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Expressions for the hard-sphere nearest-neighbor probability distribution, Pnn, and the associated
mean nearest-neighbor distance, (rnn), in D=1 to 3 dimensions, which were recently derived by Tor-
quato, Lu, and Rubinstein [Phys. Rev. A 41, 2059 (1990)] are compared with earlier results of Reiss
and Casberg [J. Chem. Phys. 61, 1107 (1974)] and Macdonald [Mol. Phys. 44, 1043 (1981)]. Full
agreement is found for the D =1 results, where an exact solution can be found. But no such solution
is possible for D=2 and 3. The equation of state, Pnn, and (rnn) can all be calculated from
knowledge of the central function Gp, a conditional probability depending on both density and dis-
tance, r, from a particle center. The consequences of several different approximations for Gp are ex-
plored for hard disks and spheres. In spite of the much more approximate Gp functions used by Mac-
donald compared to those of Torquato, differences in the resulting Pnn responses are relatively small
even at high densities, and the differences in (rnn) predictions, the quantities of primary experimental
value, are entirely negligible. Although the original D =2 Torquato expression for Pnn was not prop-
erly normalized, a sign correction restores normalization and leads to close agreement with the earlier
work. For D=3, numerical results show that simple approximation of G3 by the contact value of the
ordinary radial distribution function, a quantity independent of r, yields results for Pnn very close to

those of Torquato, and the corresponding {rnn) results are completely indistinguishable.

PACS number(s): 64.10.+h, 64.60.Cn, 05.70.Ce, 64.90.+b

I. INTRODUCTION AND BACKGROUND

In an interesting paper with a title similar to this work
(1] and in several others [2,3], Torquato, Lu, and Rubin-
stein (denoted TLR hereafter) presented expressions for
the nearest-neighbor distribution function, Pyn (termed
Hp by these authors), for a liquid-phase system of homo-
geneous, impenetrable D-dimensional particles of *“‘diame-
ter” o for D=1, 2, and 3 in the thermodynamic limit. In
addition, TLR used these results to calculate the normal-
ized mean nearest-neighbor distance, Ryn={rnn//o, for
D=1, 2, and 3. Here, these results are corrected where
necessary and are then compared to earlier expressions
not cited by TLR for these important ‘“hard-sphere”
quantities. It should be noted that except for D =1, where
the explicit TLR and earlier results agree, it is impossible
to obtain an exact, analytic expression for Pyn [as a func-
tion of density, p, and distance r (= o) from the center of
a given particle], which can be used to calculate these
dependences explicitly for arbitrary densities. Thus, for
the D =2 and 3 situations discussed below, all results are
necessarily approximate.

For conciseness, it is convenient to express results in
terms of normalized density, ¢ (the packing fraction), and
normalized distance x=r/c (=1). The reduced density
¢ is defined as pVp, where Vp is the volume of a particle
of diameter ¢ and p=N/V is the number density. The
maximum allowed value of p, po, is V26 =2 for D =3, the
hexagonal-solid, close-packed value. The corresponding
maximum value of ¢, ¢, is V27/6=0.74048. In general,

o=1""%p(c/2)2/r(1+(D/2)), (1)
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where I' is the gamma function, and, for notational simpli-
city, an explicit D subscript has been omitted for ¢ and
most other quantities defined below. Since conservation
of probability requires that Pnn(p,r)dr =Pnn(¢,x)dx,
we shall follow TLR and deal hereafter with the dimen-
sionless quantity PNn(¢,x). Its nth moment may be writ-
ten as

Jn,0)= [ x"Prn(o.x)dx @)

When n =0, proper normalization of a probability density
requires J(0,¢) =1. But when n=1, J(1,¢)=Rnn(¢),
the normalized mean nearest-neighbor distance. It is thus
clear that once an expression for Pny is given, the corre-
sponding RnnN follows immediately.

