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In several interesting recent papers, S. Torquato and his associates presented specific expressions for the Ddimensional hard-sphere 
nearest-neighbor probability density distribution function, P", and the mean nearest-neighbor particle separation, R", 
for D = 1, 2, and 3. These expressions, which have been known since 1981, are closely related to general expressions of 
scaled particle theory given by Reiss and co-workers in 1959 and 1974. Here, the consequences of four different choices 
for the basic probability function, G, needed in calculating P" and R", are explored with particular emphasis on the D 
= 3 situation. In addition to the particular G used by Torquato, which was associated with the Carnahan-Starling equation 
of state, and the different one used by the author in 1981, two other choices are proposed. One of these is an improved version 
of that used by Torquato, and the other is greatly simplified. It is shown that, as far as the dependences of P" on distance 
from a particle boundary and those of PNN and RNN on particle density are concerned, even the simplified choice is quite 
adequate to yield results which cannot be practically distinguished from those following from the improved choice for G 
or that used by Torquato. 

I. Introduction and Background 
Much analysis of the behavior of an assembly of hard spheres 

in thermodynamic equilibrium has been carried out because, for 
example, such a system is a useful approximation to the behavior 
of rare gases and monatomic liquid metals. The results of such 
analysis, which is often concentrated on deriving an appropriate 
equation of state, are also pertinent to many other problems in 
the physical and biological sciences, ranging from stellar dynamics 
to amorphous solids. An important quantity in such work is the 
nearest-neighbor probability density function. Here, attention 
is devoted to this quantity rather than directly to equation of state 
results. 

S. Torquato and his associates 
(abbreviated TLR) claimed to present for the first time specific 
expressions for the hard-particle nearest-neighbor distribution 
function, PNN(4,x), and mean nearest-neighbor particle separation, 
RNN(4) ,  in one to three dimensions. Unfortunately, these authors 
were unaware of relevant earlier work on the subject. Here, I 
both compare the TLR predictions for these quantities (when 
corrected for errors) with those of earlier workers and, in addition, 
propose a useful simplification of the results. Part of the problem, 
and interest in these quantities, arises because although they can 
be calculated exactly for one dimension ( D  = l ) ,  it seems unlikely 
that this is possible for hard disks ( D  = 2) and hard spheres ( D  
= 3). Thus, different physical assumptions or approximations can 
lead to different results for D = 2 and 3. The present work is 
closely related to a more detailed study which has been submitted 
for p~bl ica t ion .~  

Let the "diameter' of a hard particle (referred to as a sphere 
for all D values for simplicity) be denoted by u. Then the nor- 
malized distance variable, x = r / u ,  involves the distance r from 
the center of a hard sphere to an arbitrary point in an assembly 
of equisized hard spheres, taken homogeneous in the large and 
in thermodynamic equilibrium. Thus, the minimum physically 
allowable value of the presently defined x is 1, and we need to 
be concerned only with quantities defined from x = 1+ to m,  

In a series of recent 

(1) Torquato, S.; Lu, B.; Rubinstein, J. J .  Phys. A: Math. Gen. 1990, 23, 
L103. 

(2) Torquato, S.; Lu, B.; Rubinstein, J. Phys. Rev. A 1990, 41, 2059. 
There appear to be extraneous h and ( 1  - q) terms in eqs 4.33 and 4.34 which 
do not follow from the use of eqs 2.18 and 2.20 from which they were derived. 
Luckily, they make no difference in the result obtained for PNN in the 3D case. 
There is a missing factor of q2 in q 5.6 and a missing set of brackets in eq 
5.13. In the statement on p 2074, 'At fixed &, l / u  increases with increasing 
D, as expected," the word 'increases" should be changed to "decreases". 

(3) Torquato, S.; Lee, S. B. Physica A 1990, 167, 361. There is a missing 
minus sign in the exponential argument of eq 46. 

