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Distributed Relaxation Response for Two Classes 
of Material Temperature Behavior 
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Expressions for the tra nsient and frequency response of materials showing exponential distributi ons 
of transition rates are summarized and related to recent work in the field. Responses ar ising from 
temperature-independent distributions (class I) are contras ted to those that depend in a simple way 
on temperature (class II). The distinction between dielectric and conducting systems is parti cularly 
emphasized, and the different temperature dependences of their frequency power-law exponents for 
class-I situations are discussed in detail. Besides presenting model frequency-response curves, it is 
shown that an exponential distribut ion of activation energies can lead to conductance frequency 
response very similar to that recently found by Lee et al. for two glasses and several ionically conducting 
single crystals. 

Ausdriicke fiir das Transient- und Frequenzverhaiten von Mater ialien, welche exponentielle Verteilun
gen von Ubcrgangsraten zeigen, werden zusarnmengefalit in Verbindung mit kiirzlich erschienenen 
Arbeiten auf diesem Gebiet. Das Verhalten, welches von tempcraturunabhangigen Verteilungen stammt 
(Klasse I), wird verglichen mit dern, welches in einfacher Weise von der Temperatur abhangt (Klasse II). 
Der Unterschied zwischen dielektrischen und leitenden Systemen wird besonders hcrvorgehoben , und 
die unterschiedlichen Tcmperatura bhangigkeitcn ihrer Frequenz-Expone nten fiir Klasse-I Situationen 
werden ausfiihrlich behandel t. Zusatzlich zu dem modellierten Frequenzverhaiten wird gezeigt, da f 
eine exponentielle Verteilung von Aktivierungsenergien zu einem Frequenzverhalten der Leitfahigkeit 
fiihren kann, welches praktisch mit dem kiirzlich von Lee et al. gefundenen fiir zwei Glaser und mehrere 
ionisch-leitende Einkristalle iibereinstimmt. 

1. Introduction and Background 

At least since th e work of Frick e [1], it has been known that th e small-signal frequen cy 
respon se of nearly a ll dielectric a nd co nd uc ting sys tems contains one o r more appreciable 
frequ ency ran ges in which th e respon se is closely proportional to (iw) - n o r to (iw )+m, wh er e 
the expon ents n and m fall in th e interval [0,1]; w == 2nf is the ang ula r frequency ; and 

i == 0 .When both the real and im agin a ry parts of a complex conduct ance (admi ttance) 
are pr op ortional to (iw) +m, such power-law beh avi or has come to be ca lled co ns ta nt-phase
element (CPE) resp onse [2 to 5]. Its un iversal ity has been particul arl y em phasized by 
Jonscher [6] (and references th erein ). In cid entall y, it has be come co m mon to wr ite such 
power-l aw resp onse in terms of eq uatio ns suc h as x'(¢) ~ X"(w) ~ oi ?", where X = x' + iX" 
is the dielectri c suscep tibi lity, but th is usage is dimen sionall y inconsistent unless ~ is 
repl aced by th e proportionality sign ex. 

For dielect ric, pol ym er, a nd conductive materi al s, frequency and t ra ns ient resp onse 
frequently in vol ve regions with two pow er -law expo ne nts (regions of co ns tant slo pe when 
the logarithm of resp onse is plotted versus th e logarithm of frequency or time). Such 
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frequency response often involves exponents of different signs and can show a peak in the 
imaginary component of the response (e.g., e" in the dielectric response case), but regions 
involving n j and nz exponents (n j =1= nz), often termed anomalous low frequency dispersion, 
are not uncommon [6, 7]. 

. But whatever particular nand m regions appear, or whatever expression is usect'io describe 
, --. -,:' such distributed response, if the frequency range is extended far enough toward high or 

low frequencies, the limiting response is associated with the smallest or largest relaxation 
time possible for the system, respectively [8]. Since these times are required by physical 

., realizability to be finite and non-zero, response curves must reduce to single-time-constant 
--'c ' behaviour in these limits, and therefore complex-plane plots must approach the real axis 

.:' ·~' . h ~ perpend icu l arly at their ends. Thus, theoretical response which only involves power-law 
ii"-' . exponents, such as that of the CPE alone, is non-physical; such response cannot continue 

to apply unaltered in the extreme high- and low-frequency limiting regions. . , 
'-. " > ...... 

All these responses can be expressed in terms of a finite-extent discrete or continuous 
distribution of relaxation times (DRT) or transition rates (DTR), unlike simple Debye 
response which involves only a single relaxation time or transition rate. Many different 
processes may lead to a DTR, e.g. a distribution of activation energies (DAE), a distribution 
of trap depths or waiting times, or a distribution of hopping distances [9, 10, Un. These 
possibilities may be related to fractal structures and fractal time processes [12]. Although 
the present work deals explicitly with DAEs, any of the above physical processes can lead 
to identical frequency and time response : the distribution is the key. 

