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sampled randomly from a distribution having zero mean 
and unity standard deviation. Thus ut sets the standard de
viation of the individual errors. 

In the present analysis, all errors are drawn from a 
normal (Gaussian) distribution and are independent and un
correlated. The relative standard deviation of the overall 
error distribution is just a t, but it is relative 10 each indi
vidual u(x. , r) value for the proportional errors case and 
relative to the maximum u(xp .r) value for additive errors. 
Thus, with the same choice of the seed used to obtain a 
pseudorandom number, the proportional error is the same 
as the additive error for a given value of U t only at x = x p ' 

Figure 1 compares such overall errors for t ::::4 and 
CT, = O.OI, which will be denoted loosely as a 1% error situ
ation. For clarity, the proport ional errors are shown with 
opposite sign to the additive ones, and we see that they 
decrease rapidly in magnitude as x" moves away from 
xp = 32 since h, decreases away from its maximum. Al
though experimental data arc likely to contain a combina
tion of independent proportional and additive errors with 
(CT,)" , « CT,)p<op , we shall not investigate the effects of 
such composite errors here, but the fitting program used for 
the present inversions, LEVM, allows weighting with such 
a combination of error types.6•

7 

Figure 1.Additj\'f andproportional errorsfor t =4. produced with seed 1 
andwirh II, =0.01. 
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Equation (3) shows both how similar discrete-source and 
continuous-source inversions are, but it also makes clear 
the significant differences between them. One further com
mon feature of great import ance is the present treatment of 
the y", position parameters. The most significant way in 
which the present inversion method differs from most pre
vious ones is its inclusion of an arbitrary number M of 
source-function points whose positions are free to vary and 
are estimated as pan of the fining,' rather than being held 
fixed.I

•
3 Thus, it is often appropriate to fit first with M = I , 

then 2, and continue incrementing until no furt her signifi
cant parameter estimates can be obtained, either because 

(4) 

.It 

p(y )=d(y )= 2: dmS( y- y~), 
m - I 

where qm::::d", for a discrete distribution and q", ;wmc", 
for the continuous case. Then Eq. (3), which is necessarily 
approximate in the continuous case, readily allows u(x,. ,t) 
to becalculated when the pairs {qm ,y~} are known, and it 
further allows the {qm,y m}quantities, which define the dis
tribution, to be estimated when the u(x" .r) data values are 
known. It is important to emphasize that the present inver
sionapproach thus involves a weighted summation overthe 
kernel whether the source is discrete or continuous. 

Data are not only discrete but usually contain errors, 
SO one must generally estimate all significant {q m,Ym} val
ues from noisy data, umeas(x " .r). Here I shall present some 
inversion results for exact data and for noisy data of two 
types. To allow direct comparison with the results of Craig 
and Thompson,' I take O';;x. ,;;64 and y, = 32. Exact 
discrete-source data were thus calculated from Eq. (3) us
ing double-precision arithmetic with M =I and d I =I. For 
Ihe present analysis. the two types of noise involved either 
proportional errors or additive errors, defined by 

_ o,Iz,( z) -~ S(z) . In keepi.ng with the approach of Ref. I, 
~e diffusion coefficient D IS initially taken dimensionless 

d equal to urnty, 
an Although both .r and y are space variables here, for 

y distinction I shall use the x variable only for the data 
~ the y variable only for the source function. Because 
~peri men t a l . dat,a are di sc re t ~ , let x-x".' with O ~ n ~ I~ . 
S'net a distnbutlon may be discrete. connnuous, or pOSSI

b;y a combination of the two, it can be expressed as f( y ) 
~ d (y)+ C(Y) , where d(y ) includes all discrete lines and 
(Y) all continuous distributions. For the present work, 
~he r e only 'either discrete or continuous source distribu
tions need be considered, take f(y) =p(y ), where p(y ) is 
either d(y ) or c(y) . 

Consider now the estimation of M points of the p(y) 
distribution, each located at ym ' where l ';; m ';;M . Then for 
the discrete case, 

and dm is the strength of the m th line. Here the d ; quanti. 
tics do not represent points on a continuous curvesince the 
distribution has been assumed to be discrete. The situation 
isdifferent for a continuous source function, one where Af 
discrete inversion estimates indeed approximate a continu
ouscurve. Therefore, set P(Ym)= c(Ym)E cm. The integral 
of Eq. (2) immediately reduces to an exact sum when f(y) 
isreplaced by the above expression for d(y ), but it must be 
approx imated by a numerical quadrature for the continuous 
case. Let w'" denote the required quadrature weights. It 
then follows that Eq. (2) may be written as 

.It 

u(x. ,r )= 2: qmh ,(x . - Ym), (3) 
m - I 

um",(x . ,I ) = u(x " , /)[ I + CT,P (O,l. )l , 
and 

um",(x. , r) = u(x" , I) + u(xp ,/) CT , P (O,l.) , . (5) 

respect ively, where X ' I is the value of x at the peak of the 
U(x" ,I) response curve. Here P(O,!n) denotes a value 

