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Dyre has proposed that in the low-temperature limit an effective medium approximation, termed the
Bryksin equation here (the BEM), predicts a universal frequency dependence for the normalized small-
signal ac frequency relaxation response of nonmetallic disordered solids. This response has been claimed
to be practically identical to that found for an exponential distribution of transition rates (EDTR) in the
particular limiting uniform-energy-barrier-distribution case, but comparison of the two responses has
been inadequate so far. Although it is shown here that they can be well differentiated, the question of
which or either is universal still requires further comparisons with experiment for its answer. A general-
ization of the limiting low-temperature BEM equation applicable for nonzero temperatures, the GBEM,
is developed and used to evaluate the temperature and frequency ranges for which the BEM is still ade-
quate. It is found that GBEM response can be well approximated by the important EDTR solution and
leads to a frequency exponent with the same temperature dependence as the latter. An expression de-
rived herein for the dc conductivity predicted by the GBEM involves % of the maximum thermal activa-
tion energy (i.e., the effective percolation energy), however, rather than the energy itself. Further, unlike
the BEM, the GBEM predicts the presence of an intrinsic temperature-independent high-frequency-
limiting conductivity whose magnitude is evaluated. The combination of conductive- and dielectric-
system response, always experimentally present for a conductive system, is evaluated for the GBEM, and
in the frequency range where the GBEM and BEM are indistinguishable it leads to frequency and tem-
perature response remarkably similar to that observed for most disordered materials. Finally, it is sug-
gested that Dyre’s macroscopic simulations of the relaxation problem do not seem fully relevant to phys-
ical situations of interest and thus should not be taken to confirm the universality of the BEM equation
response. Nevertheless, the present results broaden the likely range of applicability of both the BEM
and GBEM and the EDTR and suggest that one or the other may indeed be particularly appropriate for
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describing the frequency and temperature response of a wide variety of disordered materials.

I. INTRODUCTION AND BACKGROUND

It is interesting and potentially important whenever a
new universal response law is proposed. Recently,
Dyre!? predicted that the low-temperature (T'—0) ac
conductivity relaxation response of nonmetallic disor-
dered solids is universally described by a particular
effective medium approximation (EMA), a mean-field ap-
proach, and by the “almost indistinguishable”® percola-
tion path approximation (PPA), itself mathematically
equivalent to a box-type hopping response model. Such a
model may be associated with a specific distribution of
transitions rate (DTR),*”!! one with all free-energy bar-
riers equally likely. Dyre!? carried out extensive Monte
Carlo tests of these low-temperature universality predic-
tions for two and three dimensions and concluded that
the universality was indeed confirmed.

Dyre’s EMA universality hypothesis is an appealing
one, particularly because the general EMA is exact in the
limits of both high and low concentrations of defects and
provides a smooth interpolation between them.!? It does,
however, predict a somewhat incorrect value for the
three-dimensional (3D) percolation threshold.? Useful
recent reviews of diffusion and ac conductivity theories,
including the EMA, appear in Refs. 2, 12, and 13.

Here some of Dyre’s important findings are considered

0163-1829/94/49(14)/9428(13)/$06.00 49

in further detail, with particular reference to the response
of materials which conduct in three dimensions, the usual
experimental situation. Because the specific EMA equa-
tion elevated to universality by Dyre, one apparently first
derived by Bryksin'* (called the BEM here), is only exact-
ly applicable in the nonrealizable T'— 0 limit, it is impor-
tant to investigate how well it, or a 7 =0 generalization
of it (the GBEM), applies at nonzero temperatures. In
addition, since Dyre has compared only the real part of
the PPA conductivity with experiment,3’g it is also of
great importance to consider the frequency response of
both the real and imaginary parts of the BEM and PPA
dispersion contributions to the total complex conductivi-
ty. Further, by doing so at the most appropriate admit-
tance response level,”®!>!® one can investigate the de-
gree to which these equations can be distinguished and
the BEM possibly fitted by a more flexible DTR equation,
the exponential distribution-of-transitions-rate (EDTR)
model.>®% 115 It is also important to examine the ap-
propriateness of Dyre’s Monte Carlo simulation results
for conclusively verifying his universality hypothesis.
These various matters, including the effect of the dielec-
tric response of the material, are discussed in the follow-
ing sections. Since various aspects of immittance spec-
troscopy”'>!7 and the several kinds of conductive and/or
dielectric relaxation possible are highly relevant to the
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present work, they are briefly summarized in Appendix
A, while model equations, specific definitions, and other
relevant results are presented in Appendix B.

II. NUMERICAL RESULTS
AND COMPARISONS FOR T —0

A. Comparisons at admittance and complex modulus levels

Since it is convenient in theoretical analysis to deal
with normalized quantities, in the present conductive-
system situation we shall normalize Y(w) with
Y'(0)=G, to obtain Yy(w)=Y(w)/G, and also normal-
ize the angular frequency by an appropriate relaxation
time 7y. Thus let Qy =w7Ty. Then the normalized ad-
mittance equals the normalized complex conductivity
on(Qy), and for simplicity we shall define the normal-
ized complex capacitance to be the same as the normal-
ized complex dielectric constant, here defined as
Cy=ey=Yy/(iQy)=1/My, where My is the normal-
ized complex modulus. There are four relaxation-
response equations, derived and discussed in Appendix B,
with which we shall be concerned. For the T—0 limit-
ing situation, they are the BEM [see Eqgs. (B22) and (B23)]
and the EDTR box-distribution equation: the EDTR,
[Eq. (B8)] (equivalent to the PPA when R, is taken
zero), that obtained with =1 in Eq. (B4). For the T>0
situation, they are the GBEM of Eq. (B21) and EDTR
response with arbitrary ¢ [Eq. (B8)].

Figure 1 shows a comparison between accurate BEM
data and EDTR,; predictions for Y,y and
AgY,n =Y,y —Y;n(0)=Y,y—1 (see Appendix A). The
frequency variable here is that for the EMA equation,
Qg =wrg, as discussed in Appendix B. Such log-log
admittance-level comparisons have been presented earlier
by Dyre for Y, over a narrower frequency range®* using
a frequency scaling factor A of 2 [see Appendix B and
Eq. (B9) for further discussion of this choice]. For exper-
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FIG. 1. Comparison of the predictions of the Bryksin

effective medium (BEM) equation with those obtained by com-
plex nonlinear fitting of the single-exponential distribution of
transition rates box model (¢=1), the EDTR,, at the normal-
ized admittance or complex conductivity level. The normalized
frequency variable Qg =wt; is that for the effective medium
equation.
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imental data, however, the appropriate value of A would
be unknown and would have to obtained by data fitting.

