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Abstract 

Several aspects of the bulk response of disordered solids are investigated. The question is explored of how constant loss at the 
dielectric level, equivalent to the real part of the admittance being proportional to frequency, can occur. Such response is found to 
be possible for dielectric system response but is not likely for conducting system response. This kind of dielectric system behavior, 
which arises from the presence of a flat-top box probability distribution of activation energies, is further used to investigate and 
illustrate a promising alternative to Kronig-Kramers transformation of small-signal ac response data. For conducting system 
relaxation, the response of a possibly quite general dispersion equation, the Bryksin-Dyre-Macdonald (BDM) equation, an 
effective-medium approximation, is explored and used to illustrate how the underlying bulk dispersion of a material is obscured or 
hidden within the usual high frequency bulk semicircle present in impedance-level complex plane plots. 

1. Introduction 

There are several areas of current interest in 
impedance spectroscopy (IS) data analysis. They are 
interesting because they involve new possibilities, limi- 
tations and partly unsolved problems. As such, they 
provide stimuli for the future work needed to solve 
some of the problems and to explore the new possibili- 
ties and limitations. 

Three of these areas are defined by the following 
proposals: (a) many electrically conducting ionic crys- 
tals and glasses exhibit a constant ac loss per cycle 
independent of frequency at relatively low tempera- 
tures, so that the response requires that the real part 
of the ac admittance or conductivity is exactly propor- 
tional to frequency, termed a “new universality” [1,2]; 
(b) there is a single universal relaxation equation de- 
scribing conducting system relaxation response at suffi- 
ciently low temperatures [3]; (c) the relaxation response 
of many disordered solids arises solely (1) from a dc 
conductivity and unrelated dielectric (e.g. dipolar) dis- 
persion [4-61 or, alternatively, (2) from conducting 
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system dispersion with no significant dielectric disper- 
sion in the measurement range [4,5,7] or, most gener- 
ally, (3) from a combination of conducting system and 
dielectric system dispersion [&lo]. Note that these 
three propositions are independent and are not neces- 
sarily related to each other or mutually consistent for a 
given class of materials. 

It will not have escaped the reader’s notice that 
these various response possibilities all deal with bulk 
effects in solids and ignore electrode and interface 
effects, often those of dominant interest in electrolyte 
studies. Figure 1 shows a plausible equivalent circuit 
which can accommodate a considerable range of exper- 
imentally observed response behavior which includes 
both types of effects. The left-hand section, which 
involves the arbitrary distributed circuit element DE3 
[ll], is included to represent the intensive electrode/ 
interface effects present, and the right-hand section is 
proposed to account for general bulk response. 

In many IS experiments, it is found sufficient to 
represent the bulk response by the parallel combina- 
tion of the frequency-independent ideal circuit ele- 
ments R, and C,, and when R, is small compared 
with other resistances in the system the effects of R, 
and C, are often unmeasured and/or ignored. R, is 
the bulk or solution resistance of. the system (some- 
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times written as R, or R,), and C, is the bulk or 
geometrical cell capacitance (otherwise written as C, 
or C$. In the ideal case, their presence leads to a 
semicircle in the impedance complex plane, but when 
the intensive time constant 7, = R,C,, the dielectric 
relaxation time, is sufficiently small, part or none of 
the semicircle will appear within the experimentally 
available frequency range. 

results, at least in part, to the three areas mentioned 
above. 

The impedance of the bulk section of the circuit of 
Fig. 1 can be written as 

Z(w) = [Y(w)]-‘= [Y,(o) +Yo(w)]-l 

Nevertheless, one should consider the possibility 
that both the conducting system response, associated 
with percolating charges, and the dielectric system 
response, often arising from dipole rotation, involve 
frequency-dependent relaxation processes represented 
by the distributed circuit elements DEC (conducting 
system) and DED (dielectric system) shown in Fig. 1 
[S-lo] (case (~3) above). Although, as will be shown 
herein, these effects, which are virtually always present 
in some (possibly very high) frequency range, are usu- 
ally obscured or completely hidden, it is possible in 
principle and in practice, at least for high resistivity 
materials [7,10], to uncover their secrets and learn 
more about the detailed response of the material ob- 
served. 

= ([Z&(m) + AZ&(o)] -’ 

+io[Co(w) + AC~Z,,(o)]>-’ (I) 

where subscripts C and D indicate conducting and 
dielectric system contributions respectively. Further, 
AZ& = Z&(O) - Z~(CQ), Z;(O) = Rdc, where R,, is the 
dc resistance for this model, Z;(m) = R, when AZ& = 0 
and we can set AZ; = R, when Z&(m) = 0 and ZJo) 
= 1 within the available frequency range. Likewise, 
ACl, = C’,(O) - Cl,(m), CL(O) = C,,, where C,, is the 
dc capacitance for this model, and Cl,(m) = C,. Here 
C,(w) = C,(o) - iCb(o> is the complex dielectric sys- 
tem capacitance and is equal to E,,(w)C~, where Ed 
is the complex dielectric constant of the dielectric 
system and C, is the capacitance of the empty measur- 
ing cell. 

