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ABSTRACT

We describe novel, analytical, data-analysis, and Monte-Carlo-simulation
studies of strongly heteroscedastic data of both small and wide range. Many dif-
ferent types of heteroscedasticity and fixed or variable weighting are incorporated
through error-variance models. Attention is given to parameter bias determinations,
evaluations of their significances, and to new ways to correct for bias. The error-
variance models allow for both additive and independent power-law errors, and the
power exponent is shown to be able to be well determined for typical physical-
sciences data by the rapidly-converging, general-purpose, extended-least-squares
program we use. The fitting and error-variance models are applied to both low- and
high-heteroscedasticity situations, including single-response data from radioactive
decay. Monte-Carlo simulations of data with similar parameters are used to eval-
uate the analytical models developed and the various minimization methods em-

ployed, such as extended and generalized least squares. Logarithmic and inversion

transformations are investigated in detail, and it is shown analytically and by simu- :
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844 MACDONALD AND THOMPSON

lations that exponential data with constant percentage errors can be logarithmically
transformed to allow a simple parameter-bias-removal procedure. A more-general
bias-reduction approach combining direct and inversion fitting is also developed.
Distributions of fitting-model and error-variance-model parameters are shown to be
typically non-normal, thus invalidating the usual estimates of parameter bias and
precision. Errors in conventional confidence-interval estimates are quantified by

comparison with accurate simulation results.

1. INTRODUCTION

”In a world in which the price of calculation continues to decrease rapidly, but the
price of theorem proving continues to hold steady or increase, elementary econom-
ics indicates that we ought to spend a larger and larger fraction of our time on calcu-
lation.” (Tukey 1986).

Nonlinear regression with heteroscedasticity (nonuniform error variance) and
the use of weighting in nonlinear-least-squares (NLLS) fitting are of increasing
interest (Ratkowsky 1983, Gallant 1987, Bates and Watts 1988, Davidian and
Carroll 1987, Carroll and Ruppert 1988, Beal and Sheiner 1988, Seber and Wild
1989), especially in the analysis of data from the life sciences. The range of such
data is seldom greater than two orders of magnitude, often 10 or fewer data are
available, and large errors are frequent, so that analyses usually show little depen-
dence on the type of heteroscedasticity, or even on whether homoscedasticity (uni-
form error variance) is assumed (Giltinan and Ruppert 1989). By contrast, in the
physical sciences data typically range over three of more orders of magnitude and
may encompass a 1012 range (Norman et al. 1988); usually 25 or more data are
available, and errors are relatively small. For example, when the errors are propor-
tional to the magnitude of the dependent variable, they rarely exceed 15%. Further,
the appropriate fitting model is often known.

In NLLS analyses the fitting method may significantly affect the parameter esti-
mates obtained. Here we show that the choice of error-variance model (EVM) sub-
stantially influences the accuracy and precision of parameter estimates for typical
physical-sciences data. We use a powerful general-purpose fitting program that ac-
commodates arbitrary nonlinear fitting models; the data may range from homo-

scedastic to highly heteroscedastic and may be of very large range; and the fitting
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models may require many parameters. By using this fitting program, we inves-
tigate various fitting strategies, such as extended least squares, ELS, and general-
ized least squares, GLS (Jobson and Fuller 1980, Davidian and Carroll 1987, Beal
and Sheiner 1988, Giltinan and Ruppert 1989). The program allows simultaneous
or sequential maximum-likelihood estimation of parameters in both the fitting model
and in an EVM of quite general form. When feasible, following Tukey’s advice,
we compare these estimates with analytical interval estimates and with our MC
simulations.

High heteroscedasticity and ways to obtain optimum parameter estimates are im-
portant in statistical analyses of wide-ranging data, but they have been seldom in-
vestigated. Therefore, major emphases in the present work are: exploration of
several models of heteroscedasticity; analysis of their asymptotic properties; effects
of transformations of data and fitting model; new bias-reduction possibilities; and
extensive Monte-Carlo (MC) simulations against which the theoretical analyses are
rigorously tested. High-precision Monte-Carlo simulations (typically 200,000
samples) also allow us the examine the robustness of parameter estimates for var-
ious transformation and fitting approaches.

The outline of the paper is as follows. After presenting definitions and models
in Section 2, we discuss in Section 3 the details of the fitting methods used, and our
MC simulation procedures. In Section 4 we present two data and model transform-
ations relevant to data of very large range: logarithmic and inversion (reciprocation).
Section 5 describes our analysis of several heteroscedastic data sets, either drawn
from experiment or simulated, and described by exponential models.

2. DEFINITIONS AND MODELS

We first define general notation and models. Principal acronyms and symbol
definitions are given at the end of the paper. Let x; be an exact element of the
independent-variable vector data, x, with i= 1,2,...,N, and let the corresponding
dependent-variable vector be y, having general element y;. The fitting model is
denoted Y(x, 6) = Y, with representative element Y;. Here @ is the converged set
of fitting parameter estimates whose mth element is 8,,. The set of exact-model

parameter values is 8,, with components By, m = 1,2,...,P. Since we are not

concerned with errors arising from incorrect choice of fitting model, we have
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Y(x, 6,) = Y,. We designate exact values, as used in MC simulations, with a
subscript ”0”, and denote single-fit or MC estimates by the parameter itself.
Wherever such notation is ambiguous, a caret is used to distinguish an estimate
from its exact value.

2.1 Error Models

We define the error model as € (x,Y,) = & with representative element

e(xj,Yoi) = &, where Y,; = Y(x;, 8,). The ith data element is then
Yi=Y(x, &) +e(x; Yo)= Yo+t =Y(x,0)=Y; 2.1

Fitting the y data with the Y model yields the estimated parameter set 8. The error
model is intrinsically unknown except in simulation studies, whereas an error-
variance model (Section 2.2) is our best guess to account for the unknown errors,
€. Although these are taken as just £(x;) in homoscedastic linear-least-squares fit-
ting, the present more general dependence on Y,; is necessary to allow adequate

treatment of heteroscedasticity. We always ensure that Fle (x;, Y,;)] = 0, and thus
Elyl = Y(x;, 6;) (2.2)

There are two types of unknowns in Eq. (2.1): the 8, vector and the error
model, &(x;j, Yo; ). Our fitting method, described in Section 3.2, automatically takes
account of a common type of heteroscedasticity and is therefore robust with respect
to heteroscedasticity in the sense of Beal and Sheiner (1988). The particular ELS
fitting method we use allows one to obtain NLLS estimates of the 6, parameters
that are as close as possible to the unknown exact 8o, at least for normally-
distributed errors, where the solution is a maximum-likelihood one.

We now specify an error model appropriate for both low and high heteroscedas-
ticity. Data of extensive range often have proportional errors (constant percentage
errors), so that the errors are associated with a probability distribution whose stan-
dard deviation is proportional to true model values, Y,;. More generally, the pro-
portionality may be a positive power of the | Y,;| (Finney and Phillips 1977, Beal
and Sheiner 1988, Carroll and Ruppert 1988). There will probably also be an inde-
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pendent, minimum set of additive errors from limited measurement resolution and
other random effects. Such errors will dominate proportional errors for sufficiently
small | Yy;|.

In order to account for both possibilities and thus to allow more-realistic situ-
ations to be considered, we take an element of the general error model for

generating errors in our MC simulations as
&i= ar P(0, 1) + 0| Yoi © Py (0, 1) (2.3)

where P;(0,1;) and P,(0,I;) are random variables with values drawn from indepen-

dent, uncorrelated probability distributions P;(0,I) and P(0,I) with zero means
and unity standard deviations. We use uniform, normal, or Poisson distributions
for P, or P,, but we select normal distributions unless stated otherwise. In Eq.
(2.3) I; is an element of the unit vector I, so that I;= 1 for all i, while «;, o, and

&o (with &, usually in the range 0.5 to 1.5) are known, positive constants.
Estimates of arand o, will be denoted by &, and 8,_ To ensure accurate bias esti-
mates in simulations, we enforce standardization on each sample of N random num-
bers. In Beal and Sheiner and in earlier treatments, no @, term was included.
When o; = 0 and a, # 0, the error distribution is homoscedastic and additive, as it
is for a;=0, o, # 0, and & = 0.

2.2 Least Squares and Maximum Likelihood

We now discuss the relation between least-squares minimization and maximum-
likelihood criteria for defining a best fit. Although this relation is well-known for
weights that are the inverses of (presumed-determined) variances at each point, the
connection is less clear when one allows the weights to contain fitting parameters,
as we do.

Jobson and Fuller (1980), Beal and Sheiner (1988) and others, have shown that
for normally-distributed errors a maximum-likelihood estimate of all parameters

may be obtained by minimizing the objective function

0= [In(V)+(y- YD)/ V] (2.4)

M

i=1
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where the error variance V; = (oT;)2. This weighting factor for the ith datum is
written with the (usually unknown) variance o 2 as a scaling factor and with all
other dependencies assumed to be included in the function 7;. This function will
often depend upon the fitting parameters. For example, if o represents a scale fac-
tor for proportional errors in the model function, then T; = Y;, and this function
therefore varies during iterative convergence of the parameter values.

The procedure of minimizing the objective function, Eq. (2.4), has been termed
extended least squares (ELS) by Beal and Sheiner. As Giltinan and Ruppert
(1989) point out, it is expected to have good properties when the data are normally
distributed and the form of 7; is correctly specified. ELS has been criticized by
van Houwelingen (1988) when these conditions do not apply. As shown in
Section 5, ELS is a powerful and appropriate method for fitting typical physical-
sciences data, even when the data errors are not normal. Thus, it is the method we
use in most of the present work.

We note that Eq. (2.4) differs from the usual least-squares criterion because of

the logarithm terms. However, suppose that we set
—
Ti= 5/ VI 1 (2.5)

in which each 7; is non-zero and the product is over i from 1 to N. Then, the T;
do not contribute to the sum over logarithms, and only if ¢ is a fitting parameter is
there any distinction between log-likelihood for normal errors and least-squares.
The normalization procedure of Eq. (2.5) has been used in statistics in another con-
text (Hinkley and Runger 1984), and has been discussed for least-squares fitting by
Carroll and Ruppert (1988), and by Giltinan and Ruppert (1989). These authors
did not, however, cite any fitting results using this approach, and they considered
life-sciences data of quite limited range.

