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ABSTRACT Analytical examples of the discrete Fourier
transform (DFT) help in understanding relations between the
DFT and the Fourier integral transform (FIT). Such examples
enable one to estimate the errors involved when one transform
is approximated by the other, and they suggest how such
approximation errors might be reduced. We present mathe-
matical and numerical analyses of the time-to-frequency DFT
of the complex exponential function and of the frequency-to-
time inverse DFT of the relaxation function. The FITs of these
functions are exact inverses, and so they serve to clarify the
effects of aliasing and truncation on the DFT.

1. Introduction

Thorough understanding of Fourier transforms is important
in many areas of applied mathematics. Particularly significant
are distinctions between Fourier integral transforms (FITs)
and discrete Fourier transforms (DFTs). For many functions
the FIT can be calculated analytically, but the DFT can
seldom be so expressed. On the other hand, since applica-
tions are made to discrete data, a DFT is usually appropriate
for numerical work because the fast Fourier transform (FFT)
may be used to compute the DFT efficiently (1-7). It is
therefore important to understand the conditions under
which the DFT and FIT produce results close enough for all
practical purposes, and to study the effects of aliasing (un-
dersampling) and truncation (finite sample length) in a DFT.

Although there are hundreds of readily calculated integral
transforms, the only analytical examples of the discrete
transform that we found in about 50 texts and monographs
(e.g., refs. 1-6 and 8) were for the rectangular pulse and the
train of spikes, which are not typical of real-world problems.
We discovered two realistic examples that can be trans-
formed simply and analytically for both the DFT and the
FIT—namely, the (truncated) complex-exponential function
and the function that is its integral transform, often called the
relaxation function (akin to the Lorentzian and Debye func-
tions). The first example is presented in a text on computing
(7), but the second has not been published.

We use the language of digital signal processing, since
discrete and integral transforms are discussed most exten-
sively in this field. The same considerations apply in several
other fields, such as digital image processing. Our notation is
generally that of Brigham (2). In particular, we write j =
\/—_1, usually denoted by i in mathematics.

2. Time-to-Frequency Transform of the Complex
Exponential

The first function we Fourier transform is defined in the time
domain as h(¢), the complex exponential for ¢ = 0,
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h(t) = e~ *, Rea>0 [
and zero for ¢ < 0. The condition on «a ensures convergence
for positive t when the number of points in the transform, N,
is increased indefinitely to obtain the integral transform.
Apart from the inclusion of (complex) a, we are investigating
analytically the worked numerical example in chapter 9.1 of
Brigham (2).

Analysis of the transform. We use Brigham’s notation for
the DFT of Eq. 1. The DFT over N points with time step A¢
(Brigham’s T) we write, following equation 9.1 of Brigham,

N=1 . 1
Hy(n) = At S emakbt -jukdr) _ Z ’
k=0 2

in which the frequency variables w and f are related to n by

(2]

2mwn
NA:

f n
" NAt'

31

’

Eq. 2 differs slightly from the usual DFT by the overall factor
At, which ensures convergence to the Fourier integral for
large N as At — 0. The subtracted term in Eq. 2 ensures
correctness of the inverse transform by removing half the
value at the point of discontinuity, k = 0, as discussed in ref.
2. The sum in Eq. 2 is a geometric series with multiplier

r= e—(a+jw)At’ [4]
so the series is
1-rN
N=1
#1
Zor=l1-r 7 [5]
B N r=1.
The DFT of the complex exponential Eq. 1 is therefore
1- e-—aNAt 1
Hy(n) = At| oK mm/N 5] Q

unless the product of the exponents in the denominator is
unity, when

1
Hn(n) = At[N - 5] 7

This is also the value obtained by applying L’Hopital’s rule
to Eq. 6. Subsequently, we assume that the limiting DFT is
handled this way. The DFT given by Eq. 6 is exact, so it may
be used to check an FFT program for any N.

