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Abstract 

Widely used equations for the analysis of dispersive relaxation data for conducting materials, developed by Moynihan 
and associates more than two decades ago, are shown to be require correction. Corrected equations which can differ 
appreciably in their consequences from those of Moynihan et al. are derived and used to justify the empirical Barton, 
Nakajima, Namikawa (BNN) formula satisfied by much frequency-response data for disordered materials. The conductive- 
system frequency-response analysis described in the paper and the corrected Moynihan approach both allow arbitrary fitting 
models to be used. It is shown that, for one class of models, the two fitting approaches are identical and yield maximum 
information while, for other models, the fit information is intrinsically more limited and inaccurate. Improved methods for 
inverting transient-response data to yield the associated distribution of relaxation times and frequency response are compared 
with the approach Moynihan et al. used for the fractional-exponential fitting model (KWW), and a misconception in their 
work is corrected. Correct and incorrect ways to invert frequency-response data that include the effects of a high-frequency- 
limiting dielectric constant are illustrated for KWW response. The conventional KWW model yields physically unrealizable 
time and frequency responses, but a modification which restores realizability is developed. Analysis approaches are 
described which allow one to identify the type of dispersed behavior present in the data: either conductive- or dielectric-sys- 
tem response. Weighted, complex-non-linear-least-squares analyses of frequency-response data for Li20-A1203-2SiO 2 
glass at 24°C using an approximate KWW fitting model are compared with earlier fitting results of the same data obtained 
by Moynihan and others using the Moynihan et al. equations and fitting approach. Excellent fits were obtained over the 
entire measured frequency range when the fitting model included elements accounting for electrode polarization effects in 
the data. These effects are shown to make non-negligible contributions at both extremes of the frequency-response range. 
Such contributions, and the past use of the Moynihan approach, probably explain most previously unexplained excess losses 
found present in the high frequency region, ones which Moynihan and associates characterized as endemic to the vitreous 
state. 

I. Introduction 

This work is concerned with methods of  analysis 
of  small-signal frequency-response data that involve 
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dispersive conductivity-relaxation response. Such re- 
sponse is associated with the presence of  mobile 
charges in a material and leads to a finite, non-zero 
dc conductivity. Wide ly  used methods for analyzing 
dispersion in conductive systems, published more 
than 20 years ago by C.T. Moynihan and associates 
[1-5]  (collectively referred to hereafter as CTM), are 
discussed and corrected. Alternative methods are 

0022-3093//96/$15.00 © 1996 Elsevier Science B.V. All rights reserved 
SSDI 0 0 2 2 - 3 0 9 3 ( 9 5 ) 0 0 6 1  8-4  



84 J.R. Macdonald/Journal of Non-Crystalline Solids 197 (1996) 83-110 

developed here; their usefulness for both synthetic 
and measured data is demonstrated; and their predic- 
tions are compared to the CTM ones. What Moyni- 
han and his associates termed conductivity relaxation 
is here denoted as conductive-system relaxation. 
Since single-relaxation-time response is rarely seen 
in solids and liquids, the present work is concerned 
primarily with dispersed response. Discussion of the 
CTM approach, its corrected version, and their rela- 
tionship to a general conductive-system approach are 
presented in Section 6 and in Appendix A. A list of 
acronyms used herein can be found in Appendix B. 

Because the CTM work involves a distribution of 
conductivity relaxation times, and thus applies to 
conductive systems with dispersive behavior, it is 
important to distinguish between such systems and 
those with purely dielectric response, dispersed or 
otherwise [6-10]. To do so, the subscript 'C '  will be 
used, when appropriate, to identify model response 
and response parameters arising from charge motion, 
and the subscript 'D '  will be taken to designate those 
associated with dielectric response arising, for exam- 
ple, from induced and permanent dipoles present in 
the measured material and possibly even from non- 
percolating charges. 