The estimator of the variance is obtained directly by minimizing the objective
function with respect to ¢2:

32=L§ Vi~ Yl}2
Ni=l T;

1

The least-squares equations to be solved for each parameter, yj, are:
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Nl
27

i

n=j {% Jre] on @

It remains to specify a model for the T; in Egs. (2.6) and (2.7). Therefore, a
model is needed for the 7; in Eq. (2.5).

2.3 Error-Variance Models

By specifying the 7; in Eq. (2.5) we are choosing an error-variance model
(EVM), which is equivalent to making a model for the relative weights of the data

points in the objective function Eq. (2.4). Our model function is
n=\ U +|Z]% (2.8)

in which U and £ are parameters of the EVM, and Z; is either the data value y; or
the model value Y;.

Although we use Y,;in Eq. (2.8) in generating errors for simulation studies,
these values are unknown when analyzing experimental data. Then the EVM can
only involve the estimates, Yj, or y;. Often, however, as iterative fitting pro-
gresses, the Y; will approach their true values, so that the EVM should progres-
sively improve the parameter estimates, a beneficial feedback process.

The justification for the dependence of 7; in Eq. (2.8) on U, Z; and ¢ is as fol-
lows. The quantity U is an estimator of errors that are independent of the data or
fitting model. If only U is present, then it is has no effect on the T; and therefore
no effect on the fitting, which becomes a unity-weighting (UWT) situation. The
power £ determines the relative influence of the magnitude of the data (for Z; = y;)
or of the model function (for Z; = Y;). For example, for U= 0, £= 1 gives pro-
portional errors and £ =1/2 gives Poisson errors. The present & parameter
corresponds to the @ parameter of Davidian and Carroll (1987), and to /2 in Beal
and Sheiner (1988). The parameters of the EVM, here Uand £, should be fitting
parameters in order that their optimum values may be estimated from the data.

For convenience in reference, we name the weighting choices associated with
Eq. (2.8). Eight such possibilities are defined in Table I. Prefixes are D for data
if the weighting involves the y; values and F for function if the weighting involves
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TABLE 1

Definitions of some specific weighting models discussed in Section 2.3. A *

indicates that this variable is not applicable.

Line Name U 4 Zj
1 UWT fixed o *
2 DPWT v 1, fixed Yi
3 DFWT fixed fixed Yi
4 DGWT arb. arb. Yi
5 FPWT % 1, fixed Y;
6 FFWT fixed fixed Y;
7 FGWT arb. arb. Y;
8 FPLWT * arb. Y;

the Y;. The weighting schemes are FWT for fixed weighting, GWT for general
weighting, and PWT for proportional weighting, in which the T; are directly pro-
portional to y; or to Y;. More generally, PLWT stands for power-law weighting,
termed the power-function model by Beal and Sheiner (1988). In Table I arb.” in-
dicates that the quantity may be arbitrary and either fixed or free during fitting.
Since the &; generated in our simulations, as well as errors in actual data, may
involve Yj, as in Eq. (2.3), but do not involve the data y; (which already contain
errors), it is clear that the choice Z; = y; in Eq. (2.5) leads to an incorrect EVM and
is thus inappropriate. This choice was, however, used previously (Macdonald,
Hooper, and Lehnen 1982, Macdonald and Potter 1987), since the DPWT and
DFWT variance models in Table I, like the UWT model, involve weighting that re-
mains unchanged during iteration, thus simplifying the fitting program. In spite of
the theoretical inadequacy of the Z; = y; choice, we shall compare some DPWT
and FPWT fitting results to quantify their differences and to discover to what deg-
ree they are significant. \
The ELS fitting method has seldom been used prt\éviously, probably in part be-

cause it cannot be directly implemented by standard statistical software (Giltinan
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and Ruppert 1989). Until the present work, ELS fitting results have appeared only
for data of limited range (Beal and Sheiner 1988) without using the geometric-mean
Eq. (2.5), but omitting U in Eq. (2.8). We find that the combination of Egs. (2.5)
and (2.8) greatly improves convergence of the ELS procedure, so we use it in the
following. Our ELS realization was developed independently of that formulated but
not implemented by Ruppert and co-workers.

Another approach, generalized least squares (GLS), a staged, sequential fit-
ting procedure, has been more popular than ELS because it can be implemented
with standard commercial software and because it has theoretical advantages over
ELS when errors are not normal and models are mis-specified (Jobson and Fuller
1980, Davidian and Carroll 1987, Carroll and Ruppert 1988, Giltinan and Ruppert
1989, Davidian 1990). Some GLS and ELS simulation results are compared in the
following. Our realization of GLS involves first fitting with fixed weighting, then
fitting by ELS FGWT with only the EVM parameters free, then fitting with fixed
weighting (including fixed variance parameters). This sequence is repeated until
fractional changes in the variance parameters are less than 10-5, although most
other implementations of GLS do not continue to such convergence. When the
EVM parameters are not well-determined, as often happens for small-range, life-
sciences data (Giltinan and Ruppert 1989), such convergence is unwarranted, but
for physical-sciences data it is warranted because the EVM parameters can usually
be well determined. Davidian and Carroll (1987) discussed a variety of methods
for estimating EVM parameters but did not provide numerical comparisons of them.
The method we use for both ELS and GLS has proved very satisfactory, as judged
by our present MC-simulation parameter bias estimates (Section 4.1.2).

When convergence has been attained in a NLLS fit, one may calculate Sg, the

standard deviation of the overall fit to the data. We use the converged values of Y;

and T; in
A
= I/JL i; YI,,T;,J} (2.9)
Here
A;wfﬁ (2.10)

when the geometric normalization in Eq. (2.5) is used, and A = 1 otherwise. In
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Eq. (2.9) D is the number of degrees of freedom, just N minus the number of
free parameters for single-response situations. In Eq. (2.10) the final converged
values of all free parameters are used when A # 1. Since the value of A is then un-
known until convergence, it cannot be used to normalize T? during iteration. But,
unlike the Beal and Sheiner algorithm, Sk need only be calculated at final conver-
gence. Since the choice of A then cancels out the effects of geometric normalization
in Eq. (2.5), Sk is independent of A. Further, when a,;= 0 in Eq. (2.3), Sr and
the o estimator in Eq. (2.6) differ only by the known factor (N - p)/N, so S is
usually an excellent estimator of o whatever the value of £. 7
Although an estimator for o, does not appear explicitly in our form for 7;,
because its value is unknown until final convergence, the quantity U is actually an
estimate of /0 when o,z 0. Thus, when an estimate of o, (such as Sg) is

available, then that of a,may be obtained from the U and Sg estimates.
3. PARAMETER ESTIMATION METHODS

Since the fitting algorithm and its computer implementation are important for
efficient parameter estimation, we describe in this section the fitting program and
procedures used. Then we summarize our general approach and notations used for
the Monte Carlo simulations that we used to validate the regression models intro-

duced in Section 2 and developed in practical transformations in Section 4.
3.1 Specifics of the Fitting Procedure

The nonlinear-least-squares minimization procedure we use is based on the
robust Levenberg-Marquardt NLLS program described by Moré (1978), but gen-
eralized for variable weighting and to allow complex data (two separate dependent
variables). We have used it since 1982 with U= 0 and with £ taken as a fixed in-
put parameter in a complex-nonlinear-least-squares (CNLS) data-fitting program
named LOMFP that handles complex, real, or imaginary data (Macdonald and
Potter 1987, Macdonald 1987). In the current version, LEVM, both Uand ¢ may
be fixed or free to vary during fitting. Like most NLLS programs, the modified
Moré procedure uses as input only the components of the weighted residual vector
and the Jacobian matrix, and it ignores second-derivative terms in the Hessian
matrix.
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For our program to be readily usable with any response function involving a
single x vector and one or two associated y vectors (multiple-response), and be-
cause analytical differentiation is usually intractable, we use numerical differentia-
tion to calculate the derivatives in Eq. (2.7). All calculations are carried out in
double-precision arithmetic, and the relative numerical derivative step size is set at
10-8 times the value of the component whose derivative is to be calculated (or 10-8
if the value is zero). Conventional iteration stopping criteria are used, with final
convergence assumed when the relative change of all parameters is less than 10-8 or
when the relative change of the SD of the fit is less than 10-8,

3.2 Monte Carlo Simulation Procedures

Our simulations use NLLS fitting of K replicate sets of data with errors, and
thus require NV independent random errors, &, for each value of k= 1,2,...,K. The
simulations are restricted in several ways. First, we use only fitting results that
converge in 91 or fewer iterations of the NLLS fitting in the statistical calculations.
The actual number of iterations required for an individual fit to converge is I, and
its maximum allowed value is I,y, here 91. Second, we consider only those data
sets and model values for which all y;> 0. Finally, if negative values of
Yi= Y, + ¢ are generated, they are replaced by Y;= Y,; + |g]. Unless a,in
Eq. (2.3) is non-zero and U in Eq. (2.8) is free to vary, or if o, or & is very
large, no fits are eliminated by these restrictions. Thus, there is usually no censor-
ing present except for a few results reported in Section 5.3.2.

We characterize the MC simulation results as follows. Define the error of the
Jjth parameter in the k th fit (wjx ), as Ejk = wjk - wgj, where yy; is the exact value

of the jth parameter. Then the corresponding relative error is

ejx = Ejx/ wo; (3.1)

The estimated relative bias of the jth parameter is then the mean of the relative

€rrors

K
b= Blyo =g 3 e £
k=1

where y; is the estimated value of y,j, and we usually take K sufficiently large
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that the standard deviation (SD) of bjis less than 0.01b;. Quoted values of b; are at
most slightly uncertain in their last place. To allow easy comparison between para-
meters and between fits of different data, we use bj rather than y; and y,; . If the
exact value of a fitting parameter is zero, we quote B;. The relative bias without

regard to sign is
z lejx] (3.3)

In work that we are currently doing, we find that the quantities b; and bap; can be
used to estimate the SD of the e; distribution, gej, for a specified form of the
distribution. Instead of using 95% confidence intervals, we use standard deviation
estimates, since this is conventional in the physical sciences. It is also useful to
know b; relative to Oej, since when bj/0g; is sufficiently small, bias effects can be
ignored.