(4) Macdonald, J. R. Submitted to Phys. Rev. A. 
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Therefore, the distinct functions Gv and GP introduced by TLR 
are identical in this range, and their distinction is of no consequence 
in calculating P" and Rm (for x 2 l+). The packing fraction, 
the reduced density 4, is defined as pVD, where VD is the volume 
of a particle of diameter u and p N / V ,  the number density. The 
maximum allowed value of p is d k 3  for D = 3, the hexagonal 
close-packed value. The corresponding maximum value of 4, &, 
is d & / 6  N 0.74048. In general 

(1) 4 = d'/2p(u/2)D/I'(l + (D/2)) 

where r is the gamma function. 
Now define J(n,4) ,  the nth moment of P" 

When n = 0, we must have J(0,4) = 1, the normalization condition 
for the dimensionless probability density P". But when n = 1, 
J( 1,4) = RNN(4) ( r ) / u ,  the normalized mean nearest-neighbor 
distance, the first moment of the distribution. It is thus clear that 
once an expression for Pm is given, the corresponding RNN follows 
immediately. 

A general expression closely related to the present P " ( ~ , x )  
formula defined below appears in the original scaled particle theory 
work of 19595 and was further discussed and generalized by Reiss 
and Casberg6 in 1974. Although no explicit results for D = 2 and 
3 were presented in these works, a general expression for PNN,  
equivalent to the generalized result of Reiss and Casberg (with 
their X set to u), was independently derived by the author in 19817 
and was specialized for D = 1-3 for both P" and R". 

A function which plays the crucial role in determining PNN has 
usually been denoted by G in the literature of the present subject. 
In its unnormalized form this function, C($,x) ,  was termed the 
central function of scaled particle theory by Reiss and Casberg: 
and it was denoted by TLR as the conditional pair distribution 
function and defined2 as "the radial distribution function for a 
special binary mixture of spheres, namely, one for a single test 
particle of radius r - 612 and an actual inclusion of diameter u 
at contact, Le., when such particles are separated by the distance 
r". In the 1981 work7, G(+,x) was approximated by the inverse 
relative free volume, A,(?) = v<'. The free volume, of, is that 
available for particle motion and was taken zero at  the density 
of crystalline close p a ~ k i n g , ~ . ~  + = &. The 1981 work and results 

( 5 )  Reiss, H.; Frisch, H. L.; Lebowitz, J. L. J .  Chem. Phys. 1959, 31, 369. 
(6) Reiss, H.; Casberg, R. V. J .  Chem. Phys. 1974, 61, 1107. 
(7) Macdonald, J. R. Mol. Phys. 1981, 44, 1043. 
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will be referred to by the abbreviation JRM. 

explicitly in terms of the functions 
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The general expression for PNN can be written concisely and 

F ( ~ , x )  E D * 2 D 4 ~ b 1 G ( 4 , ~ )  (3) 

and 

I(4J) = JXF(4,Y)  dY (4) 

Then 
P N N ( ~ , x )  = F(4,x) ~ x P [ - I ( ~ J ) I  UO(X - 1 )  ( 5 )  

where Uo is the unit step function. Thus, it follows that an 
expression for P" may be found given any plausible expression 
for the basic function G(4,x). But it is worth reiterating that for 
D > 1 no exact expressions for G(4,x) are known. From the form 
of the eq 5 result, P" is clearly normalized. The preexponential 
function F(4,x) has a simple physical interpretation, although this 
is insufficient (so far!) to allow it to be calculated exactly for D 
> 1 .  The conditional probability of finding a particle within the 
spherical shell of normalized thickness dx and inner normalized 
radius x (21)  is2v4 just F(4,x) dx. 