A very important distinction, not always clearly made in the DTR analysis of relaxation 
response, is that between a dielectric system (j = D), where lattice contributions and de 
conduction, if present, are usually independent, and a conducting system (j = C), where 
de conduction is the w -> 0 limit of the full response. In the former, which typically involves 
dipole rotation, the principal relaxing entities do not contribute to charge transport, while 
in the latter they do. Proper identification cannot be made on the basis of the absence or 
presence of de conduction because a dielectric may be leaky and a conducting system may 
be measured with completely blocking electrodes or at insufficiently low frequencies. It is 
most appropriate to derive an expression for the response of a distributed D-system at the 
complex dielectric constant level (s = e' - ie"), and that of a C-system at the impedance 
(Z = Z ' + iZ") or admittance level, although one can, of course, then use the results to 
calculate the response of a D-system at the impedance level or that of a C one at the 
complex dielectric constant leveL 

Although Kauzmann [13] discussed a Gaussian DAE as early as 1942, it does not lead 
to power-law response in frequency and time [14].3) In fact , only an exponential DAE (or 
its associated power-law DRT) can yield such response. Later, Frohlich [15] considered the 
response of a dielectric material following from a uniform DAE of finite extent in energy 
(cut off at both high and low energies, the box distribution), but it was not until 1963 that 
the transient response of a D-system involving a double-exponential distribution of 
activation energies (DEDAE) was calculated [16]. In order for it to lead to the two slopes 

2) The value 0.497 in Table 3 of [9] should be replaced by 1.497, and the product sr in the numerator 
of (B8),should be replaced by s. In (17)of[IOa] the exp (- NilE) term should be replaced by exp (-lIilE), 
and in (24) the ± sign should be replaced by an equality sign. The numerators of (5) and (7) of [lOb] 
should be considered to be the effective DAE or DRT for normalization purposes, as in the present work . 

3) The numerator of (5) should be considered to be the effective DAE for normalization purposes, 
as was actually done. 
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Relaxation Response for Two Classes of Material Temperature Behavior 

usually seen in the time response, two distinct regions of exponential dependence were 
required in this DAE, and they were cut off at high and low energies to ensure physical 
realizability. Detailed frequency response for the single-exponential DAE (EDAE 1) [9] and 
the DEDAE [10, 14] were presented later, and it was found that DEDAE response could 
fit very well those of all of the conventional empirical response functions [4, 5], including 
that of Havriliak and Negami [17] and stretched exponential response. Since the DEDAE 
can fit all data previously fit by these functions, further discussion of its temperature 
dependence possibilities is therefore warranted. 

2. Thermal Activation and Physical Ranges 

Most distributed response is thermally activated. Although both energy storage and energy 
dissipation processes may be separately thermally activated [9], the conventional approach 

ais a characteristic property of the material, E is an activation energy, k is the 

for dielectrics is to consider only the activation of relaxation times, t which depend on 
both processes. Then, we may write 

r = 'a exp (E/kT) , (I) 

'where
 
Boltzmann constant, and T is the absolute temperature.
 

The more general treatment, where both processes may be separately thermally activated, 
is particularly needed for C-systems [9]. Let us therefore assume that the activated dissipation 
process involves exp (rxE/kT) and the activated storage process involves exp (fJE /kT). Then 
the generalization of (1) becomes 

, = ' aexp (yE/kT) , (2) 

where a and fJ are temperature independent constants and y == o: + fJ. Next , define Pc == a 
for C-systems and PD == fJ for D ones and use Pj in general. Although we shall actually 
illustrate results for the usual choices PD = 0 and Pc = 1, so that y = 1, for generality, 
frequency-response formulas will be presented in terms of Pj and y. 

Let us define 'L ( >0) and 'II « co) as the minimum and maximum relaxation times, 
respectively, which are possible for the system . Then the corresponding limiting E's are 
EL == (kTjy) In (" ./'a) and Ell == (kTj y) In ('H/'a)' When the frequency response of the system 
involves two fractional exponents, it is useful to define a further more or less central, r '0' 
where '0 == ' aexp (yEo/kT) and EL ~ Eo ~ EH • Finally, the normalized quantity Iff == E/kT 
will often be useful. 

Since negative activation energies are meaningless, the smallest physically realizable value 
of E is zero ; then 'L = ' a' Further, since 'II < co, it is unphysical to consider the range of 
E to be - co ~ E ~ co as Wang and Bates (WB) [18]4) recently did . The quantity ' amay 
be expressed in terms of the entropy, S, of the thermally activated process [16, 19]; then E 
is essentially the corresponding enthalpy. Although negative entropy values have been found 
in some experiments [16], the minimum value of the entropy for a physically realizable 
system cannot reach - co, the value necessary to make 'a zero . 

4) In (13) a factor of (kT) -1 has been omitted. In (IS) the {3 in the term exp [{3(1 - (X) .. .] should 
be replaced by -{3 . The reference to Fig. 8b above (20) should be to Fig. 7b . The reference to (7) at 
the top of p. 84 should be to (17). 
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3. The Double-Exponential DAE for Classes I and II 

3.1 The DEDAE for dielectric and conductive systems 

If we define the DEDAE as Fj(~')' it follows from earlier work [9, 10, 14] that Fj(~') = 0 
for Iff < IffI. and ~' > Iffll and, otherwise. 