Richard P. Buck was one of the early pioneers in The quantities Zc and I, are normalized relaxation 
the area of impedance measurements and interpreta- response functions which are unity at o = 0 and zero 
tion [12,13]. As such, it is appropriate that the present at w = m. They are discussed in the Appendix for 
work involves such matters. Further, over the years several situations of interest such as the conducting 
Buck and his associates [14,15] and others [16-191 have system Bryksin-Dyre-Macdonald (BDM) equation 
devoted appreciable effort towards the elucidation of [3,10,20,21], the box distribution of relaxation times for 
bulk response in IS. Therefore we shall deal here only dielectric systems (&, = 0) [22,23] and the box distribu- 
with such bulk response, as represented by the right- tion of activation energies for conducting systems (& 
hand part of Fig. 1, and will attempt to relate the = 1) [23-261. Here 4 is a characteristic parameter of 
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Fig. 1. An equivalent circuit implemented in the complex nonlinear least-squares fitting program LEVM which can be used for fitting of 
small-signal ac response data. DE3, DEC and DED are arbitrary distributed circuit elements which cannot necessarily be represented by a finite 
number of ideal circuit elements such as resistances and capacitances. 
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the exponential distribution of activation energies 
(EDAE) response (see Appendix). Note that it is nec- 
essary to distinguish between the full complex dielec- 
tric constant E(W) and E,,(O) in case (~3) because then 
the conducting system contributes its own dielectric 
increment to E(W) [7,10]. 

The above definitions show that case (cl) occurs 
when AZ& = 0, (~2) when ACl, = 0 and (~3) when 
neither is zero. In the following, cases (a), (b) and (~2) 
[3,7,20] will be particularly considered, although some 
work also exists on more complicated case (~3) situa- 
tions [6,8,101. 

2. Constant-loss response 

In order to investigate the ac loss at the dielectric 
level, one must first subtract Y:(O) = [Z&(O)]-‘, if it is 
nonzero, from Y’(w) and then divide the result AY’(w) 
by UC, to obtain AE”(w). In refs. 1 and 2, it is this 
quantity that has been stated to be frequency-inde- 
pendent and thus illustrative of a “new universality”, 
even up to room temperature for some materials. But 
there is always unavoidable error in the estimate of 
Y&(O), which is magnified by the subtraction process, 
and the results are usually shown at either the Y or the 
E immittance level as log-log plots, reducing apparent 
variation appreciably [7,25,26]. Detailed analyses 17,101 
of data for single-crystal NaCl [l] and A13+-doped 
CaTiO, ceramic material [2] strongly indicate that 
Ae”(o) is not, in fact, exactly constant over any appre- 
ciable frequency region, but its approximate constancy 
at low temperatures arises from a combination of con- 
ducting and dielectric system responses. 

In general, AY’(w) can be expressed as proportional 
to w’(“‘), where the power-law exponent s(w) is the 
slope of a log-log plot of AY’(w) vs. w. For constant 
loss, s(o) = 1, independent of frequency (at least over 
an appreciable frequency range). There has been con- 
siderable discussion of s(w) in the literature for con- 
ducting systems, and, contrary to the results of refs. 1 
and 2, it is usually found only to approach unity from 
below as the temperature becomes very low. Such 
behavior follows from both an EDAE model [23,241 
and the BDM response equation [10,20]. In fact, both 
models lead to a frequency-dependent s(w) which ap- 
proaches unity logarithmically in frequency at high 
relative frequencies and only reaches it at infinite 
frequency [3,21,25]. Thus it seems unlikely that con- 
ducting system dispersion alone can lead to constant- 
loss behavior except in this limit. 

But there is a way to obtain very nearly constant loss 
over an extended frequency range at reasonable tem- 
peratures and frequencies. It is a dielectric response 
phenomenon, not a conductive system phenomenon. 

Fig. 2. Log-log response of normalized admittance components vs. 
normalized frequency QH for dielectric response calculated for a 
flat-top box (e.g. uniform) distribution of activation energies: +o = 0. 
The numbers 10, 20, and 60 are cut-off values of xH, the maximum 
activation energy of the distribution in normalized form. 

Constant loss only appears when there is a flat-top 
activation energy probability distribution present which 
is associated with the value &, = 0 [9,23]. Then, all 
transition rates within an allowed range are equally 
probable. Because there is a large body of literature 
which strongly suggests, and often claims, that constant 
loss is indeed present for a wide variety of solids at low 
but nonzero temperatures, the question of the prove- 
nance of such a loss, if it is actually present, is particu- 
larly important, and therefore it and some of its associ- 
ated response will be addressed in some detail herein. 

Wang and Bates [27] have presented a theoretical 
model of localized hopping in a potential double well 
which leads to dielectric response with +n = 0 or &, # 
0. In the next few figures some of the possible re- 
sponses arising from the &, = 0 choice are explored. 
All the curves of the graphs of the present work were 
calculated using the readily available LEVM V.6.1 
complex nonlinear least-squares fitting (CNLSF) pro- 
gram either to generate data from a model or to fit it 
to a model [28,29]. ’ LEVM now includes both the 
EDAE response model and the BDM conducting sys- 
tem equation expressed as a distributed-circuit ele- 
ment. 

’ The LEVM program V.6.1 is comprehensive and includes many 
powerful features for accurate fitting of conducting and dielectric 
system frequency and time responsible data. Except where other- 
wise stated, all present fits with LEVM used proportional or 
functional-proportional weighting. 
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Fig. 3. Normalized dielectric level response l DN vs. log normalized 
frequency calculated from the results of Fig. 2. Here E’;)~ curves are 
shown on a linear scale (left) and a log scale (right). Note the linear 
dependence of parts of the l bN curves on log(R,). 