There are three further general equations of importance in the 
present context. Define gr(4,x) as the ordinary radial distribution 
function; its value at  contact is thus gr(4,1). Then for hard 
particles in equilibrium the equation of state is given in terms of 
gr(4,1) bys36J*'2 

Z(4) P / p k T  = 1 + 2&I4gr(4,1) (6) 

where P is the pressure of the system and k and T have their usual 
meanings. In a d d i t i ~ n , ~ J ~ J ~  we have 

G(4,m) = Z(4) (7) 

G(4J)  = gr(471) (8) 
and 

Thus, G(4,x) only equals the radial distribution function at particle 
contact, x = 1 .  For the D = 1 situation, matters are particularly 
simple. Then the relations G(4,x) = gr(4,x) = gr(4) = Af(4) = 
(1 - #)-I are exact. The choice G(4,x) = hf(4) for D = 2 and 
3 in the 1981 work7 was based on extrapolation of these relations 
to higher dimensions. 

For D = 1, where an exact solution is possible, TLR found the 
same results as did the author in 1981.7 For D = 2, the results 
found for PNN and R" were very similar over a wide range of 
4. (In order to achieve such close agreement, however, the TLR 
expressions had to be corrected for a sign error in their eqs 5.13, 
5.14, and 6.9.4) These comparisons and corrections are discussed 
in more detail in ref 4. There are somewhat greater differences 
between the TLR and 1981 J R M  predictions for D = 3 than for 
D = 2, reflecting progressive loss in accuracy of the G(4,x) = AA4) 
approximation used in ref 7 as D increases beyond 1 .  Therefore, 
only D = 3 comparisons are considered herein, and the interested 
reader is referred to ref 4 for more details for all three choices 
of D. 

Four possible choices for the basic G(4,x) function are defined 
and discussed in the next section. Then in section I11 the PNN 
and R" responses following from these choices are compared, 
and new conclusions are reached concerning the accuracy and 
utility of the various choices. 

11. Four choices for G(4,x) When D = 3 
In addition to comparing the JRM and TLR choices for G(+,x) 

in terms of their resulting PNN(4,x) and I?"($) responses, I shall 
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(8) Andrews, F. C. J .  Chem. Phys. 1975, 62, 272. 
(9) Andrews, F. C. J .  Chem. Phys. 1976, 64, 1941. 
(IO) Hansen, J. P.; McDonald, I. R. Theory of Simple Liquids, 2nd ed.; 

( 1 1 )  Helfand, E.; Frisch, H.  L.; Lebowitz, J .  L. J .  Chem. Phys. 1961, 34, 

(12) Reiss, H.; Schaaf, P. J .  Chem. Phys. 1989, 91, 2514 

Academic Press: New York, 1986. 
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I Equation of State : Z ($1 = 1 + 2"-' $ g, (4, 1 )  1 

'NN($YX): r, r, 7, r, 
R NN($l : 

Figure 1. Block diagram flow chart showing relations between four 
different choices of the basic function G(6,x) and other related quantities. 
Here Gm is the original TLR choice; Gm is an improved version of GPT; 
gr(6,1) is the contact value of the radial distribution function; and Af is 
an expression for the relative inverse free volume used in the 1981 JRM 
work. See text for discussion of the meanings of the various types of 
connecting lines. Here 6 is a normalized particle density, the packing 
fraction, and x is the normalized distance measured from a particle 
center. 

compare two new choices as well. The main G(4,x) expression 
presented by TLR, Gm(4,x), is based on the Camahan-Starling 
equation of state (abbreviated CS EOS) for hard spheres, con- 
sidered by these authors to be the approach which led to their best 
results. Let us write G in the following general formS 

(9) 

GPT(~J) G I ( ~ J )  (10) 

Gm(4,x) = am(4) + X-Ibm(4) + X-2Cm(4) 

Then the m = 1-4 choices are defined by 

with 

a l w  (1 + ~ ( 1 -  $13; b 1 w  -4(3 + 4 ~ 2 ( 1 -  4131; 
C I ( 4 )  = 42/(2(1 - 4)31 