F .(Iff) = 

} 
{N exp [(Pj - A\) Iff] ; 

N exp [(Az - Ad Iff0 + (Pj - ).z) Iff] ; 
IffI. ~ s ~ Iffo , 

Iff0 ~ Iff ~ Iffll , 
(3) 

where 

Ak == kT'1k, (4) 

with k = 1,2, and N is a normalization factor. Here Ak and 11k are parameters of the 
distribution and are discussed in detail later. It is convenient to define 

x == y (~' - ~'o ) , (5) 

XL == y(lffo - ~'d, (6) 

XII == Y (~' H - Iffo) , (7) 

and the following important slope-related quantities, 

<fJk == (Pj - Ak) , (8) 

where - 00 < <fJ < 00. We omit the j subscript from tp since its value will be clear from 
the context. 

3.2 Class 1 and class 11 temperature dependences 

When the DEDAE was first introduced [16], the two 1]8 were taken temperature independent 
on the basis that a EDAE, when present, might often be expected to be a basic property 
of the structure of the dielectric or conductive system and so might most plausibly be 
entirely independent of temperature (for at least a limited range not too close to the 
temperature of a phase change). Although the first detailed analysis of the frequency response 
of an EDAE system with a single I] of arbitrary value [9] did not initially specify the 
temperature dependence of 1], it was eventually taken temperature independent, and this 
choice has been generally followed in the subsequent work of the author in this area [10,14] . 

Recent work of Kliem and Arlt (KA) [20], which deals very similarly with DEDAE time 
and frequency response for D-systems but does not reference any earlier work in the EDAE 
field, also involves the temperature-ind ependent choice for I]k ' It is this temperature 
independence of the EDAE which defines class-I behavior. It leads to frequency response 
whose shape on a log-log plot is dependent on temperature. 

Another choice, which leads to quite different temperature dependence of F(E) and e(w), 
is to set I]E = A(EjkT) and take ,t == kTI] temperature independent. Such a choice has 
recently been discussed by WB [18] for D-systems and leads to class-Il behavior. It yields 
a temperature dependent F(E) and corresponding e(w) response whose shape is independent 
of temperature. Such behavior, where a universal frequency-response curve can be 
constructed by shifting curves for different temperatures along the frequency axis until they 
superimpose, is also consistent with the well-known time -temperature superposition law 
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[21], and has been illustrated for a variety of materials by Jonscher [6]. Although much 
small-signal frequenc y-response data are consistent with the predictions of either a class-I 
or of a class-II DEDAE model, once one allows '1 1 and/or '12 to be temperature dependent 
an infinity of possible types of response becomes possible. Here , attention will be restricted 
to only class I or II situations, the most important ones . 

3.3 General frequency-response expressions 

It is useful to write the normalized frequency response, Ij(w), of either a C-system or of a 
D-system in term s of a single equation [9]. Let Viw) be either the part of the impedance 
associated with relaxation for an intrinsically conducting system (j = C), or the part of the 
complex dielectric constant associated with pure dielectric relaxation (j = D), and define 

(9) 

where V jOand Vjoo are the limiting low and high frequency values , respect ively, of Vj(w) 
for a single dist ributed proces s. For j = 0 , for example, Voo = eo and Vo oo = eOO" 

The general expression for Ij(w) when a DAE, FiE) , is present may be written [9, 10] 

(10) 

- 00 

where W oTO == I and T is given by (2). For W = 0, (10) reduce s to ju st the F(E) normalization 
condition. Now after using F(E) dE = F( Iff) dlff, equ . (3),and evaluating N , one may write the 
normalized frequency response as [14] 

(11 ) 

where 

o exp (<PI X) dx xfH exp (<P 2X) dx 
(12)f 1 + i(w/wo) exp (x) + 1 + i(w/wo) exp (x) , 

o 

and 

(13) 

for <P I and <P2 both nonzero. When they are both zero, J j(O) = XL + XII = y(lffll - Iffd. 
For numerical work it is straightforward to evaluate the integrals of (12) directly by 

numerical quadrature, although closed forms are available for certain integral and fractional 
values of <P [9] (see Appendix B). Since 1985, the complex nonlinear least squ ares (CNLS) 
impedance spectroscopy fitting program, LEVM , has included both transient and frequency 
response DEDAE fitting and simulation capabilities and has been used in the present work. 
It incorporates a great many more possibilitie s as well [22] and is available at nominal, 
nonprofit cost from the author's department. 

Equation (11) to (\ 3) define the general frequency response for the DEDAE. When the 
data show only a single power-law response region , one need only set <P == <P I' <P2 = 0, 
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and XII = 0 in (12) to obtain the single-slope EDAE 1• It leads to asymmetrical peaked loss 
near the low frequency end of a complex-plane plot of liw). 