2.1. Exact dielectric system model response 
Figure 2 shows the log-log normalized admittance 

response of the &,, = 0 EDAE model over an ex- 
tremely large normalized frequency range. Here Ye(o) 
= 0 for all o. The EDAE box model involves a flat-top 
activation energy probability density extending from 
zero activation energy to a maximum value of E,. In 
the figure, the numbers 10, 20 and 60 are values of the 
normalized upper cut-off, xu = E,/k,T. For example, 
if E,- 1.034 eV and T = 300 K, xr, = 40. Although 
this log-log plot shows some regions of constant slope, 
that of YA< = Y;l,> is particularly deceiving. On calcu- 
lating and plotting the corresponding E&, here de- 
fined as YE;/&, and E);)~ quantities, one sees a differ- 
ent picture in Fig. 3, where E’;)~ is plotted both linearly 
and logarithmically. The normalization used here is 
defined by E&W) = l o(~)/Ae&. See the Appendix 
for some other definitions. 

As expected, l $N is indeed constant over a large 
frequency range for xu 2 20, but it follows from eqn. 
(A9 that E& = 1 -x;l ln[l + Okll/* for ln<.f&~ < 
xrr. Thus the corresponding Yf; curve in Fig. 2 cannot 
have a constant slope in this region, a good example of 
how log-log plots with apparently constant slopes can 
lead to quite misleading conclusions. Figure 4 shows 
the Cole-Cole complex plane plot of the data of Figs. 
2 and 3. Note the points of constant frequency shown 
on the three curves; the arrows show the direction of 
increasing frequency. These results confirm that, al- 
though the loss is not quite constant over any region 
for xH = 10, it is very well approximated as constant 
for xH 2 20. 
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Fig. 4. Complex plane plot at the dielectric level of the full data of 
Figs. 2 and 3: 0 located at R, = 104; * located at 105. Arrows 
indicate the direction of increasing frequency. Note that, for clarity, 
the vertical scale units are larger than the horizontal scale units. 

It is common [6,8,30,31] to examine high resistivity 
IS data from disordered solids by plotting small signal 
frequency response results at the complex modulus 
level, where M = l/e. Figure 5 shows such results for 
+o = 0 and xu = 15. Up to this point, the data plotted 
have implicitly involved the choice ~~~(03) = 0, and so 
we have taken A& = E&(O), but setting ~‘~~(03) to 
zero is physically unrealistic because even in the ab- 
sence of any material E’,,(W) = 1. Figure 5 demonstrates 
the effect of E&(~o) variation on the shape of MhN 
response. There is no peak for the value E’&,(cQ) = 0, 
and the curve continues to increase indefinitely pro- 
portionally to w [20]. Thus it is clear that the com- 
monly observed peaked response arises entirely from 
the presence of a nonzero value of E’,,&co). Further, 
note the asymmetry of the peaked curves, illustrative of 
a long low frequency tail. Incidentally, as 4,, ap- 
proaches umty for fixed E’& (cQ), the curves approach 
complete symmetry around their peaks. 
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Fig. 5. Normalized complex modulus component M& vs. log(L?,) 
for xH= 15 and five values of c&(m), the normalized high fre- 
quency limit value of the dielectric constant. 
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Figure 6 shows the complex-plane modulus response 
for E&(W) = 0 and E&(W) = 0.1 for several values of 
xn. The minimum value of M&, at w = 0 is just 
[I + &N (03)]-~ here since normalization leads to the 
value AE’& = 1. Although the curves appear to be 
similar to those of the Cole-Davidson (CD) empirical 
model [9,11] or of the Kohlrausch-Williams-Watts 
[KWW] fitting model, both available as distributed-cir- 
cuit elements in LEVM [11,28], it turns out that they 
cannot be fitted adequately with these models when 
&=O. 

2.2. Distribution of relaxation time fitting: an alternative 
to Kriinig-Kramers transformation 

The Kronig-Kramers (KK) integral transformation 
relations are found useful in IS to test whether data 
are well represented by a passive time-invariant system 
[32-341, and in many areas of physics and optics to 
predict the real or imaginary part of a complex re- 
sponse when only one of them is available. But since 
KK transformation requires integration from w = 0 to 
w = 03, extrapolation outside the finite range of actual 
experimental data is always required and often leads to 
appreciable uncertainties. It is interesting to examine 
the transformation/fitting problem using some of the 
present &, = 0 model data. To do so, the data were 
fitted, using LEVM, to a simple distribution of relax- 
ation times model (DRT) which consists, for the pre- 
sent dielectric system, of N branches in parallel, each 
branch made up of a resistor and capacitor in series. 
Although this approach has long been known in the 
dielectric response area [35] without CNLSF, it has 
only recently been applied in IS as a “measurement 
model” fitting procedure to allow all 2 N parameters of 
the fit to be free during fitting [7,20,36]. Such fitting 
can yield the N relaxation strengths pi whose sum is 
automatically normalized to unity in the LEVM fit. 
These quantities and their corresponding time con- 
stants 7i define a discrete normalized DRT associated 

'0 2 4 6 8 10 
M DN' 

Fig. 6. Complex plane plot at the complex modulus level of C#J~ = 0 
data for five values of xu: - &.Jm) = 0.1; - - - l &.Jm) = 0. 

Fig. 7. Values of the discrete DRT normalized strength parameter pi 
vs. log(r, /TJ for &, = 0 and hvo values of xH (the normalizing 
quantity 7, is 1 s): - - - xH = 60 curve resulting from the DRT 
fit of the full complex em., data; --- xu = 60 curve resulting from 
fitting the real part of the data; A xH = 60 curve arising from 
imaginary part fitting. 

with the data, which is the solution of an inverse 
(deconvolution) problem. For synthetic data, N can be 
increased to yield a unique fit with residuals as small as 
desired, although for experimental data there is a limit 
to the utility of increasing N. 

