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Solution of an “impossible” diffusion-inversion problem
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The recent conclusion of Craig and Thompson [Comp. Phys. 8, 648 (1994)] that the inversion of
spatial diffusion data to estimate accurately an initial delta-function temperature source distribution
is an unstable, impossible problem, is demonstrated to be far too pessimistic. Instead of inverting
such data with a method appropriate for continuous distributions as they did, inversion was carried
out with one appropriate for a discrete distribution. The inversion involved simultaneous
estimation of both line strengths and their positions. It yielded highly accurate estimates of the
strength and position of the source, even with very large amounts of noise. Several inversions of
noisy data are illustrated for the normalized time value used by Craig and Thompson and for very
much longer times. Further, it is demonstrated that even for very noisy data it is possible to
discriminate between the presence of one line or of several lines, and to conclude unambiguously
whether a given source distribution is discrete or continuous. Finally, a closely related method
appropriate for estimation of continuous source distributions was used to invert diffusion data
calculated from a very narrow, continuous source distribution approximating a delta function. Even
with noise present, such continuous source distributions can be reliably estimated, but the narrower
the distribution the less well can it be distinguished from a single line, and the less important such
discrimination becomes. © 1995 American Institute of Physics.

INTRODUCTION

In a recent study concerning the difficulty of inverting
Laplace transforms accurately, Craig and Thompson® high-
lighted the numerical difficulties of inversion by treating
explicitly the recovery of a delta-function source distribu-
tion from ngisy data arising from one-dimensional diffu-
sion sampled.discretely over a restricted range of distance,
Xmin 10 X . They charactetized this problem as “impos-
sible,” because they state that accurate estimation of the
spatial temperature-distribution source function at r=0
from the spread-out, noisy diffusion data profile at some
later time >0 is “tantamount to reversing entropy.” As [
shall show, a good estimate is indeed possible for a delta-
function source.

For an arbitrary source distribution, Allison? has cited
references to related diffusion-type problems where one
wishes to infer a past state of a system from its present
state, called by him “travel in the past,” or “the recovery of
past events.” Further, a recent inversion treatment of diffu-
sion and convection of a groundwater contaminant® shows
that even in the presence of noise it is possible to obtain an
approximate, but useful, estimate of the time-dependent
continuous-function source distribution. In the following, I
shall follow Craig and Thompson by assuming that all
quantities such as x and ¢ are normalized and dimension-
less.

Many inversion problems of physical interest involve
the solution of the inhomogeneous Fredholm equation of
the first kind for the unknown source function f(y), where
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u(x)= J’_NK(x,y)f(,V)dy;

e
K(x,y) is the kernel or weight function; and u(x) is the
response function, usually represented by discrete data. In--
version to find f(y), given the data and the form of K(x,y), '
is well known to usually be an ill-posed problem for this
integral equation, especially when f(y) is a continuous
function.>* For such situations, the estimated source func- &
tion is extremely sensitive to small changes in the data. By £
contrast, a well-posed computing problem is one where thc; )
solution exists and is unique, and small changes in the data
result in only small changes in the computed result.' /%
For many situations, including diffusion, it is possible.
to express the kernel in convolution form. Then, Eq. (1)’
becomes, when parameterized for the one-dimensional dif=i§
fusion problem mentioned above, 'i ki
i bl

}
u(x,z>=f h(x=y)f(y)dy, @3

j

where the parameter ¢ has been introduced to allow !-'“ ‘
specification of the time after =0 at which a diffusion
profile is measured. The general diffusion kernel may be
written 4

h(z)=B(Dt)”"? exp(—z*/4Dt), 1

A

where Craig and Thompson' have used B=4m, a value 3
which will also be used here for easy comparison of rcsul‘lsu
But the conventional value, B=(4m) 2, is consistent ‘f/l(.

the boundary condition u(x,0)= f(x) because® in the hml} f

)
i
i
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" and

Jt,(z)— 6(z). In keeping with the approach of Ref. 1,
o diffusion cogfﬁcnem D is initially taken dimensionless
cqual to unity.
Although both x and y are space variables here, for
easy distinction I shall use the x variable only for the data
and the ¥ variable only for the source function. Because
‘xpcrimenlal data are discrete, let x—x,, with 0<n<N.
gince a distribution may be discrete, continuous, or possi-
Jy a combination of the two, it can be expressed as f(y)
=d(y) (), where 4(y) includes all discrete lines and
o) all continuous distributions. For the present work,
where only either discrete or continuous source distribu-
tions need be considered, take f(y)=p(y), where p(y) is
either d(y) or ¢(y).