. How then can one tell the frequency response of the DEDAE and the EDAE 1 apart 
, ,_:1.~- when they both show peaks ? The best way to obtain quantitativ,e results is to fit .the data 
'::::': by CNLS to each model. But usually a log-log graph of Ij (w) versus w will allow 

discriminati on. Because cut offs lead to limiting Ij( w) response with power-law exponents 
_ of·± 1, and DEDAE slopes near a central peak will involve exponents appreciably less than 

," ~ ;' .: . unityin magnitude for a broad DRT or DAE, it is straightforward to distinguish between 
" the two possibilitie s provided the measured frequency range is sufficiently large . In the 
.' EDAE 1 case, the left slope will asymptotically approach 1, while at the right of the peak 

': ' :. a negative slope of magnitude less than 1, associa ted with the single tp, will be followed by 
, "' ~' , . . . a limiting slope of - 1.	 . 

:' j;>...~ , .~ : , :» '; ". :>	 .....c 

.; ~t; . '. :~': :i.; " 3.4 Dielectric-system transient response ... J. , ~ .l1ft ' : .(/\ j£{: ' ~ '''' "' ~ 
f /.- '· Once an expression for a DAE is available, it is straightforward to calcul ate the corresponding 

. time- and frequency-response predictions using well-known integral tr ansform s. In particu
lar , the transient response of aD-system, A o(t), is given by a Lapl ace transform as [23] 

00 

Ao(t) =	 S [c 1Fo(C 1)] exp ( - t ~) de (14) 
o 

where ~ == , -1. This integral was evaluated in closed form for the F(tff) of (3) with Jio = 0, 
and although the result involves the incomplete y-function, it can yield response for Ao(t) 
with appreciable region s closely proportional to t -( !+ All and t -(1 +).2), where )'k may be 
proportional to T (class I) or independent of T (class II ). The original calculation [16] 
envisaged a situation where both entropy and enthalpy could be simultaneously distributed. 
Here, it has been simplified for the case where only E is distributed. Apparently unaware 
of the earlier work [16], KA independentl y deri ved a form of (14) and calculated the 
associated time and frequency response by numerical integrati on [20]. Since [16] contains 
much more extensive results and discus sion of EDAE transient response possibilities than 
that of KA, only frequency response will be considered in the following. 

4. Specifics of EDAE response 

4.1 Illustrative examples of response possibilities 

Fig . I a shows a typical relaxation DEDAE for a class-I dielectric system. The slopes are 
defined as S == d [In {F (E)}]/dE. The formulas for the DEDAE slopes and the actual values 
used here are presented in the top part of Table 1. The values selected for illustrative 
purposes were chosen to yield response of the same general char acter as those of WB [18] 
and KA [20]. We have purposely picked a somewhat asymmetric distribution here. Thus, 
the complex-plane response shown in Fig. I b is correspondingly asymmetric. 

In Fig. 1b the low frequency limit is at the right and the high frequency one is at the 
left. Thi s complex-plane response was calculated using X L = 0.14jkT and XH = 0.24jkT 
(solid lines in Fig. 1b) and with " infinite range" (IR) values of these quantities (dashed 
lines) added for comparison . To obtain such infinite-range response, it is only necessary 
that XL and X II be sufficiently large that further increasing their values result s in negligible 
change of the response within the frequency window considered. For the present range, 
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- quantity region 

general class 1 
1]" I] z and 
EOAE 
temp erature 
independent 

class 11 
A" Az and 
Ij(w/wo) 
temperature 
independent 

illustrative values 
at T = 200 K 

DEDAE 

I"J 

y~ 

y~ 

EL ~ E ~ 

Eo ~ E ~ 

w < Wo 
w > Wo 

w < Wo 
W > Wo 

W < Wo 
W > Wo 

Eo 
Ell 

-I] , 
- I] z 

-({iz 
- ({i t 

1 - ({iz 
1 - ({i , 

- ({i z 
({il 

AI/k T = - I] t 

AI/k T = -I] z 

- Ilj + kTl] z 
- Ilj + kTI] , 

1 + kT 'lz 
1 + rr« , 

- 1 + kT /lz 
1  kT'1 1 

AtikT 
-Az/k T 

- Ilj + Az 
- Ilj + A, 

1 + Az 
1 + A, 

- 1 + Az 
1 - Al 

23.209 [ - 38.814] (eY- ') 
- 38.295 [- 96.317] (ey - I 

) 

0.66 
- 0.4 

(1.66) ----> I 
0.6 

0.66 
0.4 

values greater than 10 or so are sufficient. Fig. 2 shows the corresponding Ig [I/ w/wo)] 
versus Ig [w/wo] response curves. For the present choices, the IR criter ion is well met for 
the T = 100 K curves and is nearly met for the w < W o part of the T = 400 K curve, where 
XII ~ 7. 

The T = 200 K results of Fig. I b and Fig. 2 apply to either a j = 0 or a j = C situation 
because the CPk values have been taken the same for these two cond itions at th is tempe rature. 
But because of the depend ence of the cp's on Ilj' the actual OEOAE shape which leads to 
this response is different in the two cases. As the values listed in the first part of Table 1 
show, the temperature-independent , C-system OEOA E yielding these result s is not centra lly 
peaked but decreases with two negat ive slopes as E increases in the range from EL to Ell' 
Also, because the values of Ilo and Ilc are different, the present equ ality of the actual values 
of the cp's at T = 200 K leads to different c1ass-1 values of the j = 0 and j = C ({J values 
at other temperatures, produ cing C-system curve shapes different from those shown for the 
present O-system. 

