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Expressions for the transient and frequency response of materials showing exponential distributions
of transition rates are summarized and related to recent work in the field. Responses arising from
temperature-independent distributions (class I) are contrasted to those that depend in a simple way
on temperature (class II). The distinction between dielectric and conducting systems is particularly
emphasized, and the different temperature dependences of their frequency power-law exponents for
class-1 situations are discussed in detail. Besides presenting model frequency-response curves, it is
shown that an exponential distribution of activation energies can lead to conductance frequency
response very similar to that recently found by Lee et al. for two glasses and several ionically conducting
single crystals.

Ausdriicke fiir das Transient- und Frequenzverhalten von Materialien, welche exponentielle Verteilun-
gen von Ubergangsraten zeigen, werden zusammengefaBt in Verbindung mit kiirzlich erschienenen
Arbeiten auf diesem Gebiet. Das Verhalten, welches von temperaturunabhéingigen Verteilungen stammt
(Klasse I), wird verglichen mit dem, welches in einfacher Weise von der Temperatur abhéngt (Klasse II).
Der Unterschied zwischen dielektrischen und leitenden Systemen wird besonders hervorgehoben, und
die unterschiedlichen Temperaturabhingigkeiten ihrer Frequenz-Exponenten fiir Klasse-I Situationen
werden ausfiihrlich behandelt. Zusitzlich zu dem modellierten Frequenzverhalten wird gezeigt, dal
eine exponentielle Verteilung von Aktivierungsenergien zu einem Frequenzverhalten der Leitfahigkeit
filhren kann, welches praktisch mit dem kiirzlich von Lee et al. gefundenen fiir zwei Gldser und mehrere
ionisch-leitende Einkristalle {ibereinstimmt.

1. Introduction and Background

At least since the work of Fricke [1], it has been known that the small-signal frequency
response of nearly all dielectric and conducting systems contains one or more appreciable
frequency ranges in which the response is closely proportional to (iw) " or to (iw)*™™, where
the exponents n and m fall in the interval [0, 1]; w = 2=nf is the angular frequency; and

i= ]/——1 When both the real and imaginary parts of a complex conductance (admittance)
are proportional to (iw)*™, such power-law behavior has come to be called constant-phase-
element (CPE) response [2 to 5]. Its universality has been particularly emphasized by
Jonscher [6] (and references therein). Incidentally, it has become common to write such
power-law response in terms of equations such as y'(¢) ~ 3" (w) ~ @™ ", where y = ¥’ + iy”
is the dielectric susceptibility, but this usage is dimensionally inconsistent unless ~ is
replaced by the proportionality sign oc.

For dielectric, polymer, and conductive materials, frequency and transient response
frequently involve regions with two power-law exponents (regions of constant slope when
the logarithm of response is plotted versus the logarithm of frequency or time). Such
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frequency response often involves exponents of different signs and can show a peak in the
imaginary component of the response (e.g., ¢” in the dielectric response case), but regions
involving n, and n, exponents (n; # n,), often termed anomalous low frequency dispersion,
are not uncommon [6, 7].

But whatever particular n and m regions appear, or whatever expression is used to describe
such distributed response, if the frequency range is extended far enough toward high or
low frequencies, the limiting response is associated with the smallest or largest relaxation
time possible for the system, respectively [8]. Since these times are required by physical
realizability to be finite and non-zero, response curves must reduce to single-time-constant
behaviour in these limits, and therefore complex-plane plots must approach the real axis
perpendicularly at their ends. Thus, theoretical response which only involves power-law
" exponents, such as that of the CPE alone, is non-physical; such response cannot continue
to apply unaltered in the extreme high- and low-frequency limiting regions.

All these responses can be expressed in terms of a finite-extent discrete or continuous
distribution of relaxation times (DRT) or transition rates (DTR), unlike simple Debye
response which involves only a single relaxation time or transition rate. Many different
* processes may lead to a DTR, e.g. a distribution of activation energies (DAE), a distribution
of trap depths or waiting times, or a distribution of hopping distances [9, 10, 11]?). These
possibilities may be related to fractal structures and fractal time processes [12]. Although
the present work deals explicitly with DAEs, any of the above physical processes can lead
to identical frequency and time response: the distribution is the key.