Such a fitting approach is followed here by using com-
plex nonlinear least-squares (CNLS) fitting of both the
real and imaginary parts of the box model to BEM data.
The actual fitting was carried out using the LEVM CNLS
program®'®!° with the scaling factor taken as a free
fitting parameter. No R,.n factor was needed in the
fitting equation (B8). The result of the fit was
A=1.35/0.02, where the notation A|B indicates a fit esti-
mate A and its estimated relative standard deviation B.
This choice leads to appreciably closer agreement be-
tween the predictions of the two equations than that
found by Dyre for Q5 > 1 and to somewhat worse agree-
ment in the O <1 region. But the latter region is one
where comparisons with experimental data are less reli-
able because of the need for uncertain Gy and Cy sub-
tractions (see Appendix A). Incidentally, the Y,y —1
curve in Fig. 1 was not obtained by a new CNLS fit to
Ygy—1 data, which would show closer agreement than
that here.

In the past, most comparisons between analytic relaxa-
tion equations and between such equations and measured
data have been similar to Fig. 1 in that they involved
log-log plots of the real part of conductivity or admit-
tance and usually did not even include imaginary-part
comparisons. >>%10.13.20 A5 pointed out earlier,>>% 13 it
is unwise, however, to base detailed comparisons solely
on such a log-log type of presentation, especially when it
is apparently close to a straight line of appreciable slope.
Figure 1 and Dyre’s recent work>® indicate, however,
that even including imaginary-part comparisons as well
here yields such close apparent agreement for both real
and imaginary BEM and EDTR, predictions that one
would not usually expect to be able to decide, on the basis
of log-log plots of fitting results, which one yielded better
agreement with actual data containing errors.

Dyre*® has compared only the Y} predictions of the
EDTR, with data for many materials by adjusting scaling
factors, but has not presented direct fitting results of ac-
tual data to the BEM. Results were presented only as
low-resolution log-log plots, and even so they showed
very appreciable scatter. The agreement found was tak-
en’ as evidence for the universality of the BEM. Further,
may of the measurements compared were for materials at
temperatures near or above room temperature (one was
at 873 K), not necessarily representative of T —0
response.

Much actual admittance data for solids shows approxi-
mate log-log slopes (hereafter referred to as just slopes) of
Y’ which fall in the range from 0.7 to nearly unity. %%
When the ac frequency response appears to include an
appreciable region of constant slope near unity in a log-
log plot, as do the results of Fig. 1, it is much more ap-
propriate to consider it at a level which removes most of
the rapidly varying parts of the response and thus
reduces the range of variation, rather than to work only
with log-log presentations of conductivity. For a
conductive-system response associated with a box distri-
bution of activation energies, it has been shown that the
modulus level is particularly useful,” provided that Cy
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effects are subtracted at the Y level before transforming
to the M level. But transformation to obtain a complex
modulus M () response from results at a different immit-
tance level requires measurements of both real and imagi-
nary parts of the response at the other immittance level.

Figure 2 shows the data and fits of Fig. 1 transformed
to the M level. In addition, the general EDTR equation
was used as a fitting model. Fitting led to best-fit A esti-
mates of 1.25/0.03 for the EDTR, and 1.54|0.03 for the
EDTR. In the latter case, both A and ¢ were free param-
eters. The appreciable difterences between these esti-
mates, and between them and the Y-level fitting estimate,
are indications that the EDTR model is not closely iden-
tical to the BEM equation and data. The Fig. 2 results
further make it quite clear that EDTR and BEM
responses can be very well distinguished at the M level,
raising the question of whether the BEM is universal and
the EDTR, is not or vice versa. Certainly, CNLS fitting
of these equations to reasonably accurate experimental
data should allow one to make a meaningful choice be-
tween them, at least for the particular data involved.
Further, comparison of the Figs. 1 and 2 results provides
a literally graphic illustration of the power of a log-log
presentation to obscure real differences.

In order to allow convenient fitting of the BEM equa-
tion to actual data, it is useful to have available analytical
expressions for the BEM frequency response. An ingeni-
ous analytical approximation has been presented by
Dyre,2 and its predictions at the M level are included in
Fig. 2. Unfortunately, it is clear that it is not sufficiently
accurate to be particularly useful for this purpose. A
much more accurate approximation for the BEM
response has been derived by the present author and
yields results graphically indistinguishable from the accu-
rate BEM response of Fig. 2. In fact, its maximum rela-
tive error over the entire range of 0 <y < c is only
0.066%, and its estimated standard deviation of the rela-
tive fit residuals is only 0.0017. It is thus well suited for
fitting data to BEM predictions, and it will be incorporat-
ed as an available model in the forthcoming next version
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FIG. 2. Results of fitting of the EDTR-model modulus-level
response M,y, with ¢=1 and with ¢ free to vary, to BEM data,
Mpgy. In addition, results of an approximation to the BEM

response derived by Dyre and results of one derived by the au-
thor (J.R.M.) are included.
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FIG. 3. (a) Slopes of the log-log plots of the BEM (Yzy—1)
and Ygy frequency responses vs the logarithm of normalized
frequency compared with the slopes of the best-fit EDTR,
response. (b) Same as above, but for complex modulus response
and fit results.

of LEVM.

Since Bryksin’s first presentation of equations for the
large-Q limiting slopes!* s;y and sy of the BEM log-
log admittance plots, there have been many independent
discussions of these slopes,?>%132! and much has been
made of the fact that the slopes approach unity only loga-
rithmically as Q;— . In particular, Dyre2 has shown
that both the BEM and EDTR, yield identical limiting
behavior in this range. Heptic spline fitting?? of BEM
data has been employed here to calculate the appropriate
slopes at the admittance and modulus levels, and the re-
sults appear in Fig. 3. They indeed show how the BEM
and EDTR, slopes approach each other at very large Q.
Some slope data for metal-cluster compounds show
behavior in qualitative agreement with that here.!> But
things are different at the M level, as shown by the curves
in Fig. 3(b). We see that s;,, approaches zero very rapid-
ly, quite differently than does sg),, and that the sy,
curves both exhibit simpler logarithmic limiting
behavior. It is clear that for a conducting system, presen-
tation of slopes at the M level yields more resolution and
is more diagnostic than comparison at the Y level.

B. Complex dielectric constant level
and probability distributions

In the present conductive-system situation, all true
dielectric effects have been omitted or subtracted out.
But one can still form the dielectric increment Ae arising
from the conductive-system dispersion, as discussed in
Appendix A. It is of some interest to do so here because
if it were not known that the dispersion was entirely con-
ductive even when it actual was, one might subtract out
the effect of a dc conductance, analyze the results at the
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dielectric level, and identify them with real dielectric
effects, >*?* not an uncommon misinterpretation.

