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A new universality has been recently proposed by Lee, Liu, and Nowick [Phys. Rev. Lett. 67, 
1559 (1991)] for dispersion in high-resistivity crystalline and disordered solids which posits that 
the real part of the conductivity cr’ exhibits w y frequency response, with y= 1 over an 
appreciable temperature range. To investigate this surprising conclusion in further detail, several 
powerful analysis methods were applied ‘to Lee and co-worker’s ac relaxation data for 
single-crystal NaCl doped with Zn 2+. In the past, no signilicant information has been obtained 
from the cf’ data. Complex nonlinear least-squares fitting was used to analyze simultaneously 
both parts of the admittance data, Y(w) = Y’(w) +iY”( w ), with several conductive-system 
response models. The dispersive part of the response is here generally very small compared to 
the low-frequency-limiting conductance, Go and capacitance. New forms of the Barton, 
Nakajima, and Namikawa relation were derived and shown to be applicable for the data and the 
most appropriate model. Contrary to previous work, analysis and interpretation in terms of 
conductive-system dispersion, rather than dielectric dispersion, led to new results which vitiate 
the new universality assumption. Arrhenius plotting of Ge( T) yielded a curved line, but a split 
of R,= G;’ ES. R m + A& into the undispersed high-frequency-limiting part R m and the strength 
of the dispersed part AR, showed that while both quantities were separately thermally activated, 
R, exhibited a large, abrupt entropy transition near 363 K. From these results the vacancy 
migration activation energy was estimated to be 0.695 eV, and the R, vacancy-association 
activation energy changed from about 0.66 eV below the transition to about 0.56 above it, 
suggesting a transition from nearest-neighbor association to next-nearest-neighbor association. 

1. INTRODUCTION AND BACKGROUND 

This work is concerned with finding a universe in a 
grain of sand. The grain of sand is the small-signal fre- 
quency response data of Lee, Liu, and Nowick’ (abbrevi- 
ated below as LLN) for single-crystal NaCl doped with 
divalent Zn at 50 ppm and fitted with gold-paint elec- 
trodes. There are eight data sets covering the temperature 
range from 23 to 260 “C, each with 17 frequencies extend- 
ing from 10 to lo5 Hz. The data were provided in the form 
of conductance G and capacitance C values, and in the 
present work they were first transformed to the admittance 
level, 

Y(o) -Y’(w) +iY”(w) =G(o) +ioC(w). 
The Y’ (0) results are shown on the log-log plot of Fig. 1 
and appear to be of classical form. 

LLN characterized their data h terms of three princi- 
pal attributes: a power-law exponent of unity for the fre- 
quency response of Y’ at the five lower temperatures; “es- 
sentially” frequency-independent capacitance; and an 
Arrhenius activation energy of the dc conductivity of 0.95 
eV. These attributes are sufficient to dellne an approximate 
averaged response for the material but leave unexamined 
its far more interesting detailed universe of response ex- 
plored in part herein. The original NaCl data were said to 
involve uncertainties of the order of l%, and temperature 
was stated’ to be controlled to within 1 “C; but, note that a 
1 K change in absolute temperature near 296 K leads to 
about a 14% change in a thermally activated quantity hav- 
ing an activation energy of 1 eV. 

Based on the above results and on frequency-response 
data for other materials, LLN proposed a “new universal- 
ity” in the ac conductivity of ionically conducting crystals 
and glasses.’ It is concerned with the behavior of the ex- 
ponent y in the common expression for the frequency re- 
sponse of the real part of the conductivity, 

a(w) Ed(O) +io”(W) E (Z/A) Y(o), 

namely’ 

q’(w) =qJ+ad, (1) 
where the empty-cell capacitance is C,=e,(A/Z); ey is the 
vacuum permittivity; oe=cr’(O> ES (Z/A)Ge is the dc con- 
ductivity; and a is a possibly temperature-dependent pa- 
rameter. The proposed universality is that, within the fre- 
quency range where power-law response is present, y= 1 at 
relatively low temperatures and that this is a universal phe- 
nomenon for such materials. 

Note especially, however, that LLN y values were de- 
termined from the slope of a log-log graph of Y’ (w > versus 
frequency at frequencies where Y’( w ) $ Go, appropriate if 
the slope is indeed constant with frequency.’ Alternatively, 
values of y are also often estimated from least-squares fit- 
ting of equations such as Eq. ( 1) , but both techniques yield 
averaged values when y actually varies with frequency 
(i.e., approximate but not exact power-law behavior is 
present). Although LLN have followed past practice and 
designated the present y by the letter S, suggesting that y is 
indeed the frequency-independent slope of a log-log curve, 
s will be reserved here for the actual frequency-dependent 
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FIG. 1. Variation of conductance Y’(o), with frequency for eight tem- 
peratures. The points shown on the curves are for (a) 296.2; (b) 328.7; 
(c) 363.2; (d) 400.7; (e) 429.2; (f) 470.7; (g) 499.7; and (h) 553.2 K. 
The solid lines are nonlinear-least-squares-fitting results. 

log-log slope of a [o’(o) --co] conductivity3’4 or 
AoY’ (w ) E [ Y’ (0) - Go] conductance curve, quantities 
not calculated by LLN,’ Lee et al. ,3 and Lim and 
co-workers4 but examined in detail herein. For simplicity 
hereafter, ‘slope” will be taken to mean slope of a log-log 
curve. 

Because of the importance of the LLN new universal- 
ity, if it is indeed found to be a general phenomenon, it 
seemed appropriate to use some new and powerful meth- 
ods to reanalyze some of the data leading to this conclu- 
sion. On request, LLN kindly sent me their data, and the 
present work discusses the results of some further analysis 
of their simplest, but most surprising, findings, those ob- 
tained for doped NaCl. For this material, LLN found that 
y= 1 over the temperature range from 298 to 475 K, while 
for some other materials1,3*4 they observed that y reached 
unity only at temperatures below 200 K, decreased at 
higher temperatures, and finally approached a constant 
value of 0.6 for T > 300 K. 

Although there have been other ~2: 1 results reported 
in the literature’-* before the work of LLN, there have 
been little or none that show unequivocally that y remains 
at unity over appreciable frequency and temperature 
ranges. Funke’ has even suggested that a genuine y=l 
conductivity power law does not exist, and as we shall see, 
there are serious difficulties with the concept when it is 
taken to mean that s( w ) = 1 from some given frequency up 
to indefinitely large frequencies. 