Following earlier work [4], it is possible to write a single
general expression for Pyn for D =1, 2, and 3 in terms of
the functions

F(¢,x)=D2P¢x?~'Gp(9,x) 3)
and

16,)=f"Fls.y)dy. )
Then,

Pan(o,x) =F(¢,x)expl —1(¢,x)]. (5)

It follows that an expression for Py may be found given
any plausible form for the basic function Gp(¢,x), which
itself need be defined only for x = 1 in the present situa-
tion. But it is worth reiterating that for D > 1 no exact
expressions for Gp(¢,x) are known. From the form of the
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Eq. (5) result, Pnn is clearly normalized.

The first general expression for the nearest-neighbor
distribution function seems to be that given in a 1974 pa-
per by Reiss and Casberg [5] for D =3, although a simple
form of it with G,=1 appeared in 1967 [6]. The Reiss-
Casberg expression is consistent with Egs. (3)-(5) but no
explicit form was given for G3(¢,x) lor G,(¢,x)], there
denoted as G and termed the central function of scaled
particle theory [7]. Although TLR [1,2] claimed to be the
first to present explicit results for PnN in one to three di-
mensions, they did not refer to the Reiss-Casberg work
and were unaware of earlier work [4] where explicit re-
sults for PN appeared and where closed-form expressions
for Rnn for all three values of D were derived. Although
TLR gave no general expression for Pnn, their individual
results for D=1, 2, and 3 are consistent with Eq. (5).
Reference [4] was itself carried out without knowledge of
the Reiss-Casberg treatment but led to a result of the
form of Eq. (5) with an exact expression for G(¢,x) and
approximate ones for G1(¢,x) and G3(¢,x).

II. THE CENTRAL FUNCTION Gp(¢,x)

TLR [1] termed G3(¢,x) (denoted by them as Gy =Gp
for x=1) a conditional pair distribution function and
defined it as “the radial distribution function for a special
binary mixture of spheres, namely, one for a single test
particle of radius r — o/2 (i.e., test particles at infinite di-
lution) and an actual inclusion of diameter o at contact,
i.e., when such particles are separated by the distance r.”
The definition of G3 given earlier by Reiss and Casberg
[5] is essentially equivalent. The function corresponding
to the present F(¢,r)dr was defined by TLR [1] as the
probability that, given a sphere of radius » encompassing
any particle centered at some arbitrary position but empty
of particle centers, particle centers are contained in the
spherical shell of radius r and thickness dr surrounding
the central particle. The corresponding arbitrary-D prob-
ability introduced in Ref. [4], Py (r)dr, was defined as the
probability of finding a particle within the spherical shell
of thickness dr and inner radius  (measured from a parti-
cle center). In this definition, the conditional character of
the probability, incorporated by Reiss and Casberg and
TLR, does not appear. This approximation was addressed
by Kenkel, Simons, and Hermans [8] using a Monte Carlo
simulation, and the conclusion was reached that the
neglect of conditionality was of consequence only for very
small, finite systems.

There are three general equations [5,7,9-11] which
must be satisfied by an accurate expression for Gp(¢,x).
The first requires that

Gp(p,1)=g,(9,1), (6)
where g,(¢,1) is the contact value of the ordinary D-
dimensional radial distribution function. Now define the
pressure equation of state as Z(¢) =P/pkT, where P is the
pressure of the system and k and T have their usual mean-
ings. Then the two remaining equations are

Z(@)=1+22""9g,(p,1) @)
and
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Gp(p,)=Z(9). ®)

For the D =1 situation, matters are particularly simple;
then the relations G(¢,x) =g, (¢,x) =(1 —¢) ~! are ex-
act and independent of x(=1) [5,10]. In addition, for
D=1 F(¢,x)=2¢/(1 —¢) with ¢ =po [4]. In the earlier
work [4], approximate expressions for G, and G; were
based on extrapolation of these D=1 relations to higher
dimensions. They made use of expressions of Andrews
[12,13] for the available relative free volume of a particle,
and thus the formulas for Gp with D =2 and 3 involved no
x dependence and should become less adequate as D in-
creases.

