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Abstract. Nowick and his associates have stated that many 
ionic crystals and glasses exhibit a loss per cycle which is 
independent of frequency over an appreciable range and 
have suggested that such behavior constitutes a "new uni- 
versality". Furthermore, much such data seem to ap- 
proach an asymptotic, nearly temperature-independent ac 
loss at sufficiently low temperatures. In order to further 
evaluate these conclusions, small-signal ac relaxation data 
for a CaTiO 3 : 30~o A13+ ceramic material are analyzed in 
detail and the results compared to those published by 
Nowick and associates for the same material. It is found 
that a plausible conducting-system dispersion model 
based on the effective-medium approximation for hopping 
charges yields results globally similar to, but somewhat 
different in detail from, those of Nowick et al. But a 
response model which includes both such conducting- 
system response and dielectric-system dispersion well fits 
the data over a wide temperature range. To do so, it re- 
quires the presence of a non-zero high-frequency-limiting 
resistivity probably arising from localized charge motion. 
No constant-loss individual dispersions appear in the 
model, but it nevertheless yields approximately constant 
loss over a limited frequency range at low temperatures. It 
suggests that asymptotic behavior is associated with the 
nearly temperature-independent dielectric-dispersion con- 
tribution to the response at low temperatures, and it does 
not verify the Nowick conclusion that the slope of the ac 
conductivity approaches a constant value near 0.6 at high 
temperatures. 

PACS: 66.90.tr, 77.22.Gm 

In a recent article on the present subject, Lira, Vaysleyb, 
and Nowick [1] (abbreviated hereafter as LVN) discussed 
their and earlier [2, 3] observations "that, at low tempera- 
tures, the ac conductivity a(o~) is proportional to frequency 
co, corresponding to a loss per cycle that is independent of 
frequency" [1]. These authors [1-3] have suggested that 
because of the appearance of such behavior for a wide 

range of materials it constitutes a "new universality", a 
very important conclusion if it is indeed justified. Further, 
in their interesting work, LVN concluded that such "con- 
stant-loss" behavior is a bulk property of the material but 
not one which is thermally activated. In their work, they 
did not provide a model describing in detail their com- 
bined temperature and frequency response observations 
and stated that "constant-loss behavior needs to be further 
studied in order to better show which factors control this 
behavior and thereby to point the way to a more suitable 
model to describe it". In the present work, I provide a 
plausible explanation for such apparent constant-loss 
response. 

The complex conductivity is given by e(co) - a'(e)) + 
ia"(e)), and the full complex dielectric constant by ~(e)) - 
g(o)) - ie"(e)), where ~(e)) = q(e))/(iCOev) and ev is the per- 
mittivity of vacuum. Now it is important to note that 
plotting of data in log-log form, especially with a wide scale 
so that resolution is low, can obscure a multiplicity of 
irregularities [4, 5]. Such plotting of log[a'(o~)] or 
log[g'(o))] versus log(e)) is extremely common in the pre- 
sent field, although, alternatively, linear plots of the real 
and imaginary parts of the complex modulus, M(co) =- 
[e(og)] -1, provide much higher resolution, especially at 
higher frequencies [6, 7]. 

It is thus legitimate to ask whether one can indeed 
properly conclude from such log-log plots that s(m) = 1 
over several decades of frequency [1-3] and, if such con- 
stant-loss exists, whether it is even associated with conduc- 
tive-system response. The log-log slope s(og) is associated 
with response of the form [a'(~o) - a'(0)] oc e) s('°). In most 
of the previous work in the present area, s(o)) is taken as 
a constant rather than as a frequency-dependent quantity 
[1-3], certainly not always a good approximation even 
over a limited frequency range [6]. Because of the relation- 
ship between a' and e", a value of s for conductivity data 
leads to a slope of (1 - s) for the corresponding log-log 5" 
data from which the effects of a'(0) have been removed. 

The conclusion of a recent detailed analysis of relax- 
ation data on single-crystal NaC1 kindly provided to me 
by Nowick stated [6]: "In view of the present results, it 
seems possible that there is no new universality for the 
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other conducting crystals, glasses, and disordered solids 
measured by Nowick, his associates, and other workers; 
that appropriate and detailed analysis of more accurate 
data would show that the slope values involved in such 
conductive-system dispersion are nearly always less than 
unity; and that s(og) never equals unity over an appreciable 
frequency range unless it is associated with pure dielectric 
dispersion or possibly with a combination of that and 
conductive-system dispersion." In contrast, Lee et al. I-2] 
found that s = 1 over a wide temperature range for NaC1. 
But Nowick has recently stated [8]: "We conclude that the 
behavior of the highly disordered materials is totally differ- 
ent from that of NaCI". Clearly, differences of opinion exist 
for this area, ones which I address herein. Although Funke 
[9] has written "the difficulty is removed by the observa- 
tion that a genuine s = 1 power law of the conductivity 
does not exist", the present analysis suggests that the mat- 
ter is probably somewhat more complicated. 