We shall be concerned with all four of the re- 
sponse levels routinely employed in impedance (more 
generally: immittance) spectroscopy (IS) [6,11]: the 
complex dielectric constant e(to) = E'(to) - i e"(to); 
its inverse, the (electric complex) modulus, M(to) = 
M'(to)  + iM"(to); the impedance, Z(to) = Z'(to) + 
i Z"(to) equal to M(to) / ( i  to C v); and its inverse, the 
admittance, Y(to) = Y'(to) + iY"(to). Here to is the 
angular frequency, and C v is the capacitance of the 
empty measuring cell. For identical plane-parallel 
electrodes of area A and separation d, C v = e v A / d  
where e v is the permittivity of vacuum. The sub- 
script 'V '  is used here rather than the more common 
' o '  or '0 '  to avoid confusion with quantities defined 
at to = 0. Further, the superscript asterisk, sometimes 
used to distinguish complex quantities such as e or 
M from real-part quantities, is omitted as unneces- 
sary here and also because it can be confused with 
the usual designation of the complex conjugate of a 
given complex quantity. The distinction between an 
immittance level and dispersive model response at a 
given level is an important one. One can express the 
response of a given model at any of the four levels, 

but such expression at one of these levels is often 
more instructive and usually more appropriate physi- 
cally for a specific model than such representation at 
one of the other levels. Not only does immittance 
spectroscopy include electrochemical impedance 
spectroscopy and dielectric relaxation spectroscopy, 
but it also includes the small-signal ac response of 
semiconductors and biological materials as well [11]. 

Instead of using the impedance and admittance, it 
is often appropriate to use the complex resistivity, 
p(to) = ( C v / e v ) Z ( t o )  = p'(to) + ip"(to), here writ- 
ten with a positive sign for the imaginary part in 
order to agree with the conventional definition of the 
sign of Im[Z(to)]. By contrast, the complex conduc- 
tivity p(to)-l will be written as tr(to) = 
( e v / C v ) Y ( t o )  = o " ( t o ) +  icr"(to). Then, for exam- 
ple, M(to)=( i to¢v )p ( to ) .  No 'C '  subscripts are 
needed for such quantities as p and or since they are 
usually treated herein as intrinsically conductive- 
system quantities, but to allow possible distinction 
between the quantity O ~ -  Pco~, introduced below, 
and (tr®) 1, the 'C '  subscript will be used as shown. 
In accordance with common usage, I shall hereafter 
omit the single-prime superscripts from the dc resis- 
tivity, p~ = P0, from its inverse, the dc conductivity 
o-'(0) - tr 0, and from all frequency-independent parts 
of the resistivity and dielectric constant quantities. A 
caret will be used when it is desirable to distinguish 
between a model quantity and corresponding data. 
Thus E(to) will represent model response and ~(to) 
experimental data, both at the complex dielectric 
constant level. 

In the past, dispersed response of a dielectric or 
conductive system has often been analyzed by writ- 
ing o-(to) in terms of a continuous distribution of 
weighted Debye-like processes [12-16]. Each such 
process may be considered to involve the response of 
a differential resistance in series with a differential 
capacitance, with all such processes in parallel. 
Since such a dielectric-system approach leads to 
tr 0 = 0, a separate treatment is required to obtain a 
non-zero expression for tr 0. By contrast, it is natural 
to express the response of a conductive system at the 
impedance (or complex resistivity) level in terms of 
a series combination of basic elements, each made 
up of the parallel combination of a differential resis- 
tance and a differential capacitance. Then, Z'(0)-=- 
R 0, and P0 and tr 0 are intrinsic parts of a unified 
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calculation and are thus non-zero. When the parallel 
elements are not taken to be differential, one obtains 
a discrete, rather than continuous, distribution of 
relaxation times (the Voigt response circuit [11]). 
Analysis using a continuous or discrete distribution 
of relaxation times (DRT) model at the Z-level was 
suggested as early as 1956 for a conductive system 
by analogy to the corresponding dielectric DRT ex- 
pression [6,17, p. 406]. The subsequent CTM M-level 
approach is closely related to such an analysis 
method. The above two disparate descriptions of 
relaxation response are often described as parallel 
and series approaches and are discussed in detail 
elsewhere [6,8,18]. Further, it has been shown [8], p. 
R60 and Fig. 6, that parallel or series structure can 
be alternatively represented exactly by sequential, 
i.e., hierarchical response structure. Finally, a unified 
approach to both types of descriptions has been 
proposed [6]. 