III. CONSEQUENCES AND COMPARISONS
OF DIFFERENT Gp CHOICES

Although Gp(¢,x) is indeed the central function of the
present area since knowledge of it allows one to calculate
PnN, RNN, and the equation of state, this centrality
should not be overemphasized. Both Gp(¢,x) and Pnn
are primarily important because they lead to quantities of
experimental interest such as Rnn and the associated
equation of state. But passing from knowledge of these
latter quantities down to expressions for Pyn and Gp is an
inverse problem and usually is quite ill posed. Thus, even
if an exact expression for Rnn(¢) or Z (¢) were known, it
would not allow one to write an exact one for Gp(¢,x). It
should not, therefore, be very surprising to find that ap-
preciable differences between alternate choices for
Gp(¢,x) may lead to negligible differences in the associat-
ed Rnn functions.

Here we shall consider the consequences at the Pnn
and Rnn levels of several such Gp(¢,x) choices. Ever
since the scaled particle theory of Reiss, Frisch, Lebowitz,
and Helfand [7,10], it has been conventional to approxi-
mate G,(¢,x) and G3(¢,x) by means of a truncated series
inx "' (orr 1Y), such as

Gp;j(9,x)=a;(9) +b;(p)x ~'+c;(p)x 72, 9

where the index j will be used below to distinguish
different choices.

For D=2, where the maximum hcp value of ¢ is
7/(2/~/3), we shall compare the original Ref. [4] predic-
tions with those of TLR. Then, a;(¢) =1/[1 —1.39734¢
+0.1713092+0.16947¢°1, b,(¢) =0, and ¢,(¢) =0 from
Ref. [4]. The TLR result, taken directly from scaled
particle theory [10] and satisfying Egs. (6), (7), and
(8), has ay(¢)=[1—¢]1"2 by(¢)=—1(¢/2)as(¢), and
c2(¢) =0. A comparison of the resulting Pnn(0.5,x) re-
sults is shown in Fig. 1. Unfortunately, there is an in-
correct sign in TLR’s Egs. (5.13), (5.14), and (6.7), re-
sulting in incorrect formulas for Pyn and Rnn and in
inaccurate curves in the TLR Figs. 5, 10, and 11. In the
present Fig. 1, the TLR curve was calculated from their
original expression and the CTLR one from the corrected
formula. We see that there are only small deviations be-
tween the JRM (Ref. [4]) and CTLR curves here, even
though the JRM G,(¢,x) expression has no x depen-
dence. Further, differences are even smaller for smaller ¢
values. Comparison of RN predictions will be presented



RAPID COMMUNICATIONS

R2990 JAMES ROSS MACDONALD 46
12 3.5
z 73 Z ]
“10] 0.,
a1 »=0.2 3.0 g
81 \“ 5 e ] A %RFQA: 2DD
4 L0 T S, LR: 2
] ——— JRM ] ___ CTLR: 2D
4 e MC: 2D DATA
1 / . — — JRM: 3D
204 /£ T T TLR: 3D __ -
181 4/ T
_ /,,’//,
147
OSTT0 40 | eo
/¢
FIG. 1. The normalized nearest-neighbor particle distribu- FIG. 2. The normalized mean nearest-neighbor distance

tion function Pnn(9,x) vs x=r/c for a system of hard disks of
diameter o for a value of the dimensionless density variable, ¢,
of 0.5. Here JRM designates results following from the analysis
of Ref. [4]; TLR, those of Refs. [1,2]; and CTLR, a corrected
version of the TLR results (see text).

later.