Further, only the differences Eo - EL and Ell - Eo affect the result s plotted in Fig. 1b 
and 2. Thus, such normalized plot s are independent of the actual value of Eo present. But 
since Wo depends on Eo, the latter can be estima ted if values of Wo for several temp eratu res 
are available. By fitting the OEO AE model to frequency-response data for different 
temperatures using, for example, the LEVM fitting program, estima tes may be obt ained of 
Wo, ' a' Eo and some or all of ({Jl ' ({JZ, XL' XII' U0 ' and U 00 ' 

For frequency-response situations, we define "s lope", s, to mean the slope obtai ned from 
a stra ight-line region of a log- log plot , such as that of Fig. 2. In such a region , it follows 
that Ij ex w± .. and the slope is just +n, or - n, with a ~ n, ~ 1. If the full response is 
well approximated by the CPE, then Ij ex w ±nI as well, but for added generality let us take 
Ij ex w±nR, where a ~ nR ~ 2. Th e single-time-constant Oebye curve of this figure applies 
when Ell --> EL, and its limiting left and right slope values are SI = nil = + I and s, = -nt, 
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Fig. I. a) Double-expon ential distribution of activation energies (DE D AE) used a t a ll temperatures 
for class I j = D frequ ency-r esp on se ca lcula tio ns. b) Complex-plane plot of the normalized frequ ency 
respo nse for three temperatures. I j is a no rm alized impeda nce for conducti ve sys tems (j = C) and a 
norm alized co mplex dielectric con stant for dielectric systems (j = D). T he dashed curves were calculated 
without the cut-offs sho wn in Fi g. 1a. Here,j = D or C for the T = 200 K curve, a nd j = D for th e others 

= - 1. These same values are found for DEDA E response at frequencies beyond cut-off 
where only the lowest and highest relaxation times operative in the system dominate the 
response [8 to 10]. But in regions nearer wo, I j (w/wo) exhibits slopes whose values are 
determined by those of qJk' Expressions for the approxima te slopes in the central regions 
of such a plot as Fig. 2 are presented in the second part of Table 1. Incidentally, the effects 
on the temperature dependence of a qJ arising from linearly related entropy and enthalpy 
distributions and /or from a glass-like transition have been considered [9, 16] but are not 
incorporated in the present results . 

There are two reasons why we speak here of approximate rather than exact slopes in 
the frequency-response dom ain . Fir st, in any physically realizable system there can be no 
non-zero DAE probability density outside of a finite region of E (E L to Ell)' The resulting 
cut-off effects in the frequency respo nse may lead to a finite region of no well-defined 



wher e the slope param et ers sa t isfy 0 ~ IX ~ 1 and 0 ~ fJ ~ I. This express ion reduces to 
that of C D when IX = 0 a nd to that of Cole and Cole for fJ = 1. So is th e C D identifica tio n 
made by KA m ost appropriate here ? 

con stant slope (the ac tual ca se for th e right-hand region of the T = 400 K curve of F ig. 2) 
or to on e where nR ' and nl are not entirely equal eve n in the w/wo > I region [9, IOJ. 

Th e second reason is even more im po rt ant. The seco nd a nd third parts of Table I a re 
appropriate for IR condition s. T hey indicate th at th e Ij slo pes are appro ximately given by 
-qJ2 and - qJ l' respecti vely. But wh en 11 1 and 11 2 are non-zero, the magnitudes of q> l and 
qJ2 can increase ind efinitel y as Tincrea ses for class-I behav io r, and as 1q>1increases beyond 
1, DEDAE resp on se a pproac hes simple Debye beh avio r. But th e ac tua l slo pes must sa tisfy 
ISII ~ 1 and ISRI ~ 2 [9, 10]. Thus, th e pr edicted a pprox imate slope of 1.66 given in Table I 
is actually limit ed to unity. Even when cut-off effects are negligible, th e rela tions nil ::::0 /q>21 
and nIr ::::0 Iq>l l certai nly cannot hold whe n 1q> 1> I or when q> < O. Fig. 5 in [14] illu strates 
how n, and nR a pproach th eir limiting va lues as q> exceed s I or 2. 

Th e above restricti ons were appa re ntly not appreciated by KA . They dealt with a class- I 
dielectric resp on se sys tem and made th e serio us co nce ptual err or of directl y eq ua ting th e 
actual frequency- a nd tim e-resp on se po wer-law expon ents to th e DEDAE slo pe parameters 
[20], the pre sent q> k' It is of interes t to not e th at it is th e slope of th e high -E right side of 
the DEDAE which determines th e slope of th e lo w-frequency left side of freque ncy-respo nse 
curves (and vice versa), a result co mpletely consonant with the presence of a thermally 
activated process which occurs more slo wly the high er th e energy barrier . 