Figure 7 shows discrete DRTs for xn = 10 and 
x n = 60. Only the points are significant; the lines are 
included to guide the eye. The data fitted extended 
from 0” = 0.01 to R, = 2 X 106, and the standard 
deviation of the relative residuals of the fit for the 
xn = 10 choice was less than 1.6 x lop4 using N = 11 
and 84 data points. For the xu = 60 choice, N = 14 
was used. Note that the xu = 60 data are abruptly 
truncated with a cut-off at 2 X lo6 Hz, while such a 
cut-off for xu = 10 still covers nearly all the significant 
response (see Fig. 3). The xn = 10 DRT shows a flat 
top and a shape much like that shown in Fig. 4 for the 
complex plane response. Although the xr, = 60 curves 
also show an extensive constant region, the abrupt 
cut-off at the high frequency end leads to a corre- 
sponding rise of pi at small 7i values. Essentially the 
same DRT results were obtained for xu = 10 using 
either the full complex data or the real or imaginary 
part for fitting. But for xn = 60, we see that the result 
for the imaginary-data fit is considerably different from 
those for the other two data choices. 

Figure 8 shows the actual relative residuals r of the 
X H = 60 full complex fit, which yielded a standard 
deviation estimate of the relative residuals of 5.1 x 
10e4. Those for the imaginary part of the data are 
clearly much larger than those for the real part over 
most of the range, but even the imaginary ones are all 
less than 0.001 in magnitude. The CNLS fit procedure 
levels the relative residuals as much as possible and 
produces a period of oscillation determined by the 
choice of N (N - 1 peaks of a single sign). 
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Fig. 8. The dependence on log(R,) of the relative residuals r = r’ + 
ir” of the DRT complex nonlinear least squares fit which led to the 

xH = 60 results in Fig. 7. 0 real part residuals; * imaginary part 

residuals. 

Figure 9 demonstrates how well DRT fitting can 
substitute for, and even improve on, KK predictions 
even in a difficult situation. The broken vertical line in 
Fig. 9 shows the extent of the data used to obtain DRT 
results. These results were then used to predict E&(W) 
and &(w) over a range extending nearly three 
decades higher in frequency than the original fitted 
data. This allows one to observe just how the DRT 
fitting automatically extrapolates the real and imagi- 
nary response beyond the truncation point of the origi- 
nal data. Results for xH = 10 are not shown because 
the fit results of the full complex data and the full 
E&W) predictions obtained from either real part or 
imaginary part fits were indistinguishable from the 
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Fig. 9. Results of DRT fitting of l oN data ext&ding up to the 

broken vertical dashed line and then truncated. The fitting model 

parameters have then been used to extrapolate the fits for nearly 

three further decades at the high frequency end. Curves are shown 

for the original fit of the complex data (C), for the fit of the c)DN 

data only with the results used to predict imaginary response (R + C) 

and for the fit of Ed data with the results used to predict the real 
response (I --t Cl. 

original eoN data. In this case, the DRT alternative to 
KK transformation is essentially ideal. 

Within the span of the original xu = 60 data, the 
DRT fit of the full complex data (marked C in Fig. 9) 
yielded results indistinguishable from the data them- 
selves, but the extended region at high frequencies 
shows how the branch with the smallest time constant 
dominated the response in this region. The DRT fit of 
the E&(W) data yields similar results but with a larger 
smallest time constant, as shown in Fig. 7. Results are 
quite different for the &(w) DRT fit. The predicted 
E&,(O) results agree with the input &(w) data within 
their range but as shown on the curve with triangle 
symbols, which is expanded by a factor of 14 for clarity, 
the final decay shows no peak. 

The E’&w) predictions, which come entirely from 
the imaginary part fit, are displaced by an amount of 
about 0.727 below the actual E’&o) input data but 
agree indistinguishably with them when this factor is 
added! Thus, although the predictions of the imaginary 
part from the real part only are excellent even in this 
extreme cut-off situation, the real part predicted from 
the imaginary part data requires the addition of a 
constant value, just as the corresponding KK relation 
at the E level involves the addition of e’&(a), a quan- 
tity not predictable from the imaginary data. The pre- 
sent and earlier [7,20] results thus suggest that, if one is 
satisfied with predictions of one part from the other 
within the range of the original data, the DRT method 
with an adequate value of N provides at least as good 
results as does KK transformation and does so with a 
much simpler procedure which does not require guess- 
ing what happens outside the finite range of the data. 

Finally, Fig. 10 shows fitting results for a region of 
the &, = 0 data with cut-offs at both ends obtained 
using the KWW fitting model [11,37]. Here the data 
are restricted to the approximately constant &(w) 
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Fig. 10. KWW fits of the xH = 60 data truncated at the extremes 

shown on the plot: l original data are shown by the curves with small 
dots; the results of the various fits are identified on the figure. 
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region, and KWW fits were made using the complete 
complex data or its real or imaginary parts. The real or 
imaginary fit results were then used to predict the 
other part of the complex data. It is surprising how 
well the real part fit fitted the real data, but none of 
the fits could produce an entirely constant &(w) 
response. This fitting led to an estimate of the KWW 
exponent parameter /3 of 0.093. Fitting with the CD 
empirical model [9,11,33] yielded a slightly worse fit, 
but an estimate of the CD exponent of about 0.02, in 
close agreement with the value of 0.021 obtained di- 
rectly from the data at the Y level as follows. If one 
assumes (incorrectly) that both the real and imaginary 
lines have constant log-log slope, then in this region 
the constant-phase-angle distributed-circuit element 
[11,33] applies and agrees with the high frequency 
limiting response of both the KWW and CD models. In 
the middle frequency region of the xu curves of Fig. 2, 
the ratio Yf;/Yk is about 30.9, equal to tan(r$/2>. 
This leads to 1 - I) = 0.021, the equivalent log-log 
slope at the epsilon level. But of course the +,, = 0 
data do not actually exhibit such a slope at this level. 