(1) u(x )= r~ K (x ,y )f (y )dy ; 

K(x ,y ) is the kernel or weight function; and u(x ) is the 
response function, usually represented by discrete data. In
version to find f(y ), given the data and the form of K(x,j ), 
is well known to usually be an ill-posed problem for this 
integral e2uation, especially when f(y) is a continuo;S 
funcrion.j: For such situations, the estimated source func
tion is extremely sensitive to small changes in the data. By 
contrast, a well-posed computing problem is one where the 
solution exists and is unique, and small changes in the da~ 
result in only small changes in the computed result." ~~ 

Formany situations, including diffusion, it is possible 
to express the kernel in convolution form. Then, Eq. (1) 
becomes, when parameterized for the one-dimensional dif· 
fusion prob lem mentioned above, :1 

U(X,/ )= f .h ,(X- y )f (y )dY , 

where the parameter t has been introduced to allow ~~ 
specification of the time after t :::: O at which a diffusIOn 
profile is measured. The general diffusion kernel may be 
writ ten 

h ,(z )= {3(Dr ) - II' exp( - z' /4DI) , 

where Craig and Thompson' have used {3= 41t, a value 
which will also be used here for easy comparison of resuUS. 
But the conventional value, ,B:::: (47T)- II2, is consistent :V l t~ 
the boundary condition u(x, O)= f( x ) because! in the hnllt 

MROOUCTION 

In a recent study concerning the difficully of inverting 
Laplace transforms accurately, Craig and Thompson ' high
lighted the numerical difficulties of inversion by treating 
explicitly the recovery of a delta-function source distribu
tion from neisy data arising from one-dimensional diffu
sion sampled.discretely over a restricted range of distance, 
x min to xmu ' They characterized this problem as "impos
sible,t. because they state that accurate estimation of the 
spatial temperature-distribution source function at t =:O 
from the spread-out, no isy diffusion data profile at some 
later time t > O is "tantamount to reversing entropy," As I 
shall show, a good estimate is indeed possible for a della
function source. 

Foran arbitrary source distribution, Allison/ has cited 
references to related diffusion-type problems where one 
wishes to infer a past state of a system from its present 
state, called by him " travel in the past," or " the recovery of 
past events." Furt her, a recent inversion treatment of diffu
sion and convection of a groundwater contaminant] shows 
that even in the presence of noise it is possible to obtain an 
approximate, but useful. estimate of the time-dependent 
continuous-function source distribution. In the following, I 
shall follow Craig and Thompson by assuming that all 
quantities such as x and t are norm alized and dimension
less. 

Many inversion problems of physical interest involve 
the solution of the inhomogeneous Fredholm equation of 
the first kind for the unknown source function f (y) ,.where 

The recent conclusio n of Craig and Thompson [CompoPhys. 8, 648 (1994)] that the inversion of 
spatial diffusion data to estimate accurately an initial della-function temperature source distribution 
is an unstable, impossible problem. is demonstrated to be fartoo pessimistic. Instead of inverting 
such data with a method appropriate forcontinuous distributions as they did, inversion was carried 
out with one appropriate for a discrete distribution. The inversion involved simultaneous 
estimation of both line strengths and their positions. It yielded highly accurate estimates of the 
strength and position of the source, even with very large amounts of noise. Several inversions of 
noisy dataare illustrated for the normalized time value used by Craig and Thompson and for very 
much longer times. Further, it is demonstrated that even for very noisy data it is possible to 
discriminate between the presence of one line or of several lines, and to conclude unambiguously 
whether a given source distribution is discrete or continuous. Finally, a closely related method 
appropriate for estimation of continuous source distributions was used to invert diffusion data 
calculated from a very narrow, continuous source distribution approximating a delta function. Even 
with noise present, such continuoussource distributions can be reliably estimated, but the narrower 
the distribution the less well can it be distinguished from a single line, and the less importantsuch 
discrimination becomes. © 1995 American Institute of Physics. 
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and/or because errors in the data limit further estimation. 
Now let us distinguish between the discrete andcon

tinuous inversion methods considered here. Let "DV" 
stands for "Discrete inversion with all source parameters 
free to Vary," and "CV" designate "Continuous inversion 
with all source parameters free 10 Vary." The DV and CV 
designations refer to the two kinds of analysis methods in
corporated in Eq. (3). Because of the similarity between 
these approaches. it turns out that eitherone can be used to 
determine whether given data involve a discrete or a con
tinuous source distribution. Thus. it is unnecessary to make 
any initial assumptions about the character of the distribu
tion. In fact, inversion analysis of noise-free or moderately 
noisy data by either method allows an unambiguous deter
mination to be made between any source-estimate points 
associated with a discrete distribution and any associated 
with a continuous distribution." Once this determination 
has been made, however, DV inversion should be used for 
discrete-source situations and CV for continuous- or 
continuous-and-discrete-source conditions. Such discrimi
nation is further discussed below. 