The Fi g. 1b curves are similar to o nes presented by KA , plotted by th em in th e X complex 
plane. Although th ey did not spec ify th at they wer e ac tua lly plotting x"lxo versus x'/Xo , 
the y mu st have done so since th e maximum value of a ll th eir is is unity. F u rther, KA 
identify the shape of th ese curves as being of Cole-Davidson (C D) cha rta cter. But it has 
long been known th at th e DEDA E withou t cut offs ca n excellently fit Cole-C ole, C D, and 
other empirica l respo nse functions [9, 10, 14], and its resp onse is in gen er al ver y simila r to 
that produced by th e em pirical Havril iak-Negami (H N) expressio n [17] 
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Fig. 2. Log- log plot of the normalized re
spo nse qu antity I j(w/ wo) vs. (w/w o) for the 
three temperatures of Fig. I b (j = 0 ), for the 
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As a test of model appropriateness, the T = 200 K DEDAE I(w/wo) complex data of 
Fig. 1band 2 were fitted by LEVM to the CD and the HN expressions, using optimized t 10 f 
function-proportional weighting [22]. The estimated standard deviation of the CD fit was I 
found to be about 0.34, while that of the HN one was about 0.016, a far better fit. The > 
values of IX and Ii estimated from the HN fit were 0.344 ± 0.002 and 0.614 ± 0.002. These ; w 

~ 

'100 
values correspond to asymptotic HN slopes of SI = nil = 0.656 and s, = - nlr = - 00402, 

I~satisfactorily close to the actual values of 0.66 and - 004, respectively . On the other hand, 
the HN estimated value of TO was about 55% too high, reflecting a systematic error arising 
from using a wrong fitting model for the data. 

The curves of Fig. 2 are similar to some calculated by KA and compared by them (but 
not fitted) to actual experimental data on polyethylmethacrylate. The magnitudes of the 
experimental slopes increase with increasing temperature, consistent with earlier predictions 
for a class-I D-system. Note, however, that the slopes of a class-I C-system at the Ie level 
are of the form - 1 + kT/lk- Thus for positive Ilk, the associated slope will be near -1 at 
low temperatures and will decrease in magnitude as the temperature increases, reaching 
zero at T = TOk == l /kllk' For the present values of Ilk, which are both positive in the present 
conductive case, TOk is about 333 K and 120 K for k = 1 and 2, respectively. 

Finally, note that the peak loss of I(w/wo) curves similar to those of Fig. 2 will only 
occur at w/wo = WT O = 1 when the condition qJ 1 = - qJz holds , yielding a symmetric curve 
(termed the EDAEz in earlier work [10, 14]). Otherwise, the peak occurs to the left or right 
of the w = W o point, depending on whether IqJ11 > jqJzl or vice versa, respectively. This 
phenomenon, which does not require equality of XL and XII' implies that one should not 
generally determine the value of To at a given temperature from l /w p, where wp is the 
frequency at the peak. Instead, CNLS fitting of the full data should be used to obtain an 
appropriate estimate of TO. Incidentally, although KA considered an asymmetric situation, 
their peaks all occur at w = Wo, contrary to the above expectation. The difference arises 
because they evidently implicitly defined Wo as wp' rather than as liTo. 

4.2 Class-II frequency response 

Table 1 shows slope expressions for the class-II situation where the )'k are temperature 
independent, the case recently considered for dielectric materials by WB [18]. Then, the 
DEDAE is itself temperature dependent, as illustrated in Fig. 3 for the three temperatures 
considered here. But for this situation, the shapes of the frequency-response curves are now 
temperature independent in the IR approximation used by WB, and the T = 200 K curves 
of Fig. 1band 2 apply at all temperatures. But as T increases indefinitely for the realistic 
finite-range situation, F(E) approaches a flat-top box distribution shape and XL and XII 

approach zero . In the limit, again only simple Debye behavior remains. Nevertheless, if XL 

and XII remain sufficiently large over the entire temperature range of measurement, 
frequency-response curves for different temperatures can be shifted in frequency, to account 
for the temperatures dependence of T, so that they all fall on a single universal curve . Many 
experimental situations of this type are discussed by Jonscher [6]. 

4.3 Comparison of dielectric and conductive system immittance responses 

Not only is it of interest to compare the slope predictions of Table 1 with actual slopes of 
I ', and 1'; curves in the IR case, where cut-off effects are outside the range of measurement, 
but it is also instructive to compare full curve shapes for normalized immittances 
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Fig. 3. The temperature-depend ent D ED AE for class II a nd j = 0 at T = 100, 200, an d 400 K 

(imped ances, admittances, and complex dielect ric consta nt). We begin with a discu ssion of 
the transform at ion of un normalized quantities for j = C a nd D. Since the measured system 
will always include a geo met rical ca pacita nce , C "" give n by C ", = E",Cc, whe re C, is the 
capacitance of the emp ty measuring cell, its electrical effect sho uld be incl uded in th e 
analysis. Then the impedance of the C-system which involves a spec ific respon se funct ion 
at the Z level, Udw), ca n be wri tte n Zdw) = Udw)j [1 + iwC",Udw)], and it foll ows th at 
Ye == I/Zo and Ee == Yd(iwCc ) ' N ote tha t th e de conducta nce is Geo = Yd O). 