Consider now the estimation of M points of the p(y)
distribution, each located at y,, , where 1<m <M. Then for
the discrete case,

M
p)=d()= X dndy=yn),

and d,, is the strength of the mth line. Here the d,, quanti-
ties do not represent points on a continuous curve since the
distribution has been assumed to be discrete. The situation
is different for a continuous source function, one where M
discrete inversion estimates indeed approximate a continu-
ous curve. Therefore, set p(y,)=c(y,)=c,,. The integral
of Eq. (2) immediately reduces to an exact sum when f(y)
is replaced by the above expression for d(y), but it must be
approximated by a numerical quadrature for the continuous
case. Let w,, denote the required quadrature weights. It
then follows that Eq. (2) may be written as

M
u(x,,t)= 2=| G (Xn=Ym), 3)

where g,,=d,, for a discrete distribution and g,,=w,c,,
for the continuous case. Then Eq. (3), which is necessarily
approximate in the continuous case, readily allows u(x,,,r)
1o be calculated when the pairs {q,,,y,,} are known, and it
further allows the {q,,,y,,} quantities, which define the dis-
tribution, to be estimated when the u(x, ,t) data values are
known. It is important to emphasize that the present inver-
sion approach thus involves a weighted summation over the
kernel whether the source is discrete or continuous.

Data are not only discrete but usually contain errors,
S0 one must generally estimate all significant {g,,,y,,} val-
ues from noisy data, u.,(x, ,t). Here I shall present some
Inversion results for exact data and for noisy data of two
fypes. To allow direct comparison with the results of Craig
ad Thompson,' I take 0<x,<64 and y;=32. Exact
flISCrele-source data were thus calculated from Eq. (3) us-
Ing double-precision arithmetic with M=1 and d,=1. For
the present analysis, the two types of noise involved either
Proportional errors or additive errors, defined by

Umeas(Xp ,t) = u(x,,0)[1+0,P(0,1,)], @)
and
Umeas(Xp 21) = u(x,,1) +u(x,, 1), P(0,1,), 5)

Tespectively, where x,, is the value of x at the peak of the
u(x, 1) response curve. Here P(0,/,) denotes a value

Errors

Figure 1. Additive and proportional errors for t =4, produced with seed 1
and with 0,=0.01.

sampled randomly from a distribution having zero mean
and unity standard deviation. Thus o, sets the standard de-
viation of the individual errors.

In the present analysis, all errors are drawn from a
normal (Gaussian) distribution and are independent and un-
correlated. The relative standard deviation of the overall
error distribution is just o,, but it is relative to each indi-
vidual u(x,,t) value for the proportional errors case and
relative to the maximum u(x,,t) value for additive errors.
Thus, with the same choice of the seed used to obtain a
pseudorandom number, the proportional error is the same
as the additive error for a given value of o, only at X=x,.
Figure 1 compares such overall errors for r=4 and
0,=0.01, which will be denoted loosely as a 1% error situ-
ation. For clarity, the proportional errors are shown with
opposite sign to the additive ones, and we see that they
decrease rapidly in magnitude as x, moves away from
x,=32 since h, decreases away from its maximum. Al-
though experimental data are likely to contain a combina-
tion of independent proportional and additive errors with
(0)a0a<(0.)pyop, We shall not investigate the effects of
such composite errors here, but the fitting program used for
the present inversions, LEVM, allows weighting with such
a combination of error types.®’

| THE DV AND CV INVERSION METHODS

Equation (3) shows both how similar discrete-source and
continuous-source inversions are, but it also makes clear
the significant differences between them. One further com-
mon feature of great importance is the present treatment of
the y,, position parameters. The most significant way in
which the present inversion method differs from most pre-
vious ones is its inclusion of an arbitrary number M of
source-function points whose positions are free to vary and
are estimated as part of the fitting,® rather than being held
fixed." Thus, it is often appropriate to fit first with M =1,
then 2, and continue incrementing until no further signifi-
cant parameter estimates can be obtained, either because
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and/or because errors in the data limit further estimation.