It is a truism, but, nevertheless, an important one, 
that the principal aim of experimental measurement 
is to gain knowledge and insight into the processes 
leading to the observed response. To do so usually 
requires the analysis of a parameterized model, one 
thought to incorporate at least the most important 
physicochemical processes occurring in the material 
system, including the electrodes. There has been 
considerable discussion concerning the virtue of ana- 
lyzing conductive-system response at the modulus 
level (probably first introduced in the dielectric con- 
text by Schrama [19] in 1957, long before its use by 
CTM) or at one or another of the other three levels 
[20-23]. While it is always desirable to plot experi- 
mental data at all four of the IS levels, since the 
shapes of the resulting complex-plane curves and the 
semilog or log-log curves of the real and imaginary 
parts vs. frequency are often somewhat diagnostic of 
the dominant processes present [11], the choice of 
which level to use in analyzing the data is, in my 
opinion, largely a non-problem unless one wishes to 
identify whether the data arise from conductive-sys- 
tem or from dielectric-system response (see Section 
8). 

The reason why the choice of analysis at the 
impedance or modulus level is unimportant is as 
follows: all IS data should extend over as wide a 
frequency range as practical, and their real and imag- 
inary (or modulus and phase) responses should be 

analyzed simultaneously with weighted, complex 
non-linear least square (CNLS) fitting of an appro- 
priate model, yielding estimates of all parameters 
and of their standard deviations. The analyses of 
both simulated and experimental data in the present 
work use the very general and readily available 
CNLS program LEVM [24-27]. With proportional 
weighting (PWT), appropriate for constant-per- 
centage random errors but independent of their pres- 
ence, such fitting of ideal or non-ideal data with a 
given model shows that one obtains exactly the same 
fit, and exactly the same parameter estimates, 
whether the fit is carried out at the impedance level 
or the data and model are transformed to the modu- 
lus level before fitting. 

Similar agreement is obtained for fitting at the 
dielectric-constant level and at the admittance level, 
where again the data differ only by a frequency-de- 
pendent weighting factor. Such exact agreement only 
occurs when both real and imaginary parts are fitted 
simultaneously with CNLS. For an exact match be- 
tween noiseless data and a fitting model, fits at all 
four levels yield identical results, but for ordinary 
experimental data, where the errors in the data are 
moderate, the results for impedance-level and for 
admittance-level fitting are usually quite close. Fit- 
ting using CNLS allows one to avoid the cumber- 
some and inaccurate graphical and subtraction ap- 
proaches to IS data analysis which are still fre- 
quently used [28-32]. It also provides a measure of 
the degree of fit of the model to the data based on 
the standard deviation of the residuals, S F, and esti- 
mates of the uncertainties of the individual parameter 
estimates as well. Some examples of CNLS fitting of 
IS data appear in Refs. [7,9,10,26,27,33-38]. 

In accordance with the above definitions, Z(to) 
will be used to denote the full impedance of a given 
response model, while Zc(w) will include only that 
part of it associated with conductive-system re- 
sponse. Finally, such quantities as eD(0) = e~(0) = 
ED0 and eo(~) = ED(~) ----- EO= designate response at 
sufficiently low or high frequencies that extension of 
the frequency range in either direction leads to no 
change in model behavior in the extended region. 
Although it is quite possible that a given conducting 
material might show both conductive-type and di- 
electric-type dispersion within the frequency range 
available experimentally [9,38,39], in the present 
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work I shall only be concerned with conductive-sys- 
tem dispersion, hereafter denoted by CSD, rather 
than dielectric-system dispersion (DSD). But all real 
materials, whether conductive or not, exhibit dielec- 
tric response, at least through the quantity eD=. Here 
it will be assumed that any relaxation associated with 
such behavior occurs well beyond the highest mea- 
sured frequency. Then, CD0 = ODor, a quantity which 
must not be neglected [39]. 