Similarly, for a leak y dielectric with a dc co nducta nce of Goo, ED(W) = Uo(w) 
+ Goo/(iwCc) ' and Yo a nd Zo follow im mediately. Since Ue a nd U0 describe different 
ph ysical pro cesses, we do not expect th at Yc = Yo. For a C -system, where the dispersion is 
primarily associated with conduct ive ra ther th an dielectric processes, one sho uld clearl y 
deal with Z c rather th an Ec. In fact , co nce ntration on Eo rather th an on Zc' or Yo tends to 
obscure the actua l relaxation process invo lved. Unless bo th dielectric and co nductive 
relaxation processes are sim ultaneously present a nd important, one should therefore be 
concerned with cond uctive respon se functio ns for j = C rath er th an with dielectric ones. 

For simpl icity, we sha ll set U j ", = 0 and Goo = 0 as well. Th en , it is a pp ro pria te to 
define for j = C the normalized admittance (complex co nductivity) YNC == I /Ic and the 
associated normalized complex dielectric co nsta nt ENC == YNC/ (iw/wo)' Simila rly, when j ~ D, 
the normalized admittance is defined as YNO == (iw /w o) I o a nd the normalized im pedance , 
as ZND == I/YNO' With th ese cho ices, it follows th at ZNO = ENC if I c a nd I Dare tak en the sa me. .: 

In Fig. 4, the frequ ency dependenc es of th e abo ve qu antities are plotted for j = 0 'on ,' 
the left and j = C on the right. Th ese gra phs are for th e T = 200 K D EDAE situa tio n ...~ "~ 

considered in Section 4.1. The limiting slopes of both real and im agin ary qu an ti ties are,' 
equal for w > W o and are generally consis te nt with th e values given in T abl e 1. But altho ugh 
th"e low-frequ ency slope of Y ~ D is limit ed to unity, that of Y~o is not so limited and exhibits 

oj -, 

the expected value of 1.66. For w < wo, th e asy mpto tic slope of Z~o is j us t the negat ive 
of that of Y~D' as expected, and that of Z~ D is equa l to that of I ~. For th e right graph, 
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Fig. 5. Graphs of the sa me character as tho se of Fig . 4, but here respon se is fo r a single-ex ponent ial 
distr ib ut ion of activa tion energies (E DAE .) with cP = CP c = CPo = I, using IR cut-off values of XL = 15 
(or gre at er) a nd X II = 0 
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Fig. 4. G rap hs illus tra ting the norma lized freq uency res po nse a t T = 200 K of th e D EDA E of Fig . I a 
with ou t cut ofTs. T he left part sho ws dielect ric-system respo nse at three immi tta nce levels, while the 
right pa rt compares conducting-system respo nse for the co ndi tio n th at I d w) = I o(w) 

notice part icularly th e difference in the slo pes of the YNC co m po ne nts fro m those of YNO ' 

Furth er , th e slope of the e ~e curve for w < W o is just -I, aris ing fro m the non-zero Gco 
of the C-system. 

As al read y men tion ed , the EDAE 1 ex hi bits a single slope determ ined by 'I = 'It . It is of 
particu la r inte res t whe n 'I ~ O. T hen, for 'I > 0 o ne dea ls with an ex po nentially decreasing 
distribution , frequen tly seen experimentall y in semicond uctors as an expo nentia l ba nd tail 
[24]. For 'I = 0, the slo pe is zero, a nd the DA E is then a box d istribution with a fia t top 
extending from EL to Eo = EH . F ig. 5 sho ws resp onses for th e CP e = CPo = cP = I choice; 
th e co rres po nding values of Ae and },o a re 0 a nd - I , respecti vely. 
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The w < Wo slopes in Fig. 5 arise from the cut off at E = EL, and we see that the left-side 
slope of Y~D has the limiting value of 2. For w > Wo, on the other hand , the slopes of the 
components of YNC asympto tically approach the value of unit y predicted in Table 1, and 
those of I~ and I~ are properly - 1. But the other slopes do not entirely agree with those 
predicted . For example, that of I~ is algebra ically greater than - 1. Fina lly, note that since 
the slope of YNCapproaches unit y for w > wo, the associated capaci tance (see the c~ c curve) 
approaches approximate frequency independence as well. 

5. AC Conductance for a Conductive System 

In recent work [11 , 25], it has been pointed out that measurement of Y~ (w) alone is usually 
'insufficient to allow unambi guous discriminati on between different d ispersion models, but 
that CNLS fitting of full Ydw) dat a does permit such discrimin at ion [25]. Macd onald [25] 
also discusses ways of ana lyzingj = C da ta when Coo cannot be neglected. Int eresting Ydw) 
data have recently been presented by Lee et al. [26j5) which fall into two types : one in 
which the slope of the data is un ity over a wide temperature ran ge, and ano ther in which 
s decreases linearly from unit y down to a satura tion value of 0.6 as the temperature is 
increased. Lee et al. prop ose that such limit ing s = 1 behavior at low temperatures is a 
universal phenomenon. 