We use several different SD estimates for the ¢; distribution, so it is convenient

” ”

to omit the subscript and to denote the estimate sej of gej by just s;. We then
distinguish the various estimates by additional subscripts. The most direct estimate

of Oe; is just the central SD for the usual unbiased estimator,

K
e gy £, e o0

For a single NLLS fit of data with normally-distributed errors, the 68 3%
confidence mterval mvolvmg sjc extends around ¥o; from [1- sjc ] Wo; to
[1+sic] Wo, , where ¥o; 1s an estimate of wyj, corrected for bias, if known.

This result assumes that the Woj are sampled from a normal distribution, but results
of the present work show that this is not generally true and that an asymmetric con-
fidence interval is needed. When b; is very small, a large number of samples, up to
K2 106, may be required to estimate it accurately to two significant figures. Much
smaller K suffice for the same accuracy of s;. For K2 10, computer internal
memory size limitations may become significant, so to avoid such limitations in cal-
culating sums in Egs. (3.2) - (3.4), we use blocking. Then, K is replaced by K/J

(with J> 1), and the J results for each calculation are averaged. We used J in the

range of 2 - 10 if K was very large.
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Each NLLS fit of a simulation calculation yields a linearized estimate of 0ej
calculated at convergence from the Jacobian of the fitting function. We denote by
sy the average of K such estimates . Donaldson and Schnabel (1987) have shown
that it often appreciably underestimates ge; for NLLS with additive errors. We
also find problems with this estimator for proportional errors. The probability
interpretation of 0jc and ogj; assumes that the parameter-error distribution is
normal. But for NLLS, even with normal errors in data, the parameter errors are
generally not normal, and one is also dealing with a discrete distribution rather than
a continuous one. With simulation, we can examine both effects directly. In our
MC runs with K > 2x103, for each value of j we save K;= 2x105 values of ik »
allowing accurate plots to be made of the error distribution for each fitted parameter.

The distribution of ejx values allows one to test directly the adequacy of the
various estimates of de;. To do so, we calculate accurate confidence-interval values
of the distribution (including separate left- and right-hand estimates) to indicate pos-
sible asymmetry of the distribution, as follows. After obtaining the mean, SD,
skewness, and kurtosis of the ejx values, they are sorted by increasing algebraic
size, and are then sequentially allocated to 800 bins, each of whose width is 1/800th
of the total finite-distribution width. The bin values to the left and right of the mean
value are then treated separately. For each such set, bin values away from the mean
are summed until they exceed 0.68269 of the total count for that set. Finally, by
rational function approximation, we estimate the value of ejx corresponding to
68.269% of the probability. The resulting values are then referenced to the mean,
bj, so that they measure the distance from the mean to the 68.3% probability point
on either side. The results, defined as s, and sjrp, for the left-hand and right-
hand parts of the distribution, respectively, thus estimate the 68.3% confidence
interval around the mean.

The average of sj 4 and sjgy, denoted by s;4 v, may be directly compared to the
other dispersion measures, s; and sjc. Finally, the normalized block count in
each block (NBC), the actual count normalized by the maximum block count
present, is plotted at the center of each block, normalized by s;c. The resulting dis-
tribution plot has a maximum height of unity and an abscissa measured in units of
sjc; termed the normalized block value (NBV). In each distribution plot we in-

clude a central vertical line at the mean position and shorter adjoining ones that

define the true 68.3% confidence interval, all normalized by s;c.
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4. PRACTICAL TRANSFORMATIONS

In this section we derive and test properties of two "transform-both-sides” ap-
proaches, the logarithmic and inversion transformations. The discussion of the log-
arithmic transformation is divided into an analytical part (Section 4.1.1) and a simu-
lation part (Section 4.1.2) where we validate the new analytical results. In Section
4.2 we consider, again from analytical and simulation viewpoints, use of the inver-
sion (reciprocation) transformation.

4.1 Logarithmic Transformation

This transformation is particularly appropriate for monoexpdnemial response,
where the fitting model is

Y(x; 60) = Yo;= 601 exp (602 X;) 4.1
and the transformed model is just

Y (x, 80) = Yo, = 00, + Oo2 x; 4.2)

a linear model in terms of the parameters 6;, = In(6,;) and 0;2= 0,2. The log-
arithmic transform assumes that both data and model values are positive. If the
original error distribution were normal, then the transformed one will not be so.
Logarithmic transformation is most appropriate when the fitting model is a single
exponential and the errors are of the form of Eq. (2.3) with a,= 0 and &= 1 (con-
stant percentage errors). It has a long history and has been used for other models
besides single exponentials (Carroll and Ruppert 1988, Chap. 4.) Although many
of our new results below also apply to such cases, we apply them here only to the
single-exponential case.

4.1.1 Bias from logarithmic transformation
We now derive expressions for the intrinsic asymptotic bias induced by a log-
arithmic transformation having data errors given by Eq. (2.3) with a,= 0 and

&p=1. Such errors are common in experimental situations, at least over a limited
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range. We begin with a general model, then specialize to the monoexponential
case. Before transformation, the appropriate NLLS weighting model is that of line
5 of Table I, FPWT. Logarithmic transformation of Eq. (2.1) yields

yi=Yoi+In[1+(e/ Yo)] (4.3)

which is clearly applicable only if

1+ (g;/ Y(),')> 0 (4.4)

precluding such a transformation for relatively large negative errors. For arbitrary
£oin Eq. (2.3), the errors may be written as

& = 0, Y Py (0, I) 4.5)
and thus

var (y;) = 0? YOZ,.Eo (4.6)

On substituting Eq. (4.5) in Eq. (4.3), we obtain

¥ =Ya+n[1+0 Y. ' Py(0, )] @4.7)

Only for the common proportional-errors case, &= 1, is the logarithmic term in
Eq. (4.7) independent of Y,;. When &) < 1, as in Poisson statistics (&, = 1/2),
the inequality in Eq. (4.4) must fail for sufficiently small Y,; even if P; is trun-
cated so that arbitrarily large negative values of &; are deleted. For &)= 1 we re-
write Eq. (4.7) as

yi =Yg +In[1+ 0 Py(0, )] (4.8)
which becomes, on specializing to the monoexponential situation,

¥ =001+ In[1+0,P,(0, ;)] + 6y x;

=0,+0,x +¢ 4.9)
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A closely related expression was given by Cook and Weisberg (1982).

An ordinary, unweighted least-squares (OLS) fit of the transformed data to th
RHS of Eq. (4.9), directly involving the parameters 0; and 6>, leads to an entirel:
unbiased estimate of the slope 8> for the case of proportional errors. The intercef
is biased by

L=FE{In[l1+a, P,(0,1)]} 4.10

Although L depends on the error distribution, it is independent of the x; and para
meter values. It can be estimated by series expansion of the logarithm and subse
quent term-by-term evaluation of each expectation value. Because P, has zer
mean and unity variance, the lowest-order approximation to L, L,, is independen

of the type of standardized distribution assumed and is given by

L=L;=-0%/2 : (4.11

In this approximation the pre-exponential parameter in Eq. (4.1) is underestimate
by a factor of about (1 - g?/2) for errors proportional to model values. Term-by
term evaluation of the series expansion of Eq. (4.10) leads to the asymptotic bia

estimate for the continuous, normal, distribution
L=L§=-0.507[1+3/2)c?{1+(10/3) 07 +(35/4) o} +...} ] (4.12

Formally, this is a divergent series in which the ratio of successive terms exceeds
unity after about [ 2 + 1/(207)] terms. In practice, a MC simulation so rarely
samples the extreme wings of the distribution that moments higher than the 8th mo-
ment included in Eq. (4.12) have negligible effect for g,> 0.5. For the uniforr

distribution (u), a similar analysis yields the bias estimate

L=Lf{=-0.507[1+(9/10)0?{1+(10/9) 07+ (10/4) o+ ...} ] (4.13)

which diverges for o > 1/V3 = 0.58, but is still sufficiently accurate, for the
number of terms given, if o, < 0.5. The negative signs of the bias in these
equations indicate that the true values of the pre-exponential parameters, 6,; and

0y, , are always larger than their estimated values. This is intuitively clear because
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TABLE II

Comparisons of theoretical logarithmic bias estimates for continuous distributions,
”c”, with the results of direct calculation of discrete-distribution expectation values,
”d”, for normal (n) and uniform (u) distributions with errors proportional to model
values (£p= 1, FPWT in Table I). A * indicates that the value is unreliable

because of censoring.

Or
Line  Bias 0.1 0.2 0.3 0.4 0.5
estimate

1 -L 0.00500  0.0200  0.045 0.080 0.125
2 - LY 0.00508  0.0214  0.053 0.11 0.24
3 - L 0.00508  0.0214  0.054 * *
4 =Ef 0.00505  0.0208  0.0492  0.0949  0.168
5 - L3 0.00505  0.0208  0.0492  0.0952  0.173

the logarithmic transformation maps the interval 0 to 1 into — oo to 0, but the
interval 1 to co has the same absolute range after mapping. Our definition of

relative bias now leads, for proportional errors, to

b =L/6y (B9, #0), b =L (6, =0) (4.14)

and thus a relative bias in the pre-exponential parameter of
by =exp(L)-1 (4.15)

4.1.2 Monte Carlo comparison of bias
For comparison with results in Section 5.2.1 in a MC analysis of Eq. (4.9), it is
useful to determine some expectation values for the logarithmic transformation

directly. Table II compares the above continuous-distribution bias estimates with

MC results. The simulation results in lines 3 and 5 were determined by direct




860 MACDONALD AND THOMPSON

averaging, as in Eq. (4.10), for discrete normal and uniform distributions,
respectively. Up to 108 separate values were averaged for errors taken from dis-
crete distributions with zero mean. The values of the bias function for the discrete
distribution, L9, are significant in the last decimal place.