We have thus obtained directly for the complex exponen-
tial a closed-form DFT in which N may be any positive

Abbreviations: DFT, discrete Fourier transform; FFT, fast Fourier
transform; FIT, Fourier integral transform.
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integer. If the FFT is used, its common implementation (the
radix-2 form) requires that N be of the form 2/, where i is a
positive integer, and that n be an integer. To simplify com-
parison between our analytical expressions and the FFT, we
make such restrictions in the numerical examples below. The
general symmetry properties of the DFT (1-8) are readily
verified for Eq. 6—namely that if the function to be trans-
formed is real (a real), then

Hy(N — n) = H}(n) Ima=0, [8]
so Re Hy(n) is symmetric and Im Hx(n) is antisymmetric
about the midpoint » = N/2 (for N even). For any a, the
midpoint value is

_ ,—aNAt 1

Hn(N/2) = At| ———————|. 9

N( / ) 1+e_aAt 2:| [ ]

Transition to the FIT can be made from Eq. 6 by letting

NAt — o as At — 0 and assuming Re « > 0 to guarantee

convergence. By expanding the denominator to lowest order

in aAt and then letting At — 0, one readily finds the limit as
the relaxation function

Hy(n) = R(w) = , [10]

a+jo

where R(w) is the integral transform of the complex expo-
nential in Eq. 1 and w is now continuous.

Exponential decay. With a in Eq. 1 real and positive, we
have pure exponential decay. With appropriate units for a
- and At, the time step At can be measured in units of 1/a; then
we can set a = 1 so that Eq. 6 becomes

_ e—NAt 1
Hyn(n) = At[w - E:I [11]

The midpoint value and integral-transform limit are obtained
by setting @ = 1 in Eqgs. 9 and 10. Our analytical example
agrees with that computed numerically by the FFT in chapter
9.4 of Brigham (2). '

For N large and At small (but finite), it is interesting to
calculate from Eqgs. 9 and 10 the ratio of the midpoint DFT to
the FIT at midpoint angular frequency, calculated from Eq.
3 as w/At. One finds that as At/N — 0,

Hy(N/2)  (m\2 [Af\?
m)— = (E) + <7> — 2.46740. [12]

For zero frequency (n = 0, so w = 0), and in the limit of large
N, Egs. 6 and 10 with a = 1 show that the DFT overpredicts
the transform compared with the FIT by an amount that
increases as At increases. In Brigham’s comparison of the
DFT and FIT for exponential decay (equation 2, chapter 9.1
of ref. 2), the DFT values presented graphically are numerical
FFT values and there is no discussion of why the DFT and
FIT are discrepant or of how the discrepancy depends upon
N and At. ’

In Fig. 1 the DFT has been evaluated for At = 1 at integer
values of n for N = 32 and 64, powers of 2 for which the FFT
might be used. Also, » has been stopped at N — 1, as in an
FFT. The large-N limit is actually the result for N = 128,
which takes no longer to calculate for each n value than for
N = 32. The symmetry of Re Hy and antisymmetry of Im Hy
about N/2 agree with Eq. 8 and show the effects of using
finite N values to construct the transform. These so-called
truncation effects are discussed in ref. 1, pp. 376-377, and in
ref. 2, chapter 12.2.
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Fic. 1. DFTs (crosses) and FIT (line) for exponential decay,
computed from analytic formulas. For N = 32 the results are the
same as those in figures 9.17 (a) and (b) in ref. 2, obtained by using
the FFT.

The dependence of the DFT on At is usually called time-
domain aliasing, as in ref. 1, pp. 197-198, and in ref. 2,
chapters 5.3 and 5.4. According to the Nyquist sampling
criterion discussed in ref. 2, chapter 5.4, if At < 1/(2N) the
effects of aliasing become negligible, provided that N is not
too small. The ratio of DFT to FIT values at n = N/2 is given
by setting @ = 1 in Eq. 9 and then multiplying by [1 +
(m/At)?], which is the inverse of the real part of the FIT at the
frequency corresponding to » = N/2. Numerical compari-
sons are shown in Fig. 2 for small N. The dashed line is the
result of Eq. 12. For N and At both small the DFT gives a
negative real transform at n = N/2, quite different from the
everywhere-positive real part of the FIT. This emphasizes
the need for care in the limit process of deriving the FIT from
the DFT, as described above Eq. 10. Examples of the
frequency-domain aliasing analyzed here are shown in figure
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Fic. 2. Ratios of DFT to FIT for exponential decay at n = N/2
vs. At according to Eq. 12.
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9.3 in Brigham’s book (2), but quantitative analysis of the
aliasing is not provided.