A very important distinction, not always clearly made in the DTR analysis of relaxation
response, is that between a dielectric system (j = D), where lattice contributions and dc
conduction, if present, are usually independent, and a conducting system (j = C), where
dc conduction is the w — 0 limit of the full response. In the former, which typically involves
dipole rotation, the principal relaxing entities do not contribute to charge transport, while
in the latter they do. Proper identification cannot be made on the basis of the absence or
presence of dc conduction because a dielectric may be leaky and a conducting system may
be measured with completely blocking electrodes or at insufficiently low frequencies. It is
most appropriate to derive an expression for the response of a distributed D-system at the
complex dielectric constant level (¢ = ¢ — i¢”), and that of a C-system at the impedance
(Z = Z' + iZ") or admittance level, although one can, of course, then use the results to
calculate the response of a D-system at the impedance level or that of a C one at the
complex dielectric constant level.

Although Kauzmann [13] discussed a Gaussian DAE as early as 1942, it does not lead
to power-law response in frequency and time [14].%) In fact, only an exponential DAE (or
its associated power-law DRT) can yield such response. Later, Frohlich [15] considered the
response of a dielectric material following from a uniform DAE of finite extent in energy
(cut off at both high and low energies, the box distribution), but it was not until 1963 that
the transient response of a D-system involving a double-exponential distribution of
activation energies (DEDAE) was calculated [16]. In order for it to lead to the two slopes

2) The value 0.497 in Table 3 of [9] should be replaced by 1.497, and the product sr in the numerator
of (B8), should be replaced by s. In (17) of [10a] the exp (— N;, E) term should be replaced by exp (—#;,E),
and in (24) the + sign should be replaced by an equality sign. The numerators of (5) and (7) of [10b]
should be considered to be the effective DAE or DRT for normalization purposes, as in the present work.

3) The numerator of (5) should be considered to be the effective DAE for normalization purposes,
as was actually done.
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usually seen in the time response, two distinct regions of exponential dependence were
required in this DAE, and they were cut off at high and low energies to ensure physical
realizability. Detailed frequency response for the single-exponential DAE (EDAE,) [9] and
the DEDAE [10, 14] were presented later, and it was found that DEDAE response could
fit very well those of all of the conventional empirical response functions [4, 5], including
that of Havriliak and Negami [17] and stretched exponential response. Since the DEDAE
can fit all data previously fit by these functions, further discussion of its temperature
dependence possibilities is therefore warranted.

2. Thermal Activation and Physical Ranges

Most distributed response is thermally activated. Although both energy storage and energy
dissipation processes may be separately thermally activated [9], the conventional approach
for dielectrics is to consider only the activation of relaxation times, t, which depend on
both processes. Then, we may write

=1, exp (E/kT), (1)

where 7, is a characteristic property of the material, E is an activation energy, k is the
Boltzmann constant, and T is the absolute temperature.

The more general treatment, where both processes may be separately thermally activated,
is particularly needed for C-systems [9]. Let us therefore assume that the activated dissipation
process involves exp (¢E/kT) and the activated storage process involves exp (SE/kT). Then
the generalization of (1) becomes

t = 1,exp (YE/kT), ()

where o and f§ are temperature independent constants and y = « + f. Next, define yuc = «
for C-systems and up = p for D ones and use p; in general. Although we shall actually
illustrate results for the usual choices pp = 0 and pc- = 1, so that y = 1, for generality,
frequency-response formulas will be presented in terms of u; and y.

Let us define 7, (>0) and 7; (<o0) as the minimum and maximum relaxation times,
respectively, which are possible for the system. Then the corresponding limiting E’s are
E, = (kT]y)In (t,/7,) and E; = (kTJy) In (ty4/7,). When the frequency response of the system
involves two fractional exponents, it is useful to define a further more or less central, 7, 7,
where 1, = 7, exp (yEo/kT)and E, < E, < E,. Finally, the normalized quantity & = E/kT
will often be useful.

Since negative activation energies are meaningless, the smallest physically realizable value
of E is zero; then 7, = 7,. Further, since t;; < 00, it is unphysical to consider the range of
Etobe —o0 £ E £ oo as Wang and Bates (WB) [18]%) recently did. The quantity t, may
be expressed in terms of the entropy, S, of the thermally activated process [16, 19]; then E
is essentially the corresponding enthalpy. Although negative entropy values have been found
in some experiments [16], the minimum value of the entropy for a physically realizable
system cannot reach — oo, the value necessary to make 7, zero.

4) In (13) a factor of (kT)~! has been omitted. In (15) the B in the term exp [f(1 — )...] should
be replaced by — f5. The reference to Fig. 8b above (20) should be to Fig. 7b. The reference to (7) at
the top of p. 84 should be to (17).
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3. The Double-Exponential DAE for Classes I and II
3.1 The DEDAE for dielectric and conductive systems

If we define the DEDAE as F;(&), it follows from earlier work [9, 10, 14] that F;(&) = 0
for & < & and & > &y and, otherwise.

