 

y.6 FFWT fixed fixed 1 

7 FGWT arb . arb . Yi 

8 FPLWT arb . Yi* 

the Yi . The weighting schemes are FWT for fixed weighting, GWT for general 

weighting, and PWT for proportional weighting, in which the T, are directly pro­

portional to Yi or to Yi . More generally, PLWT stand s for power-law weighting, 

termed the power-function model by Beal and Sheiner (1988) . In Table I "arb ." in­

dicates that the quantity may be arbitrary and either fixed or free during fitting. 

Since the t:i generated in our simulations, as well as errors in actual data , may 

involve Vi, as in Eq. (2.3) , but do not involve the data Yi (which already contain 

errors) , it is clear that the choice Z; =Yi in Eq. (2.5) leads to an incorrect EYM and 

is thus inappropriate. This choice was , however, used previously (Macdonald, 

Hooper, and Lehnen 1982, Macdonald and Potter 1987), since the DPWT and 

DFWT variance models in Table I, like the UWT model, involve weighting that re­

mains unchanged during iteration, thus simplifying the fitting program. In spite of 

the theoretical inadequacy of the Zi = Yi choice, we shall compare some DPWT 

and FPWT fitting results to quantify their differences and to discover to what deg­

ree they are significant. \ 

The ELS fitting method has seldom been used previously, probably in part be­

cause it cannot be directly implemented by standard statistical software (Giltinan 
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and Ruppert 1989). Until the present work, ELS fitting results have appeared only 

for data of limited range (Beal and Sheiner 1988) without using the geometric-mean 

Eq, (2.5), but omitting U in Eq. (2.8). We find that the combination of Eqs. (2.5) 

and (2.8) greatly improves convergence of the ELS procedure, so we use it in the 

following. Our ELS realization was developed independently of that formulated but 

not implemented by Ruppert and co-workers . 

Another approach, generalized least squares (GLS), a staged, sequential fit­

ting procedure, has been more popular than ELS because it can be implemented 

with standard commercial software and because it has theoretical advantages over 

ELS when errors are not normal and models are mis-specified (Jobson and Fuller 

1980, Davidian and Carroll 1987, Carroll and Ruppert 1988, Giltinan and Ruppert 

1989, Davidian 1990). Some GLS and ELS simulation results are compared in the 

following. Our real~tion of GLS involves first fitting with fixed weighting , then 

fitting by ELS FGWT with only the EVM parameters free, then fitting with fixed 

weighting (including fixed variance parameters). This sequence is repeated until 

fractional changes in the variance parameters are less than 10- 5 , although most 

other implementations of GLS do not continue to such convergence. When the 

EVM parameters are not well-determined, as often happens for small-range, life­

sciences data (Giltinan and Ruppert 1989), such convergence is unwarranted , but 

for physical-sciences data it is warranted because the EVM parameters can usually 

be well determined. Davidian and Carroll (1987) discussed a variety of methods 

for estimating EVM parameters but did not provide numerical comparisons of them. 

The method we use for both ELS and GLS has proved very satisfactory, as judged 

by our present MC-simulation parameter bias estimates (Section 4.1.2). 

When convergence has been attained in a NLLS fit, one may calculate SF, the 

standard deviation of the overall fit to the data. We use the converged values of Yi 

and T; in 

(2.9) 

>.",0. 

Here 

-2/N;­
A '= 'V n r. (2.10) 

when the geometric normalization in Eq. (2.5) is used, and A = I otherwise. In 
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Eq. (2 .9) D is the number of degrees of freedom , just N minus the number of 

free parameters for single-response situations. In Eq. (2.10) the final converged 

values ofall free parameters are used when ;\ of- I. Since the value ofA is then un­

known until convergence, it cannot be used to normalize ti during iteration. But, 

unlike the Beal and Sheiner algorithm , SF need only be calculated at final conver­

gence. Since the choice of'A then cancels out the effects of geometric normalization 

in Eq. (2.5) , SF is independent of ;\, Further, when ar = 0 in Eq. (2 .3) , SF and 

the 0 estimator in Eq. (2.6) differ only by the known factor (N - p)IN, so SF is 

usually an excellent estimator of Or whatever the value of 1;. ~ -',__ 

Although an estimator for Or does not appear explicitly in our form for r. , 
because its value is unknown until final convergence, the quantity U is actually an 

estimate of a.ro, when Or;" O. Thus , when an estimate of Or (such as SF) is 

available , then that of armay be obtained from the U and SF estimat es. . ...... ,- . 

;;~2: 

3. PARAMETER ESTIMATION METHODS 

'''''' ..­
Since the fitting algorithm and its computer implementation are important for 

efficient parameter estimation, we describe in this section the fitting program and 

procedures used. Then we summarize our general approach and notations used for 

the Monte Carlo simulations that we used to validate the regression models intro­

duced in Section 2 and developed in practical transformations in Section 4. 

3.1 Specifics of the Fitting Procedure 

The nonlinear-least-squares minimization procedure we use is based on the 

robust Levenberg-Marquardt NLLS program described by More (1978), but gen­

eralized for variable weighting and to allow complex data (two separate dependent 

variables) . We have used it since 1982 with U = 0 and with I; taken as a fixed in­

put parameter in a complex-nonlinear-Ieast-squares (CNLS) data-fitting program 

named LOMFP that handles complex, real, or imaginary data (Macdonald and 

Potter 1987, Macdonald 1987). In the current version , LEVM, both U and I; may 

be fixed or free to vary during fitting. Like most NLLS programs, the modified 

More procedure uses as input only the components o'f the weighted residual vector
\ 

and the Jacobian matrix, and it ignores second-derivative terms in the Hessian 

matrix. 
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For our program to be readily usable with any response function involving a 

single x vector and one or two associated y vectors (multiple-response), and be­

cause analytical differentiation is usually intractable , we use numerical differentia­

tion to calculate the derivatives in Eq. (2.7). All calculations are carried out in 

double-precision arithmetic, and the relative numerical derivative step size is set at 

10-8 times the value of the component whose derivative is to be calculated (or 10-8 

if the value is zero). Conventional iteration stopping criteria are used , with final 

convergence assumed when the relative change ofall parameters is less than 10-8 or 

when the relative change of the SD of the fit is less than 10- 8. 

3.2 Monte Carlo Simulation Procedures 

Our simulations use NLLS fitting of K replicate sets of data with errors, and 

thus require N independent random errors, ei, for each value of k = 1,2,... ,K. The 

simulations are restricted in several ways. First , we use only fitting results that 

converge in 91 or fewer iterations of the NLLS fitting in the statistical calculations. 

The actual number of iterations required for an individual fit to converge is I, and 

its maximum allowed value is Imax, here 91. Second, we consider only those data 

sets and model values for which all n> O. Finally, if negative values of 

Yi = Yoi + ei are generated, they are replaced by Yi = Yoi + leil. Unless a; in 

Eq. (2.3) is non-zero and U in Eq, (2.8) is free to vary, or if a; or';o is very 

large, no fits are eliminated by these restrictions . Thus, there is usually no censor­

ing present except for a few results reported in Section 5.3.2. 

We characterize the MC simulation results as follows. Define the error of the 

jth parameter in the k th fit (l/Ijk) , as Ejk = 'IIjk - 'IIoj, where 'IIOj is the exact value 

of the j th parameter. Then the corresponding relative error is 

(3 . J) 

The estimated relative bias of the jth parameter is then the mean of the relative 

errors 
<,•.-:,', 

K 

b·= H/'llo' = .L '" (3.2)
J J J K L 

k -I 

where 'IIj is the estimated value of 'IIoj. and we usually take K sufficiently large 
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that the standard deviation (SO) of bj is less than 0.0 Ibj. Quoted values of bj are at 

most slightly uncertain in their last place. To allow easy comparison between para­

meters and between fits of different data, we use bj rather than I/Ij and I/Ioj . If the 

exact value of a fitting parameter is zero , we quote Bj. The relative bias without 

regard to sign is 

K 

babj = J _ L lejkl (3.3 ) 
K k = I 

.--'."';'- '-.: 

In work that we are currently doing, we find that the quantities bj and babj can be 

used to estimate the SO of the ej distribution , Gej, for a specified form of the 

distribution. Instead of using 95% confidence intervals , we use standard deviation 

estimates , since this is conventional in the physical sciences. It is also useful to 

know bj relative to Gej, since when bj /Gej is sufficiently small , bias effects can be 

ignored. 

We use several different SO estimates for the Cjdistribution, so it is convenient 

to omit the "e" subscript and to denote the estimate Sej of Gej by just sj- We then 

distinguish the various estimates by additional subscripts. The most direct estimate 

of Gej is just the central SO for the usual unbiased estimator, 

S oC = ~ _ 1- ~ (e "k - b") 2 (3.4)
'J K -I L 'J 'J 

k - I 

For a single NLLS fit of data with normally-distributed errors , the 68 .3% 

confidence ~e rva l invo~ing SjC extends around I/IOj from [I - SjC I I/IOj to 

[I + SjC I I/IOj , where I/IOj ~ an estimate of I/IOj, corrected for bias, if known. 