Harmonic oscillator. Consider, in Eq. 1, @ = —j w, a pure
oscillator with frequency w¢. A small positive real part, ¢, has
to be included in a to converge the geometric series for N
large, as discussed below Eq. 1 and above Eq. 10. Then we
may let ¢ — 0 to obtain the following well-known result for
the FIT of a pure oscillator,

1
R(w)=j , [13]

w — W

showing a simple pole at wo.

The analytical DFT of the oscillator can be simplified by
substituting @ = —jwo in Eq. 6 and then expressing the
complex exponentials in terms of half angles before convert-
ing to sines by using Euler’s theorem. Thus

. no—n
e”'("“ - T) sin(mng) 1
At ny—n 2 n# no
Hy(n, nog) = i LAY
{ 1}
At|N - - n=np,
2
[14]
where
woNAt
ny = , [15]
2

so that ny need not be an integer. The second line in Eq. 14
is obtained either by applying L’Hopital’s rule to the first line
in Eq. 14 or from Eq. 7. This DFT has no intrinsic dependence
on At except through the scale factor inserted in Eq. 2 to
produce the FIT limit and the conversion Eq. 15 between
number and frequency. Therefore, for the oscillator we set At
=1.

The symmetry of the DFT for real functions, Eq. 8, does
not hold for the oscillator, but there is a related symmetry,

Hy(N — n, N — ng) = Hf;(n, no), [16]

as may be verified by substituting in Eq. 14 and is exhibited
in a numerical example below. When ng is an integer or
half-integer, the oscillator DFT simplifies considerably, as
can be shown by substituting the circular functions at mul-
tiples of 7 or 7/2. For ng an integer, the oscillator DFT is

HN(n’ nO) = 1 [17]

For ny a half-integer, such as 1/2 or 15/2, only the top line in
Eq. 14 occurs. Then

1 w(ng — n)
Hy(n, no) = > +J cot —~ I [18]

so Im Hy is antisymmetric about no. As expected from the
interpretation of a Fourier transform from time (¢) domain to
“frequency’’ (n) domain, Eqs. 17 and 18 show that in the
latter the transforms depend on n most strongly near n,
which is the value of n at the pole, as obtained from Eq. 15.
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FiG. 3. Harmonic-oscillation DFT for N = 16 and various
resonance values no. For no = 9, the real part has a spike at n = ng
and the imaginary part is zero everywhere.

To compute Eq. 14 numerically, real and imaginary parts
can be immediately identified. For Fig. 3 we choose N = 16
and four values of ng. For clarity of presentation, the DFT
values for each ng are connected by line segments, except
across the cotangent singularity for no = 7.5. The symmetry
Eq. 16 is made evident by choosing two ng values whose sum
is N—namely, ny = 5.2 and ny = 10.8. Notice that for these
ng values there is a broad distribution of DFT values about the
oscillator frequency.

The two examples give the extremes of bounded exponen-
tial behavior, pure decay and pure oscillation. The more
general case of the damped oscillator is just Eq. 6 for the DFT
and Eq. 10 for the FIT. With damping, the latter does not
have a pole at wg but rather has nearly maximum magnitude
if damping is small.

3. Frequency-to-Time Transform of the Relaxation Function

In the preceding section we showed how the DFT of a
damped exponential in the time domain produces approxi-
mately a relaxation function in the frequency domain. Sup-
pose, on the other hand, that in w onie has exactly a relaxation
function—that is, R(w) in Eq. 10 with «a real. What is the
inverse DFT in the time domain, #? As we will show, this
transform can also be obtained in a form that improves
comprehension of the DFT. The method of analysis differs
sufficiently from the preceding that we give it in full.

Given R(w) in Eq. 10, we compute its inverse. DFT over N
points analogously to Eq. 2,

2Af R E— 772 CT R =
hn(t) = f el:(% 1+ j(wi/a) 2
0 t<0,

[19]
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with ¢ and a number » being related by
" 20

t=—0,
N Af [20]

analogously to Eq. 3. In Eq. 20 the discrete frequencies, wx,
are related to frequency increments, Af, by
wp = 27Afk. [21]

Our notation is that of Brigham (2), chapter 9. Eq. 19 shows

that, in terms of variables at and w;/a, the equation is -

invariant to scale changes in a. Therefore we set a = 1
henceforth. From Eq. 19 the FIT is obtained in the limit of
large N and Af— 0 as e, as explained below in connection
with Table 1.