A particularly interesting feature of the LVN data and 
of considerable earlier relaxation data for highly disor- 
dered solids is the appearance of an apparent minimum or 
floor in the e"(~o) response as the temperature decreases to 
low values (or, equivalently, the approach of a'(co) curves 
toward a minimum asymptotic curve, often one with s(co) 
apparently close to or equal to unity). Below a particular 
temperature, further temperature reductions reduce e"(o~) 
only marginally, although the actual apparent limiting 
value seems to depend on the particular material measured 
[1]. But Huang and Johari [10] dispute, on the basis of 
measurements on a SiO2 glass down to 163 K, that a 
limiting frequency- and temperature-independent value of 
e" is indeed approached at low temperatures. Although 
LVN cite the work of Burns et al. [11] as showing that it 
is even possible to obtain s = 1 behavior in glasses at 
extremely high frequencies and room temperature, these 
authors and Cole and Tombari [12], who discuss the 
Burns work, make no such claim but instead only mention 
that there are indications of an approach to s = 1 at high 
frequencies (see the discussion below of this possibility). 

Further, it should be noted that Conductive-System 
Dispersion (CSD), that is usually associated with non- 
localized hopping charge carriers which can percolate 
through the entire material, undergoes a transition to 
localized two-level tunneling behavior at sufficiently low 
temperatures [13]. Finally, it is not always recognized that 
CSD leads to increments in both the real and imaginary 
parts of the full complex dielectric constant I-6, 7]. Thus, 
in situations where both CSD and Dielectric-System Dis- 
persion (DSD) are simultaneously present in the same 
frequency range 1-14, 15], it must be expected that e"(og) 
involves contributions from both sources, as does a'(eg). In 
the present work, I investigate this possibility for essen- 
tially the same data as that discussed by LVN. 
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Fig. 1. Complex-dielectric-constant relaxation response of CaTiO 3 doped 
with 30% AI 3+ at T = 51.2 K (points and dashed line). The two solid lines 
are CNLS fit results using the Conductive-Dielectric system (C-D) model 
discussed in the text. Here, fo = 1 Hz 

different cell constant than that published in [1], and most 
of the temperatures of measurement are somewhat differ- 
ent, but the general behavior seems closely consistent, and 
where the temperature is the same (e.g., 531 K), detailed 
agreement with the data of [1] is found. We shall particu- 
larly concentrate on the available data sets for the lowest 
temperatures (T = 51.2 K to 212.7 K) because LVN have 
identified the range of 64 K to 224 K as that of constant 
loss for this material. 

But there are some problems with both the data consid- 
ered here and those of [1], all measured with the same 
techniques. First, the data have low resolution, with only 
four points per frequency decade, although a minimum of 
10 is desirable. Second, the data are irregular, apparently 
containing appreciable errors. Finally, the relatively nar- 
row range of frequencies covered, f = 1 Hz to 105 Hz, 
limits full appreciation of the behavior of the material. 
Some of these problems are illustrated in Fig. 1, plotted 
with a linear rather than logarithmic scale. Complex Non- 
linear Least Squares (CNLS) fits of the data to a model 
discussed subsequently are shown as solid lines and were 
carried out using the readily available LEVM V.6.1 CNLS 
fitting program [16, 17]. This procedure, which involves 
fitting real and imaginary data components simultane- 
ously, has been employed for all of the fits of the present 
work. It ensures that all fit results obey the Kronig- 
Kramers transform relations 1,6, 18]. Proportional weight- 
ing or function power-law weighting [16, 17] was used for 
all fits here. 

In Fig. 1, the poor resolution of the e data, particularly 
that of e', is particularly evident. The solid-line fit result for 
e' deviates somewhat from the corresponding data points, 
but note the extremely small range of variation shown 
here. Such deviation does not appear for data at 393 K and 
above. Although Fig. 1 does show a limited e" region of 
nearly zero slope, the total variation for the frequency 
range shown is over 50~o, certainly hard to reconcile with 
s = 1 behavior over an appreciable range. 