Since y is an averaged quantity when it is obtained 
from data fitting, for any claim that y= 1 one should spec- 
ify the range of frequencies over which fitting yielded an 
estimate of y=l and, most important, whether s(w), the 
actual slope of a log-log plot of the ac cqnductance data, 
was also constant in the range and equal to unity within 
experimental error. If it was not, a y= 1 estimate is of little 
significance since it m ight arise from values of s(w) which 
increased systematically from below 1 to above 1. Only if 
s( w ) is found to vary around unity with random errors (no 
systematic behavior) is it appropriate to claim on the basis 
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of a fit-estimate value of y=l that the situation involves 
constant energy loss at the dielectric level, as Lim, Vay- 
sleyb, and Nowick (LVN) 4 have recently done. 

Conventionally, one obtains complex dielectric con- 
stant response from the total admittance of the system as 

It will include effects arising from dielectric and 
conductive-system dispersion if both processes are simul- 
taneously active. At low frequencies the response becomes 
dominated by Ge and Co, where Co= C,E’ (0) is the low- 
frequency-limiting value of the parallel capacitance of the 
system. Here, however, this bulk capacitance is not of pri- 
mary interest because, as we shall see, there is no signifi- 
cant dielectric dispersion present in the NaCl data. Instead, 
we will be concerned with conducting-system dispersion 
and with the dielectric increment A,E arising from such 
dispersion. In order to calculate the real and imaginary 
parts of this increment, one must form the quantities 

AcoY = Y(w) ---i&,-G0 

=AcY(w>-G, 

and 

=AoY(w) -i&s (2) 

A&W) =A,E’(o) -iA,&‘(o)=AcoY(w)/(iwC,). (3) 

Both the real and imaginary part subtractions may involve 
small differences between nearly equal large numbers when 
I Acd~) I -4 I E(W) I, as is the case for the present data. 
These subtractions lead to relative-error magnification; 
thus, Ce and Go should be determined as accurately as 
possible when such subtractions are necessary. 

The ac energy loss arising from conductive-system dis- 
persion is proportional to A,e”zAoY’/(wC,) and will in- 
deed be frequency independent if AoY’ is proportional to w 
(then ideally, y=s= 1). Because it is easier to recognize 
systematic deviations from data with a constant slope of 
zero than from data with a slope of unity, when constant 
energy loss is suspected it is most appropriate to plot 
A$’ (0) vs o (or vs A&-a Col+Cole plot’) rather than 
AoY’ (w). No such loss versus frequency curves were pro- 
vided by LLN or LVN, although they did show the depen- 
dence of their loss estimates (designated as E”) on 
temperature.4 

Although the LLN measurements of the ac response of 
NaCl are not the first for this material,” their analysis in 
terms of constant-loss dielectric response is apparently 
unique for it. It is more common to analyze the response of 
such materials at the impedance (Zz Y-’ ) or complex 
modulus (M=iwCJ) levels, an approach pioneered for 
solid and liquid electrolytes by Armstrong et aZ.,1*J*2 
Bauerle,13 and Ambrus, Moynihan, and Macedo.14 For a 
material with blocking electrodes, external measurements 
cannot distinguish between displacement and conduction 
currents; thus, one must usually decide whether it is more 
appropriate to analyze results in terms of a dielectric or a 
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conduction process by using knowledge of the material and 
assessing the plausibility of the results of such different 
analyses.“Jr6 

LVN concentrated their attention on the E”( w ) part of 
their data and mentioned that the E’ (w ) part was relatively 
uninteresting;4 but, for NaCl and probably for most of the 
other materials investigated by LLN and LVN, A,&(O) 
data can contain a hidden universe of possibilities, exposed 
by accurate estimation of C, and subsequent subtraction of 
its effects. A,&‘(O) and A,&(w) are associated parts of a 
Kronig-Kramers (KK) dispersion pair and neither should 
be considered unimportant. 

LLN,’ Lee et al.,3 and LVN4 have been rightly con- 
cerned that although constant loss at the dielectric level 
associated with dielectric dispersion implies a wide uni- 
form distribution of activation energies15-18 (appropriate 
for highly disordered systems), such a distribution is 
highly unlikely for a lightly doped single crystal. They thus 
conclude that none of the models presented in the litera- 
ture provides a satisfactory explanation of their measure- 
ments. Not only does this problem entirely disappear when 
the dispersion effects are instead taken to arise from con- 
ductive rather than dielectric dispersion, as in the present 
work, but only y values below unity are needed to describe 
the data, and only narrow activation energy distributions 
are present. 

In the following sections, various conductive-system 
fitting models are considered; complex least-squares and 
spline fittings are carried out; and useful new conclusions 
are derived from the results of the analyses. 

II. PRELIMINARY ANALYSIS OF THE DATA 

A. Fitting models and some complex nonlinear least- 
squares-fitting results 

Although ideally the NaCl data should be fitted to a 
model based on a detailed analysis of atomic transport 
processes operating in the solid, no such models are appro- 
priate here. Two excellent complementary reviews contain- 
ing detailed discussion of a variety of ac hopping conduc- 
tion models have recently appeared.8P’9 Although these 
models, such as that following from the effective medium 
approximation or the jump relaxation approach,’ usually 
deal with microscopic behavior and lead to approximate 
power-law frequency response, they provide no prediction 
of the temperature dependence of y. By contrast, an expo- 
nential distribution of transition rates (EDTR) model does 
both but is semimacroscopic.‘7’18’20,21 Thus, here we shall 
only employ empirical fitting models which, however, can 
lead to frequency response nearly identical to that of the 
more complicated EDTR.15P’6*‘8 

The basic empirical model used herein is that of 
Havriliak and Negami (HN), originally proposed at the 
dielectric response level,‘* but when written for conductive 
response it is jusP 

Ym(w) =Go[ l+ (iwQ’]s 2 (4) 
where O<p<l, and where O<y< 1 is usually required as 
Well. 

Since, in the most general case, it is possible for a 
material to exhibit simultaneously dielectric dispersion as- 
sociated with a normalized response function Io( w >, and 
conductive-system dispersion described by the normalized 
response function 1,-(o), it is worthwhile to start with a 
general expression containing both effects. These response 
quantities are normalized so that they approach zero in the 
high-frequency limit and unity in the low-frequency 
limit.17 In the most general case, each may involve more 
than a single dispersion process, but only one process for 
each need be considered here. Then, for example, Ic might 
be given by the (Y&Go)-‘= (Z&Ro) of Eq. (4), or a 
possible expression for I, might be of the same form but 
defined, of course, at the complex dielectric constant level. 
At the admittance level, one findsI 

Y(w)=(R,+hR&)-‘+iw(C,+ACIo), (5) 
where ARrR,-R,; AC= Co - C, ; R, and Co are low- 
frequency-limiting values; and R, and C, ( SE, C,) are 
high-frequency-limiting values: the high-frequency bulk re- 
sistance and the geometric capacitance. For the present 
situation, fitting results obtained with simultaneously pos- 
sible dielectric and conductive-system dispersion showed 
that dielectric dispersion was negligible, so ID= 1. 