As expected, for 0.< 0.2 the L¢ values in Table II do not differ much from the
first-order approximations, L;, and there are only small differences between values
for the two different distributions, so L, is distributionally robust. In obtaining the
or= 0.3 result for Lg in line 3 we eliminated fewer than 100 of 106 error values

that led to divergent logarithms. Because such truncation renders the original error

distribution less normal, however, no L,‘,j results are included for o, > 0.3 (30%

error), which is an uncommon percentage error in the physical sciences.

Figure 1 shows plots of the distribution of In (1 + ¢; ) and a normal distribution
for comparison, all with 2x105 samples. Values for plotting were calculated using
the binning procedure discussed in Section 3.2. For g.= 0.2, very long, thin, and -
asymmetrical tails appear in the logarithmic distributions. The means of these dis-
tributions show excellent agreement between predictions and the MC estimates.
For example, with ¢,= 0.2 the MC result for the mean of the logarithmic distri-
bution was again 0.0214, as in Table II. Similar expansions for the skewness, y;,
produce only order-of-magnitude agreement because of strong sensitivity to
outliers. For example, for o, = 0.2, we predict y; -3 Yo, /2 = -0.67, whereas
the MC value was -0.74.

Thus, fitting exponential-response data after logarithmic transformation of both
data and model allows one to obtain nearly zero bias for both fitting parameters if
ar=0 and &y = 1, that is, if errors are proportional to model values. The
exponent parameter is unbiased for this error model, and the bias of the pre-
exponent can be readily estimated, leaving a residual bias perhaps even smaller than
in NLLS fitting of the untransformed system. This is further illustrated in the
fitting results presented in Sections 5.1 and 5.3. As a usually adequate
approximation, the value of Sr, Eq. (2.9), obtained from the fit may be used to
estimate g;. As shown in Sections 5.1 and 5.3, the Sg value obtained from a UWT
fit of Eq. (4.9) has a larger bias than that of a FPWT NLLS fit of the untransformed
data. Therefore, a more accurate result will generally be produced by taking S¢
from such a FPWT fit. A similar fit, but with £ a free parameter (FPLWT), can
also yield valuable information on the appropriateness of assuming proportional

errors and making a logarithmic transformation.
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4.2 Inversion Transformations

Inversion is important in NLLS fitting when both the distribution P, and the
error-weight exponent &, are arbitrary, but a,= 0 in Eq. (2.3). There are two in-
teresting possibilities. In the first (Type I), appropriate only for MC simulations,
we invert the exact values, Yj, before adding errors. In the second possibility
(Type II), the errors are already present, as for data in real situations, so the inver-
sion approach that is appropriate is to form the y; before inverting data and model.
In the following, we consider these possibilities in turn. As common notation, we
write for inverted variables x* = 1/x, and for fitting parameters obtained by

inversion a similar notation is used.

4.2.1 Inverting before including errors (Type I)
For the untransformed situation we have, from Egs. (2.1) and (2.3),

= -

Yi= Yo |1+ 0, P2(0.1) Y5 (4.16)
The corresponding transform following from y;* = Yg, +Ef is thus
vt = Ygi“*UrP}(O,Ii)(%'f-)grlJ (4.17)

where the prime on P, indicates that the distribution in Eq. (4.17) is not necessar-
ily the same as that in Eq. (4.16). Comparison of Egs. (4.16) and (4.17), with the
two distributions assumed equal, suggests the relation Eo+ fg = 2, indicating re-
flection symmetry around &)= 1. Thus, for MC results an estimate of £ obtained
from untransformed data whose errors involve a,= 0 should be simply related to
the & estimate found from Type-I inversion of the same data and model. The

relative biases should therefore be related by

£ by = - & bf (4.18)

For practical situations, where &, is unknown but an estimate of b may be

available, Eq. (4.18) may be used to relate £, bg, and b: 9
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4.2.2 Inverting after errors are included (Type II)

Next, consider the inversion appropriate to data, where model and errors ar¢
combined before inversion. We consider the case of relatively small errors. Or
using Eq. (2.1), we may write y¥ = 1/y; =1 /( Yo; +&;), which is, to firs
order in €;/ Yy;, just yi= Y (1 -6 Y5;). By using Eq. (2.3) for the erro:

model with o= 0 we obtain

vt = ¥ -0 P0, I(8) %] @.19

Thus, if &+ ftf * 2and P, = P, this result is the same as that for Type-I inver-
sion, Eq. (4.17), except for the sign, which is irrelevant for a symmetrical erroi
distribution. Thus, for such errors, Type-II inversion with small g; should lead to
essentially the same results as Type I inversion.

For proportional errors, a connection can be made between Egs. (4.17) for
Type-1 inversion and the approximate (4.19) for Type-II inversion. Inverting Eq
(4.16) with &= 1, gives
0, P2(0, ;) |

#= Y# 1 -—
% ’ 1+0,P5(0,1;) |

(4.2C
which identifies the P," distribution in Eq. (4.17) with the second term in the brac
kets of this equation. When o, P, is small compared to unity and is symmetri
about the origin, there is thus little difference between the fitting expressions Eqs
(4.17) and (4.19). When the error term is not negligible compared to unity, th
error distribution of the inverted data will be appreciably skewed even if P, i
symmetric.

To illustrate the skewing effect in an inversion transformation, we show i
Figure 1 plots of the distribution of €;/ (1 + ¢; ), where ¢; = g, P2 (0,1; ) is drawt
from a normal distribution and ;= 0.2. A total of 2 x 105 samples was used. By
making a Taylor expansion of the skewed distribution about o= 0, we predict :
mean of 07 [1 +30%+ 1507 + } and a skewness y; = 3V 0.

If the logarithmic transformation is applied to Type-II inversion with propor
ional errors, one will obtain the same results as in \Section 4.1, except that the sigi

of the bias in the transformed pre-exponent will be reversed.
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4.2.3 Monte Carlo tests of inversion

We carried out several MC simulations for monoexponential and other data fit-
ting models with 0.5 < &, < 1.5 in order to investigate the effects of inversion. As
expected from the above analysis, Type-1 and small-error Type-II fits yielded very
nearly the same estimates. We found that Eq. (4.18) is satisfied very well, imply-
ing that when & or £# is a fitting parameter, the relation £+ & #= 2 is an excellent
approximation. Further, within statistical variability the various standard-deviation
estimates of & are the same as the corresponding estimates for the inversion
transformation.

In monoexponential MC fits we found that the relative biases in the pre-
exponentials are nearly independent\\of whether inversion is performed, while the
biases in the exponents are just reversed in sign by inversion, as expected. When
MC fitting was carried out with £ or £ # fixed at their exact values, results were not
quite so clearcut. Our MC results suggest that the average of the fitted parameters,
Om=(0m+1/6) /2, usually gives a closer approximation to the true parameter
value‘lhan does either separately.

For the ¢; /(1 + ¢; ) distribution shown in Figure 1, the predicted mean value
from the formula in Section 4.2.2 is 0.0458, compared with 0.0463 for the MC
result. The predicted skewness is about 1.3, but our MC result was 3.1.

5. EXPONENTIAL MODELS

The ubiquitous presence of exponential response in science makes it important
and justifies studying its fitting properties. It has long been known that NLLS fit-
ting generally leads to biased parameter estimates, but there has been little quantita-
tive study of this problem, although there are complicated theoretical expressions
for such bias, assuming normally-distributed parameter errors (Seber and Wild
1989). Further, although an asymptotic theory of NLLS estimation demonstrating
the inconsistency of exponential-model parameter estimates has been developed
(Wu 1981), it provides no quantification of the inconsistencies. The present
results, however, yield information about typical parameter bias levels for several
fitting and variance models. They thus guide selecting an approach to yield accurate
parameter estimates and show that parameter-error distributions are not usually

closely normal, but have long tails similar to those shown in Fig. 1 for logarithmic

and inversion transformations of a normal distribution.
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FIG. 1. Normalized, 800-point distributions, each based on 2x103 samples in 800
bins. Top: mdependent random samples from a normal distribution, N(0,1);
middle: log transformation, In(1 + g;); bottom: g;/ (1 + €;), both for ¢;=
0.2 N(0,;). The block value is normalized with S, the calculated SD, to yield the
NBYV scale, and the normalized block count, NBC, is the ratio of the count in a bin
to the maximum such count. The mean value is denoted by the longer vertical line,
and the two shorter vertical lines show the positions of the 68.3% probability
points.

5.1 Analysis of the Beal-Sheiner Monoexponential Model

Beal and Sheiner (1988) discussed analysis of a small-range, nearly homo-
scedastic, data set by a monoexponential model. We use it to illustrate several
results from Section 4. The parameter values that they used are 657 = 2 and
Bo2=-0.693 = -In(2). The 10 x; values are 0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5,
2.0, 2.5, and 3.0. In the present MC study of this exponential-decay fitting model,
we follow them and assume proportional errors in Eq. (2.1).

Table I1I summarizes MC simulation results obtained with from 5x105 to 2x106
replications. The P2 error distribution was taken normal (as in Beal and Sheiner)
for lines 1 through 4 of the table and was taken uniform for line 5. For the FPLWT
fits of line 1 in Table III, £ was free to vary, and we found bg = 0.225, sg. = 0.68,
and sgc=0.61. These values show that ¢ is strongly biased for the present anal-

ysis of their data and can be only very poorly determined by such fitting.
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TABLE III

MC simulation results for the Beal-Sheiner monoexponential model, o,.= 0.15.
The notation for weights is in Table I, and for other column headings is in Section
3.2. The -n and -u indicate normally- and uniformly-distributed errors. The/LT in
lines 4 and 5 indicates that a logarithmic transformation of the data was made. A *

indicates that the values are not significantly different from zero.