It has not always been fully realized that CSD 
alone can often lead to important contributions to the 
overall dielectric constant. Thus, one needs to intro- 
duce the quantities ec0 and Cco~, where Cc0 > Cc~ 
for dispersive response. The full low-frequency limit- 
ing dielectric constant of such a system can then be 
written as c o = Cco + COo o. Similarly, ~ = Cc= + CD~. 
Note that if one defines A c as e o - eD~,  it here 
equals Cc0, a purely conductive-system quantity un- 
der the present assumptions, even though it formally 
seems to specify the strength of a dispersion process 
at the dielectric level. In many treatments of conduc- 
tivity dispersion (conductive-system response), c 0 
has just been defined as the low-frequency limiting 
value of the dielectric constant without discussion or 
explicit recognition of its provenance and possible 
components. 

indicates that the DRT, gD(r), is that defined for 
dielectric (parallel) response. It is usually normal- 
ized. 

Eqs. (1)-(3) have been written so that purely 
conductive quantities appear on the left and purely 
dielectric ones on the right. These equations thus 
directly connect quantities associated with entirely 
different physical processes with each other, physi- 
cally implausible except in the case of only a single 
relaxation time where one deals only with defini- 
tions. For example, such a single-relaxation-time 
definition is [1] re-CVCDo~//O0 . Of the above ex- 
pressions, Eq. (1) has been the one most used for 
data analysis since its genesis, particularly to esti- 
mate tr o from an estimate of CD~ when an estimate 
of (Z}D is available. Although the above results are 
not usually expressed in terms of purely conductive 
quantities, they can be combined to yield 

= >D 0, (5) 

and 

CCO = ( O ' o / / C v ) ( T > D [ { ( T 2 > D / / ( T > 2  } - -  1 ] .  (6) 

Corrections to some of these equations are derived in 
Appendix A. 

2. The CTM equations for a dispersed conductive 
system 

Sufficient background has now been provided that 
the CTM equations [1-5], mentioned above, may be 
written in the present notation as 

O-O(T)D = EVeD~, (1) 

O'm[('T- ' > D ]  - I  = " V ' O ~ '  (2) 

and 

- l ]  ' = co , ( 3 )  

where 

c¢ 
(Tm>o ~- fo T"g°(~ ' )  dr .  (4) 

In forming the above relations, the equation e 0 = 
Cc0 + CDoo has been used. The subscript 'D '  here 

3. A new analysis of the limiting responses of a 
dispersed conducting system 

To derive equations to compare with those of 
CTM and to see how to correct the latter when 
possible, it is necessary to obtain the low- and 
high-frequency limiting responses at the complex 
conductivity and dielectric levels arising from CSD. 
In order to maintain close contact with an actual 
equivalent circuit, I shall initially deal with quantities 
such as resistances and capacitances and then trans- 
form the results to resistivities, conductivities, and 
dielectric constants. Conductive-system response can 
be most generally expressed in terms of a non-dis- 
persed, possibly non-zero, high-frequency-limiting 
resistance, Roo [10,38]; the strength of the dispersion 
process, AR = R 0 - R~o; and a normalized relax- 
ation/dispersion Z-level response function, I ( I 2 ) =  
l ' (g2) + iI"(g2) [6]. Here R 0 is the limiting low- 
frequency resistance of the system; 12 = to%; I(0) = 
1; and I(oQ = 0. No 'C '  subscript is usually needed 
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for the function I(/2),  since only conductive-system 
relaxation/dispersion is assumed to be present. The 
normalized frequency 12 should not be confused 
with the symbol for ohms. The relaxation time % is 
specified as part of the frequency- or transient-re- 
sponse function. It follows that one can define the 
conductive-system model response at the impedance 
level as 

Zc(12 ) = R ~ + A R I ( 1 2 ) .  (7) 

But any real material involves dielectric response as 
well. Thus, for the present situation one must include 
a capacitance Co= = CveD= in parallel with Z c, 
thus defining the full model response Z(12). 