GPTC(4,X) GZ(4,x) (1 1) 
with 

a 2 w  = (1 + 4 + 42 - 4 3 ~ 1  - 4)3; ~ 4 )  = 
-34(1 + +) /MI - $I3]; cz(4) = + - 4)31 

(12) 

G 4 ( 4 , ~ )  = Ad$) = 1/[1 - (29/14)4 + 0.973642] (13) 

The four choices and their corresponding P" and RNN results, 
using abbreviated symbols, are summarized in the block diagram 
of Figure 1 .  In this diagram, arrows show the direction of a 
possible transformation, solid lines indicate exact and/or consistent 
transformations, dotted lines denote inconsistent transformations, 
and dashed ones represent transformations that involve the solution 
of an inverse problem and thus such transformations are corre- 
spondingly uncertain and nonunique. 

The fmt  choice above and that a t  the left of the diagram defines 
the TLR solution. Since the derivation of G(4,x) from an ex- 
pression for Z(4)  involves the solution of an ill-defined (ill-posed) 
inverse problem, the Gm result used by TLR for the CS EOS is 
correspondingly uncertain. In addition, although their expression 
for Gm satisfies eq 8, since Gm(4,1) = (al + bl + cl) = gr(+,l) 
as given in eq 12 for the CS EOS, it does not satisfy eq 7 even 
though an equation equivalent to eq 7 was given by these authors. 
Further, although the expression for G(4,x) listed by TLR for 
scaled particle theorysJ1 does satisfy both eqs  7 and 8, that which 
they give for the Percus-Yevick solution does not. 

Since the TLR GPT is inconsistent, it is worthwhile modifying 
it to make it consistent with both eqs 7 and 8. Such modification 

G3(49x) = gr(4J) = (1 - 4/2)/(1 - $I3 



Nearest-Neighbor Distribution Functions 

yields choice 2, Gmc, a corrected expression for G(4,x) for the 
CS EOS. Although there is still a n  element of arbitrariness in 
the result given in eq 11, it is worth noting that b2(4) is identical 
to the corresponding term in the expression for G(4,x) for scaled 
particle theory.5 It is thus plausible to expect GmC to be superior 
to Gm, even though the details of the GmC 4 and the x depen- 
dences are almost certainly not exact. 

The third choice ignores x dependence in G(4,x) and uses just 
the contact value of the radial distribution function, thus guar- 
anteeing satisfaction of eq 8. This approach has the additional 
virtue that such a choice is always possible whenever an EOS 
expression is available, and thus no inverse problem estimate needs 
to be used. But, of course, it has the disadvantage that, like choice 
1, eq 7 is not satisfied. How much accuracy is lost by making 
a choice of this kind where the x dependence of G(4,x) is ignored? 
The answer is "very little" as far as P" and R" are concerned. 
The reason is that the present choice leads to the same contact 
value of P", P"(4,1), as do the first two choices because they 
all satisfy eq 8, and in addition, because all P" curves are 
normalized to unity there turns out to be little room for differences 
between the various predictions. This conclusion is quantified in 
the next section. 

Finally, choice 4 involves the inverse relative free volume 
function, Af(4), one where neither eq 7 nor eq 8 is satisfied. The 
coefficient of the 4 term in eq 13 is determined from the exact 
third virial expansion term, and the remaining coefficient value 
ensures that Af(4) has a pole a t  4 = &. Thus, the present ex- 
pression for 11x4) is not at all directly associated with the CS EOS. 
It involves, however, an EOS which turns out to approximate very 
well the CS EOS.* Further, because there is no x dependence, 
the transformation from Ad+) to the corresponding EOS, and the 
reverse transformation, are exact. Because eqs 7 and 8 are not 
satisfied, however, a dotted line is shown for the transformations 
where G(4,x) is set to Ad4). Further, because this approach leads 
to a value of P"(4,l) possibly considerably different from that 
of choices 1 and 2, we expect larger differences between the 
PNN(4,x) curves of choices 1 and 2 and the 1981 A,-($) predictions. 