Results of calculating the normalized dielectric incre-
ment A€y are presented in Fig. 4. Figures 4(a) and 4(b)
are direct and log-log complex-dielectric-plane plots, re-
spectively, and Fig. 4(c) shows the log-log frequency
response behavior. Here the BEM response is compared
with that of two different CNLS fits. One such fit is just
the transformed fit results of the EDTR,; model of Figs. 1
and 2, while the other was generated by fitting the
transformed BEM response directly at the € level using
the EDTR model with the parameter ¢ free to vary. For
this fit, the estimates of A and ¢ obtained were
A=3.9/|0.08 and #=0.189|0.016. The negative of this
value closely equals the slope of the dashed straight lines
in Fig. 4(c), since for ¢ <0.5, —¢ is a good measure of the
high-frequency limiting slope of the EDTR response at
the dielectric level. 1

It is evident that the two different fit results are quite
different, with the first one, that with ¢=1, fitting the
high-frequency region of the data much better and the
other yielding better results at low relative frequencies.
But both fits are so poor that one could readily distin-
guish between true BEM response data and the EDTR
model, at this level, which is another instance of
differences between these responses which are largely ob-
scured at the Y level. Finally, because the curves of Fig.
4(a) are all qualitatively similar to the predictions of the
Davidson-Cole response function,?* often used for fitting
true dielectric response data, their incorrect identification
with such a response is made more likely.’

There is another way that relaxation data can be fitted
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FIG. 4. (a) Complex dielectric plane plot of the conducting-
system dielectric increment for the BEM response (solid line),
EDTR, fitting at the Y level and transformation to the € level
(short-dashed line), and EDTR fitting directly at the € level with
¢ free (long-dashed line). (b) Same as (a), but log-log plot to
show constant limiting slopes. (c) The frequency dependences
of the Aely and — A€l responses of (a) and (b) shown as log-log
plots.

without preconceptions concerning a specific fitting mod-
el. Using LEVM, one can fit data by CNLS to an arbitrary
distribution of relaxation times.'® The model is made up
of N simple Debye responses: At the dielectric-system €
level, they may be thought of as N branches in parallel,
each involving a resistor and capacitor in series, while at
the conductive-system M level they consist of N parallel
resistor-capacitor pairs in series. The process optimizes
the fit by adjusting the strength of each pair p; and its re-
laxation time 7; to achieve a minimum sum of squared
relative residuals. For error-free data of the present kind,
fitting can be made arbitrarily good just by increasing N.
In this fashion, a possibly continuous DRT is approxi-
mated by a discrete distribution, with the sum over N of
the p;’s normalized to unity.

Here sufficient accuracy is achieved by the choice
N=14, requiring the determination of 28 fitting parame-
ters. Figure 5 shows the results of applying this tech-
nique to the present BEM data and EDTR-fit results.
With the proportional weighting!® used here, the results
of fitting at the € or Y level are the same, as are those for
the Z and M levels. In the bottom part of the figure, lines
have been included to guide the eye, although only the
points themselves are significant. For the e-level fitting,
Y data were first transformed to Ae data. No Cy subtrac-
tions were needed for M-level fitting, since no dielectric
contributions are present in these synthetic data. The ir-
regularities at the low- and high-7 extremes arise from
the finite range of the data, but we nevertheless see regu-
lar behavior over ten decades or so for each of the fits.
Further information on DRT’s for different immittance
levels may be found in Refs. 26-28.

Figure 5, being a log-log plot, actually shows the nor-
malized distribution of activation energies, F(E), since
In(7/7g) is proportional to E. We see that the points of
the dielectric-level, EDTR-fit curve, with ¢ ~0.189, lie on
a straight line with exactly this value for the slope,
d[In(p,)]/d [In(7; /7E)], in complete accord with expec-
tations.'> But note that the p_; points for the BEM and
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FIG. 5. Discrete-probability-distribution strength values p;
for the conducting-system response p,; and for the dielectric-
level response of the conducting system, p,;. The lines joining
the points are included solely to guide the eye. The distribution
behavior is shown for the BEM data and for data obtained from
EDTR, and EDTR CNLS fits to the BEM response.
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the box-distribution-fit results lie on a curve when the
end points are eliminated. This behavior is associated
with the curved responses shown in Fig. 4(c) and again is
to be expected. Over the nearly eight decades between
y=In(r;/7g)=—11.3 to —3.6, the BEM p, response is
very closely given by p; ~(7; /7;) '8, with g (y) linear
or quadratic in y.

For a conductive-system box distribution, only at the
M level does a constant (actually zero) slope appear, that
of the M, curve of Fig. 2. The top part of Fig. 5 reflects
just this behavior in the appropriate distribution func-
tion. The slope is there essentially zero because the
EDTR function for the conductive-system response is a
constant for the flat-top box distribution.

Dyre? states that the importance of the BEM, his Eq.
(40), “lies in the fact that the equation is universal, com-
pletely independent of the activation energy probability
distribution.” Indeed, his simulation results, discussed
below in Sec. IIT A, all approach a kind of BEM response
as T—O0 for all distributions considered. The present re-
sults show, nevertheless, that a specific activation energy
distribution is clearly associated with the BEM. Only for
this particular distribution does one obtain a characteris-
tic BEM frequency response. Thus again the question of
universality seems to remain moot.

III. NUMERICAL RESULTS
AND COMPARISONS FOR T>0

A. Simulation results and comparisons

Dyre!? has carried out interesting and extensive com-
puter simulations of a two- or three-dimensional lattice of
admittances for a range of B values. For D=3, a
50 X 50 X 50 lattice was used, with the value of each ele-
mental admittance link made up of a resistor and a ca-
pacitance in parallel. All capacitances were taken identi-
cal and the thermally activated resistor values were each
determined by an activation energy determined randomly
from a particular probability distribution (including the
box distribution). This activation involved BE, not
BE /3=BE_, where E, is a percolation energy (see Sec.
II1 B). The simulations were carried out starting with the
Maxwell equations to calculate an overall quasiadmit-
tance, but with the i terms arising from the small-signal
ac factor exp(iwt) replaced by just w in the simulation
equations.

As Dyre! points out, this is possible when the purpose
is to compare simulation results to an analytic function.
Although this decision probably greatly simplified the
simulation, for consistency it required that the large-S re-
sults be compared not with the predictions of the BEM of
Eq. (B23), but with that equation with i, replaced by
Qp; call it BEMR. As a consequence, neither the BEMR
nor the simulation led to both real and imaginary values
of Yy(Qpg), but to a single real quantity, say, Yy (Qg),
identified as a conductivity.? Dyre!"? indeed found that
as f3 increased toward large values, the normalized simu-
lation results approached the BEMR prediction, al-
though the largest 8 value for which simulation results
were found, 60, was insufficient for the 3D simulation re-

sults to approach those of the BEMR very closely. Nev-
ertheless, Dyre concluded that the simulation results
verified the universality of the BEM frequency depen-
dence at low temperatures.

What is the meaning of these intriguing results, and do
they indeed justify Dyre’s conclusion? To begin to
answer these equations, it is useful to compare BEMR
and BEM predictions. First, it is clear that Dyre’s Yy
simulation results,? which are given for a range of values
of B rather than involving the x, =BEj of the present
work (see Appendix B), are qualitatively similar to the
Yy results of Fig. 1 for small Q. They then approach a
constant saturation value at large € and intermediate
values of 3, and they finally approach the Fig. 1 Y/,
curve for sufficiently large values of Q; and B. Thus it is
worthwhile to compare Yz, —1 with Yy and with the
modulus function [(Ypy—1)2+(Ygy)?]'2  Calculated
percentage differences for these comparisons are present-
ed in Fig. 6, which indeed shows the approach of the
BEMR Y, predictions to Yz as Qz— o, but also indi-
cates that the modulus function is mostly an appreciably
better approximation to Yy thanis Y.