l e t  us now write an expression for this full 
response at the complex conductivity level, one in- 
cluding the effect of ED~ as well as Zc(12) and 
expressed in terms of 12 rather than to. To do so, 
resistances are transformed to resistivities and capac- 
itances to dielectric constants. Then one obtains 
We next need to develop expressions for the 12 ~ 0 
and 12 ~ ~ limits of the real and imaginary parts of 
o-(12) and e(12), and so of those of I (O) .  It will be 
assumed hereafter that the conductive-system re- 
sponse involves a continuous DRT. There are several 
ways in which such a DRT can be written, and it is 
important to specify which form is being used in a 
given situation. This matter is further discussed in 
Section 5. Here, it is necessary to distinguish be- 
tween the CTM go(z)  distribution and the conven- 
tional one, G(z), often defined for Z-level CSD 
response [17, pp. 401-402;27,40,41]. Further, let us 
define x =- (z/%) in order to avoid the need to use 
such mathematical solecisms as log(r). It will then 
be convenient to deal with the distribution of x 
rather than z. The corresponding DRT, Gx(x), satis- 
fies the relation G(z)ldzl = Gx(X)ldxl by conserva- 
tion of probability. It follows that G x ( x ) =  %G(z). 
When only a single relaxation time is present, as in 
simple Debye relaxation, Gx(x) = 8 ( x -  1). 

First, let us express the normalized frequency-re- 
sponse function in terms of a DRT at the Z-level 
[6,17, p. 406], in general form as 

Gx(x)dx  f 1(12) 
=-t0 [ l + i 1 2 x ] '  

(9) 

since toz= 12x. Note that G x is normalized when 
I(0) = I ' ( 0 ) =  1, as it is here. Let us now write the 
analog of Eq. (4) as 

(xm)~ fo xmax(x) dx, ( 1 0 )  

equal to unity for any m when there is only a single 
relaxation time. The averages defined by Eq. (10) are 
pure functions of the shape of the G x distribution, 
independent of z o. 

From Eqs. (9) and (10), we can now derive the 
general CSD relations 

lim [ - n - ' r ' ( 1 2 ) ]  = ( x ) ,  (11) 
0- - ,0  

lim [12-2{1 - I ' ( 1 2 ) } ]  = ( x 2 ) ,  ( 1 2 )  
g2--, 0 

lim [ - O 1 " ( 1 2 ) ]  = i x - ' ) ,  (13) 
.O---* oo 

and 

lim [ 122I'(12)] = (x-Z) .  (14) 

For physically realizable response [39,42], such as 
that of a Gaussian distribution of activation energies 
[7,8], all the above averages are finite and non-zero. 
Specific expressions for them are calculated for a 
physically realizable form of the important KWW 
fractional-exponential response function [43-45] in 
Appendix C. Its fractional exponent will be denoted 
by /3  or/30. 

Eqs. (8)-(14) now lead to the result 

lim R e [ e ( O ) ]  -= Co= ~D~ + (ZoAp/EvPZ)(x) ,  
O--,0 

(15) 

and so 

,c(o)  = ,co = (Zoap / ,v  p0 )< x>, (16) 

an important result for a quantity likely to have only 
weak temperature dependence (see the discussion in 
the following section). Note that 70 ~ ( x " )  - (z  m ) 

and that when Pc= = 0, we may replace A p/p2 by 
0-0. Then 

0-o(Z) = Eveco, (17) 
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different from even the corrected version of the 
CTM Eq. (1) (see Appendix A). Now we see that the 
entire equation involves only conductive-system 
quantities, as it should. Further, Eq. (16) predicts 
values of %0 which need not be negligible com- 
pared to EDo ,. For example, if Pc~ = 0, z o = 8.854 × 
10  - 4  S, P0 = 108 1)cm,  and ( x ) =  6, then %0 = 
600. 

The calculation of e~ is not quite so straightfor- 
ward, since we must distinguish between the Pc~ ~ 0 
and Pco~ = 0 cases. When Pc= > 0 one finds just 

lim R e [ e ( S 2 ) ]  -= ¢~ = ~D~' (18) 
,(2-~ cc 

For Pco~ identically zero, one obtains 

ez~ = eDoc '3t- ('ToOr0//EV)[( X- 1>]-1, (19) 

so that then 

ec= = ( t r o / e v ) [ ( z -  ~>] -~. (20) 

Eqs. (16) and (20) then yield for ec~ > 0, 

e c 0 = e c = [ ( z ) ( z - ' ) ] ,  (21) 

different results than the CTM ones of  Eqs. (2) and 
(3) (see Appendix A). Although e~ = I~D~ when 
Pco~ > 0, there may nevertheless be an appreciable 
frequency region where E ' ( /2)  = ED® + %= before 
its final drop to ED=. 