111. Comparison of Results for P" and R" 
Although some graphical comparisons of TLR and JRM D = 

2 and 3 results are presented in ref 4, here only holistic numerical 
comparisons will be made. To do so, we shall use a x2 comparison 
method.13 First, for two sets of numbers, Ai and B,, with i = 1, 
2, ..., N, define 

(14) 

This expression may be used to yield a chi-square probability 
measure of the equality of the two data sets when the E, represent 
values drawn from a known distribution and the Ai are drawn from 
an unknown distribution which may or may not be the same as 
that of the B,. Here, however, we shall compare, for example, 
a set of P N N ( ~ , X ( ) ,  say the PTC(4,xi) of Figure 1, with corre- 
sponding TLR PT(4,xi) values. Since such a comparison is 
deterministic, however, and involves systematic, not random, 
differences, no probability measure is appropriate. On the other 
hand, if Ai = [P"(4,Xi)]MC represented Monte Carlo measure- 
ments and Bi = [PNN(4,xj)IW represented theoretical results, such 
a measure would be applicable. 

Here, we shall use x2 values just as measures of the differences 
between two approximate representations of the same quantity. 
In order to remove most of the dependence of x 2  on N ,  it is useful 
to define 

N 

i- 1 
X2(A,B) = c [AI - Bj]2/Bj 

XN2(A,B) = /MN (15) 
where MN is a normalization factor. We shall use MN = N - 1 
for N > 1 and MN = 1 for N = 1. A weighting alternative is to 
replace the Bi in the denominator of eq 15 by [E,]  2t and set MN 
= ~ ~ l [ B j ] - 2 ~  with 0 < t < 2. Results with 4 = 0.5 are similar 

(13) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T. 
Numerical Recipes; Cambridge University Press: New York, 1986; p 470. 
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Figure 2. Overall comparisons for D = 3 between various pairs of re- 
sponse functions (see Figure 1 for identifications). Calculations of xN2 
were carried out, at constant 6, over a wide range of x values. Here 
xN2(!,B) is a normalized chi-square function and 6 is a normalized 
particle density, the packing fraction. 

to those with MN = N - 1, while the f = 1 choice leads to smaller 
values of xN2. 

Figure 2 shows results for various pair comparisons for the four 
different P" nearest-neighbor distributions associated with the 
four G(4,x) choices. These results were calculated using 800 x 
values, uniformly distributed between x = 1 and that particular 
x which led to a value of P" 1000 times smaller than its initial 
value. Results were found to be very nearly independent of N 
for N >> 1. First, we see that the overall differences between PTc 
and PT are completely negligible, in spite of their different 4 
dependences. Thus, it does not matter whether the other com- 
parisons are made using PT or PTc as a reference. Incidentally, 
for 4 > 0.494, where 0.494 is the freezing point of a hard-sphere 
assembly, the system contains regions of both long- and short-range 
order. Then under some circumstances, Monte Carlo results show 
that it can follow a path as 4 increases which ends a t  4 = 0.64, 
termed random close packing, a condition where the pressure has 
a pole and there is no free volume available. Although this 
possibility is discussed in detail in ref 4, since it was not considered 
in either the TLR or the original J R M  work, it is ignored here 
and the curves of Figure 2 are extended to 4 = 0.7. 

Second, to provide a point of reference, the dotted line in the 
figure shows the comparison between l.OIPT and PT. Next, the 
P, and PT comparison indicates that, for practical purposes, no 
significant accuracy is lost when the x dependence of G(4,x) is 
completely ignored, provided that the contact value of the P" 
expression used is equal to that obtained when the x dependence 
is not ignored (e.g., provided that eq 8 holds). Incidentally, when 
P , (~ ,x)  and P T ( 4 j )  are plotted together on the same graph versus 
x, their lines cannot be distinguished from each other. On the 
other hand, the PM and Pr comparison indicates appreciable 
differences between the two distributions except at very small 4 
and near 4 N 0.66. 