With ID= 1, what conditions are necessary to yield a 
result similar to that of Eq. ( 1 )? Take R, =O; then one 
obtains from Eq. (5) 

Y(o) =Go Re( l/lc) +i[Go Im( MC) +wCsl, (6) 

a very general result when only conductive-system disper- 
sion is present and R, =O. Now, specifically, take 
IF’= (Y&Go) in Eq. (6) and set p= 1. The result may 
be written 

+i[G~(~~,)~sid+> +wCol, (7) 
where $r?ry/2. It follows that when y= 1, there is no 
dispersion contribution to Y’ analogous to the ad term of 
Eq. ( 1 ), but there is a dispersion term in Y” which is very 
small for the present data since Gor04Co. 

However, Eq. ( 1) is not entirely physically realizableZ3 
because it formally applies all the way to infinite frequency 
and sets no limit to the possible value of y. Even when 
s=y=l over a nonzero range of frequencies, this range 
must be finite. Then, the KK relations require that the 
imaginary part of the ac response, here (or,)Go, must 
have a nonzero real p.art associated with it. Similarly, if 
only the real part has been determined experimentally, 
there must be a corresponding imaginary part whether 
y < 1 or y) 1. Such paired response for y) 1 depends on the 
details of the cutoff at high frequencies and will be dis- 
cussed in more detail elsewhere.” 

Formally, the real part can be obtained from data with 
s=y=l by calculating AGY’(w)=Y’(w)-Go; but, be- 
cause of the small magnitude of (wr,)Go for the present 
data, A,Y’(o) turns out to be very much smaller than Go 
over much of the measured frequency range. Thus, unless 
one has available both accurate data and a close estimate of 

J. Appl. Phys., Vol. 75, No. 2, 15 January 1994 J. Ross Macdonald 1061 

Downloaded 26 Aug 2007 to 152.2.62.11. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



the true value of Go, AoY’ (w), the small difference be- 
tween two nearly equal numbers, will be very uncertain. 
Then the conductive-system dielectric increment associ- 
ated with the A,Y’(o), 

will also be quite small and error prone (see Sec. III C and 
Fig. 5). 

In the present work, we shall examine three approxi- 
mate ways of analyzing Y(w) and AcoY response by 
least-squares fitting. A defect of Eq. ( 1) is that it deals only 
with the real part of ac dispersion behavior, completely 
ignoring the related imaginary part. Much more informa- 
tion can be extracted from relaxation data, as demon- 
strated herein when both parts are simultaneously used to 
fit an appropriate model. To begin with, let us generalize 
J$. (1) to 

Y(w) =Go+Ad’+ioCT, (8) 
where the frequency-independent quantity C, is taken 
larger than Co in order to take some very approximate 
account of the small, nearly capacitative contribution as- 
sociated, through a KK relation, with the real-part disper- 
sion term AoY when y is nearly unity. 

All frequency response fitting needed for the present 
work has been carried out using the readily available LEVM 
complex nonlinear least-squares (CNLS ) -fitting progran? 
running on an IBM-compatible PC. For these fits, which 
allow simultaneous fitting of both real and imaginary parts 
of the response, proportional weighting or power-law 
weighting, appropriate for data whose range is large,25126 
was used. 

CNLS fitting of the NaCl data with Eq. (8) yielded the 
following estimates for y(T): (a) 1.003 10.003; (b) 
0.968 10.005; (c) 0.992 10.003; (d) 1.030 [ 0.008; and (e) 
1.045 10.010, where the letters denote the temperature as 
listed in the caption of Fig. 1. Meaningless estimates of y 
were obtained for the (f), (g), and (h) temperature fits 
because of the strong dominance of the Go contribution 
over most of the frequency range at these high tempera- 
tures. Nevertheless, the fits generally appeared good, and 
the solid lines in Fig. 1 were calculated from the present fit 
results; but, remember that these are log-log curves, a form 
of presentation that can conceal a variety of 
incongruities. I5 

Here and elsewhere, quantities shown in the form PI Q 
represent a parameter estimate and its estimated relative 
standard deviation (RSD) . Parameter estimates are com- 
pletely unreliable unless their corresponding Q is apprecia- 
bly less than unity. Even when Q < 0.1, the estimates may 
still be unreliable, however, because of the presence of bias 
associated with systematic errors arising; for example, 
from an inadequate fitting model choice. Here, the actual 
relative residuals following from the fits at different tem- 
peratures were not entirely randomly distributed, indicat- 
ing the presence of significant systematic errors. Thus, Eq. 
(8) is not a very satisfactory fitting model. 

Nevertheless, fitting with Eq. (8) showed that Go was 
thermally activated and that the (b)-(e) estimates of A 

were all nearly consistent, within one or two of their stan- 
dard deviations, with a constant value. This requires that 
70 -y must also be thermally activated with an activation 
energy close to that of Go. This is a common finding, at 
least to first order, and is the basis for the Barton- 
Nakajima-Namikawa (BNN) relation27-30 for ionic 
glasses, discussed and generalized in Sec. III A. 

Since the true relative errors of the y estimates cited 
above are undoubtedly larger than indicated by their 
present RSD values, the hypothesis that y=s= 1 for the 
first five data sets cannot be rejected based on these fitting 
results; but, least-squares fitting only gives a weighted av- 
eraged value of y over the frequency range of the data, and 
the y value for data set (b) is certainly somewhat different 
from unity in any case. Thus, a more appropriate fitting 
model is needed, and further CNLS-fitting results are pre- 
sented in a later section. First, however, it is of interest to 
examine the actual log-log slopes of the Y’(w) data. 

B. Spllne fitting and smoothing 

We can directly test the validity of the power-law as- 
sumption by calculating actual frequency-dependent log- 
log slopes. Unfortunately, this valuable procedure has been 
very little used in the past.” Here, we have employed a 
generalized cross-validatory (GCV) spline-fitting, smooth- 
ing, and differentiation program.31 It carries out a regular- 
ized least-squares spline fit with automatic determination, 
from the character of the data, of an appropriate degree of 
smoothing. Alternatively, the degree of smoothing can be 
set as an input choice. The smoothed results are then em- 
ployed to calculate derivative values at desired points (the 
original frequencies and/or interpolated values between 
them). The use of quintic or heptic splines avoids end- 
point problems, even for the first derivative of the data. 
Such fitting gives an excellent estimate of the slope at each 
data point and at interpolated values. 