This result assumes that the I/IOj are sampled from a normal distribution, but results 

of the present work show that this is not generally true and that an asymmetric con­

fidence interval is needed. When bj is very small , a large number of samples, up to 

K~ 106, may be required to estimate it accurately to two significant figures. Much 

smaller K suffice for the same accuracy of Sj . For K ~ 106, computer internal 

memory size limitations may become significant, so to avoid such limitations in cal­

culating sums in Eqs. (3.2) - (3.4) , we use block ing. Then , K is replaced by K / ] 

(with J> I) , and the J results for each calculation are averaged. We used J in the 

range of 2 - 10 if K was very large. -----­
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Each NLLS fit of a simulat ion calculation yields a linearized estimate of aej 

calculated at convergence from the Jacobian of the fitting function. We denote by 

SjL the average of K such estimates , Donaldson and Schnabel (1987) have shown 

that it often appreciably underestimates Oej for NLLS with additive errors. We 

also find problems with this estimator for proportional errors. The probability 

interpretation of ajC and aj L assumes that the parameter-error distribution is 

normal. But for NLLS , even with normal errors in data, the parameter errors a re 

generaIly not normal, and one is also dealing with a discrete distribution rather than 

a continuous one. With simulation, we can examine both effects directly. In our 

Me runs with K ~ 2x I 05, for each value of j we save K} ~ 2x I 05 va lues of ejk , 

allowing accurate plots to be made of the error distribution for each fitted parameter. 

The distribution of ejk values aIlows one to test directl y the adequacy of the 

various estimates of aej- To do so, we calculate accurate confidence-interval values 

of the distribution (including separate left- and right-hand estimates) to indicate pos­

sible asymm etry of the distribution , as foIlows. After obtaining the mean , SD , 

skewness, and kurtosi s of the ejk values , they are sorted by increasing algebraic 

size, and are then sequentiaIly aIlocated to 800 bins , each of whose width is 11800th 

of the total finite-distribution width. The bin values to the left and right of the mean 

value are then treated separately. For each such set, bin values away from the mean 

are summed until they exceed 0.68269 of the total count for that set. FinaIly, by 

rational function approximation , we estimate the value of ejk corresponding to 

68.269% of the probability. The resulting values are then referenced to the mean , 

bj, so that they measure the distance from the mean to the 68.3% probability point 

on either side. The results , defined as Sj LH and SjRH. for the left-hand and right­

hand parts of the distribution, respectively, thus estimate the 68.3% confidence 

interval around the mean. 

The average of SjLH and SjRH. denoted by SjAv, may be directly compared to the 

other dispersion measures , SJL and SjC FinaIly, the normalized block count in 

each block (NBC), the actual count normalized by the maximum block count 

present, is plotted at the center of each block, normalized by sc- The resulting dis­

tribution plot has a maximum height of unity and an abscissa measured in units of 

SjC> termed the normalized block value(NBV) . In each distribution plot we in­

clude a central vertical line at the mean position and shorter adjoining ones that 

define the true 68.3% confidence interval, all normalized by Sjc. 
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4. PRACTICAL TRANSFORMATIONS 

In this section we derive and test properties of two "transform-both-sides" ap­

proaches, the logarithmic and inversion transformations, The discussion of the log­

arithmic transformation is divided into an analytical part (Section 4.1.1) and a simu­

lation part (Section 4.1.2) where we validate the new analytical results. In Section 

4.2 we consider, again from analytical and simulation viewpoints, use of the inver­

sion (reciprocation) transformation, 
'.' ~_..- ': .>':" :: : J.~ .....:.i.. ~ ,.['T'" 

.:tit. .' .t. r ~ ') .J;'':<' - . :"': ~ ~ 

4.1 Logarithmic Transformation 
.. ,6, ·:'l~~'" ;",. 

) " 0 

This transformation is particularly appropriate for monoexponential response, 

where the fitting model is 
. ..... ~ ; ~ . .s. 

, .... 
Y(Xit 8 0) = YOi = 8 0 1 exp (~2 xi') (4 .1) 

. I., .•~ 

and the transformed model is just 

Y(Xit 8 0) = ~i = 8~1 + 8~2Xi (4.2) 

a linear model in terms of the parameters 8~/ = In(8 0 / ) and 8~2= 802 , The log­

arithmic transform assumes that both data and model values are positive. If the 

original error distribution were normal, then the transformed one will not be so. 

Logarithmic transformation is most appropriate when the fitting model is a single 

exponential and the errors are of the fonn ofEq. (2.3) with ar= 0 and ~o= I (con­

stant percentage errors). It has a long history and has been used for other models 

besides single exponentials (Carroll and Ruppert 1988, Chap. 4.) Although many 

of our new results below also apply to such cases , we apply them here only to the 

single-exponential case. 

4.1 .1 Bias from logarithmic transformation 

We now derive expressions for the intrinsic asymptotic bias induced by a log­

arithmic transformation having data errors given by Eq. (2.3) with a; = 0 and 

~o = I. Such errors are common in experimental situations, at least over a limited 
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range. We begin with a general model , then specialize to the monoexponential 

case. Before transformation, the appropriate NLLS weighting model is that of line 

5 of Table I, FPWT. Logarithmic transformation ofEq. (2. I) yields 

(4.3) 

which is clearly applicable only if 

(4.4) 

precluding such a transformation for relatively large negative errors. For arbitrary 

'0 in Eq. (2.3) , the errors may be written as 

(4.5) 

and thus 

_ 2 ' .2 ~o var ( Yi ) - aT r Oi (4.6) 

. 
On substituting Eq. (4.5) in Eq. (4.3) , we obtain 

(4.7) 

Only for the common proportional-errors case, ( 0= I , is the logarithmic term in 

Eq. (4.7) independent of Yoj. When (0 < I , as in Poisson statistics «(0 = 112), 

the inequality in Eq. (4.4) must fail for sufficiently small Yoj even if P2 is trun­

cated so that arbitrarily large negative values of Cj are deleted. For (0 = I we re­

write Eq. (4.7) as ' 

(4 .8) 

which becomes, on specializing to the monoexponential situation, 

(4.9) 



858 MA CDONALD AND THOMPSOt 

A closely related expression was given by Cook and Weisberg (1982). 

An ordinary, unweighted least-squares (OLS) fit of the transformed data to th 

RHS ofEq. (4.9), directly involving the parameters 8 ~ and 82, leads to an entirel 

unbiased estimate of the slope 82 for the case of proportional errors. The intercep 

is biased by 

L = E{ In [ I + o; P2(0 , I) II (4.10 

Although L depends on the error distribution , it is independent of the Xi and para 

meter values. It can be estimated by series expansion of the logarithm and subse 

quent term -by -term evaluation of each expectation value . Because P2 has zen 

mean and unity variance, the lowest-order approximation to L, Lj, is independen 

of the type of standardized distribution assumed and is given by 

L'" L 1 = - al12 (4 .11 

In this approximation the pre-exponential parameter in Eq. (4.1) is underestimate 

by a factor of about (I - al 12 ) for errors proportional to model values . Term -b) 

term evaluation of the series expansion of Eq. (4.10) leads to the asymptotic bia 

estimate for the continuous, normal , distribution 

L '" i; = - 0.5 alii + (3/2) an 1+ (10/3) al + (35/4) aj + ... } 1 (4.12 

Formally, this is a divergent series in which the ratio of successive terms exceedi 

unity after about [ 2 + 1/ (2al)1 terms. In practice , a MC simulation so rarely 

samples the extreme wings of the distribution that moments higher than the 8th mo· 

ment included in Eq . (4.12) have negligible effect for ar > 0.5. For the uniforn 

distribution (u) , a similar analysis yields the bias estimate 

L '" L~ = - 0.5 alii + (9/10) an I + (10/9) al + (10/4) aj + .. .}1 (4 .13; 

which diverges for o-> 1/13 '" 0.58, but is still sufficiently accurate , for the 

number of terms giv en, if a- < 0.5. The negative signs of the bia s in these 

equations indicate that the true values of the pre-exponential parameters, 80 1 and 

8;1 , are always larger than their estimated values . This is intuitively clear because 
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sberg ( 1982) . TABLE II 
he transformed data to th 

id fh leads to an entirel Comparisons of theoretical logarithmic bias esti mates for continuous distributions , 
onal errors. The intercep "c", with the results of direct calculation of discrete-distribution expectation values, 

"d", for normal (n) and uniform (u) distributions with errors proportiona l to model 

values ((0 ~ I , FPWT in Table I). A * indicates that the value is unre liable 
(4.10 because of censoring. 
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n to L, L I , is independen I - L/ 0.00500 0 .0200 0.045 0 .080 0 .125 
ren by 
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(4 .11 
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averaging, as in Eq. (4.10), for discrete normal and uniform distributions , 

respectively. Up to 108 separate values were averaged for errors taken from dis­

crete distributions with zero mean. The values of the bias function for the discrete 

distribution , Ld,are significant in the last decimal place. 