Finally, one may use the same apparatus to compare different 
R N N ( ~ i )  results. Although R,(4)  and RM(4) expressions may be 
obtained in closed form4,' because the P" distributions used in 
eq 2 with n = 1 do not involve the integration variable y, numerical 
quadrature is needed to obtain RTC and RT values. Further, since 
for the RTC and RT comparison one deals with very small dif- 
ferences, it is important to carry out the integration to very high 
accuracy. It was found that increasing the number of generalized 
trapezoidal integration points above 20 000 geometrically dis- 
tributed values made no difference in the comparisons. The 
integration range extended from y = 1 to a value of y for which 
yP"(+,y) was negligibly small. With N = 691 values covering 
the range 0.01 5 $J~ 5 0 . 7 ,  the following results were obtained: 

(RM,RT) N 4.90 X and xN2(RM,R,) N 3.00 X Thus, 
for the mean nearest-neighbor comparison there is absolutely no 
significant difference between the Rr(+),  RTc($), and R T ( ~ )  
results. Further, because of the effect of integration, the somewhat 

xN2(RTC,RT) E 9.75 X xN2(Rr,RT) N 3.25 X lo", x N 2 -  
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significant differences between PM(4,x)  and P ~ ( 4 , x )  lead to RM 
and RT results which are not significantly different for any 
practical purpose. 

The present results indicate that although GPI. and GT depend 
on 4 differently and GpT should be superior to GT, their differences 
actually lead to P" and R" results which are far too close 

J.  Phys. Chem. 1992, 96, 3864-3870 

together to allow any discrimination. As far as Rm is concerned, 
it makes no significant difference which of the four G(4j)  choices 
is used. Although the best choice for Pm for the CS EOS seems 
to be PTc, the use instead of P, induces only negligible differences 
and has the virtue that the required gr(&l) function is immediately 
available from this or any other EOS of interest. 

Conformational Equilibrium in the Alanine Dipeptide in the Gas Phase and Aqueous 
Solution: A Comparison of Theoretical Results 

Douglas J.  Tobiast and Charles L. Brooks III* 

Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania I521 3 
(Received: November 4,  1991) 

The acetyl and methyl amide blocked alanine amino acid, commonly referred to as the alanine dipeptide, has often been 
used as a model in theoretical studies of backbone conformational equilibria in proteins. In order to evaluate the solvent 
effects on the conformational equilibrium of the dipeptide, we have used molecular dynamics simulations with holonomic 
backbone dihedral angle constraints and thermodynamic perturbation theory to calculate free energy profiles along paths 
connecting four important conformations of the dipeptide in the gas phase and in water. We found that the extended fi  
conformation is the most stable both in the gas phase and in water. The CTax conformation (seven-membered ring closed 
by a hydrogen bond with axial methyl group) is less stable than the f i  conformation by 2.4 kcal/mol in the gas phase and 
3.6 kcal/mol in water. The right- and left-handed a helical conformations, aR and aL, are less stable than the f i  conformation 
by 9.1 and 11.6 kcal/mol, respectively, in the gas phase. However, in aqueous solution the aR and aL conformations are 
less stable than the f i  conformation by only 0.2 and 4.1 kcal/mol, respectively. Thus, we found, as others have previously, 
that there is a marked solvent effect on the backbone conformational equilibrium. We have determined the energetic and 
entropic contributions to the free energies to explain the relative stabilities of the dipeptide conformations in terms of differences 
in peptide-peptide and peptide-solvent interactions. Finally, we have compared our results to the results of several previous 
theoretical studies of the alanine dipeptide. 