DV inversion,6- 1O is simple in principle and involves 
just the weighted, nonlinear-least-squares fitting of all thes {dm,Ym} parameters of Eq. (3), with the left-hand side re
placed by umeu(xn ,r). CV inversion is similar but involves 
the weighted, nonlinea r-leas t-squa res estimation of the 
{em,Ym} parameters." A computer routine for DV inversion 
has been a part of the general i mpedance-s peclroscop~ 
complex-nonlinear-Ieast-squares fitting program LEVM6•s for the past decade. This program was recent l ~ generalized 
10 include the CV fitting procedure as well. It involves 

<: extended trapezoidal quadrature with weights which ac
count for nonequal spacing II of the Ym values and yields 
satisfactory results for the finite-length range - oo<Y min to 
Ymax<co , especially when the emend pointsare adjusted to 
help correct for the effects of a truncated range.' It is worth 
remarking thai Ym values obtained from the DV and CV 
inversions of the same continuous-source data generally 
differ somewhat. For Ihe presenl inversions, LEVM was 
run with a stringent converyence criterion. and it itself in
volves some regularization .3 aris in~ from the nonlinear
least-squares' ~ ui ng procedure used. A minor difference 
between the DV and CV methods is that DV d; values 
should nOI be normalized, while CV c ones are generallym 
normalized so that the area defined by the continuous
distribution curve is unity. 

Because the DV and CV inversion approaches essen
tially differ only in Iheir weighting and normalization, 
much of the present discussion of the DV method also ap
plies to the CV one. When il is known a priori thai all the 
distribution-strength parameters must be ~O. the usual 
physical situation and the one appropriate for the present 
analysis. a constraint of this type is included in the inver. 
sion procedure. although with the present variable-j ; val
ues it is not usually needed. But no other constraints are 
needed for inversion of either discrete or continuous data. 
In particular, no other a priori assumptions whatsoever 
about the form of the distribution need to be included in the 
inversion procedure. Whether the distribution is foundto be 
discrete or continuous is entirely determined by the data 
fitting, not by an initial choice of the DV or CV approach. 

! 

10 

I _ L" r'1
 

6 r ( ~
 
' r r ~ 

'f ) \ 
0 1 J., 

o ~o :10 

Pu cll"o 

Figu" 2. From topto bouom: represeuauon of . de/ra./uncrilJn,= 
distribution centered at aboul 32; resulrofa second-order regular_ 
inversion tofindthesourcefunctionusing t =4 data with J%proportWMJ 
errors;and resultofa maximum -enIropy inversion of the same dara; 0IIt 

whichconstrainsthesource estimatesto be non-negative. The designatii:il 
"Pixel No." refers to the presenty variable. ReproducedfromRef. I, 
Fig. 5. 

One thus does not need 10 assume initially that the"diita 
arise from a discrete (or a continuous) distribution to find 
and estimate the proper distribution. But il should be noted 
that inversion of a discrete distribution is weJJ-posed and 
that for a continuous one is generally ill-posed. 

I. rlV6IS1ON IIfSIlI.TS 

A. Den.tlB1et1on source dlln;buUon 

1. 01111 with 1=4 

Although they characterized the recovery of a delta; 
function source distribution from noisy diffusion data asa~ 

impossible problem, Craig and Thompson' presented re-: l 
suits of two different inversions for the choice r = 4. Figure r 
2 reproduces their Fig. 5, which illustrated these results... ' 
Note the oscillations in the middle-panel inversion results. 
Craig and Thompson conclude that " the (maximum
entropy) recovery manages to exploit the bulk of the un! 
contaminated information in the data and can be plausibly 
interpreted as a minimum structure model of the sou~ 
funct ion." But even these results, whose peak occursclose 
to the correct value. are of low resolution and are so much 

Proportional errors Acouw e errors 

SF d , y , SF «, y , 

1.26X lO- 1J 1 ~ 1. 4 X I O -1 " 32~9 . 4 X IO-IS 1.24 x lO- 13 1 ~ 6 . 2 xlO -l S 3 2 ~ 2.5X 10- 1• 

0.0101 0.9998:0.0011 32.0002:0.0008 O.OtO I 1.0007:0.0032 32.0005: 0.0128 
0.3051 0.9945: 0.034 31.989 : 0.023 0.3038 1.0214: 0.094 32.011 : 0.0376 
1.010 0.9893:0.112 31.923 : 0.063 1.013 1.071 : 0.320 32.022 : 1.194 
2.029 0.9793:0.222 31.89 : 0.08 2.025 1.143 : 0.640 32.028 : 2.24 
1.620 1.171 : 0.211 32.09 : 0.Q7 1.931 1.431 : 0.610 31.193 : 1.71 
2.461 0.7640:0.210 31.97 :0.07 1.899 1.062 : 0.599 33.009 : 2.26 

dened that one would be unlikely to think of cornpar
~the result with a delta function unless prior information 
ll1~ut the actual function were available. 