As expected, for (Jr~ 0.2 the Lc values in Table II do not differ much from the 

first-order approximations, L 1, and there are only small differences between values 

for the two different distributions, so L1 is distributionally robust. In obtaining the 

a, = 0.3 result for L~ in line 3 we eliminated fewer than 100 of 106 error values 

that led to divergent logarithms. Because such truncation renders the original error 

distribution less normal, however, no 4 results are included for o;> 0.3 (30% 

error) , which is an uncommon percentage error in the physical sciences. 

Figure I shows plots of the distribution of In (I + Cj) and a normal distribution 

for comparison, all with 2xlO5 samples. Values for plotting were calculated using 

the binning procedure discussed in Section 3.2. For o, = 0.2, very long , thin , and 

asymmetrical tails appear in the logarithmic distributions. The means of these dis­

tributions show excellent agreement between predictions and the MC estimates . 

For example, with (Jr= 0.2 the MC result for the mean of the logarithmic distri­

bution was again 0.0214 , as in Table II . Similar expansions for the skewness, Ylo 

produce only order-of-magnitude agreement because of strong sensitivity to 

outliers. For example, for a- = 0.2, we predict YI ::: - 3 ra;. /2 ::: -0.67 , whereas 

the MC value was -0.74. 

Thus, fitting exponential-response data after logarithmic transformation of both 

data and model allows one to obtain nearly zero bias for both fitting parameters if 

a r = 0 and,0 = 1, that is, if errors are proportional to model values. The 

exponent parameter is unbiased for this error model , and the bias of the pre­

exponent can be readily estimated, leaving a residual bias perhaps even smaller than 

in NLLS fitting of the untransformed system . This is further illustrated in the 

fitting results presented in Sections 5.1 and 5.3. As a usually adequate 

approximation, the value of SF , Eq. (2.9), obtained from the fit may be used to 

estimate (Jr. As shown in Sections 5.1 and 5.3, the SFvalue obtained from a OWl 

fit ofEq. (4.9) has a larger bias than that ofa FPWT NLLS fit of the untransformed 

data. Therefore, a more accurate result will generally be produced by taking SF 

from such a FPWT fit. A similar fit, but with ,a,[ree parameter (FPLWT), can 

also yield valuable information on the appropriateness of assuming proportional 

errors and making a logarithmic transformation. 

The correspondingt 
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For practical situati 

available, Eq. (4.18) 



MACDONALD AND THOMPSON STRONGLY HETEROSCEDASTIC NONLINEAR REGRESSION 861 

II and uniform distributions, 

aged for errors taken from dis­

ae bias function for the discrete 

ace, 

e II do not differ much from the 

nail differences between values 

ionally robust. In obtaining the 

er than 100 of 106 error values 

cation renders the original error 

re included for a.> 0.3 (30% 

ie physical sciences. 

+ ci) and a normal distribution 

,r plotting were calculated using 

Dr o,» 0.2, very long , thin , and 

utions. The means of these dis­

dictions and the MC estimates. 

mean of the logarithmic distri­

.xpansions for the skewness , Yl> 

.cause of strong sensitivity to 

: -3 fO;. / 2::: -0 .67 , whereas 

garithmictransformation of both 

ias for both fitting parameters if 

rtional to model values. The 

model, and the bias of the pre­

al bias perhaps even smaller than 

l'his is further illustrated in the 

5.3. As a usually adequate 

ned from the fit may be used to 

~ SF value obtained from a UWT 

T NLLS fit of the untransformed 

erally be produced by taking SF 

a free parameter (FPLWT), can 
tenessof assuming proportional 

4.2 Inversion Transformations 

Inversion is important in NLLS fitting when both the distribution P2 and the 

error-weight exponent eo are arbitrary, but a, = 0 in Eq. (2.3) . There are two in­

teresting possibilities. In the first (Type I) , appropriate only for MC simulations, 

we invert the exact values, Yi, before adding errors. In the second possibility 

(Type II) , the errors are already present , as for data in real situations, so the inver­

sion approach that is appropriate is to form the Yi before inverting data and model. 

In the following , we consider these possibilities in turn. As common notation , we 

write for inverted variables xIt '" I!x, and for fitting parameters obtained by 

inversion a similar notation is used. 

4.2.1 Inverting before including errors (Type I) 

For the untIi"nsformed situation we have , from Eqs. (2. I) and (2.3) , 

, 1 

Y:" y oi l] +arP2(O,Ii) y~o-l j (4 .16) 

The corresponding transform following from yt = Y~ + C1 is thus 

(4 .17) 

where the prime on P2 indicates that the distribution in Eq. (4.17) is not necessar­

ilythe same as that in Eq. (4 .16) . Comparison ofEqs. (4.16) and (4 .17) , with the 
# 

two distributions assumed equal, suggests the relation eo+ eo ::: 2, indicating re­

flection symmetry around eo= I. Thus, for MC results an estimate of eobtained 

from untransformed data whose errors involve ar = 0 should be simply related to 

the l;# estimate found from Type-I inversion of the same data and model. The 

relative biases should therefore be related by 

(4.18) 

For practical situations, where eo is unknown but an estimate of be may be 

available, Eq. (4.18) may be used to relate e,be, and b: . 
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4.2.2 Inverting after errors are included (Type II) 

Next, consider the inversion appropriate to data, where model and errors an 

combined before inversion. We consider the case of relatively small errors. Or 

using Eq , (2.1) , we may write y! = I I y; = I / ( Yo ; + e.) , which is , to firs ' 

order in ci l YOi, just Y! '" l1\; (I - e, Yo;). By using Eq . (2.3) for the errol 

model with cxr = 0 we obtain 
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Y/= Y&[I _ °r P2 (O'/i ) ] 
1+ OrP2(O,/;) 

y/ '" Yti [I - Or P2 (O, Ii)(l'ti)l- ~o ] 

which identifies the P2 ' distribution in Eq. (4.17) with the second term in the brae 

kets of this equation. When Or P2 is small compared to unity and is symmetri 

about the origin , there is thus little difference between the fitting expressions Eqs 

(4.17) and (4 .19). When the error term is not negligible compared to unity, th 

error distribution of the inverted data will be appreciably skewed even if P2 i 

symmetric. 

To illustrate the skewing effect in an inversion transformation , we show iJ 

Figure I plots of the distribution of ciI (I + ci ), where cj = Or P2 (O,Ii ) is drawr 

from a normal distribution and 0r= 0.2. A total of 2 x 105 samples was used. B) 

making a Taylor expansion of the skewed distribution about Or = 0, we predict i 

mean of a! [ I + 3 a! + 15 aft + ... ] and a skewness YI '" 3 1 Or. 

If the logarithmic transformation is applied to Type-II inversion with propor 

ional errors, one will obtain the same results as in Section 4 .1, except that the sigt 
<, 

of the bias in the transformed pre-exponent will be reversed. 

# 
Thus, if ( 0 + ( 0 '" 2 and P2 = P/, this result is the same as that for Type-I inver­

sion , Eq . (4.17) , except for the sign , which is irrelevant for a symmetrical erroi 

distribution. Thus, for such errors , Type-II inversion with small Or should lead to 

essentially the same results as Type I inversion. 

For proportional errors , a connection can be made between Eqs . (4 .17) fOI 

Type-I inversion and the approximate (4.19) for Type-Il inversion. Inverting Eq 

(4.16) with ( 0= I, gives 

862 



863 MACDONALD AND THOMPSON STRONGLY HETEROSCEDASTIC NONLI NEAR REGRESSION 

where model and errors art 

relatively small errors. Or 

I; + E:;) , which is , to firs! 

sing Eq. (2.3) for the errol 

(4.W 

ne as that for Type-I inver­

rant for a symmetrical errol 

with small Or should lead to 

.de between Eqs. (4.17) fOI 

:-II inversion. Inverting Eq 

(4.2C 

h the second term in the brae 

:d to unity and is symmetri 

.n the fitting expressions Eqs 

gible compared to unity, th 

:ciably skewed even if P2 i 

transformation , we show il 

ere E:i = Or P2 (O,Ii ) is drawl 

X 105 samples was used. B) 

on about Or = 0, we predict, 

VI" 3 ! Or' 

ype-II inversion with propor 

ction 4.1, except that the sigi 

versed. 

4.2.3 Monte Carlo tests of inversion 

We carried out several MC simulations for monoexponential and other data fit­

ting models with 0.5 ~ 1;0 ~ 1.5 in order to investigate the effects of inversion. As 

expected from the above analysis, Type-I and small-error Type-Il fits yielded very 

nearly the same estimates. We found that Eq. (4.18) is satisfied very well, imply­

ing that when I; or I; # is a fitting parameter, the relation I; + I; # = 2 is an excellent 

approximation. Further, within statistical variability the various standard-deviation 

estimates of I; are the same as the corresponding estimates for the inversion 

transformation. 