3. Hidden aspects of bulk response 

The information provided by estimates of R, and 
C, from experimental data can be useful in under- 
standing something about the conduction and dielec- 
tric processes occurring in the measured material [14- 
19,381, but it does not exhaust what can potentially be 
learned from such data. We shall demonstrate this 
here by using a plausible, and perhaps very general, 
conducting system relaxation response equation, the 
BDM, first without any effect of C, = cock in- 
cluded, and then with it present. In this way one can 
observe what happens when the effects of C,, which 
are always present in experimental data, are subtracted 
from the data. Note that R, and C, do not form a 
KK-related dispersion pair. 

The BDM [lo,201 has a characteristic, virtually tem- 
perature independent, somewhat asymmetric shape, 
when its impedance predictions are plotted in normal- 
ized form in the complex plane. The solid line in Fig. 
11 shows this response for the choice X, = 30, where x, 
is the normalized, effective maximum activation energy 
involved (see the Appendix for more details). In the 
following results, the normalization Z&tin) = 
Z,(.Q,>/AZ~ will usually be used for simplicity. Here 
0n is the effective medium BDM normalized fre- 
quency defined in the Appendix. Incidentally, the char- 
acteristic complex plane arc shape of the BDM shown 
in Fig. 11 is quite similar to that following from the 
jump relaxation model of Funke [39] which involves 
non-random correlated hopping. Although the effec- 
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Fig. 11. Complex plane plot at the impedance level of normalized 

BDM data calculated with xc = 30 and several EDAE fits with 

different weightings: PWT, data proportional weighting; UWT, unity 

weighting. The various fit lines and & values are further identified 

on the next two figures, but here the estimated & value for unity 

weighting with & free to vary f---j is 0.828. 

tive-medium approach leading to the BDM [20,25] 
does not explicitly include correlation and relaxation of 
the positions of neighboring mobile ions after a hop, its 
self-consistency requirement may cause it to take some 
implicit account of these effects. 

The other responses shown in Fig. 11 were obtained 
by fitting the BDM exact data with the EDAE model 
using different weighting possibilities. For a conducting 
system, this model yields maximum (but frequency-de- 
pendent) log-log slopes at the Y level for the choice 
& = 1 (the box distribution) and also involves fre- 
quency-dependent slopes for & # 0. We see that unity 
weighting yields a closer fit to the data shown than 
does proportional weighting, but a & value of appre- 
ciably less than unity is required, which is less plausible 
than the estimate of 0.963 obtained with proportional 
weighting [20]. 
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Fig. 12. M& vs. log(0,) for BDM data and for the EDAE fits 
identified in the figure. Here 0, is the BDM effective-medium 

normalized frequency. 
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Fig. 13. M& vs. log&) for BDM data and for the EDAE fits 
identified in the figure. 

Figs. 12 and 13 show the corresponding results for 
the same data for M& and M&, respectively. The 
Z,, and MC- fit parameter estimates are the same for 
proportional weighting but differ for unity weighting. 
Although the M& unity weight fit is again the best, 
there are considerable discrepancies between the data 
and any of the fits for M&, which are certainly suffi- 
ciently large to allow one to distinguish between the 
two models for experimental data with even apprecia- 
ble errors. But note that these results involve the 
choice E’JOI) = 0. For experimental data, this quantity 
will be nonzero and its effect must be accounted for, as 
discussed in more detail later. Incidentally, although 
the choice of & = 1 leads to flat-top curves in the 

EDAE FITS 

Fig. 14. Admittance level fits of BDMS data with the dc limiting 
value subtracted (BDMS) with the dielectric level EDAE model with 
xH = 60. Complex data fits and fits of the real part only are plotted 
at the normalized admittance level. 

.O 0.2 0.4 0.6 0.8, 1.0 
EN 

Fig. 15. Dielectric level complex-plane plots showing EDAE fits of 
BDMS data with PWT (- --, 4o - 0.169) and UWT (---, ~$o Z 
0.204). 

modulus-level complex plane [26], like those shown in 
Fig. 4 at the l level with the EDAE dielectric system 
choice &, = 0 [23], the BDM does not yield such a flat 
top, as is shown by the results of Fig. 13 (see also ref. 
20). 

As well as the question of how well full BDM data 
can be approximated by the conducting system EDAE 
response model, it is worthwhile investigating the de- 
gree to which it can be approximated by the EDAE 
model at the dielectric level when its dc limit Y;(O) = 
[Z,&(O)]-’ is subtracted from the data (then identified 
as BDMS data). Here, this can be done exactly, but 
there is always some uncertainty in the proper value of 
Y;(O) to subtract for experimental data. Figures 14-17 
show what happens when this is done for low tempera- 
ture BDM data calculated with x, + 03. They indicate 
that, rather than +o = 0, values near +o = 0.2 are 
needed to obtain fairly good fits. Comparable results 
are obtained with the CD empirical fitting model. It is 
worth mentioning that for several different glasses Cole 
and Tombari 1401 also found CD-like response of the 
present kind with CD exponents of the order of 0.35- 
0.40 and have remarked on the excess high frequency 
adsorption present [30]. They also found that the acti- 
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Fig. 16. & EDAE fit results vs. log(R&: * obtained with &,, fixed 
at zero. 
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vation energies of the dc conductance and the CD 
relaxation time parameter were virtually identical, con- 
sistent with BDM response and a characteristic result 
for conducting system dispersion [7,20,251. 