F (&) {NCXP[(M—M)@]; L= &6 =8, 3)

! Nexp[(Ad; — A) o + (u; — 4) 615 69 = 6 < 6,

where

Je = kT, 4)
with k = 1,2, and N is a normalization factor. Here A, and #, are parameters of the
distribution and are discussed in detail later. It is convenient to define

x =96 — &), ®)

xy = 7(6o — 61), (6)

xp = P(6u — &), ()
and the following important slope-related quantities,

P = (lij — ) (8)

where —o0 < ¢ < oo. We omit the j subscript from ¢ since its value will be clear from
the context.

3.2 Class I and class II temperature dependences

When the DEDAE was first introduced [16], the two s were taken temperature independent
on the basis that a EDAE, when present, might often be expected to be a basic property
of the structure of the dielectric or conductive system and so might most plausibly be
entirely independent of temperature (for at least a limited range not too close to the
temperature of a phase change). Although the first detailed analysis of the frequency response
of an EDAE system with a single # of arbitrary value [9] did not initially specify the
temperature dependence of #, it was eventually taken temperature independent, and this
choice has been generally followed in the subsequent work of the author in this area [10, 14].

Recent work of Kliem and Arlt (KA) [20], which deals very similarly with DEDAE time
and frequency response for D-systems but does not reference any earlier work in the EDAE
field, also involves the temperature-independent choice for #,. It is this temperature
independence of the EDAE which defines class-I behavior. It leads to frequency response
whose shape on a log—log plot is dependent on temperature.

Another choice, which leads to quite different temperature dependence of F(E) and &(w),
is to set nE = A(E/kT) and take A = kT# temperature independent. Such a choice has
recently been discussed by WB [18] for D-systems and leads to class-II behavior. It yields
a temperature dependent F(E) and corresponding &(w) response whose shape is independent
of temperature. Such behavior, where a universal frequency-response curve can be
constructed by shifting curves for different temperatures along the frequency axis until they
superimpose, is also consistent with the well-known time—temperature superposition law
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[21], and has been illustrated for a variety of materials by Jonscher [6]. Although much
small-signal frequency-response data are consistent with the predictions of either a class-1
or of a class-Il DEDAE model, once one allows #, and/or #, to be temperature dependent
an infinity of possible types of response becomes possible. Here, attention will be restricted
to only class I or II situations, the most important ones.

3.3 General frequency-response expressions

It is useful to write the normalized frequency response, I;(w), of either a C-system or of a
D-system in terms of a single equation [9]. Let U ;(w) be either the part of the impedance
associated with relaxation for an intrinsically conducting system (j = C), or the part of the
complex dielectric constant associated with pure dielectric relaxation (j = D), and define

Ij(w) = [(Uj(w) - Ujm)/(UjO - Ujoo)] > 9)

where U;, and U, are the limiting low and high frequency values, respectively, of U ;(w)
for a single distributed process. For j = D, for example, Up, = ¢, and Up,, = €.
The general expression for I;(w) when a DAE, F(E), is present may be written [9, 10]

+ o

Ij (w/wo) = J

=00

F,(E)dE

‘ (10)
1 + i(w/wo) (t/70)

where w,7, = 1 and 7 is given by (2). For o = 0, (10) reduces to just the F(E) normalization
condition. Now after using F(E) dE = F(&) dé&, equ. (3), and evaluating N, one may write the
normalized frequency response as [14]

I; (w/we) = J;(w/we)/J;(0), (11)
where
0 XH
= J s ipads J _ BRimyds 12
g 1 + i(w/wy) exp (x) : 1 + i(w/we) exp (x)
and
J;(0) = er [l —exp (—@yx)] + @5 [exp (@2x) — 1] (13)

for ¢, and ¢, both nonzero. When they are both zero, J;(0) = x; + xy = y(6y — &)

For numerical work it is straightforward to evaluate the integrals of (12) directly by
numerical quadrature, although closed forms are available for certain integral and fractional
values of ¢ [9] (see Appendix B). Since 1985, the complex nonlinear least squares (CNLS)
impedance spectroscopy fitting program, LEVM, has included both transient and frequency
response DEDAE fitting and simulation capabilities and has been used in the present work.
It incorporates a great many more possibilities as well [22] and is available at nominal,
nonprofit cost from the author’s department.