Now let us distinguish between the discrete and con-
tinuous inversion methods considered here. Let “DV”
stands for ““Discrete inversion with all source parameters
free to Vary,” and “CV” designate *“Continuous inversion
with all source parameters free to Vary.” The DV and CV
designations refer to the two kinds of analysis methods in-
corporated in Eq. (3). Because of the similarity between
these approaches, it turns out that either one can be used to
determine whether given data involve a discrete or a con-
tinuous source distribution. Thus, it is unnecessary to make
any initial assumptions about the character of the distribu-
tion. In fact, inversion analysis of noise-free or moderately
noisy data by either method allows an unambiguous deter-
mination to be made between any source-estimate points
associated with a discrete distribution and any associated
with a continuous distribution.® Once this determination
has been made, however, DV inversion should be used for
discrete-source situations and CV for continuous- or
continuous-and-discrete-source conditions. Such discrimi-
nation is further discussed below.

DV inversion,"~'? is simple in principle and involves
just the weighted, nonlinear-least-squares fitting of all the
{d,,,y} parameters of Eq. (3), with the left-hand side re-
placed by upe(x, ,t). CV inversion is similar but involves
the weighted, nonlinear-least-squares estimation of the
{Cm Y m} parameters.® A computer routine for DV inversion
has been a part of the general impedance-spectroscopy
complex-nonlinear-least-squares fitting program LEVM®’
for the past decade. This program was recently generalized
to include the CV fitting procedure as well.® It involves
extended trapezoidal quadrature with weights which ac-
count for nonequal spacing'’ of the y,, values and yields
satisfactory results for the finite-length range —oo<y . to
Ymax <%, especially when the c,, end points are adjusted to
help correct for the effects of a truncated range.® It is worth
remarking that y, values obtained from the DV and CV
inversions of the same continuous-source data generally
differ somewhat. For the present inversions, LEVM was
run with a stringent convergence criterion, and it itself in-
volves some, regularization & ax’is'mgs from the nonlinear-
least-squares fitting procedure used.” A minor difference
between the DV and CV methods is that DV d,, values
should not be normalized, while CV c,, ones are generally
normalized so that the area defined by the continuous-
distribution curve is unity.

Because the DV and CV inversion approaches essen-
tially differ only in their weighting and normalization,
much of the present discussion of the DV method also ap-
plies to the CV one. When it is known a priori that all the
distribution-strength parameters must be =0, the usual
physical situation and the one appropriate for the present
analysis, a constraint of this type is included in the inver-
sion procedure, although with the present variable-y,, val-
ues it is not usually needed. But no other constraints are
needed for inversion of either discrete or continuous data.
In particular, no other a priori assumptions whatsoever
about the form of the distribution need to be included in the
inversion procedure. Whether the distribution is found to be
discrete or continuous is entirely determined by the data
fitting, not by an initial choice of the DV or CV approach.
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Proportional errors

Additive errors

" Sk d, i Sk d, i
1.26x107"° 1£1.4x107" 32:49.4x107"° 1.24x107" 1£6.2X107" 32x2.5%107"
“ 0.0101 0.9998+0.0011 32.0002:0.0008 0.0101 1.0007+0.0032 32.0005+0.0128
0.3051 0.9945:0.034 31.989 *0.023 0.3038 1.021420.094 32,011 =0.0376
1.010 0.9893+0.112 31.923 *0.063 1.013 1.071 0.320 32,022 *1.194
2.029 0.9793+0.222 31.89 =0.08 2.025 1.143 +0.640 32028 +2.24
: 1.620 L171 =0211 3209 *0.07 1.931 1431 *0.610 31193 =1.71
L Y 2461 0.7640+0.210 3197 *0.07 1.899 1.062 *0.599 33.009 =226
7oA e
- dened that one would be unlikely to think of compar- for the pro_ponional-error situation than for the additiv‘e;-
| the result with a delta function unless prior information error one, just as one would expect. Three 'ﬁls for 200%
about the actual function were available. error are shown in the table to allow comparison of results
. It is reasonable to ask, Why were these unsatisfactory for data with independent error sets, each with the same 0, .
N ;gulls obtained and are superior ones possible? The answer These results show that even \\flth very large errors in the
I 1o the first part of the question is that data derived from an data, DV lallows one to qh!am good estimates for the
] inherently discrete distribution were analy?ed by rqethpds {d,y} pair that defines a single delta functxon.l )
I developed for, and appropriate for, a continuous distribu- For M =2 fits of noisy data constructed with a single
r tion. These methods start with a set of fixed points in y dglla-funcuon source (_11smbuuon. the situation ls'somewhat
H ce, usually equally spaced, and calculate estimates of different. For_ proportional errors, one finds similar results
tfie source distribution at each of these points." They have to those. memxoned above for the zerp-z_idded—error case, but
*glso been 2 lied in the past to other discrete-distribution for additive errors the standard deviations of all m>1 pa-
Pixel No stuations,’ '3 again leading to unsatisfactory results. As rameters are usually very large, even when the {d;,y,} es-