To relate the discrete and integral transforms analytically,
consider the derivative from Eq. 19 with a = 1:

dhn(t
M )= —hn(t) + Un(2), [22]
dt
where
N-1 .
Un(t) = 2mAf kZO e2TIKAS [23]

This series can be summed by using Eq. 5, since it is a
geometric series with multiplier

r= eZﬂ'jAft’ [24]

so that
1- eZ’n’jNAft
Un(t) = 27Af Re m

_ 2 p SRTNAS) : N - 1A 25
=2mAf Sin(efD) cos[m(N — 1)Aft]. [25]

We define the overshoot function, Ox(t), which may be of
either sign, as the difference between discrete and integral
transforms:

ON(I) = hN(t) —e’ ) [26]

For functions with discontinuities, the overshoot near a
discontinuity is called the Gibbs phenomenon, as discussed
in refs. 7 and 9. Fig. 4 shows hx(t), computed from Eq. 19

0.1 L

0.01

Fi1G. 4. Comparison on a logarithmic scale of the inverse DFT
(dashed curve), calculated by using Eq. 19 with & = 1 and N = 32,
with the FIT (solid line) as functions of time, ¢, for relaxation function
of Eq. 10. The frequency step Af = 1/N = 1/32.
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directly for N = 32 with Af = 1/N, compared with the
relaxation exponential in Eq. 26, which is the FIT. Their
difference is On(¢) in Eq. 26. A similar figure but with only
discrete points (since the FFT was used) is shown as figure
9.17(c) in ref. 2, but Brigham did not analyze the overshoot
behavior.

Overshoot near the origin. The dependence of the over-
shoot near the origin on the discreteness of Af (aliasing) and
on the finite value of N (truncation) can be examined by
making a Maclaurin expansion in ¢ of Ay(t) given by Eq. 19.
To our knowledge, there is no closed-form expression for the
sum in Eq. 19, even when ¢ = 0. For the expansion we take
successive derivatives with respect to ¢ of Un(¢) in Eq. 23.
The resulting sums can be expressed in closed form when ¢
= 0. Thence

hn(t) = hn(0) + [An(0) + Af](e™ - 1)

i t2n+1 t
+2A 1- , 27
fn= $2n+1 n+2 [27]

0 2n+ 1)!
where the series coefficients are generated by recurrence,

(N _ 1/2)2n+1

= Syp-1 + (—1)"QmAf)?"
S2n+1 = S2p-1 + (—1)"Q7ASf) ot 1

’

51 =27wAfN, [28]

in which a very close approximation to the sums of powers
of integers has been used:

< 1>n+1
N— -

Nz_l k" =~ _—2_
=0 ’

n+1 (291

For expansion Eq. 27, which is most appropriate for ¢
small, it remains to estimate 4x(0). We may turn the tables on
the usual practice and approximate the sum in Eq. 19 for t =
0 by an integral, using the trapezoid rule. Thus

[/ 1 1
| - k

fa)N_l d(l)
o 1+ 1( 1 )
14— ] -

1
~ Uf| ——+= -
27Af 2 2

’

[30]

in which the divisor of the integral relates unit steps of k to
increments in » according to Eq. 21, and endpoint values of
the integrand have been included. The integral is elementary
and the resulting arctangent function can be written so that
the behavior for large wy-1 is evident, to obtain the trapezoid-
formula estimate of the DFT at the time origin, Ayapn(0), as

1+ wlzv_l

hn(0) = hyapn(0) PR =il [31]
~ =--—t + .
N trapN 2 an wN-1 1+ w12V_1

Correspondingly, we write for the overshoot near the origin
OtrapN = htrapN () —e™, [32]

in which the trapezoid approximation for sx(¢) is obtained by
substituting Eq. 31 into Eq. 27.