In their work [1], since LVN present more relaxation data 
for CaTiO 3 doped with 30Y/o AI a + than for other materials, 
it seems appropriate to consider these results here. In 1992 
Nowick was kind enough to send me data on this material, 
which are used herein for fitting. These data involve a 

2 Conductive-system response 

Since CaTiO 3 : AI 3+ is an oxygen-ion conductor, it is rea- 
sonable to ask whether its frequency/temperature re- 
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sponse can be entirely described by a CSD response model, 
one involving a frequency-independent dielectric constant 
associated with non-dispersive behavior of the lattice di- 
poles of the material, Aeo', over the range of frequencies 
measured. Although they do not discuss the matter fully, 
this also appears to be the assumption made by LVN. In 
the following, the letter "D" will be used to denote quan- 
tities associated with DSD response, "C" to denote those 
associated with a conducting system, and, where neces- 
sary, "C-D" to designate combined response. 

Two recent extensive reviews [19, 20] deal with de- 
tailed CSD models, as does a review of the Funke 
jump-relaxation model [9], one which involves correlated 
hopping. Of particular interest is the effective medium 
approach [4, 20], since Dyre [21] has suggested that it 
leads to a universal response function in the limit of low 
temperatures. But the result, an equation originally de- 
rived by Bryksin [-22], appears only in normalized form in 
this limit and so is not useful in its original form for direct 
comparison with unnormalized data. 

Because of this limitation, I have recently extended 
the approach to non-zero temperatures [-7], building on 
earlier work of Dyre [4, 21]. An approximate equation 
derived from this approach, which will be designated here 
as the BDM equation, is discussed in the Appendix. It 
depends on temperature only through the normalized acti- 
vation energy quantity x¢ and has been incorporated in 
the LEVM fitting program, V.6.1, so that it may be readily 
used for data fitting. A crucial strength of the BDM equa- 
tion is that it well predicts I-7] the excess high-frequency- 
tail absorption generally seen at the complex modulus, M", 
level and characterized by Moynihan et al. [23] as "en- 
demic in the solid state". It also yields Davidson-Cole-like 
dispersion when the dc conductivity is subtracted out and 
the results are transformed to the complex dielectric con- 
stant level and plotted in the complex plane, but again 
very-slow-decay excess loss appears at the highest fre- 
quencies [7]. 

Interestingly, the BDM leads to complex-plane imped- 
ance curves that are remarkably close to those of Funke 
[9]. But a particular virtue of the BDM is that it requires 
many fewer parameters for its full expression for any ap- 
propriate frequency and temperature than does the much 
more complex Funke relaxation expression. The BDM 
requires only two parameter values, while even the many 
empirical relaxation response functions used in the past 
(Cole-Cole, Davidson-Cole, Kohlrausch-Williams-Watts, 
etc.) each require a minimum of four for thermally acti- 
vated response. For these reasons, and because it may, in 
fact, possibly be of nearly universal applicability for hop- 
ping situations, the BDM is exclusively used herein to fit 
the conducting-system part of the measured response. 

We begin by considering CSD response alone (no di- 
electric dispersion). LVN have presented a graph of log(a') 
versus log(f) data containing curves for 15 different tem- 
peratures. In Fig. 2, a similar set of conductive-system 
~r' - tr' c curves are presented which were calculated using 
the BDM equation. The temperature value for each curve 
is listed in the figure caption and is identified by the same 
letter used by LVN in their work. Therefore, the present 
curves may be directly compared with those of the same 
temperature in Fig. 1 of [-1]. There is a slight ambiguity, 
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Fig. 2. Variation of theoretical conductive-system conductivity, tr'(to), 
with frequency for temperatures (a) 625 K, (b) 574 K, (c) 531 K, (e)  
454 K, (9) 393 K, (k) 244K, (1) 211 K, (m) 174 K, and (o)  55K. The 
curves were calculated with the BDM equation using only the dc resis- 
tivity, p'(0) = a'(0) -1, and the activation energy estimated from the LVN 
data for CaTiO 3 : 30% AI 3+ [1]. The temperatures correspond to those 
with the same letters in the LVN work. The dashed curve, for 531 K, is 
that for tr'(~o) - tr'(0), and the normalizing quantity tr o = 1 (f~cm) -1. The 
vertical dashed lines define the LVN data window 

however, because LVN actually identify temperatures for 
only 14 of their 15 curves. The missing temperature is 
actually 144 K [8]. 