The present results indicate that since BDM model 
conducting system data can be much better fit at the E 
level than can &, = 0 EDAE dielectric system data at 
the complex modulus level, with reasonably good data 
one should usually be able to distinguish adequately 
between the possibilities, thus answering the question 
posed in Section 1 of distinguishing between the (cl) 
and (~2) types of response. 

The conducting system bulk response need not in- 
volve only a frequency-independent resistance R,, and 
for most non-metallic non-superconducting materials it 
seems likely that it does not. Even for single crystals 
there is always some disorder at finite temperatures, 
and this disorder can and probably does lead to some 
frequency dispersion. Further, for reasonably high re- 
sistivity materials, the dispersion may occur within a 
measurable frequency region. For the BDM, the equa- 
tions in the Appendix show that, when fin = 1 at 
f = lo6 Hz, 

AZ;, = AR, = ( l V/C,) Apl, = 1.9 x lo-‘/x,C, (2) 

where TV is the permittivity of vacuum. It is designated 
cv here rather than the more usual e0 or E, because 
these symbols may be confused with those denoting 
e(0). Thus, with X, = 20 and C, = 5 X lOPi2 F, AR, = 
2 x lo5 R. A larger value of AR, or x, will cause the 
condition 0n = 1 to occur at lower frequencies. 

The presence of conducting system dispersion re- 
quires a nonzero AZ& Since the dispersion whose 
strength is defined by AZ; approaches zero at suffi- 
ciently high frequencies, there are two possibilities: 

- 0.24 
-z A EDAE FITS 

---- PWT: &=0.169 
l l l l * PWT: &=O 
------- UWT: &=0.204 

- BDMS DATA 

Fig. 17. E$ EDAE fit results vs. log(&). 

r7 I 

LCN 
Fig. 18. Impedance complex-plane plots of Z,, bulk response calcu- 
lated using the BDM equation with xc = 30. The numbers on each 
curve are values of ~~~(a), and the values for those between the 
curves for 0.1 and low6 are 0.03 and 0.01. Here R,, = 0.3 and 
AZ& = 1. 

either Z&(w) = R,, = R, is zero or it is not. We begin 
by considering what might happen if it is not, a situa- 
tion found to arise naturally for doped single-crystal 
NaCl [71. 

Figure 18 shows some of the BDM response curve 
possibilities for an impedance-level complex plane plot 
with R,, = 0.3, AZ&, necessarily equal to unity, and 
thus Z&(O) = 1.3. The curves are for different values of 
E&(CQ) = E$Q)/e;(O), as listed on the figure and in 
the figure caption. Note the important difference in 
normalization here from that used in the dielectric 
system situation discussed above. The BDM quantity 
e;(O) in the conducting system is defined in eqn. (AlO). 
There are two apparent dispersions for very small 
E&(~o) which meld into a single one for sufficiently 
large E’&w). When the effect of this quantity has been 
subtracted from the full data (by subtracting 
ifl&,,(~) at the YN level), there will be no Debye 
semicircle between the limiting value Z&,(0,) = R,, 
and zero. In experimental situations where at least 
some of the small semicircle has been measured, the 
most appropriate value of &(~a) to subtract can be 
determined as that which yields the best approximation 
to zero Z&, response in the semicircle region. This will 
generally be the LEVM CNLS fit estimate also. It is 
important to emphasize that the two-arc result appar- 
ent for small l &,< ) CQ va ues in Fig. 18 is not composed 1 
of a bulk R,, Cm arc and an electrode reaction arc; 
both arcs here arise entirely from bulk behavior. One 
can distinguish between the two situations by making 
measurements for at least two different electrode sepa- 
rations of the measuring cell. 

When the above subtraction has been carried out, 
one obtains the true dispersion shape associated with 
the dispersion process, here that of the BDM as in Fig. 
11. It is clearly important to make this subtraction if 
one wishes to examine and possibly identify the true 
dispersion response of the material and not just the 
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single-time-constant semicircle associated with R, and 
C,. Further, we see that for intermediate values of 
e&(m), such as unity, the resultant curve is reasonably 
well approximated by a somewhat displaced semicircle, 
a result often found experimentally when, as usual, no 
subtraction is carried out [14,15,19]. 

In the second situation, R, = 0 and there is no 
possibility of two joined arcs. When the dispersion 
associated with AZ&Ic(o) occurs at frequencies be- 
yond the upper limit of measurement, AZ;l is likely to 
be confused with the frequency-independent quantity 
R,. Figure 19 shows how the actual dispersion can be 
hidden by the presence of C, in this case. Here e&(m) 
varies from 10, where the true response is virtually 
completely hidden, to zero. Although the e&(m) = 10 
curve is a close approximation to single-time-constant 
response, at au = l/10, th e expected peak frequency 
for this value, Z& was 0.455 rather than 0.5 and 
-z& was 0.496 rather than 0.5. 

Figure 19 also includes an illustration of the sub- 
traction process for n-GaAs single-crystal data at 400 
K, normalized with respect to the measured value 
Z;(O) = 1.7 x lo4 fI [41]. First, the unsubtracted data 
were fitted to the BDM equation using only three free 
parameters. The value of X, employed was calculated 
from the estimate of the principal activation energy of 
the material in ref. 41. It was found that an adequate 
fit could only be obtained by allowing ~c to be free, 
rather than by using its value from eqn. (A7). Orazem 
et al. [41] found a slightly better fit of these data with a 
different model using 11 free parameters. For a perfect 
fit, the present fit (asterisks) would fall at the center of 
the squares representing the actual data. If these data 

Z CN' 

Fig. 19. Impedance complex-plane plots of 2, bulk response calcu- 
lated using the BDM equation with n, = 30 and R,, = 0. The 
numbers identifying each curve are values of &Cm). The points 
denoted by open squares are original GaAs data [41] normalized to 
unity at dc. The asterisks near them are BDM equation fit results 
without subtraction of the effects of l ‘oN(m) estimated from the tit. 
For these result, x, = 23.4. The open circles and the asterisks near 
them are the corresponding results after such subtraction. 