Since Yy is clearly some complicated, unknown func-
tion of both Yy and Yy and does not yield separate
real and imaginary parts of an admittance, it seems inap-
propriate to identify it as one, and it does not allow the
calculation of immittances at other levels. As we have
seen, comparison of conductive-system Y, predictions
plotted in log-log fashion is not particularly diagnostic,
and comparison at the M level, where one usually need
not make a logarithmic transformation, can allow far
better discrimination. Since the BEMR and correspond-
ing simulation results do not yield results which can be
compared with actual immittances, either real-only or
both real and imaginary parts, it seems premature to
form definite conclusions about the physical relaxation
response from such an approach.

This conclusion, plus the earlier analysis and compar-
isons in the present work, suggests that although the
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FIG. 6. Comparison between the T—0 Ygy response, ob-
tained by solving Eq. (B16) with iQ; replaced by {y as pro-
posed by Dyre (Ref. 2) for comparison with his simulation re-
sults, with two different BEM quantities, where here Yy is the
solution at the Y level of the unmodified Eq. (B16).
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BEM is a fascinating response function, its universality
for temperatures where GBEM and BEM predictions are
negligibly different remains still unproven. Clearly, a
comparison of actual disordered-material relaxation-
response data with BEM (and perhaps EDTR)
frequency-response predictions for a range of tempera-
tures is badly needed and is now readily possible with the
inclusion of the BEM as a fitting function in the LEVM
program. Even if the frequency response is indeed well
fitted, it would be crucial to investigate if the estimated
value of Ry, found from the fitting satisfies Eq. (B20), if
estimated values of Ry, and 7 are activated as in Egs.
(B25) and (B26) and agree with these theoretical values,
and if the Ej /3 values obtained from these equations are
consistent with activation energies for the material deter-
mined by other means.

B. GBEM response

Thus far, we have followed Dyre’s approach and pri-
marily considered only 7—0 forms of the effective medi-
um and EDTR equations, with the expectation' ~? that
they will nevertheless be useful over some nonzero range
of temperatures. This assumption needs to be tested, par-
ticularly because it has not been adequately examined so
far by fitting of real and imaginary relaxation frequency
responses to theoretical predictions. Since the EMA is it-
self an approximate approach, the BEM equation must be
corresponding approximate, but nevertheless it and its
T =0 generalization, the GBEM of Eq. (B21), may possi-
bly be sufficiently accurate to yield useful descriptions of
some or much conductive-system relaxation behavior.

The derivation of the GBEM in Appendix B is based
on an EMA solution of the random, free-barrier model
with a uniform distribution of barriers (the flat-top box
distribution). Since the EDTR equation may also be de-
rived from the random-free-barrier model with either a
uniform or an exponential distribution, it is indeed plau-
sible to consider a specific EMA solution for a flat-top
box distribution. Further, the GBEM leads to a response
of the same general character as those found earlier by
Bryksin'* and by Fishchuk.?! Even if the EMA Green’s
function used by Dyre,* on which the present GBEM
solution is based, should be found to be overly approxi-
mate, the present GBEM equation should nevertheless be
valuable for comparison purposes and probably even for
data fitting. In the future, it would be worthwhile to
compare the results of a GBEM solution involving a sim-
ple cubic lattice Green’s function® to that obtained here,
but extensive computation will be required to do so.

Little attention has been paid in the past to possible
temperature-dependence differences between EDTR and
BEM and GBEM responses (see Sec. IIIC). For r >>1,
the Appendix B results show that the EDTR,; low-
frequency-limiting resistance R, is thermally activated
as Texp(BEy), the corresponding relaxation time
Ty =A7g is thermally activated as exp(BEjy), the
Rgy for the GBEM is thermally activated as
exp(BEy /3)=exp(x, /3)=r!/3, and 15 is thermally ac-
tivated as T~ 'exp(BEy /3). Here Ej is the maximum
activation energy or enthalpy. Thus the EDTR, model
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assumes that a maximum value of E exists and is directly
involved in the thermally activated response, while the
BEM makes the same assumption but yields an activation
involving the percolation energy E, instead of Ey. Clear-
ly, better agreement between the temperature responses
of the two models is produced if the Ey in the EDTR,
(and EDTR) is replaced by E,, but this obscures the real
differences between the models.

The factor E,=Ey /3 in the GBEM results is particu-
larly significant. Dyre!? gave no explicit expression for
Ry, or for his o(0) for T> 0 conditions and did not con-
sider the temperature response explicitly, but did state
that for his simulation results o(0) xexp(—pBE,). Fur-
ther, Fishchuk’s independent box-distribution EMA solu-
tion?! also yielded an activation with the 1 factor present.
But as Dyre? points out, simulations in three dimensions
have shown that the link percolation threshold value is
0.2488 rather than 1. In view of the approximations in-
herent in the EMA approach, it seems reasonable to re-
place the effective E, arising from the GBEM calculation
by E /4. To do so, one would just replace all x,/3 terms
in the present work by x; /4. This has not been done in
the following, but should certainly be considered when
comparing theory and experiment for a range of tempera-
tures.

An important difference between the BEM and GBEM
equations is that for 7> 0 the latter involves a nonzero
high-frequency limiting resistance Ry, whose value is,
from Eq. (B27), just {=7,/C,, equal to 1 Q for 7,=1 ps,
and a value of C,, the capacitance of the empty measur-
ing cell, of 1 pF. Unlike any R , present in an EDTR fit,
Ry, is an intrinsic part of the response and is thus not a
free parameter.

Figure 7 shows how the GBEM response deviates from
that of the BEM for several values of x; at the (a) Y level
and at the (b) M level. The plateau values of Yy ap-
parent in Fig. 7(a) have limiting values of just (R, y) "},
allowing accurate estimation of Ry, from experimental
results, which show activated barrier behavior. Thus
Rg. plays an important role in the high-frequency
response when T>0. In contrast, the high-frequency-
limiting values of the M, plateaus in Fig. 7(b) are equal
to x,. The unnormalized plateau value is then just
9/€~35.6 for the GBEM model, a value which should
certainly be tested against experimental results since the
value of £==0.253 is calculated under the assumption that
a simple cubic lattice is appropriate.