Line Weight Sp blx103 lexlo2 slcx]02 byx103 s5; x102 s,-x102

FPLWT-n  0.1530 2.80 8.09~ 744 192 7.25 8.10
FPWT-n 0.1496 2.91 7.47 577 2.87 7.00 7.01
UWT-n 0.1724 4.00 6.31 7.56 886 14.0 12.5

UWT/LT-n 0.1525 -15.0 11.0 8.54 = 11.0 7.20
UWT/LT-u 0.1518 -14.9 10.9 8.48 * 7.14 17.15

wn AW N -

Plots of the relative error distributions of the parameters are shown in Fig. 2.
Because distribution plots of €j; and of the actual, unnormalized errors differ only
in the position of their zero values on the NBV abscissa scale, we generally do not
distinguish between them. In Fig. 2 the distribution of the errors of 8, has a very
long, thin, right tail and a large kurtosis (excess) of 3.3; that of £ also has an ap-
preciable right tail but its kurtosis is 1.6. The distribution of 8, errors is clearly
closest to normal (kurtosis = 0.1). The biased value of & is 1.225, and the 68.3%
confidence interval around the true mean, &, = 1, extends from 0.47 to 1.6.

For the other runs summarized in Table III, £ was either fixed or not present (as
in UWT). Note that the constant-variance FPWT weighting model of line 2 is fully
consistent with the error model selected. Runs like that in line 2, but with & fixed
at a value different from unity, gave results comparable to those of line 2. For ex-
ample, that with £ = 1.225 led to somewhat worse bg; estimates and that with

£=0.5 to slightly better ones. However, the b; values in line 2 are sufficiently

smaller than the corresponding sjcones that for most purposes bias can be neg-
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FIG. 2. Normalized distributions of the relative errors of the &, 8,, and 6, para-
meters for the FPLWT MC results in line 1 of the Table III Beal-Sheiner small-
range monoexponential model and data.

lected. It is consistent that, although & cannot be well determined here, its value
makes little difference to other parameter estimates. This conclusion is somewhat
counter to that of Beal and Sheiner who state that “there is considerable benefit in

letting { (twice our &) be estimated rather than fixed.” Even though no significant

parameter estimation benefit appears in the present example, we agree with their
conclusion for highly heteroscedastic data, such as those discussed in Section 5.2.
For FPWT our result for the b,,; mean of Eq. (3.3) agrees with the compar-
able ELS, 500-sample result in Beal and Sheiner, but our value for b,,, agrees
with their “iteratively reweighted least squares” result, itself smaller than their ELS
value of b,p,. In Table III the line-3 UWT results are significantly worse than
those in line 2, as one might expect, since the weighting model is here inconsistent
with the error model. Nevertheless, for the present small data range and mild
heteroscedasticity, results are clearly not strongly sensitive to a particular choice of
weighting model. The results of lines 4 and 5 of Table III apply for fitting after the
logarithmic transformation discussed in Section4.1. Only small differences are

evident between the results in lines 4 and 5. Also, although their original data-error
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distributions differed, those of the parameters are both nearly normal, as expected
from the central-limit theorem.

We do not list estimates of b, because, although the MC values were of order
10-5, their uncertainties were sufficiently large that they could not be well distin-
guished from zero even with K = 2x106. The calculation, using double-precision
arithmetic, required 9.5 hours on a Compaq 386-20 computer with Weitek co-
processor board. The Sg value in line 2 is substantially closer to the o, = 0.15
value used to generate input data errors than are any other Sr estimates of o, in
Table I1I. Although for lines 4 and 5 of Table III the bias of 6, is consistent with
zero, as we expect from Section 4.1, the relative bias of 61‘ , which is listed in the
b, column, but it is actually b, is quite large. The values of L predicted in
Section 4.1.1 for o = 0.15 are used for normal or uniform distributions to correct
the b, values in lines 4 and 5, respectively. This yields approximate residual
relative bias values of 1.8x10-3 or 1.7x10-3 in the log-transformed pre-exponent
and about 1.3x10-3 or 1.2x10-3 for the relative bias of the pre-exponent itself,
appreciably smaller in magnitude than any other such estimates in Table III, but still
not zero.

Thus, we have produced a very nearly zero-bias fitting approach for mono-
exponentials that is robust with respect to the data-error distribution. It is tested for
a strongly heteroscedastic situation in Section 5.3. Although all the fitting results of
Table III use Egs. (2.5) - (2.8), a few simulations were carried out using the Beal-
Sheiner ELS approach. Both FPLWT and FPWT runs showed that fitting by this
ELS approach slowed convergence. In fact, many of the replication fits failed to
converge even after many iterations. For example, for the FPWT simulation in line
2 of Table III all fits converged in three or fewer iterations using 6,; values as
initial guesses for the ¢;. The Beal-Sheiner approach led to 11% non-convergent
replications after a maximum of 91 iterations, 9.5% non-convergence for 270, and
did not further decrease when the maximum was allowed to increase. Analysis by
Beal-Sheiner ELS with up to 91 iterations required about four times more computer
time than did our method and about eight times more was needed for 273 iterations.

Although very few fits failed to converge in ELS for o, = 0.01, analyses with
such smali errors nevertheless still took about 35% more computer time than did
comparable ones using our method. As expected, both approaches give essentially

the same results when there is no censoring. For wide-range data with appreciable

errors there will be even more difference between the convergence properties of the
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two approaches than illustrated here; thus we used only our FPLWT or FGWT with
ELS fitting method in the rest of our work.

5.2 Analysis of a Strongly Heteroscedastic Monoexponential Model

Again using the monoexponential model, Eq. (4.1), to describe the data, we
now consider two extensive MC simulations involving the general error model, Eq.
(2.3), and the EVM, Egs. (2.5) and (2.8). We use 31 data points, selected with a
ratio of adjacent x values of 10!/10. Thus, the x values are distributed uniformly
on a logarithmic scale. The Y; fitting-model values are then calculated from Eq.
(4.1) with 87 = 602 = 1 and they range from 1.01 to 2.2x104, an exponential
growth model with a data range exceeding 104.

5.2.1 a; =0 situations

Here in generating the y; we choose ar =0, & = 1,and o,= 0.2 in Eq. (2.3)
for the error model. This compromise choice for g, produces errors larger than us-
ual in physical-sciences data but smaller than in much life-sciences data.

Table IV presents simulation results for a variety of weighting and fitting
models. For these runs the number of replications ranged from 2x105 to 2x108.
Lines 1 and 4-13 do not include transformation before fitting. The first three lines
are for ¢ free and involved 5x105 replications each.

The exponent in the error model Eq. (2.3), &, was relatively well determined in
the line-1 model, with bias of <4%. Lines 2 and 3 present results for FPLWT with
Type-I and Type-II inversion, in which we found comparable results to those in
line 1. In particular, the .predictions of Section 4.2 are very well borne out for
Type-I inversion. Because of the large value of g, used here, Type-II inversion
results are not very similar to those for Type-I, as line 3 shows, and the bias in 6;
is much greater.

Line 4 in Table IV shows results for U= 0 and £ fixed at 0.9637, as estimated
from the by value of the line-1 fit. For comparison, the results in line 6 are for &
fixed at unity, the value of &, It is evident that although the line-6 fit yields a better
estimate of o, than does Sg in line 4, the line-4 bias estimates are appreciably
smaller. Surprisingly, a fixed value of £ unequal to the correct value, &, leads to

smaller bias than found with £ fixed at &,. In consonance with the normal-uniform
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TABLE IV

MC simulation results for large-range monoexponential model with o= 0.2. The
notations -n or -u denote normally- or uniformly-distributed errors. The notations
il and ilI indicate Type-I and Type-II inversion transformations (Section 4.2). A *
indicates that the value is not statistically different from zero.

Line Weight Sp bx103 s;;x102 5;cx102 bx103 55 x102 s55-x102
1 FPLWT-n 0.2115 0337 435 250  -0.61 1.31 1.53
2 FPLWT/iln 02117 025 435 2.51 0.61 1.31 1.53
3 FPLWT/illn 02385 -0.389  4.65 2.85  -0.75 1.43 1.77
4 FFWT-n 0.2120 -1.2 4.35 2.25 0.26 1.19 1.43
5 GLS-n 0.2420 -77 4.39 2.94 0.2 141 199
6 FPWT-n 0.2000 1.85  4.23 220 -142 1.41 1.41
7 FPWT-u 0.2001 191  4.23 220 -1.46 1.41 1.41
8 FFWT-u 0.2104 -0.77  4.34 2.25 0.05 1.21 1.43
9 GLS-u 0.2258 -75 4.20 2.54 0.4 1.41 1.73
10 DPWT-n 0.2188 -87.2 4.33 3.30 2.02 1.61 1.94
11 DPWT-u 0.2061 -80.0 4.11 2.40 1.76 1.51 1.60
12 UWT-n 39.1 746 146 230 2.47 0.656 13.0
13 UWT-u 40.0 701 133 188 2.06 0.665 12.8
14 UWT/LT-n  0.2101 -20.6 4.45 2.36 * 1.51 1.51
15 UWT/LTu  0.2060 -20.1 4.36 2.32 * 1.48 1.48

comparison in Table III, we find that in the four such comparisons included in
Table IV the differences between corresponding results are generally quite small.
Table IV also allows comparisons between ELS and GLS results for the present
fitting model and data errors. First, comparison of the results in lines 4 and 5 is ap-
propriate since they both use fixed £ values. The GLS MC estimate was
£=0.9578, a somewhat worse estimate than the line-4 ELS value of 0.9637. As
expected for normal-distributed errors, nearly all the other GLS results are also
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worse than those using ELS. Comparison of the results of lines 8 and 9 with data
errors drawn from a uniform distribution shows, surprisingly, that again the ELS
results are superior to the GLS ones. Here, the £ in line 8 was 0.9679, nearly
identical to that in line 9, 0.9692. The relative bias estimates from ELS are 50 to
100 times smaller than those from GLS for both normal and uniform errors.

These new results and those of Section 5.3.2, for Poisson-distributed errors,
justify our recommendation to use the faster ELS fitting rather than slower GLS fit-
ting for most work involving wide-range, physical-sciences data and errors. Thus,
the criticisms of ELS by van Houweligen (1988) are unwarranted for such data.