Itis reasonable to ask. Why were these unsatisfactory 
;Suits obtained and aresuperiorones possible?The answer 
Ji 

thefirst part of the question is that data derived from an 
~e rentl y discrete distribution were analyzed by methods 
developed for. and appropriate for, a continuous distribu
tion. These methods start with a set of fixed points in Y 
space, usually equally spaced, and calculate estimates of 
tbe SOurce distribution at each of these points.I •.> They have 
dsobeen 'r,~lied in the past to other discrete-distribut ion 
situations.I I again leading to unsatisfactory results. As 
shown below, much superior results are indeed possible 
usingDV inversion. In particular, such inversion with the 
, position parameters free to vary eliminates the oscilla
ti~ns usually characteristic of fixed Ym inversion 
methodst.' ·I) (see the middle panel of Fig. 2). 

Some DV inversion results are shown in Table I for 
the t ~4 case considered by Craig and Thompson. The x 
range used here was 12(0.5)52, and each calculated data 
value was truncated after 13 decimal digits. The results 
shown in the table were obtained usin§ the LEVM program 
with function-proportional weighting .7 for the data with 
proportional errors and with unity weighting for those con
taining additive errors. The % error column lists values of 
100"" and only the results of M = 1 fits are shown. The := 
valuesare estimated standard deviations of the parameter 
Cstlmates. Finally, the quantity SF is the relative standard 
deviation of the weighted data-fit residuals, and, as we see, 
itis anexcellent estimator of fIt when the latter is small. 
. For zero added errors, it is evident from Table I that 
the inversion method recovers the original parameters with 
even less estimated uncertainty than the error arising from 
the truncation of the data values. So far so good, but what 
happens when inversion is carried out with values of Al of 
Zor larger? For M 'i> 2, one again finds essentially exact 
estimates for {d l ,y, } and estimates of dm (m> I) of 10- ' 
or less. unequivocally demonstrating that the source distri
butionis discrete and involves only a single delta function. 

In the present work. the same random-error seed has 
been used in form ing all noise contributions. unless other
wise noted. It was used for the row marked 200-1 in the 
table, but different seeds were used for the noisy data em
ployed for each of the last two rows. In Fig. 3 the exact 
data,the data with 200- I% additive errors, and the fit points 
areall compared. The uncertainties of the {d, ,y , } param
eter estimates listed in the table are clearly much smaller 

for the proportional-error situation than for the additive
error one. just as one would expect. Three fits for 200% 
error are shown in the table to allow comparison of results 
for data with independenterrorsets, each with the same fIt ' 

These results show that even with very large errors in the 
data, DV allows one to obtain good estimates for the 
{d I ,y I} pair that defines a single delta function. 

For M 'i> 2 fits of noisy data constructed with a single 
delta-function source distribution. the situation is somewhat 
different. For proportional errors, one finds similar results 
to those mentioned above for the zero-added-error case. but 
for additive errors the standard deviations of all m > I pa
rameters are usually very large. even when the {dl .yIl es
timates themselves are reasonable. Again. such results al
low one to conclude that even with large error present one 
can. identify the presence of a single line, characterize it 
well. and rule out unambiguously the presence of two or 
more lines or of a continuous distribution. Further, earlier 
work on the electrical response of dielectric materials dem
onstrated how well two spectral response lines of much 
different strengths and nearly the same relaxation time can 
be resolved and quantified by DV inversion of their fre
quency response data.8 
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Figure J. Data values: exact I=4 cu''''e; inversion fil of data wilh a,=2. 
additive; andnoisydau: with a, =2, additive. 

COMPUTERS IN PHYSICS. VOL 9. NO. 5. SEP/OCf 1995 549 



000 /~'" \ = 4
t=4 ,/ : '\ 

/
/
/ 

lL/ Ue=O 

- . . ~"-" ~cj' ~50-(j ;° 10 20 .?>() 4 X 

;x: 
~. 

r:::; 

--0 0 5 

-------I-' 

COMPUTERSIN PHYSICS, VOL 9, NO. 5, SEPtOCT1995 551 

R(xn,t)"' [ udf (x n.r) -u' df (x n,t )]f Ud/ Xn,I) , (9) 

whe re "df" identifies the delt a-function data and " ad]" the 
approxima te-de lta-func tion data . Results are show n for 
1 2 ~x ll ~ 5 2. Note that the data values cover a range from 
about 21T at their peaks down to abo ut lO- 1O at their ex
tremes. Thi s relative difference curve shows that the ad! 
data are very slig htly flatte ned and wider than the df data, 

Figure 7 and Table Jl show source-dis tribution esti 
mates at T= 4 for added proportional erro rs of zero and 
0.0001. Let us first discus s the II, =O result s. Tabl e Jl shows 
that as M increases, the fit relative standard dev iation, SF' 
decreases extremely rapidl y, ind ica ting that on ly a few Cm 
points are need ed to fit the data very well. For the M = 7 
result s show n in Fig. 7, SF has dec reased to the extraordi -

allows them to be adequate ly disting uished. Th erefo re, Fig. 
6 shows the relative difference betwee n them, 

Figu re6. The relative differencebeTWeen data setscalculated with exact 
andwithapproximatedelta·funcrion source distributions.Nonoiseadded. 