Define the point where Ygy =Ygy in Fig. 7(a) and
Mgy =My in Fig. 7(b) as the normalized crossover fre-
quency Q; it is approximately given by 0.77'/3. Then
the corresponding unnormalized crossover frequency f
is about 0.6/(x,7,), proportional to temperature. Exam-
ination of Fig. 7(a) shows that at least on a log-log plot
there is negligible observable difference between GBEM
and BEM predictions for 2 <0.1Q, corresponding to an
actual frequency of less than about 0.001/7, Hz for
x;,=60. For 7,= 10~ 12 5, discrimination would then be
difficult for f < 10° Hz, a frequency higher than used for
most measurements in the present field. Thus it is not
surprising that such measurements usually show no pla-
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teau in Y’'. To observe such behavior, one would need to
measure to very high frequencies at low temperatures. A
few measurements®® 3! do indeed extend to 10'2 Hz or
so, the optical phonon frequency region, and show a pla-
teau in o' in that neighborhood. Further, Bryksin’s origi-
nal analysis'* predicted a plateau in the optical-phonon
frequency region, as did related work of Fishchuk,?! both
consistent with the present results.

Dashed lines in Fig. 7 show EDTR fits to the GBEM
data for the choice x; =40. Although results at the Y lev-
el are virtually indistinguishable from the data, they are
sufficiently different at the M level that even in a log-log
plot some differences can be resolved. The line of short
dashes in Fig. 7(b) was calculated by removing the EDTR
fit estimate of the normalized high-frequency-limiting
resistance Ry, y from the EDTR M/t results; it shows
that the rapid rise in the My curves at high frequency is
entirely associated with the presence of an intrinsic
nonzero limiting resistance. This high-frequency-limiting
behavior of My for T> 0, a rise proportional to Q, also
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FIG. 7. (a) Log-log plot of the Yy response (solid lines and
asterisks) calculated using the GBEM for x; =BEy values of 20,
40, 60, and «. For E; =1 eV, these values correspond to tem-
peratures of about 580, 290, 193, and 0 K, respectively. The
dashed lines, virtually indistinguishable here, are EDTR-fit re-
sults to the x,=40Y.y data. (b) Mgy log-log response curves
for five values of x; (solid lines), for a EDTR fit at the M level of
the x, =40My data (long-dashed line), and for the same fit with
the effects of the estimated value of Rp.y removed (short-
dashed line). The fit estimates were A=1.74/0.03,
x,=41.0[0.03, $=0.914|0.004, and R,y =8.27X1077|0.03.
For comparison, the actual value of Rg.y at x,=40 is about
8.098 X 107"
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leads to the peak and subsequent decay in the corre-
sponding Yy curves of Fig. 7(a), a response which also
disappears when 7=0 and R, is itself zero.

Fits of the EDTR to GBEM data for x; =40, 60, and
100 lead to ¢ estimates which may themselves then be
fitted to a linear expression in 1/x;. The result found is
$=1.02—4.28/x,, in full agreement, within its uncer-
tainties, with the temperature dependence of the ¢ pa-
rameter which is intrinsic to a conductive-system EDTR
response®”!® (class I): ¢=1—7/B, where 7 is a
temperature-independent constant. Thus, although there
is no ¢ in the GBEM equation, its response can clearly
approximately mimic that of the EDTR right down to
the temperature dependence of the EDTR ¢ parameter,
at least for ¢ <1. Since the EDTR has been found to fit
well an extensive amount of experimental data, this sug-
gests that the GBEM may also be able to do so. Surpris-
ingly and importantly, these results indicate that a
response function based on a random-free-barrier model
with equally likely barrier energies can nevertheless simu-
late the response following from an exponential distribu-
tion of barrier energies, at least over a limited low-
temperature range.

Figure 7(b) shows large differences between GBEM and
BEM predictions for Mgy and Mgy at frequencies much
less than Q.. For x,=40, for example, appreciable
differences appear for 1y values as small as 100. For
7,=10712 s, this value corresponds to an actual
minimum frequency of discrimination, f;, of about
3.8 X 10° Hz, one well within the range of some of the o’
data compared by Dyre® to EDTR, box-distribution pre-
dictions. For x, =60, about 100 K below room tempera-
ture for Ey=1 eV, f, is only about 3X 10° Hz. Dyre®
has stated that the capacitance currents associated with
€., are negligible at low temperatures and moderate fre-
quencies. Here, where we use Cy (or €y ) rather than C,
(see Appendix A), the neglect of the effect of Cy, especial-
ly in regard to its influence on measured M"' data, is by
no means warranted, particularly since its effects occur at
lower frequencies the lower the temperature.

C. Effect of Cy: experimental analysis

The reasons the strong rise in M’ and the correspond-
ing peak in Y"' at large frequencies, both associated with
a nonzero R _ value, are generally not evident in actual
conducting-system data’*3 is because Cy is not usually
estimated and subtracted from the data before calculating
and plotting data at the M and Y levels. Without such
subtraction, one is not examining the actual conducting-
system relaxation response, but that response in parallel
with the capacitance Cy. Although Cy has no effect on
Y'(w), the quantity usually plotted, as we shall see it has
a great effect on M"(w).

When one wishes to compare results such as those in
Fig. 7 with experiment, one must either estimate and sub-
tract the effect of Cy or add its effects to those above.
We shall illustrate the effects of both choices here. Fig-
ure 8(a) shows My results for x, =40 obtained by first
adding the term iQzCyy to Ypy or Y,y data. Here
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Cyy=€xy=Cyx/Cgy where Cg, is the low-frequency-
limiting conductive-system EMA capacitance increment
given in Eq. (B18). The solid curve for Cyy =0 involves
directly calculated GBEM points, while the other solid-
line curves were formed by starting from the EDTR fit to
that data. We see that a nonzero value of Cyy can make
a tremendous difference in the response and that it can
entirely eliminate the intrinsic rise in Mgy of Fig. 7(b)
and leads to a peak for My, just as usually observed ex-
perimentally. The peaks in the low-frequency region of
the response occur approximately at Q;=0.34
+0.66Cxy for 0.5 < Cyy <20. The figure also shows that
there are small high-frequency peaks which occur near
the crossover frequency of Fig. 7. For most situations,
they will occur at actual frequencies beyond the available
measurement range. Incidentally, when points in this
second peak region are calculated directly from the
GBEM model with high frequency-resolution, an ap-
parent discontinuity in the slope appears in this region,
perhaps a reflection of a discontinuity of this type in the
Green’s function. 2

The two curves defined by open symbols in Fig. 8(a)
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FIG. 8. (a) Normalized modulus-level overall log-log
response of Mgy vs Q for x, =40 when a normalized capaci-
tance Cyy =e€xy =Cy/Cpg is added to the GBEM conductive-
system response to account for intrinsic dielectric contributions.
The open-symbol curves show similar response using the BEM
rather than the GBEM. The asterisk points were calculated
with €yy =0 using the BEM with the x,=40 GBEM high-
frequency limiting resistance Ryy =R,y added to it at the im-
pedance level. (b) Unnormalized M"' vs log,o(f/f,) curves for
three values of x; and ey =Cy/C.=5.5. Here fo,=1 Hz. The
curves marked (1), (2), and (3) were calculated for temperatures
of 333.3, 344.6, and 353.9 K, respectively. The points marked
with asterisks on the left curve were calculated using the BEM
rather than the GBEM, but with GBEM limiting parameter
values employed for transforming from normalized to unnor-
malized response. The dashed line at (3) is a result of a EDTR
CNLS fitting of the unnormalized real and imaginary GBEM
response with ey =5.5 effects included.
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were calculated as above by using the BEM rather than
the GBEM. They thus show clearly where the two kinds
of response begin to diverge. Finally, the asterisk points
were calculated for eyy =0 using the BEM with Ry
added to it, a simple approximation to the GBEM. It is
clear that for x; near 40 and Cyy =0 the approximation
could well be sufficiently close over the measured fre-
quency range that one could not readily distinguish
which of the two would better describe reasonably good
experimental data. An even simpler approach would be
to use the EDTR [Eq. (B7)], a built-in response function
in the LEVM program, to fit both experimental data and
the related GBEM response. Certainly, a detailed com-
parison of EDTR fits to data with fits of the same data
using the BEM or GBEM is much needed to resolve
which is the most appropriate and perhaps to help settle
the question of the possible universality of the BEM.