In monoexponential MC fits ,we found that the relative bia ses in the pre­

exponentials are nearly independen~f whether inversion is performed , while the 

biases in the exponents are just reversed in sign by inversion , as expected. When 

MC fitting was carried out with I; or I; # fixed at their exact values, results were not 

quite so clearcut. Our MC results suggest that the average of the fitted parameters, 

em = ( em + II e ~) / 2 , usually gives a closer approximation to the true parameter 

value than does either separately. 

For the E:j I ( I + E: j ) distribution shown in Figure I , the predicted mean value 

from the formula in Section 4.2.2 is 0.0458, compared with 0 .046 3 for the MC 

result . The predicted skewness is about 1.3, but our MC result was 3.1 . 

5. EXPONENTIAL MODELS 

The ubiquitous presence of exponential response in science makes it important 

and justifies studying its fitting prop erties. It has long been known that NLLS fit­

ting generally leads to biased parameter estimates , but there has been little quantita­

tive study of this problem , although there are complicated theoretical expressions 

for such bias, assuming normally-distributed parameter errors (Seber and Wild 

1989). Further, although an asymptotic theory ofNLLS estimation demonstrating 

the inconsistency of exponential -model parameter estimates has been developed 

(Wu 1981), it provides no quantification of the inconsistencies. The present 

results , however, yield information about typic al parameter bias level s for several 

fitting and variance models . They thus guide selecting an approach to yield accurate 

parameter estimates and show that parameter-error distributions are not usually 

closely normal , but have long tails similar to those shown in Fig . I for logarithmic 

and inversion transformations of a normal distribution . 
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FI G. 1. Norma lized, 800-point dist ribut ions, each based on 2xl 05 samples in 800 
bin s. Top: indep endent , random samples from a normal distribution , N( O,l); 
middle: log tran sformation , lnt l + ei ): bottom: £j / (I + £j), both for £j = 
0.2 N(O,Ij) . The block value is normalized with Se, the calculated SD , to yield the 
NBV scale, and the normalized block count , NBC, is the ratio of the count in a bin 
to the maximum such count. The mean value is denoted by the longer vertical line, 
and the two shorte r vertical lin es show the positions of the 68.3% probability 
points. 

5 .1 Analysis of the Beal-Sheiner Monoexponential Mod el 

Beal and Sheine r ( 1988) discussed ana lysis of a small-ra nge , nearl y homo­

scedas tic, data se t by a monoexponent ial model. We use it to illu st rat e several 

results from Se ctio n 4 . Th e pa ram eter va lues that they used are 8 0 1 = 2 and 

80 2 = - 0 .693 =: -In(2). The 10 Xj values are 0.1 , 0.2, 0. 3 , 0 .5, 0. 75 , 1.0, 1.5, 

2.0 ,2.5 , and 3.0 . In the present MC study of this exponentia l-decay fitt ing model, 

we follow them and assume proportional erro rs in Eq. (2.1). 

Tab le III summarizes MC sim ulation results obtained with from 5x I05 to 2x l ()6 

replica tio ns. The P2 error dist ribut ion was taken normal (as in Bea l and Shei ner) 

for lines I through 4 of the tab le and was taken uniform for line 5. For the FPLWI 

fits of line I in Ta ble III , ewas free to vary , and we found b, = 0.225, S ,L = 0.68 , 
<, 

and so: = 0.6 1. These values show that e is strongly biased for the present anal­

ysis of their data and can be only very poo rly determined by such fitting . 

MC simulation re 

The notation for w 

3.2. The -n and -u i 

lines 4 and 5 indica 

indicates that the val' 

Line Weight 
-

I FPLWT-n 

2 FPWT-n 

3 UWT -n 

4 UWT/LT-n 
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in UWT). Note that 

consistent with the, 

at a val ue different 

ample , that with ( 

e= 0.5 to slightly 

smaller than the co 



865 

5 

lLD AND THOMPSON STRONGLY HETEROSCEDASTI C NONLINEAR REGRESSION 

TABLE III 

Me simulation results for the Beal-Sheiner monoexponential model, 0r= 0.15. 
,.--, 

The notation for weights is in Table I, and for other column headings is in Section 

3.2. The -n and -u indicate normally- and uniformly-distributed errors. ThelLT in 

lines 4 and 5 indicates that a logarithmic transformation of the data was made. A * 
indicates that the values are not significantly different from zero. 

TO 

22 

[\0 5 samples in 800 
stribution, N{O, I); 
ei), both for £j = 
ted SD, to yield the 
)f the count in a bin 
longer vertical line, 
68.3% probability 

mge, nearly homo­

to illustrate several 

~d are 80 1 = 2 and 

1.5 , 0.75, 1.0 , 1.5, 

Iecay fitting model, 

'rom 5x105 to 2xlQ6 

1 Beal and Sheiner) 

5. For the FPLWT 

= 0.225, S ~L = 0.68 , 

or the present anal ­

h fitting. 

Line Weight SF b,x103 5lLXI02 5,cxl02 ~x103 52LX10 2 52Cx I 02 

1 FPLWT-n 0.1530 2.80 8.09"" 7.44 1.92 7.25 8.10 

2 FPWT-n 0.1496 2.91 7.47 5.77 2.87 7.00 7.01 

3 UWT-n 0.1724 4.00 6.31 7.56 8.86 14.0 12.5 

4 UWfILT-n 0.1525 -15.0 11.0 8.54 11.0 7.20 * 
5 UWfILT-u 0.1518 - 14.9 10.9 8.48 7.14 7.15* 

Plots of the relative error distributions of the parameters are shown in Fig. 2. 

Because distribution plots of ejk and of the actual, unnormalized errors differ only 

in the position of their zero values on the NBV abscissa scale , we generally do not 

distinguish between them. In Fig. 2 the distribution of the errors of 81 has a very 

long, thin , right tail and a large kurtosis (excess) of 3.3 ; that of ~ also has an ap­

preciable right tail but its kurtosis is 1.6. The distribution of 82 errors is clearly 

closest to normal (kurtosis > O. I). The biased value of ~ is 1.225, and the 68.3 % 

confidence interval around the true mean, ~o = 1, extends from 0.47 to 1.6. 

For the other runs summarized in Table III , ~ was either fixed or not present (as 

in UWT). Note that the constant-variance FPWf weighting model of line 2 is fully 

consistent with the error model selected. Runs like that in line 2, but with ~ fixed 

at a value different from unity , gave results comparable to those of line 2. For ex­

ample , that with ~ = 1.225 led to somewhat worse b~j estimates and that with 

~ = 0.5 to slightly better ones. However, the bj values in line 2 are sufficiently 

smaller than the corresponding SjC ones that for most purposes bias can be neg­
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FIG. 2. Normalized distributions of the relative errors of the C, 8/, and 82 para­
meters for the FPLWT Me results in line I of the Table III Beal-Sheiner small­
range monoexponential model and data. 

lected. It is consistent that , although Ccannot be well determined here, its value 

makes little difference to other parameter estimates. This conclusion is somewhat 

counter to that of Beal and Sheiner who state that "there is considerable benefit in 

letting i; (twice our C)be estimated rather than fixed." Even though no significant 

parameter estimation benefit appears in the present example, we agree with their 

conclusion for highly heteroscedastic data , such as those discussed in Section 5.2. 

For FPWT our result for the bab / mean of Eq. (3.3) agrees with the compar­

able ELS , 500-sample result in Beal and Sheiner, but our value for bab2 agrees 

with their "iteratively reweighted least squares" result , itself smaller than their ELS 

value of bab2 • In Table III the line-3 UWT results are significantly worse than 

those in line 2, as one might expect , since the weighting model is here inconsistent 

with the error model. Nevertheless, for the present small data range and mild 

heteroscedasticity, results are clearly not strongly sensitive to a particular choice of 

weighting model. The results of lines 4 and 5 ofTable III apply for fitting after the 

logarithmic transformation discu ssed in Section-4.1. Only small differences are 

evident between the results in lines 4 and 5. Also , although their original data-error 
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distributions differed , those of the parameters are both nearly normal, as expected 

from the central-limit theorem. 

We do not list estimates of b2 because, although the MC values were of order 

10-5, their uncertainties were sufficiently large that they could not be well distin­

guished from zero even with K = 2xlD6. The calculation, using double-precision 

arithmetic , required 9.5 hours on a Compaq 386-20 computer with Weitek co­

processor board. The SF value in line 2 is substantially closer to the Or = 0.15 

value used to generate input data errors than are any other SF estimates of Or in 

Table III . Although for lines 4 and 5 of Table III the bias of (1] is consistent with 

zero, as we expect from Section 4.1, t~ relative bias of 0; ,which is listed in the 

bl column , but it is actually b; , is quite large . The values of L predicted in 

Section 4.1.1 for Or = 0.15 are used for normal or uniform distributions to correct 

the bz values in lines 4 and 5, respectively. This yields approximate residual 

relative bias values of 1.8xlO-3 or 1.7x10- 3 in the log-transformed pre-exponent 

and about 1.3x10-3 or 1.2x10- 3 for the relative bias of the pre-exponent itself, 

appreciably smaller in magnitude than any other such estimates in Table III, but still 

not zero . 