The above results also allow us to obtain quite 
general limiting expressions for t r ' ( O ) .  Eqs. (8 ) -  
(14) lead to 

lim R e [ o - ( g 2 ) ]  = ~0 = 1/po, (22)  
12--, 0 

and for Pc~ ~ 0 to 

lim R e [ t r ( O ) ]  - tr~ = 1/pc~, 
.O--,, oo 

(23) 

and for Pc~ = 0 to 

<x -2 > 
~r~ = O'c~o -= o'0 

[<x- ,>]  2 
(24) 

Even when Pc~ 4:0  and tXc= << 1/pc=, there may 
be an appreciable range of frequencies at which 
c r ' ( O )  is close to Crc= before it finally approaches 

1/pc~. Although physical realizability requires that 
tr= < ~, the final limiting value can arise either from 
a non-zero Pc= or from O-c= when Pc= = 0. Be- 
cause of a formal duality between CSD and DSD 
response expressions [6], all the above CSD limiting 
expressions have DSD counterparts (involving the 
moments of  the DSD distribution), but they are 
usually not of  much interest and importance. 

There are many time constants which can be 
formed using the quantities above. Two important 

ones are ~'c0 = ev ec0 P0 and, for Pc~ = 0, ZCm = 
e v ec~/O-c~. Then, 

~-c0/Zo = ( r l z  o) = ( x) ,  (25) 

and 

TCm//To = ( x -1 ) / / (  x -2 ). (26) 

Thus, Zco> z o and 7Cm < ~'c0" 

4. The B N N  relat ion and two  identif icat ion prob-  
l ems  

The BNN relation [10,21,46-48] is an empirical 
equation which is satisfied for many glasses and is 
somewhat similar in form to Eq. (17) above. If  one 

-1 where is the angular defines TCD p ~- (.OCDp, O)CD p 

frequency of the dielectric loss peak (obtained by 
transforming ~(to)  or 6-(to) data to the dielectric 
level and forming ~ ' ( w )  by the relation ~ ' ( to )  = 
~"(o9) - tro/tOev), then the BNN expression is 

~r0ZcDp = P~V A e, (27) 

where p is a nearly temperature-independent con- 
stant often found to be close to one in value. Here 
A • is the full experimental or model value, e 0 - ~ ,  
which, from the above analysis, can involve ~c0, Ec~ 
and eD~, although Ec~ may be negligible compared 
to eD~. Although for CSD rCD e is not a dielectric- 
system quantity but rather a conductive-system one, 
its calculation at the dielectric level is here indicated 
by the extra subscript 'D ' .  

The near temperature independence of p indicates 
that for a thermally activated situation the activation 
energies of  o- o and TCD p must be nearly equal. In 
charge hopping situations, it has been shown that o- o 
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and the hopping rate have essentially the same acti- 
vation energy when the carrier concentration is not 
thermally activated [49,50]. Since "rco p should be 
closely related to the inverse of the hopping rate, it is 
not surprising that the above activation energies are 
comparable in such situations. Finally, experimen- 
tally determined values of A E are often found to be 
proportional to T -1 , where T is the absolute temper- 
ature [48]. 

Comparison of the above expression with Eq. (17) 
shows that when the latter applies it provides a 
theoretical rationale for BNN experimental behavior 
and leads when Ec~ is neglected, to 

p = "rCOp/(~') = (~'CDp/~'o)/(X); (28) 

thus p should depend on the shape of the dispersion, 
which will often be a relatively weak function of 
temperature, and on the difference between ~'CDp and 
~'o" Although this difference also depends on the 
specific response model and could show some small 
temperature dependence, the p of Eq. (28) should 
indeed be nearly temperature independent for most 
conductive-system, thermally activated materials. For 
conductive-system KWW response with 13 = 0.5, 
~'cop/% = 3.1 and ( x )  = 6 yielding p = 0.5. Note 
that for the present situation the conductive-system 
ratio rCp /% = 1.3, where tOcp'rCp = 1 and tOCp is 
the value at the peak of the -Z'~(to) or -p~( to )  
curve. Finally, unless A E and eD= should happen to 
be comparable in size, one would not expect the 
CTM Eq. (1) expression to yield a very plausible 
value of p. 