The frequency window of the LVN data is shown by 
the vertical dotted lines in Fig. 2, but the frequency range 
is much extended here in order to show more details of 
the conductive response. The dashed line, for T = 531 K 
(curve c), is that for tr(og)- a(0) and shows the proper 
limiting low-frequency slope of 2. The BDM curves were 
calculated for given frequency and temperature values 
with only two inputs: the activation energy of a'(0), Ec, and 
its infinite-temperature limiting value, tr, c, expressed in 
terms of the limiting-barrier attempt time or hopping time, 
ZaC (see (A-l) in the Appendix). Thus, the full temperature 
and frequency response of the conducting system is com- 
pletely defined by the two parameters describing the ther- 
mally activated expression for the dc conductivity or re- 
sistivity; no other fitting parameters were used or needed. 
For all of the present work, the actual values Ec = 1.19 eV 
and %c = 1.73 x 10 -17 s were used. They were estimated 
from least-squares Arrhenius fitting of the temperature 
dependence of the LVN tr'(0) data as read off their Fig. 1. 
The normalized effective-medium frequency, f~E----O~Zc, 
defined in the Appendix, becomes exceedingly large at low 
temperatures because Zc is thermally activated. For exam- 
ple, for the present input values one finds Zc - 2.2 x 10 -7 
s at T = 625 K and about 8 x 1093 S at T = 55 K. 

Comparison of the curves of the present Fig. 2 with 
the corresponding ones in the LVN work show that the 
general behavior is extremely similar, with the higher- 
temperature, lower-frequency values agreeing fairly closely 
with the LVN results (except for a separate drop-off at low 
frequencies and high temperatures in the LVN data as- 
cribed by them to electrode blocking effects). But especially 
note that the CSD results show much less of an approach 
to an asymptotic limiting curve for a' at the lowest temper- 
atures than does the LVN data. Further, the BDM equa- 
tion leads to frequency-dependent high-frequency slopes 
[-7, 21, 22], unlike the empirical relations mentioned above 
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Fig. 3. Log-log theoretical e"(o))---Asc" conductive-system response 
curves calculated directly from the BDM curves of Fig. 2 with the same 
identification letters. The circles are predictions obtained by accurate 
solution of the basic effective-medium equation (see Appendix). The 
dashed Aoec" lines were calculated from a'(o)) - a'(0) rather than a'(~o), 
and so they represent the dielectric-loss response of a conductive system 
with the dc conductivity removed 

where the limiting slopes are frequency independent. For  
very large f~E values, the log-log ~r' slope, s = s', ap- 
proaches 1 - [ln(f~E)] -1. The actual slope predicted by 
the BDM equation at T = 50 K is about 0.992 over the 
LVN frequency window, a value which would be very hard 
to distinguish from unity. 

By plotting the 8" results corresponding to those for a' 
in Fig. 2, one reduces the range of variation of the data 
appreciably, obtains greater resolution, and allows the 
possibility of constant-loss behavior to be more directly 
evaluated. Figure 3 shows such results. Here e" = ec" = 
Aec'. The solid points included on curve c were obtained 
directly from an accurate solution for the roots of the 
effective-medium implicit equation for x, = 26.006, the 
value of this normalized quantity at T = 531 K for E¢ = 
1.19 eV. Their close agreement with the approximate 
BDM predictions for this temperature verifies the accu- 
racy of the latter equation, one which becomes more and 
more accurate as the temperature decreases. 

The agreement within the LVN window of the present 
e" results with the corresponding LVN curves is similar to 
that for Fig. 2, but now we can see that even at the higher 
temperatures, where agreement is close at 10 Hz, the ec" 
values lie appreciably below the data values at l0 s Hz. 
Further, although the conductive-system BDM equation 
indeed leads to very nearly constant loss at low tempera- 
tures (e.g., curve o for 55 K), no real floor is predicted. In 
fact, it can be shown that in the limit of large f~, ec" 
(rc/2)/ln2(ff~E). For sufficiently low temperatures, this ex- 
pression leads to ec" oc T 2. 