- Sy

i
Figure 2. From top to bottom: representation of a delta-function m:gu
distribution centered at about 32; result of a second-order regularizg 4
inversion to find the source function using t =4 data with 1% proportiona]
errors; and result of a maximum-entropy inversion of the same data, one

which constrains the source estimates to be non-negative. The designation ’

“Pixel No." refers to the present y variable. Reproduced from Ref, I,
Fig. 5. 8

One thus does not need to assume initially that the
arise from a discrete (or a continuous) distribution to find "
and estimate the proper distribution. But it should be noted"
that inversion of a discrete distribution is well-posed and’

that for a continuous one is generally ill-posed. ,‘
il

Il. INVERSION RESULTS

A. Delta-function source distribution
1. Data with t=4
Although they characterized the recovery of a delta-—

function source distribution from noisy diffusion data as an_ |

impossible problem, Craig and Thompson' presented re-.
sults of two different inversions for the choice r=4. Figure
2 reproduces their Fig. 5, which illustrated these results.
Note the oscillations in the middle-panel inversion results. |
Craig and Thompson conclude that “the (maximum- |
entropy) recovery manages to exploit the bulk of the un-
contaminated information in the data and can be plausibly
interpreted as a minimum structure model of the sourcé
function.” But even these results, whose peak occurs close |
to the correct value, are of low resolution and are so much

shown below, much superior results are indeed possible
using DV inversion. In particular, SUC!I inversion wilhllhe
Jn POSition parameters free to vary eliminates the oscnllla-
tions usually characteristic of fixed y, inversion
methods"*> (see the middle panel of Fig. 2).
Some DV inversion results are shown in Table I for
the t=4 case considered by Craig and Thompson. The x
range used here was 12(0.5)52, and each calculated data
value was truncated after 13 decimal digits. The results
shown in the table were obtained using the LEVM program
with function-proportional weighting®’ for the data with
| proportional errors and with unity weighting for those con-
taining additive errors. The % error column lists values of
1000, , and only the results of M =1 fits are shown. The *
values are estimated standard deviations of the parameter
| estimates. Finally, the quantity Sy is the relative standard
deviation of the weighted data-fit residuals, and, as we see,
itis an excellent estimator of o, when the latter is small.
For zero added errors, it is evident from Table [ that
the inversion method recovers the original parameters with
even less estimated uncertainty than the error arising from
the truncation of the data values. So far so good, but what
happens when inversion is carried out with values of M of
2 or larger? For M =2, one again finds essentially exact
estimates for {d,,y,} and estimates of d,, (m>1) of 107*
or less, unequivocally demonstrating that the source distri-
4 Dbution is discrete and involves only a single delta function.

| In the present work, the same random-error seed has

been used in forming all noise contributions, unless other-
wise noted. It was used for the row marked 200-1 in the
lable, but different seeds were used for the noisy data em-
{ Ployed for each of the last two rows. In Fig. 3 the exact
data, the data with 200-1% additive errors, and the fit points
are all compared. The uncertainties of the {d,,y,} param-
eter estimates listed in the table are clearly much smaller

timates themselves are reasonable. Again, such resuits al-
low one to conclude that even with large error present one
can-identify the presence of a single line, characterize it
well, and rule out unambiguously the presence of two or
more lines or of a continuous distribution. Further, earlier
work on the electrical response of dielectric materials dem-
onstrated how well two spectral response lines of much
different strengths and nearly the same relaxation time can
be resolved and quantified by DV inversion of their fre-
quency response data.®