Fig. 20. M& vs. log(&) for the BDM with x, = 30 showing the 
effect of nonzero e)DJm). 

are actually well described by the present model, then 
the fit results yield a value of E&(m) of about 2.5. 

Also shown in Fig. 19 are the normalized results of 
subtracting the effects of the fit estimate of E’u(m) from 
the GaAs data. The data after subtraction are indi- 
cated by open circles, and the BDM fit results of these 
data (with E’,&m) = 0) are shown by the asterisks 
nearby. Note that subtraction has increased the vari- 
ability in the data, and that the fit results lie close to 
the BDM curve marked zero, as one would expect. It is 
unfortunate that the data obtained after subtraction do 
not extend to high enough frequencies to show whether 
the final response curve is indeed somewhat asymrnet- 
ric, as it should be for the BDM response. 

Figure 20 shows the M& frequency response for 
the situation of Fig. 19. This figure, which should be 
compared with Fig. 5, shows that, in contrast with 
those results, nonzero e&(m) for a conducting system 
leads to asymmetric curve shapes which involve excess 
high frequency response: “endemic” behavior for 
amorphous polymers and molecular glasses according 
to ref. 30. The larger is +,Jm) here, the closer the 
curves approach symmetry about their peaks and sin- 
gle-time-constant Debye behavior. The M& curve for 
&(m) = 0 curve approaches the asymptotic value r/2 
at high frequencies. 

Finally, Figs. 21 and 22 show BDM model normal- 
ized complex modulus and complex resistivity results 
for three different temperatures with the following 
fixed typical values of the parameters in the Appendix: 
E, = 1.2 eV and ran = 3 X 10Pz6 s. The frequency sepa- 
ration of the curves arises from the thermally activated 
behavior of the BDM relaxation time rn, In order to 
show the results for different temperatures on a single 
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Fig. 21. MCN BDM equation frequency dependence for three tem- 
peratures and the choices l )DN(m) = 0 and e&(m) = 20: M& curves; 
- - - A4& curves. The l ‘r,,(m) = 0 curves show neither peaks nor 
saturation. The 280 K peaked M& curve (-- -) and the correspond- 
ing M& curve (. .I are EDAE fit results with & fixed at unity and 
X H = 60. The normalizing quantity wa is 1 rad s-l. 

graph with a linear scale, each data set was normalized 
by its dc resistivity value. These values were approxi- 
mately 1.07 x 1013 fi cm, 2.69 x lo9 R cm and 5.37 x 

lo6 R cm for 240 K, 280 K and 320 K, respectively. For 
both figures, results are shown with e&(m) values of 
zero and 20. 

The real and imaginary curves of Fig. 21 show two 
characteristic features which are nearly always present 
in M-level plots for conducting system disordered- 
material response. These are the excess high frequency 

Lod+4) 
Fig. 22. Z,, BDM equation frequency dependence for two tempera- 
tures and the choices &,,(m) = 0 and e&(m) = 20. The leftmost 
curve of each pair is that with e&(m) = 20, and the other is for 
e&,(4 = 0. 

loss associated with the asymmetry of the M& curves 
and the long approach to an asymptotic value at high 
frequencies exhibited by the M& curves [6,8,30,31]. 
These curves approach the asymptotic value [E’&~)]-~ 
when this quantity is less than infinity, but the ap- 
proach becomes very slow when E&(W) < 1. The 
asymptotic value of A4& itself is just [E’,,(w)]-~. But if 
there is no dielectric dispersion in the measured fre- 
quency range, one should replace E’Jm) by the possibly 
different quantity ~~(0) [20]. 

The EDAE box distribution conducting system fit 
results at 240 K of Fig. 21 are sufficiently close to those 
of the BDM for E’ nrJo3> = 20 that for most experimen- 
tal data it would be difficult to distinguish between 
them. But, as Fig. 13 shows, when the effects of nonzero 
E’,,~(~o) have been subtracted from the data, there is 
sufficient difference in the responses to make discrimi- 
nation possible for reasonably good data extending 
over five decades or more. Although the results of Fig. 
21 show that there is a peak at the M, level only when 
~‘&co) # 0, those of Fig. 22 demonstrate that there is a 
peak at the impedance level whatever the value of this 
quantity. But with &(m) = 20, the resulting curves 
are essentially R,, C, single-time-constant curves, while 
both frequency response and shape are appreciably 
different for those with the effects of ~~~(00) removed. 

A few fits have been carried out to examine how 
well nonzero ~~~(00) values can be estimated from 
noisy data. Exact BDM Z-level data calculated with 
nonzero e’,,( > 1 ~0 va ues were truncated to three or two 
figures (excluding those defining the exponent). Thus a 
value such as 4.75912248 x lo2 would become 4.7 x lo2 
with truncation to two figures. The results were fitted 
with the BDM with three free parameters using the 
LEVM CNLSF program. With three figures and 
&(m) = 20, results were excellent: the standard devia- 
tion of the relative residuals of the fit was about 
2 x low3 and an estimate of 20.04 was obtained. With 
two figures, the first figure was about 2.2 x 10V2 and 
the second about 20.5. Similarly, with E’&w) = 400, 
the value of 400.4 was obtained with three-figure accu- 
racy and 408.2 + 0.5 with two-figure data. Thus, for 
most experimental data, it should be possible to esti- 
mate EL(~) adequately. 