' . Y. S, ' . Y. 

1.032 '" 0.0035 32.000"' 0.0022 0.0302 1.032 = 0.0035 32.000 =0.0022 

1.397 '" 0.0092 31.8 2t"'0.OO tl O.OOtl 1.387 = 0.039 31.820 '" 0.0048 
1.397 '" 0.0092 3 2 .1 79~ O. OO li 1.4 15 =0.039 32 .177:tO.OO47 

0.5328 = 0.0075 31.692:t Z.4 XlO- 5 0.0010 7.5 x 10- 5 :: 5.44 30 .18t "' 0.05t 
10.4947) (2.3 x 10- " ) 

2.1774 ~ 4.0 X 10- 6 32.000::2.4 X 10- 5 0.56 93 = 0.8463 31.850:t 7.6X 10- 4 

12.2567) 11.5745) 

0.5328 '" 0.00 75 32.308 ::2.4X 10 - 5 1.1990 '" 0. t 455 32.204:6.9 X 10- 4 

(0.4947) (1.1596 ) 

0.0010 0.5794 = 0.0 134 3 1.7 
2.180t z; 0.0022 32.002 :t1.6X 10- 4 

0.5738 '" 0.0 146 32.3 

s, 

1.3 X 10 -6 

dea l with a continuous distributio n rather than a discrete 
one. A suitable approx imation for finite X is5 

f (y )= lim ( A/,J;) exp{- [ A(Y- Yo)f}, (7 ) 
,-" 

which becomes exact in the large-Xlimit. Here Yo speci fies 
thecenter of the distribut ion, aga in taken as 32. For finite X, 
thediffusion data are then given by 

u(x" I) =[41. J(7T!Dt)]r~ exp{- [ (x n - y )2/4D t ]) 

x exp]  [ A2(Y- YO)2 ]}d y , (8) 

1ibI 
e 
Il. Comparison of exact and nuisy inversien results for a continuous source distribution with 1=4 and :\=4. Exact valuesare enclosed in 

p""'tbeses, 

~ O't =o O"t ""Q·OO l 

which is again a Gaussian. 
..". The rem aining results we re obtained using the 
coarinuous-distribution inversio n subro utine CV descr ibed 
earlier. Because this procedure involves the s imulta neo us 
determination of esti ma tes of all the em and Ym values dur
iag the iterative, weighted least-squares inversion. one can
notuse such techniques as Richardson extrapolation to irn

.1 prove integration accura cy. Since source distribution s are 
usually normalized to unity area, as is that of Eq. (7) , 
proper comparison between such a known dist ribut ion and 
anestimated one requires area norm alization of the latter as 
well, using the same approximate integ ration proce dure as 
that used during the inversion. The Cm values presented 
here have bee n so norma lized. Note that since area norma l
ization cannot be used for the choice JW" = I , the line in 
Table 11for this value used DV inve rsion as above , w hile 
theothers involve CV continu ous-function inversion . Thu s, 
if only a sing le discrete line were present. exact inversion 
should yield the va lue d. =1 for this case , 

l. CV InVllf'BIDn Dftll'l'Dl'-f1'IJIJ dIllB 

,~o illustrate the estimation of a very narrow continu ous 
distribution, I take 1.=4 in Eq. (7). yielding a source widt h 
at half height of about 0.4, from abo ut y = 31.8 to Y= 32.2. 
When the noise-free data calculated w ith this value from 
Eq, (8) are plotted with similar data calculated for an ideal 
delta-function source , the differ ences betwee n the resu lts 
are sufficiently small that neither a linear nor a semilog plo t 

~Seed 1 
............... Se ed 2 
C3-6-€l-&fl Seed 3 

Exa c t 

5000 

72 1 u e = O, l 

~5 21 
32 ~~==ruu. u , u , u u '=dl 

J 

J , .,
12 6L , ~-----.-~ 

Figu re5. Dependence of inversionest~mates ofYl' the line.so/lr;;; ~. 
tionestimate, on t for Ut =0.1proportional-noise data for three different 
random-error seeds. The data [or seedI afepresented inFig. -I. Inoro; 
to allowthe vertical linesshowing the z one-standord-deviationnmge ;;' 
be easily distinguished, those for seeds 2 and3 have been displaCd 
slightly to theleftand,ight of their proper positions, respectively. 