Lines 10-13 of Table IV show results for various inappropriate weightings.
Although both DPWT and UWT lead to more bias, the increase is particularly
strong for the bias in 8,. Figure 3 shows some of the relevant normalized distribu-
tions with very thin and long tails for the DPWT 8, and 6, error distributions. For
plotting resolution, the right-hand 0, tail, which extends to 6.9, was cut off at
NBYV = 3, as was the UWT @, error distribution, which is clearly very far from
normal, with a skewness parameter of about 4, a kurtosis of 33, and extending up
to 26.6. In spite of this pathological behavior, the UWT 6, distribution (not
shown) is quite close to normal. The results shown in lines 10-13 in Table IV de-
monstrate the severe problems that arise from using incorrect weighting of two
common types.

Lines 14 and 15 in Table IV show logarithmic transformation results. Again,
b, is not statistically different from zero, and the relative bias in the transformed
pre-exponential (in the b; column) is dominated by the transformation bias. Upon
subtracting the bias estimates in lines 3 and S of Table II, the residual bias estimates
are 8x10-4 and 7x10-4. These results and comparable ones in Table III, show that
when only OLS fitting (UWT) is available, logarithmic transformation of mono-
exponential data and subsequent transformation-bias correction of the resulting 6,
estimate from Eq. (4.14) will yield essentially unbiased parameter estimates. This
procedure is proper, however, only when &, is unity, which may not be approp-
riate for the data considered. On the other hand, weighted NLLS fitting, as in lines
1 through 4 of Table IV, is more general and flexible since it is not limited to mono-
exponential response with &, = 1, and NLLS should therefore be used for general-
purpose fitting when available.

The results in Tables III and IV indicate that the linearized estimate of the SD of

the 0, error distribution, s;;, is an adequate to excellent approximation for s;¢
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FIG. 3. Normalized distributions of the relative errors of 8, and 8, for the
DPWT MC results in Table IV line 10, and the UWT MC fits in Table IV, line 12.
Wide-range monoexponential model and strongly heteroscedastic data.

when the appropriate weighting is used, but that this is certainly not so for the cor-
responding SD estimates associated with the pre-exponential parameter 8, , s,
and s;c. In particular, for the UWT response in Table IV, s;; and s,; values are
exceedingly misleading and should be given no credence. Finally, use of FPLWT
and FFWT, with the value of & found from the former weighting used in the latter,
appears appropriate for the present high-heteroscedasticity data. The bias is close-
ly proportional to o (or even closer to S for large oy, where Sp becomes larger
than o, ), while quantities such as sjc are nearly proportional to g, orto Sr.
Therefore, whenever b; is nonzero it may grow to at least as large as sjc as or
increases. Thus, when errors in the data are appreciable, it is dangerous to neglect
bias correction in exponential-fitting problems.

Thus far we have dealt only with the &, = 1 error situation in Eq. (2.3). But,
how well can & be estimated when &, is not unity? Some answers to this question
are provided by the results in Fig. 4. For FPLWT applied to MC simulation of the
monoexponential model, we found an interesting decoupling between the results for

£ and g, when a,= 0. Although the parameter biases depend strongly on ¢, the

values of £ do not. In fact, quantities related to £ were found to change by only 1
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FIG. 4. Dependences of the dispersion measures, s;; and s¢c, and of the bias b
on &, for FPLWT and the wide-range monoexponential model. The short vertica
lines on the s~ curve extend between the values of the actual 68.3% probability
values sggy (bottom) and sz 5 (top).

to 3% as o, changed from 10-4 to 0.2. For this reason, the FPLWT fittings that
led to the Fig. 4 results were carried out for both a, and U set to zero and
or = 10-4. In Fig. 4 the short vertical lines on the sgc curve are drawn between
an upper value of sg y and a lower value of sggy , showing how the conventional
sgc dispersion measures differs from the true confidence interval values for. Thus
Sgr is a poor approximation to sgc or to sg4y for &, > 0.8. For &= 1.5 s is
over 30% too large.

The line associated with the b points in Fig. 4 is from exponential fitting. The
various dispersion measures also decrease as £, increases, but more slowly than
does the bias. Therefore by may be neglected for large &,, but should not be ignor-
ed for £, small. On fitting the by results to -A, exp(-A; &, ) using FPLWT, we
obtained A, = 0.840]0.04, A; = 0.320|0.014, and £ = 0.86| 0.3. Here the
combination A | AA indicates a parameter estimate, A, and its estimated relative
standard deviation, AA. When the inversion transformation is applied, so that we
have exponential decay instead of growth, the results agree with the predictions of
Section 4.2. In particular, the relation £+ &= 2 holds well, as does Eq. (4.18).
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Some Type-II inversion results were obtained for the extreme choice &, = 2,
using oy = 10-5 in order to avoid generating any negative y;. Using 2x105
samples we obtained by = 4.6x10-3 and sgc = 0.029, while by = 6.8x10-3 and
sec= 0.062 were found for the corresponding inversion-transformed fits. Since
f: = 0, these latter results are direct, not relative quantities, and they show that the
bias in the inverse-transformed £ cannot be distinguished from zero on a statistical
basis and thus & = 0 as expected. Nevertheless, the biases themselves are deter-
mined to better than 5%, and lead to £+ &#= 1.998, satisfactorily close to 2.
5.2.2 Situations with a, # 0

Thus far we have set a, to zero in the error model, Eq. (2.1). Here we present
a MC simulation study where this is not so. We begin with the specific wide-range
monoexponential growth model and data in Section 5.2.1 and convert them to a
decay model by direct Type-I inversion. For the error model we take &, =1 and ar
of the order of magnitude of the smallest data value, here exp(-10) = 5x10-5. We
therefore select o= 10-5 and find MC estimates of the relative biases by and bg
for various o, choices. Such results allow us to evaluate how well &, U, and a,
can be estimated for the present situation. For sufficiently large or, the proportional
errors should dominate, while for small enough o; the additive ones should do so.

Table V summarizes results obtained with 2x105 replications. No bias esti-
mates for 8; and 6, are included because even with g, = 0.01 the fitting model
parameter biases were found to be entirely negligible. Since fitted values of U can
be of either sign without affecting weighted fit results, for simplicity we take U,
positive and calculate by using eyx = (|Ug| - Up VU,. When U and & are both
free to vary, we find more frequent fit convergence failure in these MC simulations.
To eliminate such non-converging fits early and thus save computer time, we im-
mediately terminated all searches for which |U/ U,| > 4. For the line-4 run, about
3% of the fit trials were so eliminated, but the percentage was somewhat greater for
other o, values.

Consider first the FGWT results in Table V. We see that Sr is only slightly
biased until o, approaches a, As usual, Sr is a good estimate of o; in its region
of main interest. We are particularly concerned with the biased estimates £ and &,,
and with the &, and a, distributions SD’s, which allow us to evaluate how well

our fitting method estimates the error-model parameters if there are both additive

and power-law errors.




it i

MACDONALD AND THOMPSON

TABLE V

MC simulation results for a large-range monoexponential decay model with
a,=10-5 and £y= 1. The notation A:AA denotes an estimate A and the standard

deviation of its associated distribution, AA. All the simulations are for normal error

distributions. Entries indicated by --- are for quantities not relevant to the
analysis.
Line Weight o Sp/or  byisyc be: sg o & Sgc a,‘_: Se/a,

1 FPLWT Ix102 920  --- ~0.20:0.09  0.80:0.09

2 FGWT 1x102 1080 -0.09:0.53 0.07:0.14 1.07:0.14  0.90:0.53

3 FGWT 310> 1077 -0.11:045  0.08:0.17 1.08:17 0.89:0.45

4 FPLWT 1103 0.848 0.45:0.08  0.55:0.08

5 FGWT 1x10-3  1.076 -0.10:0.40  0.097:0.23 1.10:0.23  0.90:0.40

FGWT 3x10% 1075 -0.10:0.35  0.14:033 1.14:0.33  0.90:0.35
FGWT I1x10% 1073 _0.11:033  0.19:050 1.19:0.50  0.89:0.33
FGWT 3x10°~  1.000 -0.43:0.47 -0.20:0.74 0.80:0.74  0.57:0.47
FGWT Ix10° 1315 _093:0.19 -091:0.24 0.09:0.24  0.073:0.19
10 FPLWT 1x10°  1.300 -0.95:0.06  0.05:0.06

O 00 9 o

The SD values in Table V are of sjc or Sjc type, which we present as A;:Sjc,
where lower-case letters are for relative quantities and upper-case letters are for the
quantities themselves, and the colon divider identifies a distribution SD. If A; is
the bias in a single measurement of value a; from a particular distribution, the
nominal 68.3% confidence-interval estimate around the bias-corrected value of a;
would extend from (a;- A;) - Sjc to(a; - A;) + Sjc. The number of MC
replications was always taken large enough that values of such quantities as by are
estimated to <1%; therefore, their estimated SDs are not presented; those of the

underlying distribution are generally much larger and are of primary interest here.
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In the rightmost column of Table V are values of &, /ar=1+ by . Note that
the bias and uncertainty of an £, estimate increase as 0, decreases, while those of
o, estimates are substantially constant or decrease. The results in line 9 show,
however, that when o, and a, are comparable, a meaningful estimate of a, can
no longer be obtained. Instead, { becomes very small, a condition that yields
nearly UWT, which is then the preferred choice. The line-10 FPLWT results again
yield a very small £, further indicating the appropriateness of UWT, and the Sr es-
timate is no longer close to the proper, but very small, o, value. Not surprisingly,
the |U| and ¢ distributions are far from normal. For example, for g,= 10-3, the
skewness and Kurtosis are, respectively, about 0.56 and 0.91 for the | U| distri-
bution and about 1.7 and 5.6 for the & distribution. For o,= 10-5, the correspon-
ding values are about 7 and 64, and 8 and 81, respectively.