A/so shown in Fig. 3 are five curves of A6sc" = 
[a ' (m)  - a'(0)]/iO)ev. For  curves k-o ,  such subtraction led 
to negligible effects since the peaks at these low tempera- 
tures occur for frequencies much less than 10 -3 Hz. The 
peak frequencies here are thermally activated with ~0pZp = 
1 and Zp proportional to z o Further, the peak heights are 
closely proportional to Aec'(0) and thus decrease some- 
what faster than proportional to T -1 in this range, as 
illustrated in Fig. 4. In this figure, which shows some x~ 
values along the top, the temperature dependences for 
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Fig. 4. Temperature dependences of the real- and imaginary-part conduc- 
tive-system dielectric increments for fixed frequencies of 0, 10 -5, and 103 
Hz. The top x c scale corresponds to the temperature scale at the bottom 
for the present choice of E, = 1.19 eV 

Aoec" and Aec' are shown for several fixed frequencies. The 
results for Aec'(0) depend only on x~, but the others also 
depend on Z~c. For  high temperatures such as 531 K, 
Aoec"(1000) is proportional to Zac over a wide range, but, 
at much lower temperatures, dependence is greatly 
reduced. For  example, at 200 K when ZaC is reduced 
(increased) by a factor of ten from its present value, 
Aoec"(1000) increases (decreases) by only 13~ (12~o), 
showing 1/ln2(zac) dependence, in close agreement with 
the limiting logarithmic behavior cited above. 

If one accepts that the BDM equation is universal for 
conductive-system response, or even approximately so, 
comparison of the present results with the data of LVN 
shows that much of the theoretical response lies somewhat 
below the corresponding data curves. Thus it seems most 
likely that conductive-system response alone cannot ex- 
plain the data, and that therefore one needs to invoke 
simultaneous dielectric-system dispersion as well. This 
possibility is investigated below. 

3 Combined dispersive response 

When both conductive- and dielectric-system effects are 
present in the same frequency range, one can write the 
following expression for the combined response [6, 15-/, 

- + %(co)  = + Apc'Ic( o)]-' 

+ iO)ev[eo(~) + AeD'ID(tO)] , (1) 

where A p c ' =  pc'(0) - pc ' (~)  and Ae D' ---- ~D'(0) -- eo'(oo). 
The I(~) functions describe the dispersions and satisfy 
I(0) = 1 and I ( ~ )  = 0. For  I o I shall continue to use the 
BDM equation and, for reasons which will soon be appar- 
ent, I shall use the Exponential Distribution of Activation 
Energies [EDAE] equation for Io. Both functions are 
discussed in the Appendix and are available as fitting 
models in LEVM. 

The solid lines in Fig. 1 for the T = 51.2 K data were 
obtained by CNLS fitting to such a C-D model, one that 
required a non-zero value of Pc ' (~)  to obtain an adequate 
fit at the high-frequency end of the data set. It is of particu- 
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Fig. 5a, b. Dissection showing the various contributions to the C-D model 
E' fit results for relatively low- and relatively high-temperature data 
(circular points). Solid lines show the C-D fits; D and C identify the 
separate dielectric and conductive contributions; the CMI line is that for 
the conductive-system with the effects of the high-frequency-limiting 
resistivity, pc'(OO), removed; and the CMG curve of a is the same as the 
C line but with the effect of a'(0) removed. For 212.7 K, the difference 
between C and CMG curves is negligible. The fit results have been 
extrapolated a decade on either side of the data window 

lar interest to see how the various terms in (1) individually 
contribute to the overall fit of e"(o)). Such dissection of the 
response is illustrated in Fig. 5 for relatively low and 
relatively high temperatures; here the fitting results have 
been extrapolated one decade on either side of the LVN 
data window. The various curves are identified in the 
figure caption. Fig. 5a, which has had to be plotted on a 
logarithmic scale to illustrate pertinent details, shows that 
A~c" (curve C) dominates at the lower frequencies where 
the effects of a'(0) are still important, while Aeo" does so 
at the higher ones. The parameter q~ of the EDAE model 
was estimated to be about 0.60 here, yielding -0 .60 for 
the estimated log-log slope of AeD" (curve D) [15, 24]. It is 
clear that, since the C and CMI curves are nearly identical 
up to 105 Hz, pc'(Oo) only begins to be important at higher 
frequencies for this temperature, and it was, in fact, only 
estimated from the data with large relative uncertainty. 