8. ApproxlmatB-delta-runCUOn ClInlinuoUI llIurca dlatrlbunon 

1.81ckgrtJlJ1ld 

exte nd over a fixed range, as is the case here. But if one 
could exte nd the measured x range as t increased , this ef: 
feet could be coun teracted and good estimates of {dt ,Ji l}' 
co uld then be obtained if ue remain ed constant. If this were 
possible, the present problem would not be impossible even 
for arbit rarily large t . For the nearly flat noisy data showo 
in Fig. 5, it is clear that an excellent estimate of the t=O 
so urce distribution ca n be obta ined from diffusion-profil{ 
measurem ents made long thereafte r. Thus, the inversion 
prob lem is neither ill-posed nor particul arly ill-co nditioned] 
It is therefo re indeed possible to infer Same past events 
accur atel y long after their occ urrence and so, in the sense' 
of Craig and T hompson , to reverse the incre ase in entropy 
as diffus ion prog resses. 

Alth ough discrete so urce distributi ons made up of one .o~, 
more idea l delta -function comp onents are physicall y reallZ-, 
able to high approximat ion in spectroscopy.f where isolated.t\ 
spect ral lines or relaxation times of negligi ble breadth ap:j 
pear, the ass ump tion of a spatia l temperature source o~; 
delta-f unction character, such as that considered for .the, 
above diffusion problem, is physically nonr ealizablc an~ 
ca n only be approximated in experimental s i t uatlons~ 

T herefore , it is important to invest igate inversion for data 
construc ted with an analytical approximation to a del~_ 
function for the source distribution, thus requiring us to 

Figure 4. Data curves andpoints with a, :;0.1 proportional errorsfor 
t =1024,4096, and16,384. For thenoisydata,doued linesconnectingthe 
discrete points have been included to guide theeye. 

2. RBtroaeliV. InvB1'SlDn f01' /arg. I 

For t = 4, the data curve is still relatively narrow, and we 
have see n that DV inversion of eve n very noisy t > 0 data 
allows the / = 0 source function to be very well estimated. 
But what happen s when the measurement of the diffusion 
pro file is made at much longer times ? In this sect ion, some 
inversion results that attem pt to answer this question are 
prese nted. Take the x range as 0(0.5)64 and consider 10% 
proportion al data errors analyzed with function
proport ional we ighting. Figure 4 shows the exact data, 
noisy data , and fit results for t = 1024, 4096, and 16384. 
Si nce the exact data curves are nearl y flat in this long-time 
region, there will nOI be much differenc e here between pro
po rtional an ~ additive erro rs. 

Inve rsions were made for data with 4.,;, ";1 6384 for 
eac h of the th'ree see ds used fo r the 200 %-erro r data in 
Tab le 1.The result s for Yt and its estimated standard devia
tion are shown for t =256, 1024, 4096, and 16384 in Fig . 5. 
The response lines sat isfy the equation 

Yt=(YI)",,,(J+al) (6) 

very close ly. For see d I, a=-2,84X 10- ' , while it is posi
tive and larger for data calculated wit h the other two see ds. 
Alt hough a is nearl y proporti onal to II, for seed 3, it is 
about + 9.2IX IO- s for seed I and 1I, = 0.05, The d , esti
mates were found to be independent of I for t > 4 and were 
abo ut 0.997, 1.012, and 1.008 for seeds 1, 2, and 3, respec
tively. As Fig, S shows, the errors in Y1 begin to be suffi
ciently large by , = 4096 that diffe rences between data con
structed with different seeds begi n to become significant. 
For this value of t , the ratio betw een the peak value of the 
exac t data and the end values is only about 1.07, so the 
var iation is less than ere itself. A Monte Carlo study would 
allow one to exa mine the bias in the Y 1 estimates. For zero 
bias , the avera ge a should approach zero as the numb er of 
ind epend ent replicati ons is increas ed. 

As t increases, the decreasing variation in the exact 
dat a beg ins to be swa mped out by the noise when the data 
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yields good estimatesof the relevantsingle-line pararri Incidentally, one would e.xpect from the above results distribution points. whose positions would not. Such dis
it leads to a value of SF much larger than (J't . ,!i~, d"scussion that no meaningful values of Cm and Ym criminatorypower is one of the most important virtues of a~ rt:4 ,(~ \ = 4 

[,
 
As the results in Table II indicate, When <T ::'O "'~d Ibe obtained for <1, =0.001 and M ;;,7. And, in fact, variable YIII approach, as compared to one with fixed Ym
 

cannot be appreciably less than U~ . ClearJy, this r;slri' ,.S,.. ~ . true in some sense. But. suppose. for example, thai values.
 