In Table V the results in line 1 should be compared to those in line 2. First, we
see that the Sg biases are comparable, but of opposite sign, for the two MC results.
Second, the use of FPLWT, as in line 1, leads to a much greater bias of the &, esti-
mate and to a smaller estimate of the SD of its distribution, making the poorly-
estimated £ value appear much more accurate than it is. But, by using FGWT (and
thus allowing U to be free), one takes proper account of the additive errors and ob-
tains reasonable estimates of 0;, &, , and a,. Similar conclusions follow when we
compare the FPLWT results in line 4 with the FGWT ones in line 5. Although
smaller SD values of the &, and a;, distributions than those found would be desir-
able, there are appreciable regions of o; in the present case for which the SD values
are small enough to make it worthwhile to fit with both U and ¢ varying.

5.3  Analysis of Radioactive Decay by a Sum-of-Exponentials Model

In order to demonstrate how useful the ELS method is for analyzing physical-
sciences data, we now consider the radioactive decay data in Table VI. To obtain
these results we irradiated a sample of 103Rh with neutrons, and monitored the
gamma decay of 104Rh with a scintillation detector. Irradiation produced two dif-
ferent radioactive states of 104Rh and, to a very good approximation, they decay in-
dependently. The appropriate NLLS fitting model is thus

Yi= 6, + Orexp(-t;/03)+ Osexp(-1;/0s) (5.1
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TABLE VI

Radioactive decay data for 104Rh. Here ¢ is time in seconds and y is the number

of counts in the interval centered on ¢t

r oy r oy t oy ry ry ry

2 864 58 462 114 245 170 154 270 117 802 70

6 800 62 418 118 225 174 164 290 120 902 74
10 715 66 371 122 215 178 166 310 92 1002 76
14 705 70 346 126 189 182 155 330 91 1102 70
18 697 74 362 130 192 186 129 362 112 1202 68
22 685 78 307 134 207 190 141 402 102 1302 86
26 665 82 330 138 195 194 153 442 79 1402 85
30 621 86 311 142 183 198 151 482 87 1502 59
34 606 90 285 146 178 202 134 502 101 1602 68
38 541 94 292 150 178 206 137 542 98 1702 79
42 522 98 289 154 193 214 142 582 76 1802 82

46 510 102 273 158 167 230 117 622 T 1902 80
50 469 106 271 162 175 250 142 702 68 2002 66
54 423 110 241 166 184

with all 6; positive, 8, a background count, and ¢; the time from the start of coun-
ting. We now use this expression for several different EVM analyses of the data.
We begin by analyzing the actual data, then continue in Section 5.3.2 with a MC
study of comparable synthetic data.

5.3.1 Analysis of decay of 109Rh

It has been shown that there is negligible 1/f noise in alpha decay (Kennett and
Prestwich 1989), so it is plausible to expect none for the present situation. Since
there does not appear to be any reason for additive errors in the data, any weighting
involving U in Eq. (2.8) is inappropriate. Nevertheless, for comparison purposes
we start with UWT and compare fitting results with DPLWT, FPLWT, and FPWT.
In addition, two variance models especially appropriate for Poisson statistics will be
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defined. For arbitrary £, define a Poisson form of FPLWT, called PFPLWT, by
replacing the 7 in Eq. (2.8) by

2 =617 + [Brexp(-;/6,)] ¥+ [Osexp(-1,/05)] % (5.2)

Each term in Eq. (5.1) is associated with a different and independent Poisson pro-
cess for which the variance of a data value is equal to that value, therefore £ = 0.5.
When this particular & value is used in Eq. (5.2), it leads to just FPWT. Although
there is thus no need to distinguish between the two variance models if &= 0.5, it is
worthwhile to compare their predictions, which should differ when & # 0.5.
Finally, let PEFWT denote PFPLWT with & fixed.

An independent measurement of the background term 8, in Eq. (5.1) was also
made during the experiment and yielded 8; = 70| 0.0053. Although it is approp-
riate to use this a priori information in NLLS fits of the decay data, we also inves-
tigate how well the fits estimate it. Previous measurements (Blachot et al. 1984)
led to quite precise estimates, 63= 61.03 | 0.0095 sec and 85 = 373.95|0.012 sec.

Table VII summarizes the results of fitting the data with many different EVM’s
and of several long MC simulation runs. It is a notoriously difficult and ill-
conditioned problem to estimate adequately the parameters from real data involving
two or more exponentials whose time constants are not very much different or
when there is parameter redundancy (Lanczos 1956, Seber and Wild 1989, pp.
118-119). Thus, even with the most appropriate EVM, we expect appreciable un-
certainties in parameter estimates. The values shown in line 10 of the table were
produced by fixing all parameters except 8, and 6, at appropriate values, as dis-
cussed above. Their values in line 10 are probably best estimates.

The use of UWT fitting produces parameter estimates that are largely deter-
mined by the region where the y; are largest, especially when their range is large.
The UWT results in line 1 confirm this expectation, and show that 8, and 83,
associated with the short-time region of the data, are far better determined than are

6, and 05, associated with the long-time region. Although a good estimate of 8,

is obtained, its RSD estimate is large. As Table VII shows, there are no significant
differences between the results in line 2 (where Z; = y;) and line 3 (for which Z; =
Y;). The FPPLWT results of line 4 seem to be slightly inferior to those of line 3.

All the estimates of lines 1-4, however, are within one SD of the values in line 10.
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Individual fit results (lines 1-10), and simulation results with 8, fixed at 70 (lines

11-13) for radioactive-decay data. A quantity written A | AA represents a para-

meter estimate and its estimated relative standard deviation (RSD). Entries with ---

indicate quantities that are not relevant to analysis. The suffix -p in lines 11-13

denotes a Poisson error distribution.

Weight  Sgp 6 62 63 64 65 ¢
1 UWT 162 71.5[0.11 758[0.035 65.1]0.050 49.9]0.49 445[0.91
2 DPLWT 0.847 71.8/0.042 736]0.043 60.3]0.065 83.7/0.41 284]|0.38 0.54(0.27
3 FPLWT 0.859 72.8/0.041 737/|0.043 60.0|0.065 84.6/0.41 284]0.38 0.530.28
4 PFPLWT 0.597 72.9]0.040 735]0.043 59.2|0.068 89.4|0.40 275]0.36 0.60|0.29
5 FPLWT 0.967 70 747/0.028 61.1/0.051 75.3]0.30 348|0.27 0.51]0.28
6 PFPLWT 0.842 70 745]0.029 60.3|0.054 79.7]0.29 335]0.26 0.58]0.29
7 FPWT  0.084 70 741/0.040 57.7|0.071 93.6]0.27 305|0.20 1.0
8 PFFWT 0.110 70 735/0.043 55.0/0.068 114]0.25 2640.19 1.0
9 PFFWT 1.008 70 747/0.027 61.1/0.050 74.9]0.29 350[0.27 0.5
10 PFFWT 0.995 70 752]0.016  61.03  72.0/0.06 373.95 0.5
11 FPLWT 1272 b -0.0043  -0.0045 0.055 0.046 -0.024
-p/MC siC 0.0282  0.0487 0315 0.293 0.230
SLH: 0.0275  0.0487  0.269 0.253 0.230
SiRH: 0.0249  0.0469 0318 0.298 0.226
12 FFWT 0997  by: -0.0041  -0.0043 0.053 0.047
-p/MC SmC: 0.0279  0.0480  0.309 0.292
smLH:  0.0273  0.0482 0.266 0.251
SmRH: 00248 0.0463 0.315 0.297
13 GLS 1331 by -0.0081  -0.0094 0.089  -0.023 -0.041
-p/MC sC: 0.0298  0.0492 0.334 0.266 0.22
SLH: 0.0290  0.0493 0.282 0.230 0.22
0.0260  0.0472  0.336 0.269 0.22

SRH:
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FIG. 5. Weighted residuals for the FPWT, &= 1, fit in line 7, Table VII. Radio-
active decay data and sum-of-exponentials model. The straight-line fit is discussed
in Section 5.3.1.

Although the background value 6, is well estimated by any of the weighting
schemes, the results in lines 5 and 6 of Table VII show that better estimates of the
other parameters and their RSD values are obtained when 6, is fixed at its meas-
ured value. Of particular note is the best-fit £ estimate in line 5, very close to the
Poisson-statistics value of 0.5.

A FPLWT Type-II inversion fit yielded &#= 1.46 | 0.10; thus, here
£+ & =1.97, rather close to 2. Averaging of untransformed and transformed
parameter estimates, as discussed in Section 4.2.3, led to < ;> = 61.036, very
close to the accepted value of 61.03 for this parameter in line 10. Such averaging
for the other free parameters did not yield results closer to those in line 10. It is not
surprising that averaging helps reduce bias for the 8; estimate, since this is the time
constant of the dominant exponential-decay term, and we thus expect from the anal-
ysis in Section 4.2 that b; and b% should be nearly equal.

We examine in lines 7 and 8 what happens with a fixed but wrong value of £,
With £ = 1, a plausible choice if one did not know that the data arose from Poisson
processes, we see that all parameter estimates are worse than those in line 5 or in
line 9. Figure 5 shows the weighted residuals for the line-7 fit vs log (Y;). The

vertical lines extend from O to R;. This figure shows very appreciable heterosce-
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FIG. 6. Weighted residuals for the PFFWT, & = 0.5, fit of line 9, Table VII.
Radioactive decay data and sum-of-exponentials model. The straight-line fit is dis-
cussed in Section 5.3.1.

dasticity even of weighted residuals. But Fig. 6, for line 9 (¢ = 0.5), appears to be
very nearly homoscedastic, as it should be for the appropriate £ choice. A quanti-
tative measure is afforded by the results in Fig. 7 for |R;|. Completely homosce-
dastic data should yield a linear-fit straight line of slope zero within the limits of sta-
tistical variability. Here the line is nearly horizontal and its equation is
|[Ri| =1.007]0.42 - (0.079 | 2.4) log(Y; ). The equation for the line-7 |R;|
datais [R;| = 0.230]0.15-(0.072]0.21) log(Y; ). Since the mean of |R;| is about
0.066 for the &= 1 fit and about 0.83 for the £ = 0.5 fit, the effective slope is re-
duced by about a factor of 10 on reducing £. Further, the RSD values of the slopes
indicate that although the &= 1 slope estimate is significantly different from zero,
that for £= 0.5 is not. Finally, in Table VII the line-9 R; values mostly lie very
close to a straight line on a cumulative normal probability plot.