For D=3, where TLR based their best results on the
Carnahan-Starling equation of state, we shall consider
four approximations for G3(¢,x), progressing from least
appropriate to most appropriate. These four are (1) the
original formula from Ref. [4] (2) the Carnahan-Starling
g-(¢,1) function (3) the TLR expression, and (4) an
improved version of (3). Then a,(¢)=1/[1—%
+0.9736¢2], b1(¢) =0, and c,(¢) =0; a2(p) =1 —¢/2)/
(1—9¢)3 b2(s)=0, and c2(p)=0; a;3(¢)=U+¢)/(1
—0)% b3(9)=—9B+0)/2(1—9)3%, c3(p)=9¥/{201
—¢)%; and aq(@)=U+0+92—0°)/(1—0)3, by(p)
= —)33;;>(1+¢)/{2(1 —9¢)%, and c4(9)=02(1+2¢)/{201
—0)3.

First, it is clear that the G3(¢,x) expression of Ref. [4]
does not satisfy Eqs. (6), (7), and (8) for the Carnahan-
Starling equation of state. For the second choice, where
2-(9,1) =a3(9), Eq. (8) is not satisfied since there is still
no x dependence present. But now the initial value of
PnnN, Pan(o,1) =F(¢,1), is correct. The TLR choice also
does not satisfy the Eq. (8) condition even though the
equivalent of this relation appears in their work. The
fourth choice rectifies this problem so that the resulting
G3(¢,x) satisfies all three of the necessary equations.
Note, however, that the result is still approximate, both
because of imperfection in the Carnahan-Starling equa-
tion and because of truncation of the series in x .

But what differences do these various choices make?
First, differences at the Pnn level are reduced by the nor-
malization condition, one that ensures exact agreement
between any two resulting Pnn’s for at least one x value.
Second, detailed comparison of these four choices [14,15])
shows that much of the necessary x dependence arises
from the x?~! term of Eq. (3) and that the x dependence
of Gp(¢,x) plays a lesser role. Such a comparison indi-
cates that the difference in the TLR and improved TLR
PnN’s is wholly negligible. The difference between the

Rnn(9) vs 1/¢ for a variety of 2D and 3D choices for the central
function Gp(¢,x). The points identified as MC are Monte Car-
lo values taken from Ref. [8].

JRM and TLR choices is not negligible, however, and a
plot similar to that of Fig. 1, again for ¢=0.5, shows
somewhat more overall discrepancy between the PnnN
values than that apparent in the D=2 results. Finally,
comparison of the second and third choices results in PnN
curves which are very nearly indistinguishable over the
range of x of importance. Thus, even at this level, for
most situations it will be sufficiently accurate to use
g-(¢,1) in place of Gp(¢,x). Note that ¢=0.5 is at the
upper end of the fluid branch of the assembly of particles
(freezing point at ~0.49); different treatments [16,17]
would be needed for larger ¢ values; and agreement will
be even closer for smaller ones.

The Rnn predictions following from the various D =2
and 3 choices discussed above are shown in Fig. 2. Be-
cause RnN involves another level of integration, one
would expect even smaller differences between Rnn’s than
PnnN’s, as is indeed evident in the figure. These results
also properly apply only for ¢ values below the freezing
point. The D=2 Monte Carlo points in the figure are
from Ref. [8]. The figure shows that the very small
differences between the JRM predictions of [4] and those
of TLR are of negligible importance at the Rnn level, the
level of the analysis of most practical value. For D=2,
there is very good agreement between the Monte Carlo
points and the JRM and CTLR ones, except at the lowest
densities. Even the TLR curve, based on a PNn expres-
sion which is not properly normalized, is quite close to the
more accurate results. For D =3, curves for the G 3 choice
numbers 2 and 4 have been omitted since they are indis-
tinguishable from the TLR (choice 3) curve.

The original aim of Ref. [4] was to obtain accurate ex-
pressions for Ryn. The present comparisons show that
this aim was indeed attained in spite of the severe approxi-
mations present in the G, and G3 choices. Finally, the
present work demonstrates that the use of the contact
value of the ordinary radial distribution function as an ap-
proximation for Gp will generally lead to good approxi-
mations for Pnn and to excellent ones for RnN.
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