Equation (11) to (13) define the general frequency response for the DEDAE. When the
data show only a single power-law response region, one need only set ¢ = ¢, ¢, = 0,
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and x; = 0 in (12) to obtain the single-slope EDAE,. It leads to asymmetrical peaked loss
near the low frequency end of a complex-plane plot of I;(w).

How then can one tell the frequency response of the DEDAE and the EDAE, apart
.. when they both show peaks? The best way to obtain quantitative results is to fit the data

: by CNLS to each model. But usually a log-log graph of Ij(w) versus w will allow

discrimination. Because cut offs lead to limiting I}(w) response with power-law exponents
. of +1, and DEDAE slopes near a central peak will involve exponents appreciably less than
unity in magnitude for a broad DRT or DAE, it is straightforward to distinguish between
the two possibilities provided the measured frequency range is sufficiently large. In the
EDAE, case, the left slope will asymptotically approach 1, while at the right of the peak
a negative slope of magnitude less than 1, associated with the single ¢, will be followed by
a limiting slope of —1.

@yt 3.4 Dielectric-system transient response
S

Oncean expression for a DAE is available, it is straightforward to calculate the corresponding
time- and frequency-response predictions using well-known integral transforms. In particu-
lar, the transient response of a D-system, Ap(f), is given by a Laplace transform as [23]

Ap(t) = Zf[&*FD(é—I)J exp (—t8) dé, e % (14)

where ¢ = t~ L. This integral was evaluated in closed form for the F(&) of (3) with pp = 0,
and although the result involves the incomplete y-function, it can yield response for Ap(t)
with appreciable regions closely proportional to t~**# and t~*4) where A, may be
proportional to T (class I) or independent of T (class II). The original calculation [16]
envisaged a situation where both entropy and enthalpy could be simultaneously distributed.
Here, it has been simplified for the case where only E is distributed. Apparently unaware
of the earlier work [16], KA independently derived a form of (14) and calculated the
associated time and frequency response by numerical integration [20]. Since [16] contains
much more extensive results and discussion of EDAE transient response possibilities than
that of KA, only frequency response will be considered in the following.

4. Specifics of EDAE response

4.1 Illustrative examples of response possibilities

Fig. 1a shows a typical relaxation DEDAE for a class-1 dielectric system. The slopes are
defined as S = d [In {F(E)}]/dE. The formulas for the DEDAE slopes and the actual values
used here are presented in the top part of Table 1. The values selected for illustrative
purposes were chosen to yield response of the same general character as those of WB [18]
and KA [20]. We have purposely picked a somewhat asymmetric distribution here. Thus,
the complex-plane response shown in Fig. 1b is correspondingly asymmetric.

In Fig. 1b the low frequency limit is at the right and the high frequency one is at the
left. This complex-plane response was calculated using x;, = 0.14/kT and x, = 0.24/kT
(solid lines in Fig. 1b) and with “infinite range” (IR) values of these quantities (dashed
lines) added for comparison. To obtain such infinite-range response, it is only necessary
that x; and x;, be sufficiently large that further increasing their values results in negligible
change of the response within the frequency window considered. For the present range,
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Table 1

Exact slopes, S; and S,, for the DEDAE and approximate slopes for the corresponding
relaxation-situation frequency response. The DEDAE slope values inside square brackets
apply to conductive systems (j = C) and all other DEDAE results to dielectric systems
(j = D). For the illustration, up, = 0, uc = 1,and at T = 200K: 1, = —0.4 and 1, = 0.66
for j=Dand 4, =06, 1, = 1.66 forj = C

situation general  class I class I1 illustrative values
N1, N, and A1, A and at T= 200 K
EDAE Ii(w/wq)
quantity  region temperature temperature
independent independent
DEDAE E <E=<E, -—n A /kT = —n, A kT 23.209[—38.814] (eV ')
E,SEZEy —1n, kT = —n,  —A,/kT —38.295[—96.317] (eV 1)
Ij w < Wy — Q2 —pj + kTn, —H;+ A, 0.66
w > w, — ¢, —u; + kTn, —u + A —-04
Yp o < w, 1 —¢, 1+ kTn, 1+ 4, (1.66) — 1
w > w, 1—¢, 14 kTn, 1+ 4 0.6
Y¢ < Wy -, —1 + kT, -1+ 4, 0.66
w > g ®q 1 — kTy, 1 — 2 0.4

values greater than 10 or so are sufficient. Fig. 2 shows the corresponding lg [I;(w/w)]
versus lg [w/w,] response curves. For the present choices, the IR criterion is well met for
the T = 100 K curves and is nearly met for the w < w, part of the T = 400 K curve, where
Xy = 7.