The automatic GCV determination of appropriate 
smoothing incorporated in the present spline program as- 
sumes that the data contain additive, uncorrelated noise. 
But for data of the present type whose magnitudes usually 
span several decades, the dominant random errors are 
most likely to be approximately of proportional rather than 
additive character; but, such errors, if they are not too 
large,.become closely additive when a logarithmic trans- 
formation of the data is carried out. Comparison of spline 
fitting results using untransformed and transformed data 
confirms the superiority of the latter procedure for the 
present data. Since we are interested in log-log slopes in 
any case, all spline-fitting results were calculated in this 
way. 

Figure 2 shows unsmoothed log-log slopes, sr(w), for 
the full Y’ (0) uninterpolated data. The curves in Fig. 2 
are quite instructive and illustrate graphically the danger 
of concluding much about slopes from visual examination 
of such curves as those of Fig. 1. These results suggest that 
slope estimates of the present type should be calculated for 
similar data as a matter of course in future, since they not 
only provide information about the frequency where the 
total slope departs appreciably from zero, but they also 
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provide some idea of the regularity of the original Y’ or (T’ 
data. Here they show that only for curve (a) (296.2 K) is 
ST quite close to unity over an appreciable frequency range. 
Further, they indicate that at high frequencies the local 
slope can reach and even appreciably exceed unity. Now, 
although it is clear that the sT slopes are not all constant 
and equal to unity, what about the frequency power-law 
exponent y? The dotted line associated with curve (d) in 
Fig. 2 was calculated from the d data CNLS fit results 
discussed in the previous sub-section and should be com- 
pared with the slope curve for the actual d data. Note that 
although the y fit estimate was 1.03, the actual high- 
frequency-end values of ST do not exceed 0.95. 

Figure 3 presents the results of spline estimation of 
s(w) for the five lowest-temperature data sets. The Go val- 
ues employed are listed in the figure caption and were 
selected in a Bayesian fashion to try to make the low- 
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FIG. 3. Heptic-spline GCV smoothing-interpolation estimates of s for the 
five lowest temperatures. (See the Fig. 1 caption for temperature-letter 
identification.) The following Go values were subtracted before spline 
fittina: (a) 2.86~10~‘~: (b) 8.00~10-‘~: (c) 3.75~10~I’: (d) 
7.70x10Li’; and (e) 4.56x-l&lo S. For u&par&on with these’GG? 
smoothing results, the dashed curve marked (c) connecting circular 
points shows the results of an unsmoothed heptic-spline fit of the 17 
original data points for this temperature. 
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frequency results come reasonably close to the higher- 
frequency ones. These Go values were not much different 
from those obtained in the CNLS fit except for curve (b) 
Here, the spline fit results were interpolated to yield 81 
points across the frequency range and therefore seem 
smoother than those in Fig. 2. Such interpolation does not, 
however, change the original GCV smoothing but just adds 
consistent points between the original smoothed values. 
These results again show that s and y may be quite differ- 
ent. Although there is clearly a tendency for s values to be 
relatively close to unity for the lower-temperature results, 
the claimed new universality of LLN, which specifies y= 1 
over the range from 298 to 475 K, is certainly not verified 
by the present results. 

C. Nondispersed capacltatlve temperature response 

The need to obtain accurate estimates of Co and Go has 
already been discussed. To do so, one must use a more 
appropriate fitting model than that of Eq. (8). It turns out 
that maximally accurate estimates can be obtained even 
when such a model is initially unknown. The approach is 
to fit the data to an equivalent circuit composed of the Go 
and Co elements in parallel with each other and in parallel 
with iV additional branches, each made up of a resistor and 
capacitor in series. By making N sufficiently large, the ac 
part of the response, thus modeled as a distribution of 
relaxation times (DRT), can be approximated within the 
accuracy of the data themselves, allowing very precise es- 
timates of Go and Co to be obtained. Such fitting has been 
carried out for smoothed and interpolated data using the 
LEVM program with N= Il. Interpolation to yield many 
more effective data points than originally measured is re- 
quired here since 24 fit parameters are estimated. This ap- 
proach leads, even for the present noisy data, to estimates 
of Co whose RSDs are less than 10d4, but even such precise 
estimates are hardly always accurate enough to yield good 
results after subtraction. This fitting method also allows 
useful estimates of the imaginary part of dispersion re- 
sponse to be obtained when only the real part is available 
and vice versa.24 

Let us now briefly consider the nondispersed bulk 
capacitative/dielectric res onse of the present system. The 
value of the cell constant, ! l/A, measured at room temper- 
ature, leads to a value of the empty-cell capacitance C, of 
about 0.3833 pF. To first order, A/i should increase lin- 
early with temperature because of thermal expansion. The 
value of the one-dimensional thermal-expansion coefficient 
for pure NaCl is about32 4X 10m5, leading to the following 
expression for C,: 

C&0.3788( 1+4x lo-‘T) pF, (9) 
where T is the absolute temperature. 

The excellent estimates of Co, obtained as above, show 
clear, but small, temperature dependence. Because there is 
some uncertainty in the temperature values for the LLN 
data, it is most appropriate to fit Co(T) using an errors- 
in-variables approach 33r34 which allows the uncertainties in 
T as well as those in the dependent variable to be taken into 
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account simultaneously. For the five lowest-temperature response, that for a resistor AR in parallel with a capaci- 
values of Cc, such a fit, which involved proportional tance C,, but one still does not obtain w1 power-law be- 
weighting for the Cc dependent-variable values, yielded havior for Y’ (w > . 

Co=2.493( 1+3.81x 10-4T) pF, (10) 
with an exceptionally small S’, value for the fit of less than 
5X 10m4, where S, is a dimensionless quantity that mea- 
sures the standard deviation of the relative residuals of the 
fit25P26 when proportional weighting is employed. For com- 
parison, good CNLS fits of typical relaxation data usually 
yield S, values of the order of 0.01-0.05. 