' 301 [Jo.=2] addifive
| = |
2ol

= 104 | ‘{ J)W‘

’llJ]‘l ullll ”” " l”'l :
_]OJIIIH}I. 1‘/1[
) pza | 0 R
B W 52

Figure 3. Data values: exact t =4 curve; inversion fit of data with o, =2,
additive; and noisy data with o, =2, additive.
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Figure 4. Data curves and points with 7, =0.1 proportional errors for

1=1024, 4096, and 16,384. For the noisy data, dotted lines connecting the
discrete points have been included to guide the eye.

2. Retroactive inversion for large t

For t=4, the data curve is still relatively narrow, and we
have seen that DV inversion of even very noisy t>0 data
allows the 1=0 source function to be very well estimated.
But what happens when the measurement of the diffusion
profile is made at much longer times? In this section, some
inversion results that attempt to answer this question are
presented. Take the x range as 0(0.5)64 and consider 10%
proportional ~data errors analyzed with function-
proportional weighting. Figure 4 shows the exact data,
noisy data, and fit results for t=1024, 4096, and 16384.
Since the exact data curves are nearly flat in this long-time
region, there will not be much difference here between pro-
portional and additive errors.

Inversions were made for data with 4<¢<16384 for
each of the three seeds used for the 200%-error data in
Table L. The results for y, and its estimated standard devia-
tion are shown for t=256, 1024, 4096, and 16384 in Fig. 5.
The response lines satisfy the equation

V1= Dexaa( 1+ at) ©6)

very closely. For seed 1, @=—2.84x107°, while it is posi-
tive and larger for data calculated with the other two seeds.
Although « is nearly proportional to o, for seed 3, it is
about +9.21x107® for seed 1 and ¢,=0.05. The 4, esti-
mates were found to be independent of ¢ for t>4 and were
about 0.997, 1.012, and 1.008 for seeds 1, 2, and 3, respec-
tively. As Fig. S shows, the errors in y, begin to be suffi-
ciently large by 1=4096 that differences between data con-
structed with different seeds begin to become significant.
For this value of ¢, the ratio between the peak value of the
exact data and the end values is only about 1.07, so the
variation is less than o, itself. A Monte Carlo study would
allow one to examine the bias in the y, estimates. For zero
bias, the average a should approach zero as the number of
independent replications is increased.

As ¢ increases, the decreasing variation in the exact
data begins to be swamped out by the noise when the data
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Figure 5. Dependence of inversion estimates of y,, the line-source pg_v,
tion estimate, on t for @, =0.1 proportional-noise data for three differen
random-error seeds. The data for seed 1 are presented in Fig. 4. In order * {
10 allow the vertical lines showing the * one-standard-deviation range o
be easily distinguished, those for seeds 2 and 3 have been displaced

slightly to the left and right of their proper positions, respectively, i+

extend over a fixed range, as is the case here. But if one.
could extend the measured x range as ! increased, this ef- p:
fect could be counteracted and good estimates of {d, B
could then be obtained if o, remained constant. If this were.
possible, the present problem would not be impossible even'
for arbitrarily large ¢. For the nearly flat noisy data shown
in Fig. 5, it is clear that an excellent estimate of the ¢=
source distribution can be obtained from diffusion-profile;
measurements made long thereafter. Thus, the inversion} -
problem is neither ill-posed nor particularly ill-conditioned.” " |
It is therefore indeed possible to infer some past events’
accurately long after their occurrence and so, in the sense
of Craig and Thompson, to reverse the increase in entropy
as diffusion progresses. Ly

#

»

B. Approximate-eita-function continuous source distribution
1. Background

Although discrete source distributions made up of one o
more ideal delta-function components are physically realiz- |
able to high approximation in spectroscopy,® where isolated,
spectral lines or relaxation times of negligible breadth ap-
pear, the assumption of a spatial temperature source of.‘“
delta-function character, such as that considered for LhC’.A
above diffusion problem, is physically nonrealizable and |

can only be approximated in experimental situations. ¥
Therefore, it is important to investigate inversion for datd N
constructed with an analytical approximation to a delta
function for the source distribution, thus requiring us W_f