The T = 200 K results of Fig. 1b and Fig. 2 apply to either aj = D or a j = C situation
because the ¢, values have been taken the same for these two conditions at this temperature.
But because of the dependence of the ¢’s on u;, the actual DEDAE shape which leads to
this response is different in the two cases. As the values listed in the first part of Table 1
show, the temperature-independent, C-system DEDAE yielding these results is not centrally
peaked but decreases with two negative slopes as E increases in the range from E,; to E,,.
Also, because the values of up and u are different, the present equality of the actual values
of the ¢’s at T = 200 K leads to different class-I1 values of the j = D and j = C ¢ values
at other temperatures, producing C-system curve shapes different from those shown for the
present D-system.

Further, only the differences E, — E, and E,; — E, affect the results plotted in Fig. 1b
and 2. Thus, such normalized plots are independent of the actual value of E, present. But
since w, depends on E,, the latter can be estimated if values of w, for several temperatures
are available. By fitting the DEDAE model to frequency-response data for different
temperatures using, for example, the LEVM fitting program, estimates may be obtained of
o, T, Eo and some or all of ¢,, ¢,, x;, xy, Uy, and U .

For frequency-response situations, we define “slope”, s, to mean the slope obtained from
a straight-line region of a log—log plot, such as that of Fig. 2. In such a region, it follows
that 1] oc @*™ and the slope is just +n, or —n, with 0 < n; < 1. If the full response is
well approximated by the CPE, then I, oc w*™ as well, but for added generality let us take
I; oc w*™ where 0 < ng < 2. The single-time-constant Debye curve of this figure applies
when Ey — E,, and its limiting left and right slope values are s; = n,; = +1and s, = —n,,
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Fig. 1. a) Double-exponential distribution of activation energies (DEDAE) used at all temperatures
for class I j = D frequency-response calculations. b) Complex-plane plot of the normalized frequency
response for three temperatures. I; is a normalized impedance for conductive systems (j = C) and a
normalized complex dielectric constant for dielectric systems (j = D). The dashed curves were calculated
without the cut-offs shown in Fig. 1a. Here,j = D or Cfor the T = 200 K curve,andj = D for the others

= —1. These same values are found for DEDAE response at frequencies beyond cut-off
where only the lowest and highest relaxation times operative in the system dominate the
response [8 to 10]. But in regions nearer w,, I;(w/w,) exhibits slopes whose values are
determined by those of ¢,. Expressions for the approximate slopes in the central regions
of such a plot as Fig. 2 are presented in the second part of Table 1. Incidentally, the effects
on the temperature dependence of a ¢ arising from linearly related entropy and enthalpy
distributions and/or from a glass-like transition have been considered [9, 16] but are not
incorporated in the present results.

There are two reasons why we speak here of approximate rather than exact slopes in
the frequency-response domain. First, in any physically realizable system there can be no
non-zero DAE probability density outside of a finite region of E (E; to Ey). The resulting
cut-off effects in the frequency response may lead to a finite region of no well-defined
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Fig. 2. Log—log plot of the normalized re-
sponse quantity Ij(w/w,) vs. (w/w,) for the
three temperatures of Fig. 1b (j = D), for the
identical j = C 200 K curve, and for single-
time-constant Debye response. Here IR in-
dicates that the effective range of the DEDAE
is not cut off. (The T = 100 K curve is that at
the top here)
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constant slope (the actual case for the right-hand region of the T = 400 K curve of Fig. 2)
or to one where ny and n; are not entirely equal even in the w/w, > 1 region [9, 10].

The second reason is even more important. The second and third parts of Table 1 are
appropriate for IR conditions. They indicate that the I} slopes are approximately given by
—¢@, and — @, respectively. But when #, and #, are non-zero, the magnitudes of ¢, and
¢, can increase indefinitely as Tincreases for class-1 behavior, and as |¢| increases beyond
1, DEDAE response approaches simple Debye behavior. But the actual slopes must satisfy
Isii <1 and |sg| < 2[9, 10]. Thus, the predicted approximate slope of 1.66 given in Table 1
is actually limited to unity. Even when cut-off effects are negligible, the relations n,; ~ |,
and n;, ~ |@,| certainly cannot hold when |p| > 1 or when ¢ < 0. Fig. 5 in [14] illustrates
how n; and ny approach their limiting values as ¢ exceeds 1 or 2.