Now since, for the EDAE I with class-I behavior , q> = 1 - kTI] when Pc = 1, Fig. 5 and 
the last line in Table 1 show that with s :::::: q> the above slope behaviors are approxi ma tely 
consistent with those predicted by an EDAE. When s :::::: 1, it is merely necessar y that 
kTltil ~ lover the temperature ran ge of measurement. Fu rth er, j = C dat a for num erou s 
different materials are kn own to lead to s values which decrease approxi mately linearl y 
over a range of increasi ng temperature, implying that I] > O. Th e high- T satura tion value 
of exactly 0.60, which was observed for three different materials by Lee et al. may be an 
art ifact of measurement arising from the difficult y of determining s when the maximum 
available frequency is limited and only a vanishingly small region of Yd w) response exhibits 
an approach to a constant slope value. Alternatively, it may signal a tran sition to a different 
dispersion process (e.g., that from class-I to class-II behavior). 

Although Lee et al. rejected the hypothesis that their dat a imply the presence of a DAE 
because they believed that a wide uniform DA E is unl ikely for the materials they measured, 
the temperature dependence of s they found is neverth eless evidence for the possible 
presence of such a distr ibut ion. Altho ugh their s = 1 dat a for NaCl:Zn2+ over the 
temperature range from 296 to 533 K were only ava ilable in gra phical form , I used their 
value of 0.95 eV for the activa tion energy of Gco and their publ ished curves to obta in 
Gco(T) values well approximating theirs. Then with q> = I and an ac tivation energy of 
0.88 eV for ' 0 , the EDAE I led to the curve s of Fig. 6. The j = C ones are very similar to 
those of Lee et al., and the j = 0 one is included to show that the correspo nding D-system 
EDAE 1 with GDo(T) = Gco( T) and q> = 0 lead s to a limiting slope of 2 rather than 1 and 
is thus inapprop riate, as expected. Incidentally, the presence of a Coo with a value even 
much larger than likely affects Y ~(w) here but not Y ~(w). The minimum value of (Eo - E.J 
found which led to negligible cut-off effects was 0.42 eV. Thus the EDAE 1 extended from 
about 0.46 eV, or less, to 0.88 eV. 

5) In this work the autho rs associate power-l aw frequency res po nse wit h st retched-exponentia l 
tran sient respo nse, only t rue in the asymptotic w ~ Wo limit. 



6. Discussion of Response Models 

Although there exist a plethora of theories which yield CPE-like response with one or more 
slopes (see [10,11] and references therein) , few of them predict slope temperature dependences 
and none predict such dependences from an ab initio many-body treatment. Thus, as in 
the present EDAE approach, arbitrary assumptions are generally made about such 
temperature dependences. Although these models are thus incomplete, when good agreement 
between EDAE predictions and measured frequency and temperature response is found, it 
is probable that there is a DTR present in the material -electrode system being investigated. 
Further, class-I and class-Il responses together cover the majority of experimentally seen 
D- and C-system slope-temperature responses. For class-I response, it is often found that 
in the w > W o region the magnitude of the I j slope increases with increasing temperature 
for D-systems and decreases for conducting ones for '11 > 0, the usual EDAE I situation, 
consistent with the linear cp dependence of Table 1 when the difference between cp and actual 
slope exponents is recognized [9, 14]. 

Wang and Bates [18] have recently proposed a semi-microscopic hopping model for 
dielectric materials which involves charged-particle activation in a potential double well. 
It leads to exactly the DEDAE of (3) with PD = 0. By somewhat arbitrarily assuming that 
- Al (their "a") and ..1. 2 (their "b") are positive and by taking both quantities temperature 
independent, they arrive at class-It peaked relaxation response but do not extend their 
work to include other possibilities. With the alternate assumption that '11 and '12 are 
temperature independent, however, class-I response results . The WB work is discussed in 
detail elsewhere [27]. 

In an earlier work, Elliott [28] also considered hopping of charged particles (electrons) 
over a barrier between two sites. Unlike WB, however, he found a single class-I y ~ frequency 
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These results suggest that since the 
j = C EDAE I model can fit the 
main features of the data of Lee et aI., 
it may be appropriate after all, unless 
a more plausible model which can 
explain the slope temperature depen
dence is found . If the EDAE I is 
applicable, the cp :::::: s = 1 value at 
low temperatures is not surprising 

5 and scarcely seems to merit elevation 
to universality. 
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power-law exponent of approx imately [1 - kT{6jWM)] , where the binding energy WM was 
approximated by the energ y gap of the material. Although these result s confirm that hopping 
can lead to class-I beha vior , the world still awaits the availability of full microscopic theories 
for dielectric and conductin g systems which lead at the macroscopic level to good 
approximations to DEDA E class I and II response, since only then will two -slope disper sion 
data be fully explicable without the need for an y ad hoc assumptions. 
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