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Two different, recent methods for complex nonlinear least squares fitting of the small-signal ac response of dielectric and par- 

tially conducting systems are described and compared. These methods, which are also appropriate for fitting mechanical relaxa- 

tion, nuclear magnetic relaxation, and light-scattering complex data, simultaneously fit the real and imaginary parts of the data to 

an appropriate model. For small-range response data, the weighted, extended least squares, vector-minimization approach (Pro- 

gram LEVM) and the much more complicated unweighted matrix-determinant method are shown to yield indistinguishable 

results. For small-range data measured on a dielectric polymer, weighting is found to be unnecessary. Verification of some of the 

results is accomplished by Monte Carlo simulation. For large-range data sets, such as those usually arising from electrical response 

measurements on ionic or electronic conductors, data variances generally vary widely (high heteroscedasticity). Some kind of 

weighting is then essential in order to obtain low-bias fitting-model parameter estimates with small estimated standard deviations. 

This is demonstrated by fitting wide-range data for the admittance of hydrogen-doped lithium nitride over a wide frequency range. 

The results of fitting with the several different weighting schemes available as choices in the vector-minimization approach are 

compared and discussed. Such fitting was carried out using the general-purpose program LEVM, which runs rapidly on a PC/AT 

or equivalent machine. It is the only availabe complex nonlinear least squares fitting program which can use the data to produce 

least-squares estimates of the parameters of an error-variance (weighting) model as well as those of the fitting model. Thus, the 

data themselves can be used to determined the most appropriate weighting. An excellent fit of the Li,N data was obtained, dem- 

onstrating that iterative reweighting, using variable weights proportional to the magnitude of the real and imaginary parts of the 

fitting-model function raised to a power near unity (a form of extended least squares), was the most appropriate way to treat the 
high heteroscedasticity of the data and to obtain minimum-bias, high-precision parameter estimates. 

1. Introduction and background 

The measurement and analysis of the small-signal 
ac frequency response of dielectric and partly con- 
ductive systems has come to be called impedance 
spectroscopy (IS) in recent times [ 11, although a 
more general designation is immittance spectros- 
copy. Here “immittance” represents any of the four 
levels important in IS: complex dielectric constant 
(K* z K’- ix”) or complex capacitance level, admit- 
tance level (YE Y+iy), impedance level 
(Z=Z’+iZ”), or complex modulus level 
(M=M’+ti”), where i= (- 1)“.5. The analysis of 
data at any of these levels is a crucial part of IS. 

Since the work of Sheppard et al. [ 2,3 ] on dielec- 
tric response, the preferred method of analyzing IS 
data has been the use of complex nonlinear least 
squares fitting (CNLS). In such fitting, the entire 

immittance function (real and imaginary parts, or 
modulus and phase) is fitted to a model or equiv- 
alent circuit thought to represent the response. It has 
been found that CNLS fitting yields much more 
quantitative results than does graphical analysis and 
is more appropriate than fitting the real or imaginary 
parts of an immittance function separately to a re- 

sponse model. In CNLS fitting, one obtains a single 
set of parameter estimates based on all the data. In 
contrast, separate real and imaginary fitting yields 
two such sets of parameter estimates, each based on 
only part of the data. These results are often difficult 
to reconcile and are less precise than the CNLS ones 

111. 
Here, I first compare the results of using two quite 

different CNLS methods for the analysis of a typical 
set of narrow-range dielectric data [ 4,5 1, and I show 
what can also be learned with Monte Carlo (MC) 
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simulation. Then, the simplest of the two CNLS 
methods is used to analyze conductive-system ad- 
mittance data of extremely wide range, a common 

condition for such data, but one whose proper anal- 
ysis requires special care because data variances are 
usually not constant and can vary greatly (termed a 
high heteroscedasticity situation by statisticians). 

zation of the iterative ELS approach, the actual non- 
linear least squares minimization procedure used at 
each iteration is based on a method of More [ 161. 