Appendix 

In this Appendix the EDAE response model and 
the BDM conducting system response equation are 
briefly discussed. We follow earlier work by assuming 
that the transition rates of the system are thermally 
activated with a distribution of free-energy barriers 
[3,20,22-251. For simplicity, assume that the distribu- 
tion is in the activation energy E (actually enthalpy) 
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only. Consider a thermally activated situation where a 
relaxation time rj is given by 

rj = raj exp( E/k,T) (Al) 

where j = C or D. Here 7,;’ is a barrier attempt 
frequency (usually lOi* Hz or greater), and the activa- 
tion energy E satisfies 0 I E I E,. Further, define xu 
as E,/k,T. 

EDAE response 
The EDAE equation, also termed a single exponen- 

tial distribution of activation energies equation in past 
work [9,23,24], can be written in normalized form as 

Zj(O,) =+j[l-exp(-+jxu)]P1 

/ 

xH 

X 
exp( -$jx) dx 

0 1 + iflu exp( -x) (A21 

where 

fiu = oru (A3) 

and mu is the value of 7j from eqn. (Al) evaluated at 
E = E,. The 4j parameter is generally different from 
but related to the slope of the log-log admittance 
frequency response [23,24,26]. 

For the flat-top box distribution, +j = & = 1 for a 
conducting system and +,, = 0 for a dielectric system. 
For these and some other integral and fractional values 
of 4j closed-form results can be found 122,231 from 
eqn. (A2). For example, for 4j = 1, 

Z(%I) = 
ln[(l + i&)/(1 + iour-l)] 

(1 - r-l)X!u (A4) 

where r = exp(x,), and for +j = 0 the result is 

Z(fi,) = 1 -x;l ln[(l + i&)/(1 + iR,r-‘)I. 

(A3 

These results apply for either a conducting or a dielec- 
tric system: Z(0,) can then be defined as either a 
normalized impedance or a normalized complex dielec- 
tric constant respectively [23]. More results relating to 
the EDAE model are presented in refs. 3,9 and 23-26. 

BDM response 
The derivation of this equation for a hopping situa- 

tion has been discussed earlier [10,20]. One starts by 
averaging an effective-medium equation for the con- 
ductivity over a random free-energy-barrier probability 
distribution which is zero outside the E range defined 
above (a box distribution). The resulting equation for 
the conductivity, termed the GBEM equation in [201, 
involves E, = E,/3 and 7ac = ~,n; it leads to a satura- 

tion value of Y& at very high frequencies and to a 
corresponding decrease in Yg. The subscript E is used 
here to distinguish the specific GBEM/BDM effective 
medium response from that of any other conducting 
system model. All the temperature dependence of 
GBEM response arises from that of the normalized 
maximum effective activation energy: x, = E,/k,T. 
The cross-over frequency f,, where Y& = Y[, occurs at 
f,, = 0.22(X,T,J l, a frequency far above the fre- 
quency range of usual small-signal ac measurements. 

The T -+ 0 limit of the GBEM equation is the prin- 
cipal-value complex solution of the following implicit 
equation (the Bryksin equation [21]) for the normalized 
impedance quantity I, of eqn. (1): 

ln( Z,) = -in,Z, (A6) 

where on = WT~ is a normalized frequency variable. 
Consider the response expressed in terms of the com- 
plex resistivity p,(n,) = (C,_/~v)2,(0,) rather than 
the impedance. Then 7n may be expressed as [20] 

7 E = WEME(O (4 

In earlier work [10,20], EL(O) was defined as the pre- 
sent EL(O) times TX, but this is merely a matter of 
definition. Temperature-dependent expressions for 
ApL and ~~(0) follow from the GBEM treatment 
[10,20]. They are 

APIE = (TaE/%)Rx 

where 

(A8) 

R, = 2 exp( x,)/[ 1 + exp( -x,)1 

and 

(A9) 

~~(0) = 0.0853x, (AlO) 

Thus, although Ed = 0, there is a frequency-depen- 
dent dielectric level contribution from the present re- 
sponse for 0n < 03, The quantity T, = 1 for the GBEM. 

Although GBEM response involves the solution of a 
much more complicated implicit equation than eqn. 
(A6), it has been found [10,20] that, for fgfco, its 
normalized results are close to those of (A6) when 
eqns. (A7) and (A5) are used. In order to obtain a 
data-fitting equation which does not require the solu- 
tion of an implicit equation for every frequency value, 
accurate Y&Q results calculated using the results of 
eqn (A6) and the GBEM response have been fitted 
with LEVM to an interpolating expression, the BDM 
equation [3,10,20,21,25]. To take adequate account of 
the response for T 2 0 the BDM involves the choice 

T, = 1 - 1.5~;’ + exp( -xc) (All) 

for x, 2 5. For x, + 0, TX approaches x,/4. 
The approximation error of the BDM in fitting both 

the T + 0 limit of the GBEM and its T > 0 predictions 
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is small compared with typical experimental errors 
provided that f -=+z f,,. The BDM, whose expression 
involves many fixed fitting parameters, has been incor- 
porated as a unified distributed circuit element in 
LEVM V. 6.1. Thus conducting system relaxation data 
can now be readily fitted using the BDM equation and 
the results interpreted in terms of the ApIE, ~~(0) and 
mu parameters defined above. When the value of X, is 
known at a given temperature from the experimental 
conditions and temperature-dependent measurements 
of dc conductivity, X, need not be a free fitting param- 
eter. It is then usually most convenient to fit with Apk 
(or AZl, = AR,), E’,,(O) and in allowed to vary, and 
with R, also a free fitting parameter when appropri- 
ate. 
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