11. Comparison of exact and noisy inversion results for a continuous source distribution with r=4 and A=4. Exact values are enclosed in

wtheses‘

Eﬂ/—'— 7,=0 7,001
M S Cm Yom S¢ Cm Ym
: 0.0304 1.032 = 0.0035 32.000+0.0022 0.0302 1.032 = 0.0035 32.000+0.0022
25 x 107 1397 = 0.0092 31.82120.0011 0.0013 1.387 = 0,039 31.820+0.0048
p 1.397 = 0.0092 32.179200011 1.415 = 0,039 32.177£0.0047
13 %107 0.5328 = 00075 31.692+2.410°5 0.0010 7.5 X 1075 = 5.44 30.181=0.051
2 0.4947) (23 x 1072)
) 21774 = 40 X 107 32.000=24X1075 0.5693 = 0.8463 31.850=7.6x107
@22567) (1.5745)
0.5328 = 0.0075 32.30822.4x10° 11990 = 0.1455 32.20426.9%107
(0.4947) (1.159)
0.0010 0.5794 = 0.0134 317
i 21801 = 0.0022 32,0022 1.6X107
0.5738 = 00146 2.3
—

deal with a continuous distribution rather than a discrete
one. A suitable approximation for finite X is’

fly)= lim (\/Nm)exp{ =[N (y = y0)1%}, )
Nisew
which becomes exact in the large-A limit. Here y, specifies
the center of the distribution, again taken as 32. For finite A,
the diffusion data are then given by

u(x,,t)=[4NV( ﬂ/DI)]J- exp{—[(x,—y)*/4Dt]}

X exp{ —[N\*(y ~yo)?}dy, ®)

which is again a Gaussian.

The remaining results were obtained using the
continuous-distribution inversion subroutine CV described
carlier. Because this procedure involves the simultaneous
determination of estimates of all the c,, and y,, values dur-
ing the iterative, weighted least-squares inversion, one can-
not use such techniques as Richardson extrapolation to im-
prove integration accuracy. Since source distributions are
usually normalized to unity area, as is that of Eq. (7),
proper comparison between such a known distribution and
an estimated one requires area normalization of the latter as
well, using the same approximate integration procedure as
that used during the inversion. The c,, values presented
bere have been so normalized. Note that since area normal-
ization cannot be used for the choice M=1, the line in
Table T for this value used DV inversion as above, while
the others involve CV continuous-function inversion. Thus,
i only a single discrete line were present, exact inversion
should yield the value d,,=1 for this case.

2.0V inversion of error-free data

To illustrate the estimation of a very narrow continuous
distribution, T take A=4 in Eq. (7), yielding a source width
a half height of about 0.4, from about y=31.8 to y=32.2.

en the noise-free data calculated with this value from
Eq. (8) are plotted with similar data calculated for an ideal
delta-function source, the differences between the results
e sufficiently small that neither a linear nor a semilog plot

allows them to be adequately distinguished. Therefore, Fig.
6 shows the relative difference between them,

R(xy ,0) =[ugf(xy 1) = Ugqp(xy 1) [ugp(xy 1), 9)

where “df” identifies the delta-function data and “adf” the
approximate-delta-function data. Results are shown for
12=<x,=<52. Note that the data values cover a range from
about 27 at their peaks down to about 10710 at their ex-
tremes. This relative difference curve shows that the adf
data are very slightly flattened and wider than the df data.

Figure 7 and Table II show source-distribution esti-
mates at r=4 for added proportional errors of zero and
0.0001. Let us first discuss the o, =0 results. Table II shows
that as M increases, the fit relative standard deviation, S,
decreases extremely rapidly, indicating that only a few c,,
points are needed to fit the data very well. For the M =7
results shown in Fig. 7, S has decreased to the extraordi-

|
&
O
o
.

/
—D,‘Owd SETIETTE 5g
A3 W) + /X

Figure 6. The relative difference between data sets calculated with exact
and with approximate delta-function source distributions. No noise added.
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Figure 7. Comparison of the exact continuous source distribution and
inversion estimates obtained with M =2 and 7, both with and without
proportional errors present.

narily low value of 9X107"2, A virtue of the present inver-
sion procedure is that it provides estimates of the standard
deviations of the estimated c,, parameters. For M =7, the
Ym and ¢, relative standard deviations are of the order of
107° and. 107, respectively.