2. Weighting schemes 

In CNLS fitting there are two dependent variables, Let y, (with i=l, 2, . . . . N) denote experimental 
both depending (wholly or in part) on the same set data (usually complex) and define F,, E F( x,, 6,) and 
of model parameters. Although modulus and phase Fl= F(x,, 0) as the ith elements of the exact and ac- 
data may alternatively be used, here I consider only tual fitting models, respectively. They may apply at 
the Cartesian representation of complex variables, any of the four IS levels. Here N is the number of 
where the two dependent variables are the real and data points; x, is an independent variable value (an- 
imaginary parts. Complex nonlinear least squares gular frequency); 00, is the exact value of the jth pa- 
fitting was first applied in the dielectric area by rameter; and 0, is an estimate of 0,,. We use the same 
Sheppard et al. [2]. Soon thereafter, a somewhat notation for estimates from a single fit and from MC 
simpler approach, applicable for data at any im- simulations. The number of free fitting parameters 
mittance level, was presented by Macdonald and is P. We thus assume that the form of the fitting 
Garber [ 61. This method was further described and model is appropriate for the data (negligible system- 
developed by Macdonald et al. [ 71, Boukamp [ 8 1, atic errors) but that the 0oj’s are unknown and are to 
Macdonald and Potter [ 9 1, and Macdonald [ 10,111. be estimated by CNLS. For a single fit, the relative 
Such work resulted in a very general CNLS program, error of the jth parameter is ej= (0,/l&,) - 1. The rel- 
LEVM, which is available in both source-code and ative bias is then the average of a large number of 

executable form at nominal cost (no profit) from the such e, values obtained from fits of different data sets, 

author’s department. This program was used to ob- each with different random errors but all drawn from 

tain most of the present results. It runs on a PC/AT the same error distribution. The bias, a measure of 

machine, requires less than 400 KB of random ac- how accurate parameter estimates can be, on the av- 
cess memory, and can fit typical IS data in a minute erage, thus must usually be estimated by MC 

or less. simulation. 
The current version of LEVM, V. 5.0, employs a 

method of solving the nonlinear least squares equa- 

tions of the problem based on an approach called ex- 
tended least squares (ELS) [ 12- 15 1. This approach 
will not be described in detail here since its descrip- 
tion exists in the literature and is embodied in LEVM. 
ELS involves a form of iterative reweighting and was 
originally developed for fitting single-response (e.g., 
real) data. Except for its recent generalization and 
use in the IS area [ 111, it has been very little used, 
even for real data, because it cannot be implemented 
with most standard statistical packages [ 141. Most 
real-data ELS fitting results, such as those of Beal and 
Sheiner [ 121, have only been obtained for data of 
limited range, and their particular ELS approach does 
not use geometrical averaging of weights, a vital ele- 
ment in LEVM and one which greatly improves it- 
erative convergence during the fitting procedure for 
either real and complex data. In the present reali- 

The proper choice of weighting is crucially im- 
portant in allowing one to obtain a good CNLS fit of 

data of wide range and high heteroscedasticity. Such 
a tit should have minimum bias and small uncer- 
tainties of the parameter estimates obtained. Be- 
cause IS fitting models are nearly always nonlinear 
in some of their parameters, there will always be some 
bias, but it can be minimized by using the most ap- 
propriate weighting, and the relative bias will often 
then be negligible [ 111. In general, CNLS fitting re- 
quires both a fitting model and a weighting (vari- 
ance) model [ 11,15 1. The variance model is used to 
account as adequately as possible for the actual (un- 
known) random errors in the data and to reduce the 
effects of their heteroscedasticity if the variances of 
fitting residuals are not constant. In the IS area, data 
errors are often either approximately additive or are 
of approximately constant-percentage character, with 
proportionality constant u,. To account for more 
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general forms of random errors, let us assume that 

the individual data errors, E, = 6: + if;, are of the form 

(1) 

t:‘=arP~(O,Zi)+a,IFb’,I~‘OP,(O,Z,)) (2) 

where, for example, ap( 0, Ii) =P(O, cu:Z,) is a ran- 
dom sample from an independent, uncorrelated 
probability distribution of zero mean and standard 
deviation a,. Although for actual data the ENS are all 
unknown, in MC simulations they can be con- 
structed to be of exactly the above forms. By the 
choices of the four Ps we can control the degree of 
correlation between the various components. Note 
that when 6,= 0 the errors the additive, while if (Y,= 0 
and &,= 1 they are of proportional form. 