The situation is appreciably different for the results 
shown in Fig. 5b, plotted on a linear scale. Here subtrac- 
tion of a'(0) makes no difference, and we see that although 
Aec" still plays a small role, the response is dominated by 
A,~D" except at the high frequency end where the pc '(~) 
contribution to Aec" becomes dominant. As expected, it is 
much better determined here and is found to be of the 
order of 7 x 107 ~cm. By contrast, at this temperature 
Ape' - 6.1 x 1024 ~cm. Because rc -~ 2.8 x 1012 S, how- 
ever, the term Apc'Ic(m)] in (1) is very much smaller than 
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Fig. 6. Results of CNLS fitting of the C-D model to six low-temperature 
e"(og) data sets. The fit results have been extrapolated a decade on either 
side of the data window 

Ape'. Here the slope estimate, -q~D, is about -0.03, small 
but certainly not zero, and the zo estimate is about 400 s. 

As the results of Fig. 5b show, the peaked response 
occurring between f = 105 Hz and l 06  Hz is an intrinsic 
feature of the BDM conductive-system response. It has 
been found that if ~op is the angular frequency of the peak, 
then A g c " ( ~ p )  "~ Aec'(O~p) and 2OpevAec ' (OJp)pc ' (Oo ) "~ 1, 
indicating that for sufficiently small pc'(~), no such 
peaked response will occur within the measurement range. 

Figure 6 shows fitting results for the six lower- 
temperature data sets, plotted on an expanded log scale. 
We see that the data and fit results are very nearly the same 
for the two lowest temperatures, probably defining the 
limiting e" floor. The fit estimates of pc'(~) were constant 
at about 10 8 flcm within their estimated standard devia- 
tions for the three lowest temperatures and appear to 
decrease slowly for the higher temperatures. The data are 
inadequate to determine whether pc'(Oo) and/or ZD are 
thermally activated or not. In the present temperature 
range, AeD' increases approximately linearly with tempera- 
ture for T > 63.5 K. For dielectric dispersion, the EDAE 
model predicts that q~ may be directly proportional to 
temperature [-15, 24]. Because of the limitations of the data 
already mentioned, only a general trend, roughly consis- 
tent with such behavior, is observed. 

The limited accuracy and range of the data leads to very 
high correlations in the fit results between the fitting pa- 
rameters AgD' , ~'D, and q~, particularly at the higher tem- 
peratures of Fig. 6. The resulting very shallow minimum 
in rD makes its estimate uncertain. The problem is illus- 
trated by the three T = 133.9 K curves of the figure. The 
solid one is that obtained with all five dielectric dispersion 
parameters free, leading to the rather poorly defined esti- 
mate % ~_ 0.168 s. The two curves lying above it were 
obtained with ZD fixed at 1.68 s and 16.8 s, respectively. 
Although these changes affect the low-frequency end of the 
curve appreciably, the relative standard deviations of the 
fits for the three cases [16, 171 were 0.0146, 0.0158; and 
0.0161, for increasing z D values, showing almost insignifi- 
cant increases. Further, it is obvious from the figure that 
a relatively small increase in the value of the lowest- 
frequency data point would have led to an appreciably 
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Fig. 7. Temperature dependences of the log-log slopes, s(f),  for C-D fits 
and BDM-equation conductive-system predictions for frequencies of 103, 
105, and 101° Hz. The slopes were calculated with the dc conductivity, 
a'(0), subtracted from a'(co) except for the solid-line Curves and except for 
the two T = 531 K triangular and circular points with values less than 
0.5. The horizontal dashed line is drawn at s = 1 

larger estimate of z D than 0.168 s. In spite of these 
parameter-estimation difficulties, Fig. 6 shows that the 
present approach allows the data to be fit very well, a result 
not possible over the temperature range of the LVN data 
with either CSD or DSD alone. 

Figure 7 shows slope values at various fixed frequencies 
for some of the different fitting possibilities. All slope re- 
suits shown are with the effect of a'(0) removed, except 
those for the solid line and the two T = 531 K triangular 
and circular points with values less than 0.5. The C-D 
results were obtained by quintic-spline fitting of the fit 
curves, not the data themselves [6, 25], and the others from 
such fitting of BDM results. We see that at 103 Hz, the 
low-temperature C-D slopes are very close to unity but 
slightly below it, while at 105 Hz they are near 1.1 because 
of the influence of pc'(Oo). All three of the CSD Sc curves 
were calculated with pc'(Oo) = 0. 