When fitting was carried out at the E level, using Eq. 
(9) for data conversion, the result for the low-frequency- 
limiting value of e, eo, was 

Although r0 has previously been expressed as a prod- 
uct of a thermally activated resistance and an unactivated 
capacitance,” the specific choice of the present AR for the 
resistor is novel. r0 is written in the present form both 
because doing so greatly reduces the high correlation oth- 
erwise found between AR and r,, a change important in 
obtaining a good fit, and because the relative constancy of 
the A parameter estimates found from the Eq. (8) fits is 
strong evidence that a form of the BNN relation is appli- 
cable to the present data. This relation, expressed conven- 
tionally, is 

eo( T) =6.594( 1+3.31x 10-4T), (11) 
involving a temperature coefficient still nearly ten times 
greaterthan the linear thermal-expansion coefficient for 
the pure material. This non-Curie temperature dependence 
must be associated with impurity conduction, but needs a 
more complete explanation. 

G~C,=a~ey=p(~o-~,)o,, (14) 
where p is a temperature-independent constant of order 
unity and oP is the dielectric-loss peak frequency. The con- 
stancy of p implies that Go and oP must have nearly the 
same temperature dependence when Eq. ( 14) is applicable. 

The predicted value of e. at 290 K is here about 7.23, 
nearly 23% larger than the accepted value for pure NaCl 
at this temperature, 5.90, which was determined by an 
electrodeless method.35 It is likely that most of this ditfer- 
ence is associated with a larger effective electrical area of 
the electrodes than the geometrical area. Discrepancies of 
this type of up to four times have been observed” for AgBr 
samples with nonblocking electrodes, but later work36 in- 
dicated an excess of only 12% for this material, and mea- 
surements of AgCl showed about a 42% excess.“’ Thus, 
one should not balk at the present 23% difference, but it is 
a reason why the present work deals primarily with con- 
ductance rather than conductivity, just to eliminate further 
uncertainty. Note that the size of the present e. is such that 
it cannot be confused with the E, of pure NaCl, about 2.33 
as determined from refractive-index measurements.35 Fi- 
nally, an e. estimate such as that obtained here may be 
used to calculate a0 values more accurately by allowing one 
to correct for the difference between the geometrical cell 
constant and its effective value. 

Two modifications of Eq. ( 14) seem worthwhile. First, 
wP is most appropriate for symmetrical response, where it 
is equal to r;l. For either symmetric or asymmetric re- 
sponse, it is thus likely to be better to use the actual CNLS 
fitting value of 70 rather than a peak frequency, usually 
estimated graphically from noisy data. Second, and most 
important, there is no reason to expect that R, and AR 
should have the same activation energy (see Sec. III D). 
Thus, Go, which is equal to (R,+AR)-I, provides less 
information than do R m and AR separately. If we therefore 
replace the Go in Eq. (2 1) by (AR > - ’ (a measure of the 
dispersive strength of the conductive-system response), 
ti;’ by ARC,, and p by a new constant q, we obtain just 

E,~C~C,=q(E()-E,), (15) 

a simple form which involves only quantities with small 
temperature dependence. 

However, neither the conventional BNN relation nor 
Eq. (15) should be expected to apply to conductive-system 
response where the ac dispersion is not independent of Go. 
In the present situation, we deal with the very small 
conductive-system dielectric increment, A,& (w ) , rather 
than with ( eo- E, ) . When the form of the fitting model is 
known, one can directly calculate an equation analogous to 
Eq. (15) by considering response as o-0. For the present 
situation, calculation of Ap’ from Eqs. (12) and ( 13) with 
p= 1 leads to 

III. CONDUCTIVE DISPERSION 

A. Final fitting model and BNN relations 

In order to obtain an empirical fitting model which can 
describe full conductive-system dispersion efficiently with 
only a few free parameters, Eq. (5) with I,= 1 is again 
appropriate, but now R, is not set to zero and a variant of 
the Eq. (4) HN expression is used for 1,. The result is 

Y(o) = [I.$/(AR+R,I,‘)] +-iwC,, (12) 

where 

I,‘={l+[iw(ARC,)]Y)B. (13) 
Here, C, is a new capacitance expected to show little or no 
temperature dependence, and the term in parentheses in 
Eq. ( 13) is just the r0 of Eq. (4). Note that when r=P= 1 
and R, =0, the result is just single-relaxation-time Debye 

~~Cc=qS~ l--y&~‘b) Lo, (16) 

where qc takes the place of the above p or q and is given by 

qc= [WOWYldllr). (17) 
At sufficiently low limiting frequency, physical realizability 
requires= that A&(w) approach a constant nonzero 
value, A&(O), contrary to the prediction of Eq. (13) for 
p= 1 and y < 1. Then, in fact, effectively y= 1, and we may 
write 

q= [ l+ (R,/AR)]A&(O). (18) 
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j TABLE I. Results of nonlinear least-squares fits of AcY(o) to a conductive-system response function. 

T 6) SF G (PF) R, (0) AR (a) lO“k, (F) y (P) 
a 296.2 0.034 2.75710.0018 6.96X lo~p.04 1.754x 10’4 3.38~0.002 0.97421 1.2x 10-4. 
b 328.7 0.034 2.79310.0066 1.85x105~0.17 8.162~10’~~0.057 2.7210.009 0.949617.410-4 
C 363.2 0.012 2.809 I5 x 10-j 4.63 x lO’IO.04 2.580x 10” IO.003 4.42 IO.001 0.9663 19.6x IO-’ 
c 363.2 0.050 2.83913x10-’ 1.56~10~~0.04 2.317x10"[0.016 1.47~0.010 (O.832l2.1x1O-3) 
d 400.7 0.026 2.87912x1O-5 1.98~ 10*~0.02 1.258~10~~~0.005 1.13~0.004 0.8271 1.5x lo-” 
e 429.2 0.023 2.906~3~10-~ 1.08x108~0.02 1.998x109~0.004 1.56~0.004 0.85911.6~10-~ 

As expected, here Eq. (16) with qc of the order of unity, 
rather than Eq. ( 15>, is indeed satisfied by the present data 
at the lowest measured frequencies. 

B. More CNLS fitting results 

Table I presents the results of fitting the lower- 
temperature NaCl data with the conductive-system model 
for Y(w) discussed above. Fitting was carried out at the 
admittance level and used proportional or power-law 
weighting.25*26 At temperatures above 429.2 K, there is not 
sufficient ac response present to allow’ reasonable disper- 
sion results to be found. Fit estimates were comparable 
whether one fitted with all five parameters free or whether 
accurate Co values were tist subtracted to obtain AcY(w) 
and such transformed data then fitted without Co in Eq. 
( 12). However, subtraction using an inappropriate value of 
Co led to AcY values whose real and imaginary parts were 
not an accurate KK pair and, as usual for the present data, 
even a very small change in the subtracted value of Co was 
found. to produce large effects in the result. A test that 
subtracted data actually represents dispersion response is 
the ability to obtain a good fit of the model (which is 
intrinsically KK consistent), with nearly the same param- 
eter estimates for fitting at both the admittance and imped- 
ance levels. For proportional weighting, fitting at the im- 
pedance level yields exactly the same estimates as does that 
at the complex modulus level. Note that the first Co value 
for T=363.2 K does not lie closely on a smooth curve with 
the other values and, unlike the other values listed, does 
not agree closely with those found by DRT fitting (see Sec. 
II C). To throw some light on this anomalous situation, 
two rows of results are included for this data set. 