The general variance model used in LEVM, which 
involves the parameters { and U of table 1, can ac- 
count for errors of the above character with both (Y, 
and gr simultaneously non-zero [ 111. Here, how- 
ever, we shall need to deal only with those specific 

weighting choices (i.e., separate variance models) 
where either (Y, or a, is zero. Weighting is just a trans- 

formation of both data and model values aimed at 
reducing the range of their difference after weighting 
(weighting residuals) and thus the heteroscedastic- 
ity of the problem. In the present work, I shall com- 
pare the effects of various weighting possibilities for 
both the small- and the large-range data sets men- 
tioned above. Different weightings arise from dif- 
ferent transformation choices. Define the ith trans- 
formed, or weighted, residual as 

R,rR;+iR; 

E [{Y:-F(xi, e)‘)lT:l 

+i[{y:‘-F(x,, e)“}/T;] . (3) 

For simplicity, omit the real and imaginary desig- 

nations and in the equations below take, for exam- 
ple, T, as either T: or T: as appropriate. The vari- 
ance model is defined by the choice of the variances 
Tf and the weights by B’iE l/T: [ 11,151. Since it 

is important in ELS to use geometric averaging of 
weights, finally express Ti in terms of a quantity T, 
as 

for specific choices of T, # 0. We can now define the 

various weightings of interest by the choice of the 
r,‘s. When not shown separately, these choices will 
always be of the same form for the real and imagi- 
nary components. 

The six weightings of present interest are deter- 
mined for all i by the choices listed in table 1. CNLS 
fitting is simplest for unity weighting, UWT (equiv- 
alent to no weighting at all), data-proportional 
weighting, DPWT, and data-modulus weighting, 
DMWT because the 7;‘s are independent of param- 
eter values for these choices. With such weighting, 

neither the geometric-mean normalization of eq. (4) 
nor ELS is needed, and these were the only weight- 
ings available for CNLS studies until the 1988 in- 
troduction of ELS in the LEVM program. But unity 
weighting is usually inappropriate for wide-range 
data, while data-proportional and data-modulus 
weighting lead to much greater parameter bias than 
does function-proportional weighting, FPWT, when 
proportional weighting is appropriate [ 111. Since the 
last three weighting types listed in the table depend 
on the parameter values, which themselves vary dur- 
ing the least-squares iterations, they use ELS and eq. 
(4). By using function power-law weighting, FPLWT, 
where the r parameter of the weighting model is de- 

termined along with the fitting model parameters by 

Table 1 

Some weighting choices important in CNLS fitting of impedance spectroscopy data. (See eqs. (3) and (4).) 

Unity weighting 

Data-proportional weighting 
Data-modulus weighting 

Function-proportional weighting 

Fixed-function weighting 

Function power-law weighting 

UWT 

DPWT 
DMWT 

FPWT 

FFWT 

FPLWT 

r,=U=l 

r, =Y, 
7’=7”C [(y;)*+ (y”)2]0.5 

7: = ( i, 1 

7,= IF,]< (cfixed) 

5,= IF,/< (cfree) 
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minimization of an objective function, one allows 
the data themselves to determine the character of the 
most appropriate weighting, a very valuable feature. 
For example, if the estimate of 5 is statistically in- 
distinguishable from unity, it is very likely that one 
is dealing with a constant-percentage situation, while 
if the estimate is close to 0.5, the data involve Pois- 
son statistics, such as one finds for radioactive decay 

measurements. 

3. Comparison of methods: Objective functions 

A principal difference between the multiresponse 
CNLS method of Bates and Watts [ 5 1, denoted BW, 
and the method described above and instantiated in 
LEVM is in the objective function employed: the 
function of the residuals which is minimized to ob- 

tain a least-squares solution. That used in LEVM and 
in all previous CNLS work except that of BW is 

O(& v, 0 = ,$, [(KY+ (W21 . (5) 

As this expression shows, we minimize with respect 
to the parameters (both those of the fitting model 
and, when appropriate, those of the variance model, 
U and c), the sum of squares of the real weighted 
residuals and the imaginary weighted residuals with 
no cross-products. Thus, the squared-residual vector 
is of dimension 2N. By contrast, BW [ 5 ] form a NX 2 
matrix of unweighted residuals, 2, whose left col- 
umn involves real residuals and whose right column 
involves imaginary ones. They then minimize the 
2 X 2 determinant 1 ZTZl , where the T denotes the 

transpose. 
Since both the above ELS vector method and the 

matrix approach yield maximum likelihood esti- 
mates, an important question in how large are the 
differences in the estimates? The matrix method leads 
to much added solution complexity, but it is differ- 
ent in that the objective function involves cross- 
product terms between real and imaginary residuals. 
Although no such terms occur in eq. ( 5), LEVM in- 
corporates other ways of achieving coupling when 
needed. In favorable cases, the added BW terms 
probably speed convergence to an optimum solu- 
tion, but there is also a problem not occuring in the 
LEVM vector approach, that of possible lack of pos- 

itive-definite matrices in the BW analysis [ 5 1. An- 
other difference in the approaches is that D, the 
number of degrees of freedom, is N-P for the BW 
matrix method and is 2N-P for the vector approach. 