As with other examples of the Gibbs overshoot, such as in
refs. 7 and 9, the behavior of this overshoot at the origin
depends sensitively on the relation between N and Af, as
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summarized in Table 1. The first case, Af = 1/N, produces
very good agreement with exact numerically calculated val-
ues of Ax(0), as shown in Fig. 5. In Table 1 the formula for
Ourapn(0) is obtained by expanding Eq. 31 through terms in
1/N. The discrepancy between discrete and integral trans-
forms does not disappear as N — =, but it approaches a
limiting value of —0.5502, so that the DFT at the origin is
about 50% less than the FIT value of unity. Truncation, with
N finite but Af — 0, leads to underestimating the transform
by —1, since the DFT, Eq. 19, is then zero.

Aliasing effects must be handled very carefully. Table 1
shows the result for ¢ = 0 with Af finite and N — o, which
produces one-half the FIT value of unity, thus O(0) = —1/2.
On the other hand, if for ¢ > 0 one makes in Eq. 19 with a =
1 the integral approximation to the sum, one obtains by
contour integration h.(t) = e~!, so Ox(t — 0) = 0, that is,
exact agreement with the integral transform, the last row in
Table 1. Thus, like the classical Gibbs phenomenon, the
overshoot depends upon the order of taking limits.

Overshoot for large N. In the limit of large N the overshoot
may be estimated as the integral of Un(¢) given in Eq. 25, with
On(?) as its integral in the large-N limit. Then Ox(f) can be
approximated in terms of the sine integral, Si (entry 5.2 in ref.
10), as On(t) = O;n(2), where

1
Oin(t) = g Si27NAft)

1
= —— [f2nNAft)cosmNASY)
o

+ g2aNAS)Sin27NASY)] [33]

in terms of auxiliary functions f and g, equations 5.2.6 and
5.2.7 inref. 10. The overshoot is an extremum for ¢ such that
Un(?) is zero. From Eq. 25, for N large the Mth extremum
occurs at integer »n in Eq. 20—namely, n = M, and at extrema
the time is

M
t=ty=—0

M=12,... 34
2NAf ' (34]

In this large-N approximation, overshoot extrema therefore
depend only on f, and for this we use a rational approximation
with an error of <2 X 1074, equation 5.2.36 in ref. 10. This
produces

(-nM
Oin(ty) = Tf (M)

0.1013(-1)M 1 + (0.7337/M?) + (0.0253/M*).

M 1+ (0.9189/M?) + (0.07353/M*%) *
[35]

Table 1. Overshoot at the origin, ¢ = 0, of the frequency-to-time
DFT of the relaxation function, estimated by Eq. 31 as a function
of number of points in the transform, N, and frequency
increment, Af

Effect N Af OtrapN (0)
N 1/N 0.5502 0.033
— / ~
Truncation Finite -0 -1
Aliasing — © Finite -1/2
(t=0) — © Finite 0
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F1G. 5. Comparison of overshoots for the inverse DFT as func-
tions of time, ¢, for relaxation function, Eq. 10 for N = 32 (dashed)
and N = 256 (dotted). Shown is the difference between exact
overshoot, On(?), and approximate overshoot, Oﬁ)(t), estimated by
Eq. 27 for ¢t =< 2 and by Eq. 33 for ¢ > 2, as discussed in the text and
indicated by the arrow at ¢+ = 2. For ¢t < 2 the two curves are
unresolved. The frequency steps Af = 1/N.

These results are independent of Afand of N, except for the
simple N dependence of #5,in Eq. 34 and omitted terms in 1/N
and higher when On(¢) is approximated by Oin(¢). Therefore
we have a genuine Gibbs phenomenon as described (6, 8).
Since the width of each over- or undershoot decreases as 1/N
and its value becomes independent of N, its area decreases
as 1/N. Therefore, if the time jitter is more than about
1/(NAf) the overshoot effects become unresolved and one
nearly recovers the integral transform, e~*. The first maxi-
mum of On(t) occurs at £, = 1/(2N Af), where the overshoot
in the integral approximation is

Oin(2) = 0.0895. [36]

In Fig. 5 we show the difference between the exact
overshoot and its approximations, Eqs. 27 and 33, for a small
N value, N = 32, as well as for N = 256, both with Af = 1/N.
For t <2 we use O%(f) = Oyrapn(?) with 10 terms in the series
Eq. 28, while for t > 2 O@(r) = Oi(t). Only near this
changeover point is the discrepancy with the exact overshoot
>0.003, and it can be decreased by taking more terms in the
expansion and using it for larger z. In this example, all the
overshoot extrema are predicted to within 3 x 1074,
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