There are two important identification problems. 
The first is to decide whether to represent dispersed 
data by a conductive-system model where P0, or at 
least A p, is an intrinsic part of the dispersion model 
defined at the complex resistivity or modulus level, 
or to represent the data by a dispersion model which 
does not involve tx 0 intrinsically. The latter choice, 
the conventional dielectric dispersion one, assumes 
"that one is dealing with a dielectric effect with a dc 
conductance in parallel" [28]. This assumption is 
certainly appropriate for a leaky dielectric material 
with a distribution of dielectric relaxation times. It is, 
then, often represented formally by means of a DRT 
expressed at the dielectric level (or essentially equiv- 
alently, at the complex conductivity level). Dielectric 
dispersion involving induced or permanent dipoles 

may not be appreciably thermally activated, or, if 
~'CDp is activated [51], such activation should be 
unrelated to that of ~r 0. Thus, data analysis at several 
temperatures should allow one to distinguish be- 
tween the two possibilities. Since the dc resistivity 
and relaxation times of a conductive system are 
nearly always activated, when they are found to have 
nearly the same activation energy it is obviously 
appropriate to carry out the analysis at the complex 
resistivity level, contrary to most past practice. See 
Section 8 for further discussion of identification 
methods for the present problem. 

The above conclusions suggest that it is unneces- 
sary to test conductive-system results against the 
BNN equation, instead Eq. (17) is sufficient. One 
only needs to calculate ~' when one wants to exam- 
ine its dependence on frequency, usually to see to 
whether it is nearly frequency-independent over some 
range and thus is likely to be associated with dielec- 
tric-system dispersion, especially at low temperatures 
[38]. When such dispersion is negligible, the results 
of a CNLS fit to a full conductive-system response 
model may be used to compare data and fit predic- 
tions and to calculate Ec0. There are two ways the 
quantity ( x )  needed in the latter calculation may be 
estimated when the data fit the model adequately. 
First, it can often be calculated directly from the 
form of the main response function used in the 
fitting, such as the KWW model (see Appendices A 
and C). Alternatively, LEVM may be used to invert 
available time or frequency-response data (synthetic 
or experimental) to obtain a direct estimate of the 
DRT associated with the data [27]. As part of such a 
LEVM fit, all (xm)  values defined in Section 3 are 
automatically calculated. 

The second identification problem is that of dis- 
tinguishing between the various components of e 0 
and e~. Part of the problem arises because Maxwell's 
equations do not allow one to distinguish directly 
between convection and displacement currents in 
experimental ac measurements. Although the quanti- 
ties involving a 'C' subscript involve convection and 
those with a 'D' subscript involve displacement pro- 
cesses, we can, nevertheless, distinguish them be- 
cause of the different frequency responses of conduc- 
tive and dielectric processes. Consider the fitting of 
frequency-response data arising from the presence of 
~D~ but no DSD, and from conductive-system re- 
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sponse of the form of the Z c of Eq. (7). Further, for 
concreteness, assume that I(to) may be adequately 
represented by the KWW response model. Then 
CNLS fitting will yield estimates of eD~, PC~, A p, 
"to, and ft. 

If fitting leads to a zero estimate for Pc~, then 
comparison of the experimental value of 6~ in a 
final high-frequency plateau region with that of eD~ 
should show whether ec~ is negligible or not. Alter- 
natively, with a non-zero estimate of Pc~ and a 
sufficiently wide frequency range, one may be able 
to identify the decrease from ec® + IffD~ to ED= if 
ec~ is not negligible compared to eD~. Next, the 
measured parameters allow one to calculate Ec0. 
When no electrode effects are present, this value 
should agree well with c 0 - ED~. If it does not, and 
E'(to) increases rapidly above this value as to is 
decreased, then one should add electrode polarization 
components to the fitting model to account for such 
a rise [11,28,39]. Fitting once more with such com- 
ponents included should yield a much improved fit 
of the complete data set. Their effect can then be 
eliminated from the data (as described in Section 8), 
and the modified E'(to) data then compared with the 
calculated value of Eco at the low-frequency end of 
the measurements. Finally, measurements of a con- 
ducting system material with two or more different 
values of doping (and so with different values of tr 0) 
can help one separate the Ec~ and EDc ¢ contributions 
to 6~, and perhaps also any dielectric constant and 
conductivity contributions associated with non-per- 
colating charges hopping over a barrier between two 
states [9,10]. 