The above restrictions were apparently not appreciated by KA. They dealt with a class-I
dielectric response system and made the serious conceptual error of directly equating the
actual frequency- and time-response power-law exponents to the DEDAE slope parameters
[20], the present ¢,. It is of interest to note that it is the slope of the high-E right side of
the DEDAE which determines the slope of the low-frequency left side of frequency-response
curves (and vice versa), a result completely consonant with the presence of a thermally
activated process which occurs more slowly the higher the energy barrier.

The Fig. 1b curves are similar to ones presented by KA, plotted by them in the y complex
plane. Although they did not specify that they were actually plotting x"/x, versus ¥'/xo,
they must have done so since the maximum value of all their y’s is unity. Further, KA
identify the shape of these curves as being of Cole-Davidson (CD) chartacter. But it has
long been known that the DEDAE without cut offs can excellently fit Cole-Cole, CD, and
other empirical response functions [9, 10, 14], and its response is in general very similar to
that produced by the empirical Havriliak-Negami (HN) expression [17]

1—a\ —p
Holog) = (1 + {zwﬁf} ) , (15)

where the slope parameters satisfy 0 < « < 1 and 0 < f < 1. This expression reduces to
that of CD when o = 0 and to that of Cole and Cole for f = 1. So is the CD identification
made by KA most appropriate here?
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As a test of model appropriateness, the T= 200 K DEDAE I(w/w,) complex data of
Fig. 1b and 2 were fitted by LEVM to the CD and the HN expressions, using optimized
function-proportional weighting [22]. The estimated standard deviation of the CD fit was
found to be about 0.34, while that of the HN one was about 0.016, a far better fit. The
values of « and f§ estimated from the HN fit were 0.344 + 0.002 and 0.614 + 0.002. These
values correspond to asymptotic HN slopes of s, = n;; = 0.656 and s, = —n;, = —0.402,
satisfactorily close to the actual values of 0.66 and —0.4, respectively. On the other hand,
the HN estimated value of 7, was about 55% too high, reflecting a systematic error arising
from using a wrong fitting model for the data.

The curves of Fig. 2 are similar to some calculated by KA and compared by them (but
not fitted) to actual experimental data on polyethylmethacrylate. The magnitudes of the
experimental slopes increase with increasing temperature, consistent with earlier predictions
for a class-I D-system. Note, however, that the slopes of a class-I C-system at the I level
are of the form —1 + kT, Thus for positive n,, the associated slope will be near —1 at
low temperatures and will decrease in magnitude as the temperature increases, reaching
zero at T = T, = 1/kn,. For the present values of #,, which are both positive in the present
conductive case, Ty, is about 333 K and 120 K for k = 1 and 2, respectively.

Finally, note that the peak loss of I(w/w,) curves similar to those of Fig. 2 will only
occur at w/w, = wt, = 1 when the condition ¢, = — ¢, holds, yielding a symmetric curve
(termed the EDAE, in earlier work [10, 14]). Otherwise, the peak occurs to the left or right
of the w = w, point, depending on whether |p,| > |p,| or vice versa, respectively. This
phenomenon, which does not require equality of x, and xy, implies that one should not
generally determine the value of 7, at a given temperature from 1/w,, where w, is the
frequency at the peak. Instead, CNLS fitting of the full data should be used to obtain an
appropriate estimate of t,. Incidentally, although KA considered an asymmetric situation,
their peaks all occur at w = w,, contrary to the above expectation. The difference arises
because they evidently implicitly defined w, as w,, rather than as 1/z,,.

4.2 Class-II frequency response

Table 1 shows slope expressions for the class-II situation where the 4, are temperature
independent, the case recently considered for dielectric materials by WB [18]. Then, the
DEDAE is itself temperature dependent, as illustrated in Fig. 3 for the three temperatures
considered here. But for this situation, the shapes of the frequency-response curves are now
temperature independent in the IR approximation used by WB, and the T = 200 K curves
of Fig. 1b and 2 apply at all temperatures. But as T increases indefinitely for the realistic
finite-range situation, F(E) approaches a flat-top box distribution shape and x; and xy
approach zero. In the limit, again only simple Debye behavior remains. Nevertheless, if x;
and xy remain sufficiently large over the entire temperature range of measurement,
frequency-response curves for different temperatures can be shifted in frequency, to account
for the temperatures dependence of 1, so that they all fall on a single universal curve. Many
experimental situations of this type are discussed by Jonscher [6].