The above results indicate that £ can be well estimated from the present data,
that proper weighting can reduce a heteroscedastic situation to a homoscedastic one,
and that use of the appropriate EVM leads to optimum results for parameter esti-
mates. Nevertheless, the ill-conditioned nature of the problem shows up when one
compares the @, and 0; estimates and their estimated RSD values with those for

64 and 6s. In order to obtain more-accurate estimates of the latter parameters, one
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FIG. 7. Absolute values of the weighted residuals in Fig. 6. The straight-line fit is
discussed in Section 5.3.1.

would either need to be able to obtain data for the decay of this species separately or
to analyze data for which 8,/ 8, was much larger.

5.3.2 MC study of two-component exponential decay

We further investigated two-component exponential decay by MC simulation.
In order to obtain exact and consistent values of parameters and data for simulations
as close as possible to the experimental results in Section 5.3.1, the following pro-
cedure was used. A data set was generated using as 6,, values: 70, 752, 61, 72,
and 374, essentially the Table-VII, line-10 results. The y; = Y; values were then
rounded to integers. Fitting these data with fixed 8, = 70 and £ = 0.5 values yield-
ed new parameter estimates very close to those cited. These estimates and the inte-
ger data were then used as input for subsequent MC simulation involving indepen-
dent pseudo-random Poisson-distributed errors (identified by p in Table VII).
Then, statistically independent pseudo-random errors given by Eq. (2.3) having

ar=0, o = 1,and & = 0.5 were added to the exact data values calculated from
the Eq. (5.1) model for each replication. Fitting was done with U = 0 and with &
either free to vary or fixed at 0.5 (line- 12 results).

In Table VII the fits in lines 11 and 12 were obtained with 500,000 replications

and yielded relative bias estimates all of whose RSDs were less than 1%. The
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FIG. 8. Normalized distributions of the relative errors of the 6,, 6;and 6, para-
meters for the FPLWT-p MC results in line 11 of Table VII. Radioactive decay
data and sum-of-exponentials model.

results in line 13 for GLS fitting are based on only 200,000 samples. These simu-
lation runs were very lengthy; for example, that in line 12 required about 10 hours
on a Cray Y-MP supercomputer and that in line 13 used about 16 hours. Thus, the
GLS runs required about four times more computation time than did comparable
ELS ones. As expected, the relative bias estimates of 8, and 83 are much smaller
than those of 64 and 85, and, most important, they are small compared to the rela-
tive uncertainty of the parameters, as indicated by the sjc, sj 4, and sjgy values
shown. Comparison of lines 11 and 13 shows that for all but parameter 65 the
ELS results are substantially superior to the GLS ones, even though the data errors
are Poisson-distributed.

The results in lines 11 and 12 show, as expected from the single-data-set fit re-
sults in Table VII, that both the bias and the RSD values of the parameters of the
short-time exponential decay are much smaller than those for the long-time decay.
These results suggest that the biases of 84 and 85 are not negligible. For example,
when the line-9 value of 6, is corrected using the line-12 bias value, one obtains an
estimate of 71.1, appreciably closer to the line-10 value. The line-11 and line-12

results show that, depending on the particular parameter, one or the other of s;; i or




STRONGLY HETEROSCEDASTIC NONLINEAR REGRESSION 883

siry is usually close to sic. Further, all s;; estimates are smaller than correspon-
ding sjc ones and lie between the corresponding sj; and sjry values. The cor-
respondence of the MC dispersion sjc values in lines 11 and 12 with the individual
RSD values in line 9 is particularly striking. The individual RSD values are eviden-
tly excellent estimators here of relative dispersion in parameter error distributions.

A MC run like that of line 12 was also carried out with normally- rather than
Poisson-distributed errors. A value of o,= 1.0 was used and the results were very
close to those of line 12, as expected from the central-limit theorem. In Fig. 8 we
show the error distributions found for three of the five free parameters of the line-
11 MC simulation. Although that for the 6, errors appears nearly normal except
for its long, thin, left-side tail, its skewness parameter was about 1.1 and its kurto-
sis was 4.9. In contrast, the 83 error distribution, that of the dominant time con-
stant, is much closer to normal and has skewness and kurtosis values of 0.3 and
0.54, respectively. The third distribution, with skewness and kurtosis of 1.4 and
5.8, respectively, is similar to that of the bottom distribution of Fig. 1, that asso-
ciated with large-error inversion. The distribution of the 85 errors was quite simi-
lar to that for 8. Surprisingly, the error distribution for the £ estimate was very
close to normal, with skewness and kurtosis of about 0.06 and 0.1, respectively.
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PRINCIPAL ACRONYMS AND SYMBOLS

Acronyms : )

ELS Extended least squares NBV  Normalized block value
EVM  Error-variance model NLLS Nonlinear least squares
GLS  Generalized least squares OLS Ordinary least squares
LEVM Fitting program used herein RSD Relative standard deviation
MC Monte Carlo , ; SD Standard deviation

NBC Normalized block count Weighting: See Table I for definitions
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Major Subscripts Superscripts

data label c continuous distribution
parameter label d discrete distribution
replication label * logarithmic transformation
normal distribution # inversion transformation
exact value of parameter

uniform distribution

BIBLIOGRAPHY

Bates, D. M., and Watts, D. G. (1988). Nonlinear Regression Analysis and its
Applications, New York: John Wiley.

Beal, S. L., and Sheiner, L. B. (1988). 'Heteroscedastic Nonlinear Regression,
Technometrics, 30, 327-338.

Blachot, J., Husson, J. P., Oms, J., and Berrier, G. (1984). Nuclear Data
Sheets, 41, 325-412, and references therein.

Brownlee, K. A. (1965). Statistical Theory and Methodology, 2nd. Ed., New
York: John Wiley.

Carroll, R. J., and Ruppert, D. (1988). Transformation and Weighting in
Regression, New York: Chapman and Hall.

Cook, R. D., and Weisberg, S. (1982). Residuals and Influence in Regression,
New York: Chapman and Hall, p. 59.

Davidian, M. (1990). Private communication.

Davidian, M., and Carroll, R. J. (1987). ’Variance Function Estimation,” J. Am.
Stat. Assoc., 82, 1079-1091.

Donaldson, J. R., and Schnabel, R. B. (1987). ’Computational Experience with
Confidence Intervals for Nonlinear Least Squares,” Technometrics, 29, 67-82.
See also Gross, A. M. (1976). Confidence Interval Robustness with Long-
Tailed Symmetric Distributions,” J. Am. Stat. Assoc., 71, 409-416.

Finney, D. J., and Phillips, P. (1977). 'The Form and Estimation of a Variance
Function, with Particular Reference to Radioimmunoassay,” Appl. Statis., 26,
312-320.

Gallant, A. R. (1987). Nonlinear Statistical Methods, New Y ork: John Wiley.
Giltinan, D. M., and Ruppert, D. (1989). ’Fitting Heteroscedastic Regression

Models to Individual Pharmacokinetic Data Using Standard Statistical
Software,’ J. Pharmacokin. Biopharm., 17, 601-614.




STRONGLY HETEROSCEDASTIC NONLINEAR REGRESSION 885

Hinkley, D. V., and Runger, G. (1984). 'The Analysis of Transformed Data,’ J.
Am. Stat. Assoc., 79, 302-309.

Jobson, J. D. and Fuller, W. A. (1980). ’Least Squares Estimation when the
Covariance Matrix and Parameter Vector are Functionally Related, J. Am. Stat.
Assoc. 75, 176-181.

Kennett, T. J., and Prestwich, W. V. (1989). ’Limit on the Existence of 1/f Noise
in Decay,” Phys. Rev., A40, 4630-4640.

Lanczos, C. (1956). Applied Analysis, Englewood Cliffs, N.J.: Prentice Hall;
pp. 272-280.

Macdonald, J. R., editor (1987). Impedance Spectroscopy Emphasizing Solid
Materials and Systems, New York: John Wiley.

Macdonald, J. R., Hooper, A., and Lehnen, A. P. (1982). ’Analysis of
Hydrogen-Doped Lithium Nitride Admittance Data,” Solid State Ionics, 6, 65-
77. '

Macdonald, J. R., and Potter, L. D., Jr. (1987). ’A Flexible Procedure for
Analyzing Impedance Spectroscopy Results: Description and Illustrations,’
Solid State Ionics, 23, 61-79.

Moré, J. J. (1978). 'The Levenberg-Marquardt Algorithm: Implementation and
Theory,” in G. A. Watson, editor, Numerical Analysis, Lecture Notes in
Mathematics, Vol. 630, pp. 105-116, Berlin: Springer Verlag.

Nielsen, K. (1977). ’A Method of Optimizing Relative Weights in Least-Squares
Analysis,” Acta Crystallogr., A33, 1009-1010. See also: Celmins, A. (1984),
’Analysis of Residuals from Multidimensional Model Fitting,” Comp. & Chem.
8, 81-89.

Norman, E. B., Gazes, S. B., Crane, S. G., and Bennett, D. A. (1988). ’'Tests of
the Exponential Decay Law at Short and Long Times,” Phys. Rev. Lett., 60,
2246-2249.

Ratll()owkiky, D. A. (1983). Nonlinear Regression Modeling, New York: Marcel
ekker.

Seb&r/,_lG. A. F., and Wild, C. J. (1989). Nonlinear Regression, New York: John
iley.

Tukey, J. W. (1986). The Collected Works of John W. Tukey, ed. Jones, L. V,
Wadsworth and Brooks, Monterey, California, p. 1010.

van Houwelingen, J. C. (1988). ’'Use and Abuse of Variance Models in
Regression,” Biometrics 44, 1073-1081.

Wu, C.-F (1981), 'Asymptotic Theory of Nonlinear Least Squares Estimation,
Annals of Statistics, 9, 501-513.




886 MACDONALD AND THOMPSON

Received February 1991; Revised April 1991.

Recommended by R. F. Gunst, Southern Methodist University, Dalias,
| TX.

Refereed by Daniel J. Sehnell; Centers for Disease Control; Atlanta,
GA.