To give a flavor of such fitting, I have considered some
of the experimental® M"(f) results for 0.4Ca(NO,),-
0.6KNO,, a glass-forming molten salt, at 7=333.2,
344.6, and 353.9 K, all in the liquid range. Although
these 1974 data were not available, enough results were
presented®? to allow semiquantitative comparisons. To
do so, I used the published value of C,~0.9 pF and
determined 7, and E, from the published values of o in
this temperature range where Arrhenius thermal activa-
tion behavior is closely followed. The results were
7,~1.3X10"%s, E,~3.3 eV, and x, ~115, 111, and 108
for the above temperatures, respectively. The only free
parameter is then €y. Its value was selected to both to
give rough agreement with the total published value of
€'(0)=€gyt+€x and to make peak frequencies agree with
those observed. If there is no dielectric dispersion in the
present frequency range, then €y =¢,,,, where €,,, is the
low-frequency-limiting value of the true dielectric con-
stant of the material, for which a value of 5.5 is perhaps
not unreasonable. The frequency-response results are
shown in Fig. 8(b), where (1), (2), and (3) identify the
above temperature choices, respectively. For ey =35.5,
€xy =0.57 for curve (1). Results for x, =4x_ are the same
as those found here with 3x, provided a consistent value
of 7,, equal to two-thirds of that above, is used.

The origins of the asterisk points on the T=333.3 K
curve (1) and the dashed curve at T=353.9 K (3) are ex-
plained in the caption of Fig. 8. They show that for con-
ditions such as these, one can expect that the BEM will
be a quite adequate approximation to the GBEM and
that the EDTR can approximate either one within usual
experimental accuracy. Thus one can use the LEVM
CNLS program to fit experimental data directly choosing
the JRM approximation to the BEM if available or using
the EDTR response function. But GBEM values of R,
Tg, and Ry, are needed to unnormalize the BEM and/or
to compare with fitting estimates from the EDTR fit.

In the present instance, the range of the curve-(3) data
is limited and EDTR fitting cannot yield estimates of x,
or Rg_. The fit led to an estimate of Rg, about 11% too

high and to an €y estimate of 3 rather than 5.5. Never-
theless, the figure shows that a close fit was obtained.
Only if the effect of ey was subtracted from the data be-
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fore fitting was it possible to obtain a ¢ estimate con-
sistent with the usual EDTR class-I temperature depen-
dence. Better parameter estimates may be expected when
fitting the BEM to real or synthetic data for which the
BEM model is appropriate.

Incidentally, although M'(f) predictions and compar-
ison with experimental results are not shown graphically
here, GBEM with €y =5.5 predictions led to extremely
similar behavior, with a saturation value of M’ at the
highest frequencies of €y !, slightly larger than the experi-
mental value. That value yields ey ~7.35.

The solid curves of Fig. 8(b) are very similar to the
comparable experimental ones’? except in one respect:
the M"’ peak values increase here slightly with increasing
temperature, while the experimental ones decrease faster
than proportional with increasing temperature. Such a
decrease is often found, although temperature indepen-
dence is also common.3* The only way the present work
can accommodate such results is for €y itself to increase
with temperature, but the reason for such behavior is un-
known. Even without such an adjustment, the present re-
sults seem to agree with the plotted data’’ much closer
than a factor of 2.

The value of 7, found from the fitting is very much
smaller than the 0.01-1-ps range one might expect for
optical phonons. Hopping-percolation theories usually
lead to estimates of o'(0) that are eight to ten decades too
high (e.g., see Ref. 13, p. 37), requiring a value of 7, here
of the order of 1072 s, but the present estimate, which
follows directly from experiment, is far smaller. It was
shown in Ref. 32, however, that at temperatures appreci-
ably higher than 350 K, E. beings to decrease strongly
with temperature. Thus the present 7, value is not appli-
cable at these high temperatures, and the present ap-
proach is then no longer appropriate.

The present work suggests, nevertheless, that a CNLS
comparison between good data and the EDTR and BEM
models for an appreciable frequency range and for several
different temperatures should allow one to decide which
of the two theoretical models is the more appropriate,
particularly if €y can be well estimated. Further, the
semiquantitative agreement between BEM temperature
predictions and experiment discussed above suggests that
these theoretical results may be particularly valuable for
fitting of experimental data with either model. Finally, it
is clearly extremely important to distinguish between
conductive-system and dielectric-system effects and to
avoid treating conductive-response dielectric increments
as an unrecognized part of dielectric response.
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APPENDIX: IMMITTANCE LEVELS AND
CONDUCTIVE AND DIELECTRIC RESPONSE

There are four immittance levels: admittance,

Y(0)=Y(0)+iY'"(0)=G (o) tioC' (o) ; (A1)
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complex dielectric constant (or complex capacitance),
ew)=€(w)—ie"(w)=Y(0)/(ioC,)=C(w)/C, ; (A2)
complex modulus,
M(w)=M'(0)+iM"(0)=1/elw)=ioC.Z (o) ; (A3)
and impedance,

Z(w)=Z"(w)tiZ"(0)=1/Y (o) . (A4)

Here C, is the capacitance of the empty measurement
cell. Experimental measurements usually yield Y (w) or
Z (). Knowledge of the value of C, allows one to con-
vert Y(w) and C(w) results to complex dielectric con-
stant ones and Y(w) values to complex conductivity
values; o(w)=e€,Y(w)/C,=0'(w)+ic"(w). Here €, is
the permittivity of vacuum. For normalized, dimension-
less quantities, these distinctions are unimportant.

There are three generic relaxation dispersion situations
which may occur for solids in the frequency range of
measurement: conductive-system dispersion associated
with mobile charge carriers, dielectric-system dispersion
usually arising from dipole rotation of lattice entities, and
the presence of both types of dispersion within the mea-
sured frequency range.®!>!® Specifically, consider possi-
ble conductive dispersion from Z'(0)=R, down to a
high-frequency limiting value R and possible complex
capacitance dispersion from C’(0)=C, down to
C,. =¢€,C,, ie., the geometrical capacitance, C,.