All exponent estimates shown in the last column of 
Table I are for y free and B fixed at unity except that in the 
fourth row where the situation is reversed. Although best 
fits after subtraction were obtained for the present data sets 
when p was fixed at ‘unity and y < 1, the second 363.2 K 
line was obtained with y set to unity and p < 1. The latter 

* fit was appreciably worse than the former, as shown by the 
corresponding S, values, quantities which here measure 
the relative standard deviation of the overall fit.25*26 Al- 
though the first of the two fits yielded an implausible esti- 
mate of Co, the rest of its predictions seem reasonable 
when compared to those for lower temperatures. On the 
other hand, the second fit gave an excellent estimate for Co 
and led to other results which seem reasonable when com- 
pared to those for the two higher temperatures. 
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Although the resolution limit of the LEVM CNLS- 
fitting program3* may be approached at the lower temper- 
atures where the ratio AR/R, can be as large as lOs, the 
analysis of Sec. III D below suggests alternatively that even 
the small estimates of R, found at the two lowest temper- 
atures are still significant, and that the problem with ob- 
taining consistent results at T=363.2 K is associated with 
a real, relatively abrupt change in the behavior of the re- 
sponse near this temperature. Incidentally, the present in- 
clusion of R, in Eq. ( 12) used for fitting led to far better 
results than its omission and replacement by a separate 
electrode resistance added in series with the rest of the 
circuit at the impedance level. Thus, R, represents a true 
bulk effect rather than an electrode effect. 

The value of AR for T=296.2 K shown in Table I was 
takkn fixed in the fitting for this temperature since it could 
not be reliably estimated for this very high-resistance situ- 
ation. The value used is that obtained from the DRT fitting 
discussed above, but even there it was very uncertain. The 
alternative use in the fitting of AR = 3.8 X 1014 a, the value 
obtained by extrapolation from higher-temperature-fit esti- 
mates, led to negligible changes in the estimates of the 
other quantities at 296.2 K. Finally, .although there is a 
considerable amount of variability evident in the C, esti- 
mates, particularly at the lower temperatu+es where the 
data do not extend close to the wan= 1 region, such vari- 
ability may be random and is, in any case, small compared 
to the thermally activated variation of AR. The present 
fitting estimates suggest that the T=363.2 K data repre- 
sent a transition between lower-temperature response 
where y is close to unity (nearly single-relaxation-time re- 
sponse), and higher-temperature behavior where there is a 
broader DTR and y seems to remain nearly constant near 
0.85. 

C. Impedance- and dielectric-level dispersion 
response 

Figure 4 shows some impedance-plane conductive- 
system dispersion plots for T=400.7 and 429.2 K. To 
compare results for different temperatures on the same 
scale, the data and fit results were normalized using the 
appropriate AR values. The resulting ZN= l/( hRAcY) 
quantities are not quite equal to I, because they still con- 
tain small R, effects. In the figure, the arrow shows the 
direction of increasing frequency and the asterisks indicate 
points at 1000 Hz. The dashed curve is a Debye semicircle 
and the points plotted on it are those for the lower tem- 
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FIG. 4. Impedance-plane plots of impedances normalized with AR to 
allow shape comparison for two temperatures. Triangular points are for 
T=400.7 K data without subtraction of the effects of C,, and the other 
points and solid-line curve include such subtraction using the Ce values of 
Table I. The solid-line curve is also for 400.7 K and shows the results of 
spline smoothing and interpolation. The asterisks indicate points at 
1000 Hz. 

perature without any Cc subtraction. In the past, bulk 
semicircles like this were nearly always found if the fre- 
quency range was appropriate. In most of the earlier work, 
however, the resistance level was much lower than it is 
here, so such a semicircle would only appear at much 
higher frequencies than those of the present data. In con- 
trast, here appreciably lower frequencies than 10 Hz would 
be required to delineate the rest of the dashed curve. How- 
ever, such essentially nondispersive bulk response, closely 
just that of R. and Cc in parallel, is not of particular in- 
terest here. 

The remaining parts of the figure show the real under- 
lying dispersive response when the effect of C’s is subtracted 
at the admittance level and the results then converted to 
the impedance level and normalized. The circles and 
squares show the original (transformed) data points, and 
the smooth curve was plotted from the resulting splined/ 
interpolated 400.7 K data. These data yielded the fit esti- 
mates presented in Table I for this temperature. We see 
that the shape of the results is nearly the same for the two 
temperatures, since the corresponding y values in the table 
are not very different, but the 1000 Hz point for the higher 
temperature occurs much closer to the low-frequency end 
than does the other such point. Some of the lowest- 
frequency response data have been omitted from both 
curves (and from the fitting) for clarity and better fits. 

These results and those of Table I confirm that the 
present NaCl data are best analyzed in terms of r#l 
conductive-system response at the impedance or complex 
modulus level rather than in terms of dielectric-system dis- 
persion at the dielectric or admittance level; but, since 
LLN, LVN, and most workers in the present field have 
been primarily concerned with conductivity/dielectric- 
level response and have often contented themselves with 
analysis of ao, a:,(w) =(T’ (w) - co, and the correspond- 
ing he” response, it is worthwhile to examine such a re- 
sponse as well. First, LVN have used4 an expression de- 
rived by Pollack and Pike39 to fit their he” (T9 results. 
This expression, which includes several approximations, 
involves tit dependence and is taken as a justification for 
their y= 1 conclusion; but, the actual originators of this 

0.0030 

0.0028 

0.0026 
10 IO2 FrequendyO IO3 4 IO 5 
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FIG. 5. The frequency dependence of AE” for T=296.2 K plotted on an 
expanded scale. The effects of subtracting several different Ge  values are 
shown. The circles show the original transformed data, with the point at 
loo0 Hz denoted by an asterisk, and the dotted curve is the theoretical 
prediction following from the conductive model and the appropriate pa- 
rameter estimates presented in Table I. 

expression speak only of “approximate” w1 dependence. 
Further, Austin and Mott, a in a somewhat similar treat- 
ment find that y is usually of the order of 0.8. In addition, 
later treatmentss’6 yield expressions for y which only ap- 
proach unity from below in the low-temperature limit. The 
EDTR model for a conducting system’“” also leads to 
such a response. 