4. Fit quality measured and optimization 

The variance of the fit, S:, is calculated from the 

final converged value of 0( 19, U, 0, Oc, in eq. ( 5 ). 
When convergence of the iterative least squares pro- 
cedure is attained, Oc is formed using the final val- 
ues of the F,‘s and T,‘s, and SC is given by 

S$=Dp’AO,, 

where 

(6) 

(7) 

In addition, it is sometimes useful to calculate not 
only S,, the standard deviation of the complex fit, 
but also the standard deviation associated with the 
real part of the data, SFR, and that associated with 
fitting the imaginary part, S,,. Comparison of the two 
values then yields a useful measure of how well the 
two separate parts fit the model. For good data with 
the proper fitting model and weighting, they should 
be essentially equal. The associated variances are de- 
fined as 

%=(N-P)-‘A i$1 [(K)2l 

and 

St, = (N-P)-‘A 5 [ (R:‘)2. 
,=I 

For all weights involving the model function, F,, S, 

is an excellent estimate of (T,, the standard deviation 
of the random error distribution, eqs. ( 1) and (2). 
Although LEVM allows one to obtain S,, from a 
separate fit of the real part of the data and S,, from 
a fit of the imaginary’part, their comparison is most 
useful when they are obtained from a fit of the real 
and imaginary parts of the data together, the usual 
situation. 

When S,, and S,, are unequal, we can invoke a 
simple iterative optimization procedure (denoted by 
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-0, as in UWT-0), which produces some coupling 

in the tit between the real and imaginary parts of the 
data and usually improves the solution. It consists of 
the following sequence: After convergence of the ini- 
tial fit iteration, all the resulting real weights are 
multiplied by a single factor and all the imaginary 
ones by a related factor, both selected to bring S,, 
and S,, closer together. These modified weights are 
then used in a subsequent fit and the procedure it- 
erated until near equality of S,, and SF1 is obtained. 

5. Analysis of Havriliak-Bates-Watts complex 
dielectric constant data 

A CNLS analysis of data on the complex dielectric 
constant, K, for the polymer s-PMMA has appeared 
recently in the statistical literature [ 4,5]. The unity- 
weighting analysis used the BW multiresponse ap- 
proach discussed in section 3, a method developed 
entirely independently of earlier CNLS work. The 
fitting model employed was the five-parameter em- 
pirical Havriliak-Negami ( 1967) function ex- 
pressed by BW in the form 

=K,+(Ko-K,)/[1+(i0,e-8T)a]B, (8) 

where o, is an angular frequency, and the possible 
ranges of (Y and p are O,<c-u<l and O,<p<l. The 
expression eesr may be identified with a relaxation 
time, r, but should, for dimensional consistency, be 
written as roepeT, where r,, is held fixed at unit value 
but must have dimensions of time. 

The data analyzed by Havriliak and Watts [ 41 and 
by BW [ 5 ] were originally obtained by Havriliak and 
Negami [ 17 ] and were corrected, in the later work, 
to remove systematic errors. These data involve 21 
points and cover the small ranges of 1.5 for the real 
part and 2.3 for the imaginary part. Since the range 
is so small, there should be little difference between 
unity-weighting and function-proportional-weight- 
ing fit results. Nevertheless, it will be instructive to 
compare them. In table 2, line 1 summarizes the fit 
results obtained by BW using their multiresponse 
method. For quantities of the form Bf (SD),) in the 
table, 8, is a parameter value estimate and (SD), is 
its approximate (linearized) standard deviation es- 
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timate. Finally, because S, values obtained with un- 
ity weighting and with function weighting are not di- 
rectly comparable, we have included in the table the 
values of SNE, a negative entropy (logarithmic) mea- 
sure of lit that can be so compared [ 9,181. Its range 
is 0 to 1, and it approaches zero as all the squared 
(weighted or unweighted) residuals, R f , approach 
equality. Thus, a minimum value of S,, is usually 
desirable, but we do not minimize it directly here. 