Thus, we have produced a very nearly zero-bias fitting approach for mono­

exponentials that is robust with respect to the data-error distribution . It is tested for 

a strongly heteroscedastic situation in Section 5.3. Although all the fitting results of 

Table III use Eqs. (2.5) - (2.8), a few simulations were carried out using the Beal­

Sheiner ELS approach. Both FPLWT and FPWT runs showed that fitting by this 

ELS approach slowed convergence. In fact, many of the replication fits failed to 

converge even after many iterations. For example , for the FPWT simulation in line 

2 of Table III all fits converged in three or fewer iterations using Ooj values as 

initial guesses for the OJ- The Beal-Sheiner approach led to II % non-convergent 

replications after a maximum of 91 iterations , 9.5% non-convergence for 270, and 

did not further decrease when the maximum was allowed to increase. Analysis by 

Beal-Sheiner ELS with up to 91 iterations required about four times more computer 

time than did our method and about eight times more was needed for 273 iterations . 

Although very few fits failed to converge in ELS for Or = 0.0 I , analyses with 

such small errors nevertheless still took about 35% more computer time than did 

comparable ones using our method. As expected , both approaches give essential1y 

the same results when there is no censoring. For wide-range data with appreciable 

errors there will be even more difference between the convergence properties of the 
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two approaches than illustrated here; thus we used only our FPLWT or FGWT with 

ELS fitting method in the rest of our work. 

5.2 Analysis of a Strongly Heteroscedastic Monoexponential Model 

Again using the monoexponential model , Eq. (4. I), to describe the data, we 

now consider two extensive MC simulations involving the general error model, Eq. 

(2.3), and the EVM, Eqs. (2.5) and (2.8) . We use 31 data points, selected with a 

ratio of adjacent x values of 101/1 °. Thus, the x values are distributed uniformly 

on a logarithmic scale. The Yi fitting-model values are then calculated from Eq. 

(4.1) with 00 ] = 00 2 = I and they range from 1.01 to 2.2xI04, an exponential 

growth model with a data range exceeding 104. 

5.2.1 · a r = 0 situations 

Here in generating the Yt we choose a r = 0, eo= I, and 0r= 0.2 in Eq. (2.3) 

for the error model. This compromise choice for orProduces errors larger than us­

ual in physical-sciences data but smalIer than in much life-sciences data. 

Table IV presents simulation results for a variety of weighting and fitting 

models. For these runs the number of replications ranged from 2xl05 to 2x106. 

Lines I and 4-13 do not include transformation before fitting. The first three lines 

are for e free and involved 5xI05 replications each. 

The exponent in the error model Eq. (2.3), eo,was relatively welI determined in 

the line-I model, with bias of <4%. Lines 2 and 3 present results for FPLWT with 

Type-I and Type-II inversion, in which we found comparable results to those in 

line I. In particular, the predictions of Section 4.2 are very welI borne out for 

Type -I inversion. Because of the large value of Or used here, Type-II inversion 

results are not very similar to those for Type-I, as line 3 shows , and the bias in 0] 

is much greater . 

Line 4 in Table IV shows results for U= 0 and efixed at 0.9637, as estimated 

from the b( value of the line-I fit. For comparison, the results in line 6 are for e 

fixed at unity , the value of eo. It is evident that although the line-S fit yields a better 

estimate of Or than does SF in line 4, the line-4 bias estimates are appreciably 

smaller. Surprisingly, a fixed value of e unequalto the correct value, eo leads to 

smaller bias than found with e fixed at eo' In consonance with the normal-uniform 
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TABLE N 

MC simulation results for large -range monoexponential model with ar =0.2. The 

notations -n or -u denote normally- or uniformly-distributed errors. The notations 

iI and iII indicate Type-I and Type-Il inversion transformations (Section 4.2). A * 
indicates that the value is not statistically different from zero . 

: the general error model , Eq. 

I data points, selected with a Line Weight SF b1xl 03 s lLx102 sl Cx 102 b2x103 s2Lx102 s2Cx 102 

res are distributed uniformly 
FPLWT-n 0.2 115 O~7 4.35 2.50 -0.61 1.31 1.53 

are then calculated from Eq . 
2 FPLWTIiI-n 0.2117 0.25 4.35 2.51 0.61 1.3 1 1.53 

to 2.2xI04 , an exponential 
3 FPLWT/iII -n 0.2385 -0.389 4.65 2.85 -0.75 1.43 1.77 

4 FFWT-n 0.2120 -1.2 4.35 2.25 0.26 1.19 1.43 

5 GLS-n 0.2420 -77 4.39 2.94 0.2 1.41 1.99 

6 FPWT-n 0.2000 1.85 4.23 2.20 -1.42 1.41 1.41, I , and ar= 0.2 in Eq, (2 .3) 

oduces errors larger than us ­ 7 FPWT-u 0.2001 1.91 4.23 2.20 -1.46 1.41 1.41 

ife-sciences data . 8 FFWT-u 0.2104 -0.77 4.34 2.25 0.05 1.21 1.43 

ty of weighting and fitting 9 GLS-u 0.2258 -75 4.20 2.54 0.4 1.41 1.73 

mged from 2x l05 to 2x106• 
10 DPWT-n 0.2188 -87.2 4.33 3.30 2.02 1.61 1.94 

: fitting. The first three lines 
II DPWT-u 0.2061 -80.0 4.11 2.40 1.76 1.51 1.60 

12 UWf-n 39.1 746 14.6 230 2.47 0.656 13.0 
relatively well determined in 

13 UWf-u 40.0 701 13.3 188 2.06 0.665 12.8 
sent results for FPL WI with 

14 UWfILT-n 0.2101 -20.6 4.45 2.36 1.51 1.51 
uuparable results to those in 

15 UWfILT-u 0.2060 -20.1 4.36 2.32 1.48 1.48 
are very well borne out for 

ised here , Type-Il inversion 

e 3 shows, and the bias in 8} 

fixed at 0.9637 , as estimated comparison in Table III , we find that in the four such comparisons included in 

the results in line 6 are for, Table IV the differences between corresponding results are generally quite small. 

:h the line-S fit yields a better Table IV also allows comparisons between ELS and GLS results for the present 

s estimates are appreciably fitting model and data errors. First , comparison of the results in lines 4 and 5 is ap­

he correct value, '0 leads to propriate since they both use fixed, values. The GLS MC estimate was 

nee with the normal-uniform e= 0.9578, a somewhat worse estimate than the line-4 ELS value of 0.9637. As 

expected for normal-distributed errors , nearly all the other GLS results are also 
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worse than those using ELS. Comparison of the results of lines 8 and 9 with data 

errors drawn from a uniform distribution shows, surprisingly, that again the ELS 

results are superior to the GLS ones. Here, the ( in line 8 was 0.9679 , nearly 

identical to that in line 9, 0.9692. The relative bias estimates from ELS are 50 to 

100 times smaller than those from GLS for both normal and uniform errors. 

These new results and those of Section 5.3.2, for Poisson-distributed errors, 

justify our recommendation to use the faster ELS fitting rather than slower GLS fit­

ting for most work involving wide-range, physical-sciences data and errors. Thus, 

the criticisms of ELS by van Houweligen (1988) are unwarranted for such data. 

Lines 10-13 of Table IV show results for various inappropriate weightings. 

Although both DPWT and UWT lead to more bias, the increase is particularly 

strong for the bias in £l}. Figure 3 shows some of the relevant normalized distribu­

tions with very thin and long tails for the DPWT O2 and 01 error distributions. For 

plotting resolution , the right-hand O2 tail, which extend s to 6.9, was cut off at 

NBV = 3, as was the UWT 01 error distribution, which is clearly very far from 

normal, with a skewness parameter of about 4, a kurtosis of 33, and extending up 

to 26.6 . In spite of this pathological behavior, the UWT O2 distribution (not 

shown) is quite close to normal. The results shown in lines 10-13 in Table IV de­

monstrate the severe problems that arise from using incorrect weighting of two 

common types. 