2:. 1 ~ l' : 'tI\ limits the maximum numbe.r of significant so~ti on dUS ~ itia ll Y obtains Af = 7 fit-parameter estimateseither for Finally, it is of interest to examine the effec t of the 

parametervalues thatcan be estimated from the data b ~ fIl' ~ rro r data (not a viable possibility for real datal ) or number of data points on inversion results with the present .,,- j present method. For M = 2, the results in Table IT and ~ ' e It '" a fit of the noisy data with even ly spaced, fixed y m methods. Suppo se that we take an .r range from 22 to 42, 
j M= 2 , plotted in Fig. 7 show that for <7, =0.001 One can still o~ ~i1I s 8.U and then uses these estimates as initial values in 4 1 point s, instead of the 81 points used above for t = 4, 
1 ...~ • • t Exa c t: poinls \ 

tain good estimates, but by M ~ 3, the esti mates have d~e. , U~ t;ing of the noisy data with all parameters free and which extend from 12 to 52 . The data then decrease from O. 1 1 0 0000 ra: a.:O.OO1 \ 
riorated badly. The quannnes In parenthe ses in the middl th'~O.OO I. One then usually obtains a fit with SF near about 27T down to about 0.01. For the M = 7, <T,=O inver
M = 3 section of Table II are exact values which should J qcmand with several of the parameter estimates not very sion, SF was about sx10- 13

, and all the parameter esti
compa red with the fit values immediately above the ' ~. froDl the or iginal ones. Such estimates are shown by the mates were the same. Butthe M = 2, ut =O.OO l results were j I' M= 7 
Since LEVM allows any parameters to be free or fixed, ~ "ints denoted by the open double triangle symbols in Fig . somewhat different. The estimated standard deviations of o - Exa ct: lin e 
last M = 3 part of the table shows what happens When tw fWe see that although the top four points are reasonably the Ym values were about ten times larger than those inr. 0 1 j 0 ' , , " E.XDct: poi n ts \ 

u. i COOOO Fit: a. = O Ym:s are held fixed during I h~ inversion. Much improv~ ~ the hottom two are terrib le, and the seve nth, whose Table II but are still essentia lly negligible. For the c m 's, 
1 I 00000 Fit: <1. = 0 .0 0 1 , estimates arcthen obtained, With a standard deviationof the '. estimate was about 3 X10- °, was far too sma ll to fit on however. the two standard deviation estimates were about 

ove rall fini ng errors of about 7%. These results, and th.;;e th' figure 0.28 and 0.43, by no means negligible. But the actual errors . 
with M = 1 and 2, are suffic ient to again allow One to iden "The reader might still conclude that the top four points of the two em values were only ahout 0.04, only slightly 

3 1'.2 31'.73 2'.2 32'.7 
Y tify both the type of distribution and to estimate its paramo were close enough to allow distribution parameters to be larger than those obtai ned with the 81-point fit. Thu s, the 

eters. "t imated. But for the present M = 7 fit the estimated rela estimates were appreciab ly better than indicated by their 

Such estimation may be accomplished withdirect non. tive standard deviations of the Y.... parameters were of the poorly estimated standard deviations. In this example. for 
Figure 7. Comparisonof the exact cominuolLS source distributionand 

linear least squares fin ing, again using LEVM. Althou&!! order of 100 and those of the c m values were of the orde r of noisy data a narrower data range leads to worse standard
inversion estimates obtained with AI =2 and 7, both with andwirhour 

there are too few {em ,Ym} values for the noisy .If = 2 and ) 10'. Thus, statistica lly speaking, one cannot distinguish any deviation estimates but to only a negJigible increase in the 
proportionalerrors present. 

results in Table II to allow good fining statistics to be 0b of them from zero. Nevertheless, some of the para mete r actual errors of the parameter estimates.
 
:£ rained, fits of the M = 2 and bottom M = 3 results to Eq. (7) values show only relatively small errors and are therefore
 

neve rtheless yielded for (A,yo) the estimates (3.95,32) and still useful. Regularization inversion procedures for con
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l.: (3.84,32), respectively. An important virtue of the preseiit tinuous distributions with noise. where the Y", values are 
narily low value of 9X10 - 12. A virtue of the present inver CV and DV inversion methods is that one need not knoW' fix'd,I ) allow one to obtain a large number of poin ts to I much appreciate the numerous suggestions for improve os 
sion procedure is that it providesestimates of the standard the form of f( y ) or the most appropri ate value of M wh~ define the source distribution, but it is unusual to find un ment of this work prov ided by Professor W. J. Tho mpson. 
deviations of the estimated em parameters. For M = 7, the carrying out the inversion to determine these quantities. But certainty estimates quoted for these points. The present reo 
Y m and em relative standard deviations are of the order of silts suggest that estima tes of the standard deviations of all if an inversion estimate of discre te f(y) values suggesu 
10- 6 and. 10-', respectively. that a particular analytic form of the source distributionis free-parameter estimates should be cited for all inversion IffEBENCES 

The asterisk points on theM =7 curve were calculated likely, one can fit the noisy experimental data to an equa: results whenever such standard deviations are not negli
from Eq. (7) using the Y.. values obtained from the filling, I. J. D. Craig and A. M. Tho mpson, Compo Phys, 8, 648 tion such as Eq. (8) and obtain estimates of the relevant gible. .
 