Now let us assume that the BW results of table 2, 
line 1, are good parameter estimates. How well do 
our results compare? Our unity-weight results of line 

2 are generally close to those of BW but show slightly 
larger uncertainties. But our optimized unity weight- 
ing results, UWT-0, are exceedingly close to the BW 
ones and have slightly smaller uncertainty estimates. 
Thus, our simpler, quicker lit is quite satisfactory 
here. Line 4, for function-proportional weighting, 

shows a large difference between SFR and SFI, a dif- 
ference reflected in the large value of S,,. But op- 
timization, line 5, leads to considerable improve- 
ment and to smaller estimated SDS than in the BW 
analysis. 

A fit with optimized function power-law weighting 
(FPLWT-0) led to a (estimate of 0.2545 10.49, thus 
poorly defined. In this notation, 0.2545 is the pa- 
rameter estimate and 0.49 is its relative standard de- 
viation, (SD,)/c. If, in spite of the poor definition 

of r, we take it fixed at the above value in a run with 
fixed-function weighting, FFWT, line 5 in table 1, 
we obtain the results shown in line 6 of table 2, re- 

sults which indicate that taking l fixed at its pre- 
dicted value makes the SFR and S,, values approach 
each other closely. The parameter estimates are now 
appreciably nearer to the BW ones. The finally fit- 
ting run, line 7, also with 5=0.2545, shows that op- 
timization has little further effect since the SFR and 
S,, values are already close without it. In addition, 
the approximate parameter correlation matrix pre- 
sented by BW and that found in the line-7 run are 
very nearly identical. 

When different ways of fitting a single data set are 
compared, one can always ask the question: How 
typical are the results? Perhaps with a different set 
of data taken on the same material under conditions 
as similar as possible, comparison might lead to dif- 
ferent conclusions. When many such sets are un- 
available, the usual case, uncertainty of this type can 

generally be resolved by means of a Monte Carlo 
simulation study. Thus, I carried out such a study 
here using optimized unity weighting. The BW pa- 
rameter values of line 1 were first used to generate 
error-free data from the model; these values were then 
employed as the basis of the MC study. For each MC 
replication, independent errors of the form of eqs. 
( 1) and (2) were then added to the error-free val- 
ues. Although all these errors were drawn from nor- 
mal error distributions, it was found, as expected, 
that using uniform error distributions led to little 
difference in the parameter estimates [ 151. Suffi- 
cient MC replications were used to ensure that the 
last figure in each quoted result was significant. 

In order to obtain a MC S, value close to that of 
line 3, I used in eqs. ( 1) and (2) a,=0 and an (Y, 
choice of 0.00322, which led to &=0.00314, as 
shown in table 2, lines 8 and 9. Further, MC results 
were obtained for two choices of the PI and P3 error 
distributions (and their individual elements): (a) 
P, and P3 entirely independent, and (b) P, = P3. Thus 
the correlation between real and imaginary errors, 
pRI, was statistically zero for choice (a) and unity for 
(b). Relative bias values depended only slightly on 
these choices and were all of negligible magnitude: 
less than 10e4 in magnitude for the first two param- 
eters, less than 3 x 1 OS4 for the second two, and about 
+ 1.6~ lop3 for the parameter /I. 

Lines 8 and 9 in table 2 list results for the esti- 

mated standard deviations of the parameter distri- 
butions, Sjc (termed (SD), above for a single tit), 
with each value based on averaging 2~ lo5 individ- 

ual tit results. Again, we see very little dependence 
on the correlation between real and imaginary er- 
rors. Further, comparison of the Sjc values in line 8 
with the corresponding SD values of line 2 shows re- 
markable agreement, while comparison of such 
quantities in lines 9 and 3 indicates somewhat less 
agreement. The correlation coefficients between the 
real and imaginary unweighted residuals for the lines 
2 and 3 tits were about -0.21 and -0.22, respec- 
tively. When one takes into account that all the im- 
aginary data values are negative, the signs of these 
values should be changed for comparison with error 
correlations. All these results suggest that the cor- 
related Havriliak-Negami data set is indeed repre- 
sentative of the actual experimental situation (e.g., 
it contains errors whose distribution is well approx- 



J.R. Macdonald /Impedance-spectroscopy data analysis methods 103 

imated by a normal distribution) and that one can 
have confidence in the results of the present com- 
parison of fitting methods. 