Lines 14 and 15 in Table IV show logarithmic transformation results . Again, 

b2 is not statistically different from zero, and the relative bias in the transformed 

pre-exponential (in the bI column) is dominated by the transformation bias. Upon 

subtracting the bias estimates in lines 3 and 5 ofTable II, the residual bias estimates 

are 8xlo-4 and 7xlO-4. These results and comparable ones in Table III, show that 

when only OLS fitting (OWT) is available, logarithmic transformation of mono­

exponential data and subsequent transformation-bias correction of the resulting 01 

estimate from Eq. (4.14) will yield essentially unbiased parameter estimates. This 

procedure is proper, however, only when (0 is unity , which may not be approp­

riate for the data considered. On the other hand, weighted NLLS fitting , as in lines 

I through 4 ofTable IV, is more general and flexible since it is not limited to mono­

exponential response with (0 = I , and NLLS should therefore be used for general-

purpose fitting when available. '--­

The results in Tables IIIand IV indicate that the linearized estimate of the SD of 

the O2 error distribution, S2L, is an adequate to excellent approximation for S2C 
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FIG. 3. Normalized distributions of the relative errors of £1] and 8 I for the 
DPWT MC results in Table IV line 10, and the UWT MC fits in Table IV, line 12. 
Wide-range monoexponential model and strongly heteroscedastic data . 

when the appropriate weighting is used, but that this is certainly not so for the cor­

responding SD estimates associated with the pre-exponential parameter 81 , SIL 

and SIC' In particular, for the UWT response in Table IV , SJL and S2L values are 

exceedingly misleading and should be given no credence. Finally, use of FPLWT 

and FFWT, with the value of (found from the former weighting used in the latter, 

appears appropriate for the present high-heteroscedasticity data. The bias is close ­

ly proportional to 01 (or even closer to si- for large Or , where SF becomes larger 

than Or ), while quantities such as Sj C are nearly proportional to Or or to SF ' 

Therefore , whenever bj is nonzero it may grow to at least as large as SjC as Or 

increases. Thus, when errors in the data are appreciable, it is dangerous to neglect 

bias correction in exponential-fitting problems . 

Thus far we have dealt only with the (0 = I error situation in Eq. (2.3) . But , 

how well can ( be estimated when (0 is not unity? Some answers to this question 

are provided by the results in Fig. 4. For FPLWT applied to MC simulation of the 

monoexponential model , we found an interesting decoupling between the results for 

, and Or when ar = O. Although the parameter biases depend strongly on Or. the 

values of , do not. In fact, quantities related to , were found to change by only 1 
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FIG. 4. Dependences of the dispersion measures, S{L and s{C' and of the bias b{ 
on ~o for FPL WT and the wide-range monoexponential model. The short vertical 
lines on the si;c curve extend between the values of the actual 68.3% probability 
values Si;RH (bottom) and sl;LH (top). 

to 3% as Or changed from 10-4 to 0.2. For this reason , the FPLWT fittings that 

led to the Fig. 4 results were carried out for both ar and U set to zero and 

Or = 10-4. In Fig . 4 the short vertical lines on the si;c curve are drawn between 

an upper value of Sl;LH and a lower value of SF,.RH , showing how the conventional 

si;C dispersion measures differs from the true confidence interval values for. Thus 

Si;L is a poor approximation to si;c or to si;A v for ~o > 0.8. For ~o = 1.5 Si;L is 

over 30% too large. 

The line associated with the bi; points in Fig. 4 is from exponential fitting. The 

various dispersion measures also decrease as ~o increases, but more slowly than 

does the bias . Therefore bi; may be neglected for large ~o, but should not be ignor­

ed for ~o small. On fitting the b{ results to -Ao exp( -AI ~o) using FPLWT, we 

obtained A o = 0.840 I0.04, Al = 0.320 I0.014, and ~ ::: 0.861 0.3. Here the 

combination A ILlA indicates a parameter estimate, A , and its estimated relative 

standard deviation, LlA. When the inversion transformation is applied, so that we 

have exponential decay instead of growth, the-results agree with the predictions of 

Section 4.2. In particular, the relation ~+ 1;# ::: 2 holds well, as does Eq. (4 .18) . 
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Some Type-II inversion results were obtained for the extreme choice '0 = 2, 

using ar = 10-5 in order to avoid generating any negative Yt- Using 2xl05 

samples we obtained b, = 4.6xI0-3 and s«: = 0.029, while b, = 6.8xI0-3 and 

s,c = 0.062 were found for the corresponding inversion-transformed fits. Since 

'0# 
= 0, these latter results are direct, not relative quantities, and they show that the 

bias in the inverse-transformed, cannot be distinguished from zero on a statistical 

basis and thus 1;# '"0 as expected. Nevertheless , the biases themselves are deter­

mined to better than 5%, and lead to, + 1;#= 1.998, satisfactorily close to 2. 

5.2.2 Situations with a;» 0 

Thus far we have set a, to zero in the error model, Eq. (2.1). Here we present 

a MC simulation study where this is not so. We begin with the specific wide -range 

monoexponential growth model and data in Section 5.2.1 and convert them to a 

decay model by direct Type-I inversion. For the error model we take '0 = I and ar 

of the order of magnitude of the smallest data value, here expt-IO) '" 5xI0- . We5

therefore select ar = 10-5 and find MC estimates of the relative biases bu and b, 

for various a, choices. Such results allow us to evaluate how well " V, and a; 
can be estimated for the present situation . For sufficiently large an the proportional 

errors should dominate, while for small enough ar the addit ive ones should do so. 

Table V summarizes results obtained with 2xl05 replications. No bias esti­

mates for £1I and £h are included because even with ar = 0.0 I the fitting model 

parameter biases were found to be entirely negligible. Since fitted values of V can 

be of either sign without affecting weighted fit results, for simplicity we take Vo 

positive and calculate bu using eUk = (I Vk 1- Vo )/Vo. When V and, are both 

free to vary, we find more frequent fit convergence failure in these MC simulations. 

To eliminate such non-converging fits early and thus save computer time, we im­

mediately terminated all searches for which IV1 Vol > 4. For the line-4 run, about 

3% of the fit trials were so eliminated, but the percentage was somewhat greater for 

other ar values. 

Consider first the FGWT results in Table V. We see that SF is only slightly 

biased until ar approaches ar- As usual , SF is a good estimate of ar in its region 

of main interest. We are particularly concerned with the biased estimates, and aft 
and with the '0 and ar distributions SD's, which allow us to evaluate how well 

our fitting method estimates the error-model parameters if there are both additive 

and power-law errors. 
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TABLE V 

Me simulation results for a large-range monoexponential decay model with 

ar = 10 - 5 and /;0= 1. The notation ALiA denotes an estimate A and the standard 

deviation of its associated distribution, LiA. All the simulations are for normal error 

distributions. Entries indicated by --- are for quantities not relevant to the 

analysis. 

line Weight or SF/or bU:SUC ~ S~Cb( s~C : a r:S;c/al 

-. ­FPLWT Ix10·2 0.920 -0.20 :0.09 0.80 :0.09 

2 FGWT Ix10- 2 1.080 -0.09:0.53 0.07:0.14 1.07:0.14 0.90:0.53 

-33 FGWT 1.077 -0.11 :0.45 0.08:0.17 1.08: 17 0.89 :0.45 3xl0
 
4 FPLWT IxlO- 3 0.848 --- 0.45 :0.08 0.55 :0.08
 

5 FGWT IxlO- 3 1.076 -0.10:0.40 0.097 :0.23 1.10:0.23 0.90:0.40 

6 FGWT 3xlO-4 1.075 -0.10 :0.35 0.14 :0.33 1.14 :0.33 0.90 :0.35 

IxIO-4 1.19 :0.50 0.89:0.33 

·5 

7 FGWT 1.073 -0.11:0.33 0.19:0.50 

8 FGWT 3xl0 1.000 - 0.43:0.47 - 0. 20:0.74 0.80:0.74 0.57 :0.4 7 

9 FGWT 1.315 - 0.93:0.19 -0.91:0.24 0.09 :0.24 0.073 :0.19 Ix10 -5 

10 FPLWT Ix10·5 1.300 -0.95:0.06 0.05 :0.06 

The SD values in Table V are of SjC or SjC type, which we present as Aj :SjC , 

where lower-case letters are for relative quantities and upper-case letters are for the 

quantities themselves, and the colon divider identifies a distribution SD . If Aj is 

the bias in a single measurement of value aj from a particular distribution , the 

nominal 68.3% confidence-interval estimate around the bias-corrected value of aj 

would extend from (a) - A j) - SjC to (aJ - A j ) + Sjc. The number of Me 
replications was always taken large enough that values ofsuch quantities as bu are 

estimated to ~ 1%; therefore, their estimated SDs are.not presented; those of the 

underlying distribution are generally much larger and are of primary interest here. 
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In the rightmost column ofTable V are values of (;r / ar = I + bu. Note that 

the bias and uncertainty of an (0 estimate increase as or decreases, while those of 

a, estimates are substantial1y constant or decrease. The results in line 9 show, 

however, that when Or and a r are comparable , a meaningful estimate of a r can 

no longer be obtained. Instead , ( becomes very smal1, a condition that yields 

nearly UWT, which is then the preferred choice. The line-I 0 FPLwr results again 

yield a very small (, further indicating the appropriateness of UWT, and the SF es­

timate is no longer close to the proper, but very smal1, Or value. Not surprisingly, 

the lUI and ( distributionsare far from normal. For example , for o;» 10- 3, the 

skewness and kurtosis are, respectively, about 0.56 and 0.91 for the IU I distri­

bution and about 1.7 and 5.6 for the ( distribution. For Or = 10- 5, the correspon­

ding values are about 7 and 64, and 8 and 81, respectively. 