Introduction 
The alanine dipeptide' (see Figure 1) has served as a paradigm 

for theoretical studies of backbone conformational equilibria in 
proteins. This is because the dipeptide contains many of the 
structural features of the protein backbone (the flexible 4 and 
J, dihedral angles, two amide peptide bonds whose N H  and C O  
groups are capable of participating in hydrogen bonds with each 
other and with polar solvent molecules, and a methyl group at- 
tached to the a carbon that is considered representative of the 
side chains in all non-glycine or proline amino acids), yet it is small 
enough to be studied thoroughly in the gas phase using high-level 
quantum chemical calculations2 and in aqueous solution using 
classical computer simulations (Monte Carlo (MC) and molecular 
dynamics (MD)) or statistical mechanical integral equation 

There have been several previous studies of the thermodynamics 
of conformational equilibria in the alanine dipeptide in water. 
Mezei et ala4 used MC simulations to calculate the relative sol- 
vation thermodynamics of the C7ax, aR, and PI, (4 = -80°, $ = 
l5Oo) conformations. The full 4,$ free energy surface for the 
dipeptide in water was determined in the studies by Pettitt and 
Karplus6s7 and by Anderson and HermamB Pettitt and Karplus 
used a statistical mechanical integral equation theory, the extended 
RISM theory with a superposition approximation, to compute the 
free energy surface. Pettitt and Karplus also used finite difference 
temperature derivatives of the free energy to determine the cor- 
responding internal energy and entropy surfaces. Anderson and 
Hermans employed MD simulations with specialized sampling 
methods to construct the conformational probability distribution 
from which they derived the free energy surface. 

'Present address: Department of Chemistry, University of Pennsylvania, 
Philadelphia, PA 19104. 

All three studies agree qualitatively in the sense that they all 
show that there is a marked solvent effect on conformational 
equilibria in the alanine dipeptide. Generally speaking, the 
aqueous solvent appears to 'flatten" the 4,J, free energy surface, 
decreasing the free energy difference between conformations that 
differed by large energies on the vacuum surface and lowering 
the barriers separating those conformations. It is interesting that 
the results of Anderson and Hermans for the dipeptide 4,$ 
probability distribution in water actually match the observed 
protein distribution quite well.B This comparison suggests that 
the effects of the solvent on the conformational distribution of 
the dipeptide are similar to the effects of long-range and specific 
side chain interactions on the backbone in proteins. This profound 
global solvent modification of the conformational free energy 
surface affects not only the relative stabilities of the various 
conformations, but also the dynamics and fluctuations within the 
minima and the kinetics of interconversion of different species. 
Thus, we expect the solvent to play an important role in deter- 
mining the mechanism of the folding/unfolding of small peptides 
in solution. Unfortunately, the quantitative details of the results 
of the three studies cited above differ, indicating a subtle model 

( 1 )  The alanine dipeptide is the blocked alanine residue, Ac-ala-NHMe, 
where Ac is the N-terminal blocking group, COCH,, and NHMe is the 
C-terminal blocking group, NHCH,. 

(2) Head-Gordon, T.; Head-Gordon, M.; Frisch, M. J.; Brooks, C. L. 111; 
Pople, J. A. J .  Am. Chem. SOC. 1991, 113, 5989 and references therein. 

(3) Rossky, P. J.;  Karplus, M. J .  Am. Chem. SOC. 1979, 101, 1913. 
(4) Mezei, M.; Mehrotra, P. K.; Beveridge, D. L. J.  Am. Chem. Soc. 1985, 

107, 2239. 
(5) Brady, J. Karplus, M. J .  Am. Chem. SOC. 1985, 107, 6103. 
(6) Pettitt, B. M.; Karplus, M. Chem. Phys. Lefr. 1985, 12Z, 194. 
(7) Pettitt, B. M.; Karplus, M. J .  Phys. Chem. 1988, 92, 3994. 
(8) Anderson, A,; Hermans, J.  Proreins 1988, 3, 262. 
(9) Tobias, D. J.; Brooks, C. L. 111 Biochemisfry 1991, 30, 6059. 
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