When only conductive-system dispersion is present in
the measured frequency range, the intrinsic dielectric-
system capacitance must be frequency independent in this
range and will be either C, or C, depending, respective-
ly, on whether the dielectric dispersion occurs at frequen-
cies far higher than the conductive relaxation or vice ver-
sa. Define the appropriate capacitance as Cy. Then, to
obtain just the dispersive part of the conductive-system
response, one must subtract the effects of Cy to form!> 16

AY=Y —ioCy=Y'+i(Y"'—wCy) . (A5)

For the present conductive-system theoretical work, in
order to agree with Dyre’s results at the o(w) level, we
initially assume that the effect of Cy has already been
subtracted, and thus we shall not distinguish further be-
tween Y and A, Y in the main text unless Cy is explicitly
taken nonzero.

But even for a conductive system, it is often of interest
to calculate the effective dielectric increment arising from
such conduction.'® When the effect of Cy has been re-
moved, this increment, although defined at the complex
capacitance or complex dielectric constant level, has
nothing to do with dielectric processes. To obtain this in-
crement, we must form'®

ACGyzACY_ze(Y’_Gx)+i(Y”_(l)cx), (A6)

where Gy=1/Ry and Ry is then R, or R, the choice
again depending on the relative frequency ranges of the
dielectric and conductive dispersions. The dielectric in-
crement is, then,

Ae=Acs Y /(ioC,)=A€ —iAe" , (A7)
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where the CG subscript has been omitted for simplicity
here. The real part of the complex capacitance associat-
ed with A€ is just C,(w)=C_ A€’

A not entirely uncommon error is to confuse the
dielectric increment arising only from the conductive-
system dispersion with dispersion arising from a true
dielectric response (e.g., see the discussion in Ref. 16).
This misinterpretation is less likely to occur if one
discusses and analyzes the conductive-system response at
the natural Z (or complex resistivity) and M levels and
the dielectric-system response at its natural complex C
(or €) and Y levels. 11

When one deals with experimental data, one must ob-
tain as accurate estimates of Cy and/or Ry as possible
because the above subtractions often involve regions
where we must deal with small differences between two
large, nearly equal quantities. Consider the determina-
tion of Cy from conductive-system experimental data
when Cy=¢€,C, over the entire measured frequency
range. Since AC'(0 )=C_A€'( ) is generally zero, we
can find all limiting capacitance values from
Cy=C'(0)=AC'(0)+Cy and C,=C'(o)=Cy. Final-
ly, when both conductive and dielectric dispersions are
present in the frequency range of measurement, it is most
appropriate to estimate values of the pertinent parame-
ters of the response, such as C,, C_, Ry, and R ,, from
CNLS fitting of the full data to a model which includes
both types of response. Such fitting is particularly easy to
carry out with the powerful LEVM program,'®! and
LEVM has been used for all the calculations of the present
work.

APPENDIX B: SPECIFIC RESPONSE EQUATIONS

In this appendix several relaxation equations related to
those used by Dyre! ~? are discussed: one following from
the assumption of an exponential distribution of transi-
tion rates, the EDTR, and the others appropriate for a
uniform distribution, the EDTR, the effective-medium-
approximation BEM equation, and its 7 =0 generaliza-
tion, the GBEM equation. Because it is natural to deal
with an experimental conductive-system response at the
impedance level, the quantities of interest will be ex-
pressed here as resistances and capacitances, unnormal-
ized or normalized, rather than as resistivities and dielec-
tric constants. Impedances and resistances will be nor-
malized, when appropriate, with their dc limit R .

1. Conductive-system response: EDTR and EDTR,; models

We follow earlier work for a conducting system by as-
suming that the local conductivity and transition rates
are thermally activated with a distribution of free-energy
barriers.>~!! For simplicity, assume that the distribution
is in the activation energy E (actually enthalpy) only.
Then a transition rate T' and related relaxation time 7
may be expressed as

r/T,=(r/7,) '=exp(—BE) , (B1)

where B=1/kyT and T, is a barrier attempt frequency.
Further assume that the distribution is cut off at both
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ends, %' so that it is nonzero only for E;, <E <Ej. Fi-

nally, we shall make the plausible and usual assumption
that the E’s are temperature independent (defined as
class-I behavior'>). We can now write for the important
ratio of maximum to minimum transition rates,

r=exp(x,)=Cy /T =7y /7,=exp{B(Ey—E;)} . (B2)

In the present work, we follow usual practice and set
E; =0, and so T';=T,=7, . For the box distribution,
the activation energy probability distribution is then just
p(E)=1/Ey for 0SE<Ey and zero otherwise. The
corresponding distribution for I' is proportional to I' !,
and the average (I') over this distribution is readily
found to be Ty(1—r~!)/x,, equal to Ty for
x,=BEy=0.

It is often convenient to express a general frequency-
response relaxation function U({Qy) as a normalized im-
mittance, 51!

HQy)=[U(Qy)—U(0)]/[U0)—Uj()], (B3)

defined at the impedance level for the conductive-system
response and at the complex dielectric level for
dielectric-system relaxation. Thus U(0) and U(w) are
R, and R in the former case and €, and €, for the

latter. The EDTR equation, also termed a single-
exponential-distribution-of-activation-energies equation
in past work, 13 can now be expressed as
— X5 - dx
I(Qg)=¢[1—exp(— [ _expl=éx)
(Qp)=¢[1—exp( —¢x,)] fo 1+iQyexp(—x)
=A4(x5,0,Qp) , (B4)

where

Qp=ory (BS)
and

Ty =T.exXp(x,)=7,r . (B6)

Here ¢ is a parameter different from but related to the
slope of the log-log frequency response.”*!* For a class-I
conductive system without a glass transition, one finds
that ¢=1—5bT, where b is independent of temperature.
The unnormalized EDTR response at the impedance lev-
el is given by

Z=R,_,+(Ry—R_)A(x,,6,Qp), (B7)

where EDTR identifying subscripts have been omitted.
For the box distribution, ¢ =1 for a conductive system
and O for a dielectric one. Note, however, that in the
usual temperature-independent-activation-energy case
(class I), these values are attained®'* only at T=0. For
these and some other integral and fractional values of ¢,
closed-form results may be found>’ from Eq. (B4). For
¢=1, Eq. (B7), written in normalized form, yields, for the
EDTR,,
Zywn=Zy /Ry
: =Rme+[(1—waN)/(1"’—])]
XIn[(1+iQg)/(1+iQyr 1]/iQy ,

(B8)
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where R,y =R, /Ry and 7xr '=7,, here equal to
just 7,. The subscript b identifies box-distribution re-
sults. As discussed in Appendix A, all dielectric effects
have been subtracted here and in Eq. (B7). A slight gen-
eralization of a result of Dyre*>® for the present situa-
tion leads to

Ryo=¢€y/Ccopo=(1—r N1y /Ccx,
=(7,/Cx,)(r—1) . (B9)

This expression approaches a virtually temperature-
independent constant,

E=(r,/C)=(C.Ty)7 ",

as r—1 (T — oo with Ey finite or E5 —0 with T#0). In
deriving Eq. (B9), for simplicity the ¥y parameters of Ref.
3 have been identified, following Dyre,* as the I'’s that
appear there and here. Now, if one assumes on the basis
of one-dimensional calculations®* that o}, ()/e,=(T),
it follows that

Ry =&x,/(1=r71),

(B10)

(B11)

again equal to § for x,=0. Thus, in this limit, one prop-
erly finds that (Ryy— R, )=0. Finally, we can define C,,
as Ty /Ry.