In Table V the results in line I should be compared to those in line 2. First , we 

see that the SF biases are comparable, but of opposite sign, for the two MC results. 

Second, the use ofFPLWT, as in line I , leads to a much greater bias of the (0 esti­

mate and to a smal1er estimate of the SD of its distribution, making the poorly­

estima ted ( value appear much more accurate than it is. But , by using FGWT (and 

thus allowing U to be free) , one takes proper account of the additive errors and ob­

tains reasonable estimates of Or, (0 , and a r . Similar conclusions fol1ow when we 

compare the FPLWT results in line 4 with the FGWT ones in line 5. Although 

smal1er SD values of the (0 and a; distributions than those found would be desir­

able, there are appreciable regions of Or in the present case for which the SD values 

are small enough to make it worthwhile to fit with both U and ( varying. 

5.3 Analysis of Radioactive Decay by a Sum-of-Exponentials Model 

In order to demonstrate how useful the ELS method is for analyzing physical­

sciences data, we now consider the radioactive decay data in Table VI. To obtain 

these results we irradiated a sample of 103Rh with neutrons, and monitored the 

gamma decay of t04Rh with a scintillation detector. Irradiation produced two dif­

ferent radioactive states of 104Rh and , to a very good approximation, they decay in­

dependently. The appropriate NLLS fitting model is thus 

(5.1) 
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TABLE VI 

Rad ioactive deca y data for 104Rh. Here I is time in seconds and y is the number 

of counts in the interval centered on t: 

y I Y I Y I Y I Y I Y 

2 864 58 462 114 245 170 154 270 11 7 802 70 

6 800 62 418 118 225 174 164 290 120 902 74 

10 715 66 371 122 215 178 166 310 92 1002 76 

14 705 70 346 126 189 182 155 330 91 1102 70 

18 697 74 362 130 192 186 129 362 112 1202 68 

22 685 78 307 134 207 190 141 402 102 1302 86 

26 665 82 330 138 195 194 153 442 79 1402 85 

30 621 86 311 142 183 198 151 482 87 1502 59 

34 606 90 285 146 178 202 134 502 101 1602 68 

38 541 94 292 150 178 206 137 542 98 1702 79 

42 522 98 289 154 193 21 4 142 582 76 1802 82 

46 510 102 273 158 167 230 11 7 622 77 1902 80 

50 469 106 271 162 175 250 142 702 68 2002 66 

54 423 110 241 166 184 

with all 8j positive , 8 [ a background count, and Ij the time from the start of coun­

ting. We now use this expression for several different EVM analyses of the data. 

We begin by analyzing the actual data, then cont inue in Section 5.3.2 with a Me 
study of comparable synthetic data . 

5.3.1 Analysis ofdecay of 104Rh 

It has been shown that there is negligible 1/f noise in alpha deca y (Kennett and 

Prestwich 1989) , so it is plausible to expect none for the present situation. Since 

there does not appear to be any reason for addit ive errors in the data , any weighting 

involving U in Eq . (2 .8) is inappropriate. Neve-rtheless, for comparison purposes 

we start with UWT and compare fitting results with DPLWT, FPLWT, and FPWT. 

In addition, two variance models especially appropriate for Poisson statistics will be 
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:ondsand y is the number 

defined. For arbitrary (, define a Poisson form of FPLWT, called PFPLWT, by 

replacing the T in Eq. (2.8) by 

y y Each term in Eq, (5.l) is associated with a different and independent Poisson pro­

270 117 802 70 cess for which the variance of a data value is equal to that value , therefore ( = 0.5 . 
290 120 902 74 When this particular ( value is used in Eq. (5.2), it leads to just FPWT . Although 
310 92 1002 76 there is thus no need to distinguish between the two variance models if (= 0.5, it is 
330 91 1102 70 worthwhile to compare their predictions, which should differ when ( '" 0.5. 
362 112 1202 68 

Finally, let PFFWT denote PFPLWT with ( fixed. 
402 102 1302 86 An independent measurement of the background term 8/ in Eq. (5.l) was also 
442 79 1402 85 

made during the experiment and yielded 8/ = 70 I0.0053. Although it is approp­
482 87 1502 59 

riate to use this a priori information in NLLS fits of the decay data, we also inves­502 101 1602 68 
tigate how well the fits estimate it. Previous measurements (Blachot et al. 1984)542 98 1702 79 
led to quite precise estimates, 83 = 61.03 I0.0095 sec and 85 = 373.95 I 0.012 sec. 582 76 1802 82 

Table VII summarizes the results of fitting the data with many different EVM's 622 77 1902 80 
702 68 2002 66 and of several long MC simulation runs. It is a notoriously difficult and iII­

conditioned problem to estimate adequately the parameters from real data involving 

two or more exponentials whose time constants are not very much different or 

when there is parameter redundancy (Lanczos 1956, Seber and Wild 1989, pp. 

118·119). Thus , even with the most appropriate EVM, we expect appreciable un­

certainties in parameter estimates. The values shown in line 10 of the table were 
ne from the start of coun­ produced by fixing all parameters except 82 and 84 at appropriate values, as dis­
:VM analyses of the data. cussed above. Their values in line 10 are probably best estimates. 
Section 5.3.2 with a MC The use of UWT fitting produces parameter estimates that are largely deter­

mined by the region where the Yj are largest, especially when their range is large . 

The UWT results in line I confirm this expectation, and show that 82 and 83 , 

associated with the short-time region of the data, are far better determined than are 
alpha decay (Kennett and 

()4 and 85, associated with the long-time region . Although a good estimate of 8 / 
present situation. Since is obtained , its RSD estimate is large. As Table VII shows, there are no significant 

In the data, any weighting differences between the results in line 2 (where Zj =Yj) and line 3 (for which Z; = 
for comparison purposes Yj). The FPPL WT results of line 4 seem to be slightly inferior to those of line 3. 
~,FPLWT, and FPWT. All the estimates of lines 1-4, however, are within one SD of the values in line 10. 
r Poisson statistics will be 
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TABLE VII 

II 0 
Ind ividual fit result s (lines 1-10), and simula tion results with OJ fixed at 70 (lines 

11-13) for radioactive-decay data. A quantity written A IL1A represents a para­

meter estimate and its estimated relative standard deviation (RSD). Entries with --­

indicate quantities that are not relevant to analysis. The suffix -p in lines 11-13 

denotes a Poisson error distribution. 

Weight SF (°1 °2 °3 °4 °5 
I uwr 16.2 71.5 10.11 758 10.035 65.1 10.050 49.9 10.49 44510.91 --­ FI G. 5. Weighted 
2 DPLWT 0.847 71.8 J 0.042 73610.043 60.310.065 83.710.41 28410.38 0.5410.27 active decay data an 
3 FPLWT 0.859 72.8 \0.041 737 10.043 60.0 I0.065 84.610.41 284 10.38 0.53 10.28 in Section 5.3.1. 

4 PFPLWT 0.597 72.910.040 73510.043 59.210.068 89.410.40 27510.36 0.6010.29 •
5 FPLWT 0.96 7 70 747 10.028 61.1 10.051 75.310.30 348 10.27 0.5110.28
 

6 PFPLWT 0.84 2 70 745 10.029 60.310.054 79.710.29 33510.26 0.5810.29
 

7 FPWT 0.084 70 74110.040 57.7 10.071 93.610.27 30510.20 1.0
 Although the ba 

8 PFFWT 0.110 70 73510.043 55.0 I0.068 11410.2526410.19 1.0 schemes, the results' 
9 PFFWT 1.008 70 74710.027 61.110.050 74.9 \0.29 350 I0.27 0.5 othe r pa rameters and 

10 PFFWT 0.995 70 75210.016 61.03 72.0 I0.06 373.95 0.5 
---- - - - - - ured val ue . Of parti~ 

II FPLWT 1.272 - 0.0043 -0.0045 0.055 0.046 -0.024 br Poisson-statistics val~ 
-pIMC SjC: 0.0282 0.0487 0.315 0.29 3 0.230 A FPLWT Typi

0.0275 0.0487 0.269 0.253 0.230 
'" + (II = 1.97, rather 

~LH : 

0.0249 0.0469 0.318 0.298 0.226 
param eter estimates, 

~RH : 

12 FFWT 0.997 bm : -0.0041 -0.0043 0.053 0.047 --­
-pIMC smC 0.0279 0.0480 0.309 0.292 --- close to the accepted 

SmLH: 0.027 3 0.0482 0.266 0.251 --- for the other free para 

SmRH : 0.0248 0.0463 0.315 0.297 --­ surprising that averag 
13 GLS 1.331 ~ : -0.0081 -0.0094 0.089 -0.023 -0.041 constant of the domin 

-pIMC SjC: 0.0298 0.0492 0.334 0.266 0.22 ys is in Section 4.2 th 
SjLH: 0.0290 0.0493 0.282 0.230 0.22 

W e examine in Ii 
SjRH: 0.0260 0.0472 0.336 0.269 0.22 

W ith ," = I, a plausib 

p roc esses , we see tho 

line 9. Fig ure 5 shot 

vertical lines extend 
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LOG(Yi ) 

FIG. 5. Weighted residuals for the FPWT, I; = I , fit in line 7, Table VII. Radio­
active decay data and sum-of-exponentials model. The straight-line fit is discussed 
in Section 5.3 .1. 