4.3 Comparison of dielectric and conductive system immittance responses

Not only is it of interest to compare the slope predictions of Table 1 with actual slopes of
I and I curves in the IR case, where cut-off effects are outside the range of measurement,
but it is also instructive to compare full curve shapes for normalized immittances
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Fig. 3. The temperature-dependent DEDAE for class Il and j = D at T = 100, 200, and 400 K

(impedances, admittances, and complex dielectric constant). We begin with a discussion of
the transformation of unnormalized quantities for j = C and D. Since the measured system
will always include a geometrical capacitance, C, given by C, = ¢,,C., where C, is the
capacitance of the empty measuring cell, its electrical effect should be included in the
analysis. Then the impedance of the C-system which involves a specific response function
atthe Z level, Uq(w), can be written Zq(w) = Uc(w)/[1 + ioC,Uc(w)], and it follows that
Yo = 1/Z, and ¢¢ = Y /(ioC,). Note that the dc conductance is G, = Y(0).

Similarly, for a leaky dielectric with a dc conductance of Gpy, ¢p(w) = Up(w)
+ Gpo/(iwC,), and Y, and Z, follow immediately. Since U, and U describe different
physical processes, we do not expect that Y. = ¥;,. For a C-system, where the dispersion is
primarily associated with conductive rather than dielectric processes, one should clearly
deal with Z rather than &c. In fact, concentration on &, rather than on Z¢ or Y, tends to
obscure the actual relaxation process involved. Unless both dielectric and conductive
relaxation processes are simultaneously present and important, one should therefore be
concerned with conductive response functions for j = C rather than with dielectric ones.

For simplicity, we shall set U;,, = 0 and Gp, = 0 as well. Then, it is appropriate to
define for j = C the normalized admittance (complex conductivity) Yyc = 1/Ic and the
associated normalized complex dielectric constant exyc = Yyc/(iw/@g). Similarly, whenj = D,
the normalized admittance is defined as Yy, = (iw/w,) Ip and the normalized impedance
as Zyp = 1/Yyp. With these choices, it follows that Zy, = excif Icand I are taken the same.

In Fig. 4, the frequency dependences of the above quantities are plotted for j = D on
the left and j = C on the right. These graphs are for the T = 200 K DEDAE situation
considered in Section 4.1. The limiting slopes of both real and imaginary quantities are
equal for w > w, and are generally consistent with the values given in Table 1. But although
the low-frequency slope of Yy is limited to unity, that of Yy, is not so limited and exhibits
the expected value of 1.66. For o < w,, the asymptotic slope of ZYp, is just the negative
of that of Yyp, as expected, and that of Zyp, is equal to that of Ip. For the right graph,
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Fig. 4. Graphs illustrating the normalized frequency response at 7= 200 K of the DEDAE of Fig. 1a

without cut offs. The left part shows dielectric-system response at three immittance levels, while the
right part compares conducting-system response for the condition that Ic(w) = Ip(w)

notice particularly the difference in the slopes of the Yyc components from those of Yyp.
Further, the slope of the & curve for o < w, is just —1, arising from the non-zero G,
of the C-system.

As already mentioned, the EDAE, exhibits a single slope determined by # = #,. It is of
particular interest when # = 0. Then, for # > 0 one deals with an exponentially decreasing
distribution, frequently seen experimentally in semiconductors as an exponential band tail
[24]. For = 0, the slope is zero, and the DAE is then a box distribution with a flat top
extending from E, to E, = E,. Fig. 5 shows responses for the ¢ = ¢p = ¢ = 1 choice;
the corresponding values of 4. and A, are 0 and — 1, respectively.
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Fig. 5. Graphs of the same character as those of Fig. 4, but here response is for a single-exponential

distribution of activation energies (EDAE,) with ¢ = ¢c = ¢p = 1, using IR cut-off values of x; = 15
(or greater) and xy = 0
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The w < w, slopes in Fig. 5 arise from the cut off at E = E,, and we see that the left-side
slope of Yyp has the limiting value of 2. For w > w,, on the other hand, the slopes of the
components of Yy asymptotically approach the value of unity predicted in Table 1, and
those of I, and I are properly — 1. But the other slopes do not entirely agree with those
predicted. For example, that of I is algebraically greater than — 1. Finally, note that since
the slope of Y approaches unity for > w,, the associated capacitance (see the &y curve)
approaches approximate frequency independence as well.

5. AC Conductance for a Conductive System

In recent work [11, 25], it has been pointed out that measurement of Y (w) alone is usually
insufficient to allow unambiguous discrimination between different dispersion models, but
that CNLS fitting of full Y-(w) data does permit such discrimination [25]. Macdonald [25]
also discusses ways of analyzing j = C data when ¢, cannot be neglected. Interesting Y ¢(w)
data have recently been presented by Lee et al. [26]°) which fall into two types: one in
which the slope of the data is unity over a wide temperature range, and another in which
s decreases linearly from unity down to a saturation value of 0.6 as the temperature is
increased. Lee et al. propose that such limiting s = 1 behavior at low temperatures is a
universal phenomenon.