The asterisk points on the M =7 curve were calculated
from Eq. (7) using the y,, values obtained from the fitting,
while the open circles are the fit results at these same po-
sitions. If the fit were perfect, the asterisks would lie at the
center of the circles. Although the overall fit is clearly very
good, it is evident that the second points from the bottom
are slightly too high and deviate from their correct values
by much more than their estimated uncertainties. The de-
parture from a perfect estimate of the actual source distri-
bution, even when the fit of the data involves an Sy which
is approaching the accuracy of the data, is evidence of the
ill-conditioning which must be expected for inversion of
continuous distributions such as the present one. Neverthe-
less, it is remarkable that its effects are as small as they are
here.

3. CV inversion of noisy data

The above results make it clear that with no added error,
one can obtain accurate enough estimates of points on the
distribution that it can be completely distinguished from
other types of distributions and that its parameters X and y,
can themselves be determined with high accuracy. But in
real life one usually does not have the luxury of dealing
with data with vanishingly small errors. Data involving
0,=0.001 proportional errors were used to obtain the
M =1, 2, and 3 results of Table II and Fig. 7. First note that
there is negligible difference between the o, =0 and 0.001
results for M =1. This is because the goodness of fit is
limited by fitting a continuous distribution by a single-line
discrete one for this choice of M. Although such fitting
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yields good estimates of the relevant single-line
it leads to a value of S much larger than o,

As the results in Table II indicate, when o>
cannot be appreciably less than o, . Clearly, this r;szn".
limits the maximum number of significant ".‘
parameter values that can be estimated from the data by e
present method. For M =2, the results in Table I and 3{1 o
plotted in Fig. 7 show that for ,=0.001 one can sy °: ]
tain good estimates, but by M =3, the estimates haye d:u,
riorated badly. The quantities in parentheses in the middle ©
M =3 section of Table II are exact values which shoulgd
compared with the fit values immediately above lhe
Since LEVM allows any parameters to be free or fixed, ;l;
last M =3 part of the table shows what happens whep
Ym's are held fixed during the inversion. Much improyeg”
estimates are then obtained, with a standard deviation of the.
overall fitting errors of about 7%. These results, and those
with M =1 and 2, are sufficient to again allow one to j
tify both the type of distribution and to estimate its para
eters, 3

Such estimation may be accomplished with direct pop,
linear least squares fitting, again using LEVM. Although
there are too few {c,,y,,} values for the noisy M=2 and'3 ‘.
results in Table II to allow good fitting statistics to be op. "
tained, fits of the M =2 and bottom M =3 results to Eq. (70|
nevertheless yielded for (A,yg) the estimates (3.95,32) and'
(3.84,32), respectively. An important virtue of the present
CV and DV inversion methods is that one need not know
the form of f(y) or the most appropriate value of M when' 4|
carrying out the inversion to determine these quantities, But
if an inversion estimate of discrete f(y) values suggests
that a particular analytic form of the source distribution is
likely, one can fit the noisy experimental data to an equa
tion such as Eq. (8) and obtain estimates of the relevant
parameters of both the kernel and the source function. For
the present noisy data, one such fit using Eq. (8) yielded &
(3.9,32) and 0.9998 for (A,yg), and D, respectively, quite’s
close to their exact values of 4, 32, and 1. Even if an inac-
curate initial value of D were used for the inversion, deter- g
mination of an adequate parameterized shape for the sourc
function should be possible, and then direct fitting could be
used to obtain good estimates of all the parameters, includ-
ing D.

The basic problem addressed here is one of dis
guishing in the presence of noise between a single delta:
function line and a narrow continuous distribution. The
larger A, the narrower the distribution, and thus the smaller
the zero-error value of Sy will be for a given small value of
M such as 2. Therefore, as one might expect, for data with
small but non-negligible errors the harder it will be to dis- *
tinguish between a delta-function source distribution and 8
narrow approximate one. But, luckily, the narrower the *
continuous distribution, the better its approximation t0 &
single line, and the less important it will be to dis!inguish"g
between the two. As the source distribution becomes nar-
rower and narrower, the better it will be able to be repre-
sented by a single spectral line, and the greater will be is
robustness to added noise, as demonstrated for the above.
DV results. Conversely, for a given noise level, the widcr'w
the source distribution, the larger the number of statistically =4
significant source parameters that can be estimated before &
the noise becomes limiting.