Although the background value {}J is well estimated by any of the weighting 

schemes, the results in lines 5 and 6 of Table VII show that better estimates of the 

other parameters and their RSD values are obtained when (}J is fixed at its meas­

ured value. Of particular note is the best -fit I; estimate in line 5, very close to the 

Poisson-statistics value of 0.5. 

A FPLWT Type-II inversion fit yielded 1;11 = 1.4610.10; thu s, here 

I;+ l;II = 1.97, rather close to 2. Averaging of untransformed and transformed 

parameter estimates, as discussed in Section 4.2.3 , led to < {}] > = 61.036, very 

close to the accepted value of 61.03 for this parameter in line 10. Such averaging 

forthe other free parameters did not yield results closer to those in line 10. It is not 

surprising that averaging helps reduce bias for the {}] estimate , since this is the time 

constantof the dominant exponential-decay term, and we thus expect from the anal­

ysis in Section 4.2 that b] and bf should be nearly equal. 

We examine in lines 7 and 8 what happens with a fixed but wrong value of 1;. 

With I; = I, a plausible choice if one did not know that the data arose from Poisson 

processes, we see that all parameter estimate s are worse than those in line 5 or in 

line 9. Figure 5 shows the weighted residuals for the line-7 fit vs log ( Yj ). The 

vertical lines extend from 0 to Rj. This figure shows very appreciable heterosce­

~D AND THOMPSON 

fixed at 70 (lines 

represents a para­

'). Entries with --­

-p in lines 11-13 

15 \0.91 

:410.38 

:4 10.38 

'510.36 

~8 1 0.27 

1510.26 

ls i 0.20 

,4 10.19 

;0 I0.27 

73.95 
----_ ._ ­
).046 

).293 

).253 

).298 

).047 

),292 

).251 

1. 297 

1.023 

1.266 

.230 

.269 

0.5410.27 

0.531 0.28 

0.60 I0.29 

0.5 110 .28 

0.581 0.29 

1.0 

1.0 

0.5 

0.5 

-0.0 24 

0.230 

0.230 

0.226 

-0.04 1 

0.22 

0.22 

0.22 



!

I
I

1

--------

880	 MACDONALD AND THOMPSON 
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FIG. 6. Weighted residuals for the PFFWT, I; = 0.5 , fit of line 9, Table VII. 
Radioactive decay data and sum-of-exponentials model. The straight-line fit is dis­
cussed in Section 5.3.1. 

dasticity even of weighted residuals. But Fig. 6, for line 9 (I; = 0.5), appears to be 

very nearly homoscedastic, as it should be for the appropriate I; choice. A quanti­

tative measure is afforded by the results in Fig. 7 for IRj I. Completely homosce­

dastic data should yield a Iinear-fit straight line of slope zero within the limits ofsta­

tistical variability. Here the line is nearly horizontal and its equation is 

IRj I = 1.007 I 0.42 - (0.079 I 2.4) log( Yj) . The equation for the line- 7 IRj I 
data is IRj I = 0.230 I0.15 - (0.072 I0.21) log( Yj). Since the mean of IRj I is about 

0.066 for the I; = I fit and about 0.83 for the I; = 0.5 fit, the effective slope is re­

duced by about a factor of lOon reducing 1;. Further, the RSD values of the slopes 

indicate that although the I; = I slope estimate is significantly different from zero, 

that for I; = 0.5 is not. Finally, in Table VII the line-9 R; values mostly lie very 

close to a straight line on a cumulative normal probability plot. 

The above results indicate that I; can be well estimated from the present data, 

that proper weighting can reduce a heteroscedastic situation to a homoscedastic one, 

and that use of the appropriate EVM leads to optimum results for parameter esti­

mates. Nevertheless , the ill-conditioned nature of the problem shows up when one 

compares the O2 and 03 estimates and their estimated RSD v~lues with those for 

04 and 05, In order to obtain more-accurate estimates of the latter parameters, one 
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FIG. 7. Absolute values of the weighted residuals in Fig. 6. The straight-line fit is 
discussed in Section 5.3.1. 

wouldeither need to be able to obtain data for the decay of this species separately or 

toanalyze data for which 04 / OJ was much larger. 

5.3.2 Me study ot'two-component exponential decay 

We further investigated two-component exponential decay by Me simulation. 

In order to obtain exact and consistent values ofparameters and data for simulations 

asclose as possible to the experimental results in Section 5.3.1 , the following pro­

cedure was used . A data set was generated using as Om values: 70,752,61 ,72, 

and 374, essentially the Table-VII , llne-IO results. The Yi = Yj values were then 

rounded to integers. Fitting these data with fixed OJ = 70 and'; = 0.5 values yield­

ed new parameter estimates very close to those cited. These estimates and the inte­

ger data were then used as input for subsequent MC simulation involving indepen­

dent pseudo-random Poisson-distributed errors (identified by p in Table VII). 

Then, statistically independent pseudo-random errors given by Eq. (2.3) having 

ar = 0, ar = I, and';o = 0.5 were added to the exact data values calculated from 

the Eq. (5.1) model for each replication . Fitting was done with U = 0 and with e 
either free to vary or fixed at 0.5 (line-12 results). 

In Table VII the fits in lines II and 12 were obtained with 500,000 replications 

and yielded relative bias estimates all of whose RSDs were less than I%. The 
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FIG. 8. Normalized distributions of the relative errors of the 82, 8] and 84 para­ 0.54, respectively. 
meters for the FPLWT-p MC results in line II of Table VII. Radioactive decay 
data and sum-of-exponentials model. 5.8 , respectively, is 

ciated with large-e 

lar to that for £h S 

close to normal, withl 

results in line 13 for GLS fitting are based on only 200,000 samples. These simu­

lation runs were very lengthy; for example, that in line 12 required about 10 hours 

on a Cray Y-MP supercomputer and that in line 13 used about 16 hours . Thus, the 

GLS runs required about four times more computation time than did comparable We are grat 
ELS ones . As expected, the relative bias estimates of 82 and 8] are much smaller Academic Computi 
than those of 84 and 85, and , most important , they are small compared to the rela­ provided by the No 
tive uncertainty of the parameters, as indicated by the SjCt SjLH, and SjRH values 

shown. Comparison of lines II and 13 shows that for all but parameter 85 the 

ELS results are substantially superior to the GLS ones, even though the data errors 

are Poisson-distributed. Acronyms 
The results in lines II and 12 show, as expected from the single-data-set fit re­ ELS Extended J, 

sults in Table VII , that both the bias and the RSD values of the parameters of the EVM 
short-time exponential decay are much smaller than those for the long-time decay. GLS 
These results suggest that the biases of 84 and 85 are not negligible. For example, LEVM 
when the line-9 value of 84 is corrected using the line-12 bias value, one obtains an MC 
estimate of 71.1 , appreciably closer to the line-IO value . The line-II and line-12 NBC 
results show that, depending on the particular parameter, one or the other of SjLH or 
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SjRH is usually clos e to Sjo Further, all SjL estimates are smaller than correspon­

ding Sj C ones and lie between the corresponding SjLH and SjRH values. The cor­

respondence of the MC dispersion Sjc values in lines II and 12 with the individual 

RSD values in line 9 is particularly striking. The individual RSD values are eviden­

tly excellent estimators here of relative dispersion in parameter error distribu tions. 

A MC run like that of line 12 was also carried out with normally- rather than 

Poisson-distributed errors. A value of 0r= 1.0 was used and the results were very 

close to those of line 12, as expected from the central-limit theorem. In Fig. 8 we 

show the error distributions found for three of the five free parameters of the line ­

11 MC simulation. Although that for the O2 errors appears nearly normal except 

for its long , thin , left-side tail , its skewness parameter was about 1.1 and its kurto­

sis was 4.9. In contrast, the OJ error distribution, that of the dominant time con­

stant, is much closer to normal and has skewness and kurtosis values of 0 .3 and 

0.54, respectively. The third distribution, with skewness and kurtosis of 1.4 and 

5.8, respectively , is similar to that of the bottom distribution of Fig . I , that asso ­

ciated with large-error inversion. The distribution of the Os errors was quite simi­

lar to that for 04• Surprisingly, the error distribution for the ~ estimate was very
 

close to normal , with skewness and kurtosis of about 0.06 and 0.1 , respectively.
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NBV Normalized block value ELS Extended least squares 

EVM Error-variance model NLLS Nonlinear least squares 

GLS Generalized least squares OLS Ordinary least squares 

LEVM Fitting program used herein RSD Relative standard deviation 

Me Monte Carlo SD Standard deviation 

NBC Normalized block count Weighting: See Table I for definitions 
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