It is sufficient to show the A&’ vs w curve for 
T=296.2 K, since the present slope results confirm that 
this temperature yields the closest approach to s(w) = 1 
behavior. In Fig. 5, smoothed-data results have been plot- 
ted on an expanded scale. The Go values shown on the 
graph are those subtracted to form A&‘. The fitting model 
for this temperature used Go = 5.7 X lo-t5 S, and this value 
was subtracted from the Y-level model predictions to ob- 
tain the dielectric-level fit curve shown dotted on the fig- 
ure. The points denoted by circles represent the original 
unsmoothed (but transformed) data for this temperature. 
It is evident that the conductive-system model does a good 
job of representing the main details of the response at this 
level. If R, is omitted, the fit becomes appreciably worse, 
especially at the higher frequencies. Note that- the y fitting 
estimate, 0.974, is not equal to unity, and that the model 
predicts small but regular departures from frequency- 
independent A,& behavior, dependence inconsistent with 
exact y=s= 1 behavior: again, the LNN conclusion that 
y= 1 must be rejected. 

In their later work,4 LVN have proposed an expression 
for a’ (09 which is the sum of a0 and two power-law terms, 
one with a value of y of unity and the other with y-0.6. 
They assume that the coefficient of their a1 term, A’, is not 
thermally activated. The present work suggests that a value 
of y=s= 1 is unsupported by both theory and experiment, 
and we have already seen that the lack of apparent activa- 
tion of the A’ coefficient is a likely consequence of the 
BNN relation associated with near-equal activation ener- 
gies for a0 and rT1 for conductive-system response. 

Although the present conductive-system fitting model 
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FIG 6. Arrhenius plots of the conductive-model resistances R, , AR, 
and Rc. The predicted values of AR= Ro- R, (asterisks) for tempera- 
tures (f), (g), and (h) used the fit values (squares) of R, and the fol- 
lowing R, values (triangles): (f) 5.03X107; (g) 3.17~10~; and (h) 
1.52~ 10’ hl which were extrapolated from the (d) and (e) R, fit esti- 
mates. The AR values for temperatures (b), (c), (d), and (e) were 
obtained directly from CNLS fitting (see Table I). 

has been shown to be quite adequate for most of the 
present data, the low-frequency region where wrOo( 1, par- 
ticularly dominant for the present data at the higher tem- 
peratures, probably involves some electrodeimpedance ef- 
fects, which are often modeled by a constant-phase 
element?l It is likely that the power-law term with y-O.6 
proposed by LVN is needed to help model such electrode 
contributions to the total response, but a more complete 
analysis would not assume such a response ab initio. In- 
stead, for conductive systems such as those considered here 
and by LLN and LVN one would use CNLS fitting to 
establish an appropriate Io response function to represent 
higher-frequency response and to find an appropriate ex- 
pression to model the series contribution of electrode- 
impedance effects at the lower frequencies. Such an expres- 
sion might well involve finite-length diffusion response,41*42 
which involves y=O.5 behavior over part of its range. 

D. Resistive temperature dependences 

Figure 6 shows some Arrhenius-plot results obtained 
by proportional-weighting nonlinear least-squares fitting26 
of 

AR(T)=BTnexp(E,&kT), (199 
to the four b-e estimates given in Table I, with the first, 
rather than the second, T=363.2 K value used. A similar 
expression was used for R, fits. Here B is a temperature- 
independent constant. The quantity n, which is usually 
taken43*44 as 1 or 0, was set equal to unity here. First, the 
AR fit estimates for temperatures b, c, d, and e were used 
with Eq. ( 19) to obtain the following estimated value of 
EAR : 0.976 10.011 eV. The AR solid line in Fig. 6 is an 
extrapolation over the full measured temperature range of 
the four-point fit results. Since R, is not dispersed but is a 
high-frequency-limiting quantity, it is reasonable to iden- 

tifv EA 1) as a measure of the conduction activation energy, - -. 
involving both association and migration (mobility, perco- 
lation) effects. 

Although the corresponding estimated conductivity 
activation energy, calculated taking account of the small 
temperature dependence of C,, Eq. (9 9, is not significantly 
different from the above EAR value, this is because here 
AR) R m over most of the tit range. However, for 
conductive-system dispersion when R,fO, it is AR and 
R, separately, not the combined quantities Go ( CR,‘) or 
ao, which are basic. This important distinction has evi- 
dently not been adequately appreciated before. 

Next, the two d and e estimates of R, were used to 
obtain an estimate of ERm of 0.28 1 eV. Then the difference, 
EAR-ER~, here about 0.695 eV, may reasonably be iden- 
tified as the vacancy-migration activation energy Em, asso- 
ciated with mobility/percolation processes. This estimate 
of Em is very close, considering the rather meager numer- 
ical foundation of the calculation, to the accepted value of 
0.69 eV for NaC1.45 Over the temperature range of the 
present data the cation vacancies and dopant ions are 
highly associated,’ and R m must arise from the ac behavior 
of these quantities in nonpercolating states; but, in this 
highly associated region, the mass-action law may be used 
to show that Ergo = E,/2, where E, is the actual association 
energy. 

The thermal activation fit of the above two R, esti- 
mates was then used to predict values of R, for the three 
highest temperatures (values listed in the caption of Fig. 
69 and the lowest one. Next, using these values and the R. 
values calculated from the higher-temperature Go values 
obtained from Eq. (89 fitting: (f) 4.555 X 10m9 10.007, (g) 
1.543 x 10-s 10.056, and (h) 5.18 X 10v8 IO.21 S, M esti- 
mates were obtained and are plotted as asterisks. It is re- 
markable how closely the resulting high-temperature val- 
ues fall on the extrapolated AR line. 

LLN obtained an estimate of E,=EG=0.95 eV from 
fitting of b. values over nearly 5 decades.’ The present R, 
estimates are plotted as squares on the graph. Although 
they do not lie on a straight line, correction to yield high- 
temperature AR estimates leads to a good AR straight line 
over nearly 7 decades. These results further justify the in- 
troduction of a nonzero R o) in the present work and clearly 
show that for data of this kind, it is important to consider 
both R, and AR separately and to deal directly with re- 
sistive rather than conductive elements. An alternative to 
the above analysis approach is to use weighted nonlinear 
least-squares to fit all the present R. estimates using a sum 
of two exponentials, each of the form of Eq. ( 199. With 
proportional weighting one obtains very nearly the same 
values for the AR parameters as above and an estimate of 
ERCC of 0.2610.32 eV, a rather poorly defined but still 
somewhat significant value. 