An examination of the estimated SD’s of all the 
parameter estimates of table 2 suggests that there is 
no particular basis to prefer one of the line-3, line- 
6, or line-7 solutions to the others. Although fixed or 
variable weighting is clearly unnecessary for these 
small-range data, it is essential for IS data with large 

ranges. Thus, generalization of the BW procedure to 
include various weighting schemes such as those used 
here, or generalization of the present approach based 
on weighted residuals with a residual matrix rather 
than a residual vector, might be helpful to ensure 
convergence from poorer parameter starting esti- 
mates than possible in the present procedure. It is 
not clear, however, that, given convergence to a least- 
squares condition, such a generalized procedure will 
lead in a practical sense to any better parameter es- 
timates. Nevertheless, I hope to investigate this mat- 
ter further in future. 

6. Analysis of large-range admittance data 

Electrochemical IS data are usually experimen- 
tally determined as either impedances or as admit- 
tances (impedance level or admittance level). Given 
data at one of these levels, they can be directly in- 
verted to yield results corresponding to the other 
level. In order to avoid bias introduced by inversion, 
however, CNLS fitting should preferably be carried 

out at the measurement level. 
Since it is worthwhile to compare both small-range 

and large-range CNLS data fitting using the present 
methods, the 45 ‘C admittance data for a hydrogen- 
doped lithium nitride (Li,N) single crystal with 
evaporated gold electrodes [ 19 ] were analyzed. For 
future reference and for use with other fitting meth- 
ods which may be developed in the future, the Li,N 
data are listed in table 3 and involve 49 logarithm- 

ically distributed frequencies extending from 1 Hz to 

277 300 Hz. 
Define the ith admittance data value as yj =y: + 

Table 3 
Real and imaginary admittance components (Siemens) versus frequency,f; in Hz for a lithium nitride single crystal at 45°C [ 19 ] 

f Y’ Y” s Y’ Y’? 

1.000 0.615300E-05 
1.287 0.775400E-05 
1.663 0.9875OOE-05 
2.148 O.l27330E-04 
2.775 O.l64690E-04 
3.586 0.2 13750E-04 
4.633 0.278870E-04 
5.985 0.363 170E-04 
7.732 0.472720E-04 
9.99 0.612220E-04 

12.87 0.787520E-04 
16.63 O.l00867E-03 
21.48 O.l28417E-03 
21.75 0.16 1130E-03 
35.86 0.1997518-03 
46.33 0.243680B03 
59.85 0.29724OE-03 
77.32 0.352510E-03 
99.9 0.413470E-03 

128.7 0.475800E-03 
166.3 0.5421 lOE-03 
214.8 0.610120E-03 
211.5 0.61713OE-03 
358.6 0.744560E-03 
463.3 0.813960E-03 

0.209760E-04 
0.260300E-04 
0.3231 lOE-04 
0.3988008-04 
0.491020E-04 
0.60 1400E-04 
0.730640E-04 
0.883530E-04 
O.l06032E-03 
O.l26425E-03 
O.l49059E-03 
0.1143998-03 
0.202238E-03 
0.23 1336E-03 
0.26 1172E-03 
0.29363OE-03 
0.321590E-03 
0.350160E-03 
0.3766008-03 
0.404370B03 
0.43127OE-03 
0.454380E-03 
0.482420E-03 
0.5 14960E-03 
0.551330E-03 

598.5 0.8822 l OE-03 
773.2 0.954670E-03 
999 O.l03412E-02 

1287 O.l12014E-02 
1663 0.1221218-02 
2148 O.l33692E-02 
2175 O.l47638E-02 
3586 O.l64006E-02 
4633 O.l84047E-02 
5985 0.208200E-02 
7732 0.239430E-02 
9990 0.273610E-02 

12870 0.318163B02 
16610 0.368816E-02 
21460 0.42889OE-02 
27730 0.49921 lE-02 
25820 0.581406E-02 
59789.9 0.763076E-02 
77240 0.856872E-02 
99800.1 0.9458 13E-02 