Parametey

4 ‘”m-tﬂ

§ gible.

mciden(ally, one would expect from the above results
discussion that no meaningful values of c,, and y,,
d be obtained for 0,=0.001 and M=7. And, in fact,
. is true in some sense. But, suppose, for example. that
itially obtains M =7 fit-parameter estimates either for
or data (not a viable possibility for real data!) or
fit of the noisy data with evenly spaced, fixed y,,
ucs‘&l’ and then uses these gstimales as initial values in
the fitting of the noisy data with all parameters free and
~0,001. One then usually obtains a fit with Sy near
‘wl and with several of the parameter estimates not very
f;f from the original ones. Such estimates are shown by the
denoted by the open double triangle symbols in Fig.

a

ints
y Pl;/c see that although the top four points are reasonably

" 4 the bottom two are terrible, and the seventh, whose
¢. estimate was about 3X107°, was far too small to fit on
L

figure.
. 'iz'huc reader might still conclude that the top four points

¥ yere close enough to allow distribution parameters to be

estimated. But for the present M =7 fit the estimated rela-
ive standard deviations of the y,, parameters were of the

b order of 100 and those of the c,, values were of the order of

10%. Thus, statistically speaking, one cannot distinguish any
of them from zero. Nevertheless, some of the parameter

| yalues show only relatively small errors and are therefore

still useful. Regularization inversion procedures for con-
tinvous distributions with noise, where the y,, values are

\ ﬁxed,u allow one to obtain a large number of points to

define the source distribution, but it is unusual to find un-
certainty estimates quoted for these points. The present re-
sults suggest that estimates of the standard deviations of all
free-parameter estimates should be cited for all inversion
results whenever such standard deviations are not negli-

When the 0,=0.001, M =7 data were also inverted
using different, more random, starting values for the param-
eters and with, as usual, stringent convergence criteria, four
of the ¢, estimates were driven down to very small values,

of the order of 10™° or much less. The value of Sy on
, convergence was slightly smaller than that found above for
L M=7. Although the relative standard deviations of the

three other ¢, values were much smaller than those of the

 first fit, they were still appreciably greater than unity. These

results strongly suggest that one should carry out a new fit
with M no larger than three. When this was done, again

- with arbitrary starting values, the M =3 results listed in the
| middle of Table II were again found, bespeaking a true

least-squares solution. Thus, fitting with an inordinate ini-
tial number of free parameters yields direct information on
the largest value of M worth using even when only rough
parameter standard deviation estimates are available. Fur-
ther, fitting with different values of M allows one to distin-
guish between discrete source points, whose positions
should remain nearly independent of M, and continuous-

distribution points, whose positions would not. Such dis-
criminatory power is one of the most important virtues of a
variable y,, approach, as compared to one with fixed y,,
values.

Finally, it is of interest to examine the effect of the
number of data points on inversion results with the present
methods. Suppose that we take an x range from 22 to 42,
41 points, instead of the 81 points used above for t=4,
which extend from 12 to 52. The data then decrease from
about 27r down to about 0.01. For the M =7, 0,=0 inver-
sion, Sy was about 3X107", and all the parameter esti-
mates were the same. But the M =2, ¢,=0.001 results were
somewhat different. The estimated standard deviations of
the y,, values were about ten times larger than those in
Table II but are still essentially negligible. For the c,,’s,
however, the two standard deviation estimates were about
0.28 and 0.43, by no means negligible. But the actual errors
of the two c,, values were only about 0.04, only slightly
larger than those obtained with the 81-point fit. Thus, the
estimates were appreciably better than indicated by their
poorly estimated standard deviations. In this example, for
noisy data a narrower data range leads to worse standard
deviation estimates but to only a negligible increase in the
actual errors of the parameter estimates.

I much appreciate the numerous suggestions for improve-
ment of this work provided by Professor W. J. Thompson.
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