All the fit values of R, are also shown in Fig. 6 along 
with the three predicted high-temperature values. Al- 
though the two different fit values for T=363.2 K are 
shown, this is not meant to indicate that both are simulta- 
neously appropriate. Nevertheless, these R, results show 
clearly that some kind of a transition occurs in R, over a 
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relatively narrow temperature range near 363.2 K. It can- 
not be a glasslike transition because r0 approaches infinity 
for such a transition, and R, does not even involve dis- 
persion. When an estimate of ERm is alternatively calcu- 
lated using the Table I R, estimates for the two low tem- 
peratures a and b, one obtains 0.326 eV, not far different 
from the 0.281 eV estimate found above. 

We can now suggest a tentative explanation for these 
new and surprising results. Although R, is almost cer- 
tainly a measure of the nonpercolating ac conduction aris- 
ing from the motion of cation vacancies closely associated 
with impurity ions, its rapid increase above 350 K by a 
factor of nearly lo4 suggests a structural change. The low- 
temperature branch of R, quite likely involves vacancies 
moving around a dopant ion by occupying nearest- 
neighbor positions. Since the transition involves only a 
small change in activation energy from about 0.33 down to 
0.28 or 0.26 eV, the great increase in R, must be strongly 
dominated by a structural entropy increase, probably re- 
flecting a change in vacancy-dopant clustering. The high- 
temperature branch may thus involve vacancies still bound 
to the dopant ion but probably occupying next-nearest- 
neighbor positions. If so, the small decrease in E, apparent 
here when passing from below to above the transition is 
what one would expect theoretically. 

Unfortunately, there seems to be little experimental 
information available in the literature on zinc-doped NaCI. 
The one reference found46 involved much higher tempera- 
tures than those here and did not lead to an estimate for 
the association energy (enthalpy). However, this quantity 
has been calculated theoretically for zinc impurities in 
NaCl for both nearest- and next-nearest-neighbor states.47 
The results obtained were 0.78 and 0.75 eV, respectively. 
Although these estimates are somewhat larger than the 
present corresponding ones of about 0.65 and 0.56, they 
are qualitatively similar and, in any case, depend sensi- 
tively on the form of the potential used in the calculations. 
Finally, the present values are clausible when compared to 
experimental estimates for other dopant ions in NaCl. 

It is reasonable to assume that a fraction of the vacan- 
cies which are bound to dopant ions now and then become 
free to percolate through the material with a migration 
activation energy Em and are thus able to contribute to dc 
conduction. If so, their concentration should be propor- 
tional to that leading to R, , explaining the presence of 
ERm in EAR= ERm +E, . However, if this is the case, one 
might expect to see some effects of the R, transition in the 
separate AR estimates. We evidently do not do so because 
AR is appreciably greater than R, , because E, does not 
change much through the transition, and because the free 
vacancy concentration must be largely independent of the 
specific clustering configuration leading to R, . It is also 
significant that there is no observable effect of the R, en- 
tropy transition in the temperature dependencies of Ca and 
ec, Eqs. (10) and (11). 

IV. CONCLUSIONS 

A new fitting approach for conducting-system data is 
shown to describe well both the real and imaginary parts of 

the present NaCl ac dispersion response in a self-consistent 
manner without dielectric dispersion contributions. De- 
tailed analysis of the data yields no viable evidence for 
y=s= 1 over an appreciable frequency region using either 
direct slope determination or an appropriate fitting model. 
Instead, one finds y estimates less than, but reasonably 
close to, unity at low temperatures (nearly single- 
relaxation-time response) and values possibly stabilizing 
near y=O.85 for the higher-temperature region. Thus, the 
y= 1 “new universality” proposed by LLN does not apply 
to their NaCl data, and their identification of constant-loss 
dielectric response is actually only approximately fre- 
quency independent and arises not from dielectric disper- 
sion but from conductive-system dispersion. 

The present conductive-system analysis shows that for 
such systems one needs to include in a fitting model the 
possibility of both a high-frequency-limiting resistance (or 
resistivity ) R m , probably involving the association activa- 
tion energy, and a differently activated resistance, 
AR rRo- R, , representing the strength of the 
conductive-system dispersion. Both activation energies can 
be found, and in the present case their difference yields a 
very close estimate of the migration activation energy for 
cation- vacancies. Since Gc ( zR{‘) or R. thus involves 
two different activation energies, they are not appropriate 
quantities for estimating a single such energy through 
Arrhenius plotting, especially at high temperatures where 
R, becomes comparable to AR. 

In spite of the deficiencies of the present data, it has 
been demonstrated that detailed analysis, is possible even’ 
when the most significant part of the data is obscured by 
much larger effects associated with low-frequency-limiting 
conductance and capacitance. Spline fitting/smoothing/ 
interpolation has been shown to be a valuable tool in ex- 
amining raw data, calculating frequency-dependent log-log 
slopes s(w), and even allowing fitting procedures otherwise 
limited by too few available data points. An important 
conclusion is that such slope values should always be well 
distinguished from least-squares estimates of the frequency 
power-law exponent 7, since the latter is an average over a 
variety of possible measurement and model errors. 

In view of the present results, it seems possible that 
there is no new universality for the other conducting crys- 
tals, glasses, and disordered solids measured by Nowick, 
his associates, and other workers; that appropriate and de- 
tailed analysis of more accurate data would show that y 
values involved in such conductive-system dispersion are 
nearly always less than unity; and that s(w) never equals 
unity over an appreciable frequency range unless it is as- 
sociated with pure dielectric dispersion or possibly with a 
combination of that and conductive-system dispersion. 

For electrically conducting systems, such as that con- 
sidered here, analysis should be carried out primarily in 
terms of a model of dispersion at the impedance level 
rather than by assuming dielectric dispersion only. Com- 
plex nonlinear least-squares fitting can be used to help dis- 
tinguish between the two types of behavior and can even 
show whether both are simultaneously present. Contrary 
to usual practice, it is crucial to not ignore the details of the 
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imaginary part of the admittance data (associated with the 
real part of the complex data at the dielectric level). Dis- 
persion involves both a real and an imaginary part and one 
ignores either of them at risk of error. 
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