128600 O.l02969E-01 
166100 0.1098678-01 
214600 O.l15701E-01 
277300 O.l20370E-0 1 

0.600950E-03 
0.66324OE-03 
0.742810B03 
0.834489E-03 
0.955812E-03 
O.l09845E-02 
O.l26812E-02 
O.l46794E-02 
O.l69870E-02 
O.l96115E-02 
0.224461E-02 
0.258351E-02 
0.292923E-02 
0.326404E-02 
0.364087E-02 
0.396094E-02 
0.421096E-02 
0.443093E-02 
0.435872E-02 
0.415920E-02 
0.384986E-02 
0.353381E-02 
0.306196E-02 
0.264509E-02 
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. :’ and the corresponding impedance value as 
F-I E zIszi+iz” I . The ratios of maximum to mini- 
mum values of z’, I z” 1, y’, and y” are, respectively, 
1956, 211, 164, and 3290. Since the data have al- 

ready been analyzed by Macdonald et al. [ 19 ] using 
CNLS with data-proportional weighting and the re- 

sults interpreted in terms of the various conduction 
processes present, I restrict attention here to the re- 
sults of new more appropriate fits of the data. 

For complex dielectric data, one usually deals with 
a single physical process (represented, for example, 
by the Havriliak-Negami function of eq. ( 8 ) ), which 

allows a single, relatively simple, fitting function to 
be employed. For partially conducting materials, 
however, four or more separate processes may be 
present, making the determination of the most ap- 
propriate fitting model much more difficult. In the 
earlier work on the present Li3N data, the fitting 
model was an equivalent circuit with seven free pa- 

rameters, and it led to S,- 0.07. Using the more ap- 
propriate circuit of fig. 1, which involves eight free 

parameters, the best fit (see below) led to a & more 
than 25 times smaller. In this circuit - Z+ - desig- 
nates the constant phase element (CPE), a response 

function whose admittance may be written as A (io)“, 
where A and n are free parameters and 0 < n =G 1. 

0.015 

>L- 

0.010 

0.005 

0.000 
O.( 

i 

4 

$ -I 
300 0.005 0.010 0.015 

Yi’ 
Fig. 1. Top: circuit used for fitting Li3N admittance data and their 

inverses. The symbol - >> - designates a constant phase ele- 

ment (CPE) Bottom: complex-plane admittance plots of the L&N 

data and of its optimized fixed-function weighting (FFWT-0) 
CNLS fit of line 6, table 4. The arrow indicates the direction of 

increasing frequency. 
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Although the primary fitting here will be carried 

out at the measured admittance level, it is of interest 
to examine how much results are changed by the in- 
version from the admittance level to the impedance 
level. Thus, table 4 contains results for various in- 
dividual tits of the Li3N data: those at the admit- 
tance level in lines l-6 and those for the impedance 
level in lines 7-l 2. As usual, resistances are in Ohms, 
capacitances are in Farads, and the CPE A values 
have units of Siemens x Hz”. If one takes the line-6 

results as the best, then all others may be compared 
to them. First, it is clear that all the unity-weighting 
tits are poor, that optimization does not improve 

them, and that the admittance-level fits with unity 
weighting are much better than the impedance-level 
ones. The better results obtained with function-pro- 
portional weighting and with function power-law 
weighting strongly suggest that these weightings far 
better match the actual errors in the data. The S,, 
values of lines 7 and 8 indicate that this measure can 
be misleading, especially for very poor fits. Although 
fits cannot be improved for these data by setting both 

the U and r parameters simultaneously free in a var- 
iance model, such improvement has been observed 
for other IS data [ 111. 

Comparison of the results of lines 3 and 4 with 
those in lines 9 and 10 indicates that, with function- 
proportional weighting, Y-level fitting is not signif- 
icantly better here than Z-level and, because the S,, 
and SF1 values are already close for such weighting 
of these data, optimization is not much needed. The 
line-5 and line-l 1 fits with optimized function power- 
law weighting are slightly better than the optimized 
function-proportional weighting ones and led to 

r,=O.9193 IO.049 and rz- 1.0919]0.047, respec- 
tively. These values were taken fixed for the line-6 
and line-l 2 fits. Here we see that the l estimates are 
quite well determined, unlike those for the low-range 
data of section 5. Their sum is 2.011 10.048, quite 
close to 2, the expected value for real data with small 
errors [ 151. 