while the open circles are the fit results at these same po , When the <T, =O.OOI, M =7 data were also inverted (1994).
 parameters of both the kernel and the source function. For 
sitions. If the fit were perfect , the asterisks would lie at the using different, more random, starting values for the param 2. H. Allison, Math . Sc ientist 4, 9 (1979) . the present noisy data, One such fit using Eq. (8) yielded' 
center of the circles. Although the overall fit is clearl y very eters andwith, as usual, stringentconvergence criteria, four 3. T. H. Skaggs and Z. J. Kabala, Water Resour. Res. 30, (3.9,32) and 0.9998 for (A,yo), and D , respectively, quite 
good, it is evident that the second points from the bottom ofthe c'" estimatesweredriven down to very small values,	 71 (1994). close to their exact values of 4, 32. and 1. Evenif an ina~ 
are slightly \00 high and deviate from their correct values curate initial value of D were used for the inversion, deter· of the order of 10- ' or much less. The value of SF on 4. E. Isaacso n and H. B. Keller, Analysis of Num erical 
by much more than their estimated uncertainties. The de convergence was slightl y smaller than that found abov e for Methods (Wiley, New York, 1966), pp. 21-22.mination of an adequate parameterized shape forthe sour~ 

function should be possible, and then direct filling could beparture from a perfect estimate of the actual source distri M= 7. Althoug h the relative standard deviations of the 5. J. R. Macdonald and M. K. Brachrna n, Rev. Mod. 
bution, even when the fit of the data involves an SF which three otherc'" values were much smaller than those of the Phys. 28, 393 (1956), see p. 416. used to obtain good estimates of all the parameters. includ
is approaching the accuracy of the data, is ev idence of the ing D . . .... first fit, they were still appreciably grea ter than unity. These 6. J. R. Macdonald and L. D. Potter, Solid State Ion. 23, 
ill-conditioning which must be expected for inversion of results strongly suggest that One sho uld carry out a new fit 61 (1987). The basic problem addressed here is one of disrin
continuous distribut ions such as the present one. Neverthe with .If no larger than three. When this was done, again 7. J. R. Macdonald, Elect rochirn. Acta 35, 1483 (1990) . 
less, it is remarkable that its effects are as smal l as they are with arbitrary starting values, the M = 3 results listed in the 8. J. R. Macdonald, J. Chern. Phys. 102, 6241 (1995). 

guishing in the presence of noise between a single del ta~ 
function line and a narrow continuous distribution. The 

here.	 middle of Table II were again found, bespeaking a true 9. B. A. Boukamp and J. R. Macdonald, Solid State Ion. larger A, the narrower the distrib ution, and thus the smaller" 
the zero-error value of SF will be for a given small value of -r least-squares solution. Thus, fitting with an inordinate ini 74, 85 (1994). 

S. CV invIlrIIon of noisy dati tial number of free parameters yields direct information on 10. J. R. Macdonald , J. Electroana t. Chern. 378, 17 (1994). M such as 2. There fore, as one might expect, for data wi~, 
11. 1. R. Macdonald, Electroch irn. Acta 38, 1883 (1993) . The above results make it clear that with no added error. small but non-negligibl e errors the harder it will be to dis the largest value of M worth using even when only rough 

one can obtain accurate enough estimates of poi nts on the tinguish betweena delta-function source distribution and~ parameter standard deviation estimates are available. Fur 12. J. L. Salefran and Y. Dutoit, J. Chern. Phys. 74, 3056 
narrow approximate one. But. luckily. the narrower th~distribution that it can be comp letely disting uished from ther, fining with different values of M allows one to distin 	 (1981). 

other types of distributions and that its parameters A and Yo continuous distribution, the better its approximation to ~ guish between discrete source points. whose positions 13.	 F. D. Morgan and D. P. Lesmes, J. Chern. Phys. 100, 
671 (1994). can themselves be determined with high accuracy. But in single line, and the less important it will be to dis tinguish should remain nearly independent of M , and continuous-

rea l life one usually does not have the luxury of dealing between the two. As the source distribution becomes n ar~
 
with data with vanishingly small errors. Data involving rower and narrower. the better it will be able to be repre:
 
ut = 0.001 proportional errors were used to obtain the sented by a single spectral line, and the greater will be i~
 
M = I, 2, and 3 results of Table II and Fig. 7. First note that robustness to added noise, as demonstrated for the above,
 
there is negligible difference between the <7, =0 and 0.00 1 DV results. Conversely, for a given noise level, the wider,
 
results for M = 1. This is because the goodness of fit is the source distribution, the larger the number of statistically
 
limited by fini ng a continuous distribution by a sing le-line significant SOurce parameters that can be estimated befoI'C
 
discrete one for this choice of M . Although such filling the noise becomes limiting.
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