The ScMc(10 s) curve defined by the asterisk points 
shows the sloPe of a'(og) - a'(0) rather than that for a'(co), 
as in the solid-line curve. Comparison of the two f = 105 
CSD curves shows the large effect of accurate subtraction 
at high temperatures. The high-temperature rise of the 
Scuc curve is caused by the progressive approach towards 
the limiting slope value of 2 shown, for example, in the 
dashed curve of Fig. 2. The upper triangular point at 531 
K shows that the slope at 105 Hz is nearly the same for the 
combined C-D response as it is for the CSD response 
alone. The corresponding C-D slope at f = 103 Hz, 1.9, is 
off the top of the graph. The unsubtracted C-D slope at 
the same frequency, the bottom circular point, is about 
0.22, very different indeed. 

LVN presented a slope curve for CaTiO 3 : A13+ (their 
Fig. 3) that is similar in shape to the solid line in Fig. 7 
except in two respects: first, some low-temperature values 
exceed unity, and second, their curve approaches a con- 
stant value of about 0.5 at 531 K and above. 

To account for their results, LVN proposed a fitting 
equation of the form 

a'(O)) = a'(O) + AoO) s "F A t  ~1"0 , (2) 
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where s ~ 0.6, Ao is thermally activated, At is not, and the 
last term accounts for constant-loss behavior [1]. As a 
test of the appropriateness of this equation, which ignores 
#'(09) response, for the present material I fit it, using non- 
linear least squares, to T = 625.7 K data, data which agree 
well with the 625 K curves presented by LVN. A fairly 
good fit was obtained, although the actual a'(oJ) data 
values are clearly not well described by two power-law 
responses in parallel. The fit was slightly better with A t 
non-zero, but the relative standard deviation of At was 
nearly 10, showing that the data allowed no sensible esti- 
mate of this quantity. Further, a'(0) was not well defined, 
and the s estimates were about 0.2 (0.16) with At = 0 and 
0.22 (0.45) with A1 non-zero, both values very different 
from 0.5. Here quantities such as 0.16 and 0.45 are the 
relative standard deviations of the parameter estimates. 

Comparison of the results of this fitting, and that of the 
present C-D approach, with the Fig. 7 results for T = 531 
K, certainly indicates no approach to the temperature- 
independent value of s near 0.5 to 0.6 found by Nowick 
and his associates 1,1-3]. But examination of the SCM~ 
curve of Fig. 7 suggests that their approximately constant 
slope estimates over an appreciable high temperature 
range may possibly have arisen from subtraction of in- 
accurate values of a'(0) in forming a'(~) - a'(0) at each 
temperature. 

For the present material, no comparisons of results with 
different cell thickness have been published I-1]. Such re- 
suits would be useful in allowing one to distinguish be- 
tween thickness-independent electrode effects and thick- 
ness-dependent bulk response and might possibly allow 
one to ascribe the s ~ 0.2 value mentioned above to a 
series electrode-response contribution. 

The present results suggest that a C-D model, such as 
that used herein, is appropriate for describing and under- 
standing data of the present kind. It explains a possible 
low-temperature asymPtotic limiting response for a' and 
e", such as those apparent in the present data, as arising 
from dominant nearly-temperature-independent dielectric 
dispersion at low temperatures, requires a non-zero value 
of pc'(Oo) for good fitting of the data, and does not justify 
the s = 1 "new universality" proposed by Nowick and his 
associates 1,1, 2]. Just as no new universality was found to 
be justified from the NaC1 analysis 1,6] and a non-zero 
value of pc'(Oo) was required there as well, it seems plausi- 
ble that a C-D approach such as that employed here can 
adequately explain most of the dispersive response found 
for disordered crystals and glasses without the assumption 
of a true constant-loss frequency response region of signifi- 
cant extent. 

Appendix 

In this appendix the BDM conductive-system response 
equation and the dielectric-system EDAE equation are 
briefly discussed. Consider a thermally activated situation 
where a relaxation time, z, is given by 

T = z , j  e x p ( E / k  B T ) ,  (A1) 

wherej = C or D. Here z,j-1 is a barrier attempt frequency 
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(usually 1012 Hz or greater), and the activation energy E 
satisfies 0 < E < EI~. 

A1 BDM equation 

The derivation of this equation for a hopping situation has 
been discussed earlier [7]. One starts by averaging an 
effective-medium equation for the conductivity over a ran- 
dom free-energy barrier probability distribution which is 
zero outside the E range defined above (a box distribution) 
[4]. The resulting equation for the conductivity, termed 
the GBEM equation in [7], involves E~ =- En/3 and Z.c 
and leads to a saturation value of ac' at very high fre- 
quencies and to a corresponding decrease in ac" [7]. All 
the temperature dependence of the equation arises from 
that of the normalized maximum effective-activation en- 
ergy, xc = Ec/k B T. The crossover frequency, f~o, that where 
ac' = ac", occurs at f¢o --- 0.22 (XCZaC) -1. For the present 
data, f¢o is greater than 5 x 1014 Hz, and thus this part of 
the response may be neglected here. 