Now in the limit of large r (T —0), the normalized
EDTR, admittance may be expressed, when any R,
present is ignored, as the simple equation

YbNEob/abOZiQH/ln[1+iQH] 5 (B12)

exactly the same in form as the PPA of Dyre? and also
the same as the random-free-energy-barrier box-
distribution model solved in the continuous-time random
walk approximation for a hopping model. >

2. BEM and GBEM equations

Next, an EMA response function appropriate for
r < o, the GBEM, will be derived, and a subscript E will
be used to identify BEM and GBEM responses. Dyre ob-
tained only a ﬁnal response equation for this situation for
the 7 — oo limit.> The basic 3D EMA equation for the
random free- -energy model with a umform distribution
may be written in terms of x; =In(r) as’
exp[x, /(1+x)]1=(Ty+xog/€y) /(T +xog/€y),
(B13)

where o is the EMA complex conductivity and Y is
given by

Y=12+a)/(1—a),

with

(B14)

The dimensionless numerical constant £ equals ~0.253
and 0 g =0%(0). Define 05 /0 g =7Yy, termed Yy here.
These equations are equivalent to those of Dyre® except
that he used a first-order expansion in frequency of x in
his further developments of a T—0 equation, a path not
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appropriate for the present more general solution.
Now since (1+y) !'=(1—a)/3, the left-hand side of
Eq. (B13) may be written as exp[(x; —iQg /Ygy)/3] with

Qp=w7g (B16)

and

TEEgeyxs/90’EOE§CCXSRE0/QERE0CEO N (B17)

where 7 is the effective relaxation time for the frequency
response. It then follows that

Cro/C.=AC'(0)/C, =€go=Ex,/9 . (B18)

The above result for 7 is similar to but more appropriate
than that derived by Dyre? after further approximations,
a result involving 'y rather than the present x,. But in
later work, !'? he derived by a different method an expres-
sion for 75 similar to that here, when one sets his distri-
bution function p(E,(0)) to Ef 1, as is indeed appropriate
for the box distribution. His result is then larger than
that here by a factor of 3¢ /€. It follows from Eq. (B13)
that

opo=€yLp(1—r27)/{2r'*=1)} =€y /RyC. ,

(B19)
which approaches €, /7, for r —1 and
e, TH’T13 /2=(€}, /27, )exp(—x,/3)
as r becomes large. Now we may write
po=28(r13=1)/(1—r~273) (B20)

equal to just § for r — 1.

On solving Eq. (B13) for Yzy and transforming to the
normalized complex modulus Mgy, here defined as
iQg/Ygy, one finds the following implicit expression for
Mgy:

x, —3Mgy
x5+3MEN/2

MENzi‘QE/

1—exp(—x,/3)

—x,/3)

exp(—Mpgy ) —exp(

1—exp(—2x,/3—Mpgy)

—2x,/3)

e— ] . (B2D)

This equation was not derived by Dyre and must be
solved as a function of Q for various values of x; in or-
der to investigate the approaches of My and Yy to
T —0 behavior.

The T—0 limiting form of Eq. (B21), obtained when
X, — 00, is
—Mpy)=In(iQg /Mgy)

Mgy =iQgexp( (B22)

or

Yoy =iQp /In( Yy )=exp(iQp /Yiy) - (B23)
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Equation (B23), the BEM equation, was apparently first
derived by Bryksin!* and is the only form used by
Dyre! ™3 (But with a less appropriate definition for 75 for
the present situation®). It is clear that since 77— o as
r— oo, the actual » = o0 limit is meaningless since for a
fixed value of g, say, Qgp, the corresponding
wp=Qgp /T approaches zero as 7p;— o for any finite
value of Qgr. For specified values of (1 and x,, one may
readily solve any of these implicit equations for their
complex roots to high accuracy using the MATHEMATICA
system. ¥

Since it is convenient to use {; as the normalized fre-
quency variable for comparison of the predictions of the
GBEM and EDTR equations, we must replace (Qj in
Egs. (B43), (B7), (B8), and (B12) by its equivalent AQ,
where the scaling factor A=ty /7. For comparison
purposes, let us replace Ey in 74 by Ey /3, as discussed
in Sec. III B. Then the above results allow us to write a
theoretical expression for A, say, A,, as

A, =Q2ege) M 1—r 23 /(1—r~173) | (B24)

which approaches (2eg,) ! for large r, a temperature-
dependent quantity. For x, =40, A, ~3.4.

Now Dyre?3 has used a value of A of 2, said to be de-
rived from comparison of the first-order Taylor expan-
sions of Y,y and Ypy as «—0 and r— . In these lim-
its, however, the MacLaurin series expressions show that
(Yyy—1) approaches (w7y)?/12 for the EDTR; and
(wrg)?/2 for the BEM. Thus agreement requires
A==2.45. But both equations lead to a limiting value of
(wTy) for Yy, requiring A=1. Since both relations can-
not be simultaneously satisfied, for the present compar-
isons proportional-weighting CNLS fitting of the EDTR
equation to both real and imaginary Yy data points
simultaneously was carried out with A taken as a free
fitting parameter. Its estimated value, depending on the
particular type of fitting employed, was generally found
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to satisfy 1 <A <2.
For r >>1, the above results lead to

Rpy—2r'3¢=2r°R; (B25)
and

Tg =R poCro—2Ex,r 1, /3 . (B26)
For this model, R, takes the simple form

Ry =RpoRp =6 . (B27)
The present normalization leads to

Cxn=Cyx/Cro=€xy=€x/€xg » (B28)
where .

ex=Cy/C, . (B29)

But it turns out from the numerical results that
Cron =Cpgo/Cgy is not generally unity, but approaches it
only as T—0, since we find that for xg=20,
Croy ~1—4.5x,"!, probably equal within numerical un-
certainty to the EDTR ¢ expression discussed in Sec.
III B and, if so, the source of such a response found when
fitting the GBEM with the EDTR model.

The GBEM and BEM are not unique in that they each
have an infinity of complex roots. This was discovered
for the GBEM by using contour plots in the complex
plane to show root positions. Thompson then pointed
out’6 that if one added the term 27ni (n an integer) to the
In(Ygy) term in Eq. (B23) to account for the infinite num-
ber of sheets of the logarithm function in the complex
plane, a new root appears for each n value, one which
satisfies the exponential form of the BEM shown in Eq.
(B23) as well. Luckily, the n#0 roots seem to be non-
physical since they lead to a change in sign of Y’ from
positive to negative over all or part of the frequency
range.
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