Now since, for the EDAE, with class-I behavior, ¢ = 1 — kTnx when p- = 1, Fig. 5 and
the last line in Table 1 show that with s & ¢ the above slope behaviors are approximately
consistent with those predicted by an EDAE. When s &~ 1, it is merely necessary that
kT|n| < 1 over the temperature range of measurement. Further, j = C data for numerous
different materials are known to lead to s values which decrease approximately linearly
over a range of increasing temperature, implying that #n > 0. The high-T saturation value
of exactly 0.60, which was observed for three different materials by Lee et al. may be an
artifact of measurement arising from the difficulty of determining s when the maximum
available frequency is limited and only a vanishingly small region of Y (w) response exhibits
an approach to a constant slope value. Alternatively, it may signal a transition to a different
dispersion process (e.g., that from class-I to class-II behavior).

Although Lee et al. rejected the hypothesis that their data imply the presence of a DAE
because they believed that a wide uniform DAE is unlikely for the materials they measured,
the temperature dependence of s they found is nevertheless evidence for the possible
presence of such a distribution. Although their s = 1 data for NaCl:Zn?>" over the
temperature range from 296 to 533 K were only available in graphical form, I used their
value of 0.95¢eV for the activation energy of G, and their published curves to obtain
Gco(T) values well approximating theirs. Then with ¢ = 1 and an activation energy of
0.88 eV for 7, the EDAE,; led to the curves of Fig. 6. The j = C ones are very similar to
those of Lee et al., and the j = D one is included to show that the corresponding D-system
EDAE, with Gpo(T) = G¢o(T) and ¢ = 0 leads to a limiting slope of 2 rather than 1 and
is thus inappropriate, as expected. Incidentally, the presence of a C_, with a value even
much larger than likely affects Y ¢(w) here but not Y¢(w). The minimum value of (E, — E;)
found which led to negligible cut-off effects was 0.42 eV. Thus the EDAE, extended from
about 0.46 eV, or less, to 0.88 eV.

%) In this work the authors associate power-law frequency response with stretched-exponential
transient response, only true in the asymptotic @ > w, limit.
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These results suggest that since the
j=C EDAE,; model can fit the
main features of the data of Lee et al.,
it may be appropriate after all, unless
a more plausible model which can
explain the slope temperature depen-
dence is found. If the EDAE, is
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6. Discussion of Response Models

Although there exist a plethora of theories which yield CPE-like response with one or more
slopes (see [10, 11] and references therein), few of them predict slope temperature dependences
and none predict such dependences from an ab initio many-body treatment. Thus, as in
the present EDAE approach, arbitrary assumptions are generally made about such
temperature dependences. Although these models are thus incomplete, when good agreement
between EDAE predictions and measured frequency and temperature response is found, it
is probable that there is a DTR present in the material—electrode system being investigated.
Further, class-I and class-II responses together cover the majority of experimentally seen
D- and C-system slope-temperature responses. For class-I response, it is often found that
in the w > w, region the magnitude of the I; slope increases with increasing temperature
for D-systems and decreases for conducting ones for #; > 0, the usual EDAE;, situation,
consistent with the linear ¢ dependence of Table 1 when the difference between ¢ and actual
slope exponents is recognized [9, 14].

Wang and Bates [18] have recently proposed a semi-microscopic hopping model for
dielectric materials which involves charged-particle activation in a potential double well.
It leads to exactly the DEDAE of (3) with pp, = 0. By somewhat arbitrarily assuming that
— Ay (their “a”) and 4, (their “b”) are positive and by taking both quantities temperature
independent, they arrive at class-II peaked relaxation response but do not extend their
work to include other possibilities. With the alternate assumption that #, and 7, are
temperature independent, however, class-I response results. The WB work is discussed in
detail elsewhere [27].

In an earlier work, Elliott [28] also considered hopping of charged particles (electrons)
over a barrier between two sites. Unlike WB, however, he found a single class-I Y frequency
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power-law exponent of approximately [I — kT(6/W,,)], where the binding energy W, was
approximated by the energy gap of the material. Although these results confirm that hopping
~ can lead to class-I behavior, the world still awaits the availability of full microscopic theories

for dielectric and conducting systems which lead at the macroscopic level to good
: approximations to DEDAE class I and II response, since only then will two-slope dispersion
data be fully explicable without the need for any ad hoc assumptions.
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