There may be a contribution to pc'(Oo) both from perco- 
lating charges [7], say pcp'(Oo) and from local-neighbor- 
hood charge motions which do not involve percolation 
throughout the entire material [6], PcNp'(~). Since it turns 
out that PcP'(°o) is virtually always negligible compared to 
Pc'(o)), it can be neglected, and we shall take pc'(Oo)= 
PcNP'(OO). Now define the strength of the percolation con- 
tribution to the dispersion as Apc'. Then pc(O)) = pc'(Oo) + 
Apc'lc(O)). The T ---, 0 limit of the GBEM equation is the 
solution of the following implicit complex equation (the 
Bryksin equation [22])for Ic, 

In Ic = - if]E/C, (A2) 

where f~E -- O)rC is a normalized frequency variable. Here, 
rc -= Apc%vec'(0). Temperature-dependent expressions for 
Apc' and ec'(0) follow from the GBEM treatment [7]. They 
are 

Apc' = (%c/ev)Rx (A3) 

and 

ec'(0) - 0.0853Txx c . (A4) 

Here, 

Rx ---- 2exp(x~)/[1 + e x p ( - x c ) ] ,  (A5) 

and T x is a temperature-dependent quantity closely ap- 
proximated by 1 - 1.5 xc -1 for the xc range from oo to 20 
and approaching x~/4 as x¢--+ 0. Instead of using the fit 
parameters E¢ and ZaC, one can alternatively use Apc' and 
z c, although their high correlation makes this a less appro- 
priate choice. The GBEM-equation prediction, pcp'(Oo), 
is (*,c/ev), many orders of magnitude smaller than the 
PcNP'(O0) quantity found from fitting the present data. 

Although GBEM values of aN are the solution of a 
much more complicated implicit equation than (A2), it has 
been found [7] that for f << f~o, its unnormalized results 
are close to those of (A2) when (A4) and (A5) are used. In 
order to obtain a data-fitting equation which does not 
require the solution of an implicit equation for every fre- 
quency value, accurate aN(f~E) results calculated using (A2) 
have been fit with LEVM to an interpolating expression, 
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the BDM equation. Its error in fitting both the T ~ 0 limit 
of the GBEM and its T > 0 predictions is small compared 
to typical experimental errors provided that f << fco. The 
BDM, which involves many fixed fitting parameters, and 
an expression for T~ for all temperatures, have been incor- 
porated as a unified distributed circuit element in LEVM 
V. 6.1. Thus, conductive-system relaxation data can now 
be readily fit using the BDM equation. 

A2 The EDAE equation 

The normalized Io dielectric response function which ap- 
pears in (1) may be expressed as [15, 24] 

a exp(-- 4)ox) dx 
ID(f~H) -- q~o[1 -- exp(-~bxs)] -1 1 + if~n exp( -x )  ' 

(A6) 

where Xn = EH/kB T; f]H =- O)~D; and TD ---- ~,D exp(xn). 
Here ~ is a parameter different from, but related to, the 
slope of the log-log frequency response. For the flat-top- 
box probability distribution, ~ = 0, and for this and some 
other values of ~ closed form expressions are available for 
Iu [24]. It has been incorporated into LEVM as a distrib- 
uted circuit element, so the EDAE model can be used to 
fit data for any value of ~ .  

As discussed elsewhere, q~o may be either temperature 
independent or dependent [15, 24]. In the latter case, its 
simplest temperature dependence is direct proportionality 
to the absolute temperature. Then ~ = 0 can only occur 
at absolute zero, but this limitation does not apply when 
it is temperature independent. This value of ~ leads to 
s = 1 at the conductivity level. None of the usual empirical 
relaxation functions, such as that of Havriliak and Negami 
[26], can yield such a result. Finally, note that for ~ appre- 
ciably less than unity and f~H >> i, the log-log slopes of 
eD'--eD'(°o) and eD" are approximately --q~, and the 
larger is ~ the narrower the dispersion response [5, 15]. 
The quantity Xn also limits the width of the response, and 
it is often difficult to determine from data of limited fre- 
quency range. For the present work, it has been taken large 
enough to avoid any such limitation. 
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