Since both < estimates are quite close to unity here, 
it might be reasonable to assume that the errors in 
the data are, indeed, of proportional form (t= 1) and 
to use the Y-level optimized function-proportional 
weighting solution, even though it does not fit the 
data quite as well as the corresponding optimized 
fixed-function weighting one. Because the present 

data lead to e values very close to unity, there is rel- 
atively little difference in the results for function- 
proportional weighting fits and function power-law 
weighting tits here. But in many situations, the most 
appropriate c will not be near unity; then the un- 
questioned use of the traditional weightings of lines 
1 through three of table 1, or even of function-pro- 
portional weighting, will lead to poor fitting-model 

parameter estimates; and it will then be essential to 
use function power-law weighting in order to deter- 
mine the weighting parameter value most appropri- 
ate to the data and so to optimize the parameter es- 
timates of the fitting model. 

The Y-level data and the line-6 fit results are plot- 
ted together in the admittance plane in fig. 1. (Y-level 
data values, y,, are in unit of Siemens.) Although the 
lit appears excellent and the estimated SD’s of the 
parameter estimates are all small, the fig. 2 plot of 
the real and imaginary weighted residuals against the 
logarithm of frequency (actually normalized dimen- 
sionless frequency) shows some small remaining 
problems. In spite of the great ranges of the original 
data, these results show little heteroscedasticity. It is 
clear that although the real and imaginary residuals 
are not entirely independent, it turn out that their 
cross correlation is a negligible -0.14. The figure 
suggests, however, that appreciable autocorrelation 

0.015 

0.010 

0.005 

0.000 

-0.005 

-0.010 
l -=- l Ri' 

-0.015y 
0123456 

LOG(f) 

Fig. 2. Dependence of the real and imaginary weighted residuals 
on log(J) for the optimized fixed-function weighting (FFWT-0) 

fit of fig. 1 (line 6, table 4). Lines have been drawn between dis- 

crete values to guide the eye and to help distinguish between the 

two residual components. 
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is present. Calculation of the lag-l autocorrelation 
before and after differencing yields 0.6 1 and - 0.12, 
respectively, for the real components, and 0.39 and 
-0.26, respectively, for the imaginary ones. Thus, 
differencing removes much of the large lag-l auto- 
correlation. But its presence, even when the weighted 

residuals are as small as they are here, indicates that 
some systematic error remains. Although most of it 
could probably be eliminated by adding one or more 
further parameters to the fitting model, the present 
fit is sufficiently good for all practical purposes and 
well illustrates the application of the present meth- 
ods to highly heteroscedastic complex data. For such 
data, one should compare optimized unity weighting 
(UWT-0) fits with function power-law weighting 
ones (FPLWT-0), choose the better of the two, 
which will nearly always be the optimized function 

power-law weighting one, and use the < estimate ob- 
tained in a final optimized fixed-function weighting 
(FFWT-0) tit. 

minimum bias and high-precision parameter esti- 
mates. Since LEVM and the more complicated ma- 
trix-determinant method evidently lead to the same 
estimates in unweighted situations where they can be 
compared, one can have confidence in the LEVM 
estimates. 

For the analysis of IS data, where weighting is 
nearly always necessary and appropriate, all other 
currently available CNLS programs, such as that of 
Boukamp [ 81, yield appreciably more biased pa- 
rameter estimates than does LEVM [ 111. It follows 
that for any wide-range experimental data (e.g., di- 
electric, conductive, mechanical relaxation, nuclear 
magnetic relaxation, light scattering, etc.) which can 
be expressed in terms of two related dependent parts 
(e.g., real and imaginary or modulus and phase), si- 
multaneous fitting of the entire data set to a model 
should be carried out with LEVM, or its equivalent, 
in preference to other programs with less general 
weighting. 

7. Summary Acknowledgements 

Two quite different approaches to the CNLS fit- 
ting of small-signal immittance data have been com- 
pared and shown to yield indistinguishable results 
for small-range dielectric response data fitted with- 

out weighting. By contrast, fitting of wide-range ad- 
mittance response data for single-crystal Li3N with 
a variety of weighting schemes showed that strong 
weighting is required to transform the data to a de- 
sirable equal-variance (homoscedastic) condition. 
Such variable weighting, which can be automatically 
determined during the fitting itself, is often found to 
be of proportional or near proportional character for 
wide-range data and ensures low-bias parameter es- 
timates with small estimated uncertainties. 
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