5. DRT and other response relations 

The standard linear-system relations have been 
developed primarily for analyzing dielectric re- 
sponse, and even these relations are not always given 
in consistent form, e.g. [40]. Here, we need equiva- 
lent relations appropriate for a conductive system. 
Some such relations were summarized in a 1956 
review of linear-system integral transform relations 
[17], and some appear in the CTM work and else- 
where [1-4,40,41,52]. In particular, we need rela- 
tions connecting frequency response at the impedance 
level with a DRT and with the corresponding time- 

domain transient response. Such relations cannot all 
be directly transcribed from those that apply for 
dielectric-system response. 

Let us first consider the transient-response func- 
tion, B(t), whose Laplace transform yields Z c. B(t) 
is the response to an impulse-function driving force. 
The corresponding function, A(t), is the response of 
the system to a step function. These quantities are 
related by [17, p. 395] 

B(t) = a ( 0 )  3 ( t )  + da( t ) /d t .  (29) 

For the present situation, it is appropriate to define 
A(0) as R~ and set 

a(t) = R~ + AR{1 - f ( / ) } ,  (30) 

with f(0) = 1 and f (~)  = 0; then A(~) = R 0. It then 
follows from Eqs. (29) and (30) that 

o o  

Z c ( p ) = f  B( t )exp( -p t )d t=R~ + ARI(to), 
~ 0  

(31) 

where here 

o o  

I ( to)  = f~ ( - d f ( t ) / d t )  e x p ( - p t )  dt. (32) 

The Laplace variable p may be taken as i to here. 
The present normalized f(t) is equivalent to the 
q50) relaxation function (actually a retardation func- 
tion [53]) used in much previous dielectric- and 
conductive-system work. It describes the return to 
equilibrium of the system after a perturbation. For a 
single relaxation time, r o = Ape v ~D~, and one may 
take f ( t ) =  e x p ( - t / % )  and obtain l ( t o )=  1/(1 + 
ito%). 

The remaining equations needed, written in terms 
of z rather than x, are [12,41,52] 

f ( t )  = f?G(~')exp( - t / z )  dr ,  (33) 

and, from Eq. (9), 

f 
l ( to )  (34) 

=Jo  [ l + i t o r ] "  

Since most IS temporal or frequency-response data 
cover many decades of time or frequency, one usu- 
ally uses equal or approximately equal intervals of 
the variable y = ln(x), rather than such intervals of 
the x or ~" variables, for actual DRT calculations. 



J.R. Macdonald/Journal of Non-Crystalline Solids 197 (1996) 83-110 91 

Note that for a thermally activated system, y may be 
interpreted in terms of the activation energy. When 
Eqs. (33) and (34) are rewritten in terms of y, one 
obtains 

f ( t )  = f_~ rG(r)exp(- t / ' r )d{ln(r /ro)  } 

= f ~  F ( y )  exp{- (  t /ro)eXp(-y)}dy,  

(35) 

and 

~-G(~') d{ln(r/~-o) } 
l ( w )  = f_~ [1 +iw~-] 

F ( y )  dy 

= f - =  [ l+ iw~"  o e x p ( y ) ] '  
(36) 

since F(y)= r G(r) from conservation of probabil- 
ity, and F(y) is essentially a distribution of activa- 
tion energies for a distributed, thermally activated 
situation. It is particularly necessary to distinguish 
between the DRT forms G(z) and F(y)= H(x)= 
~-G(r). Comparison of Eqs. (33) and (34) with re- 
lated equations in the CTM work [4] shows that their 
g(~-) = gD(Z) and the present G(~-) may sometimes 
be taken equivalent when a continuous distribution is 
being considered (see Appendix A). 

6. Identification and correction of the CTM anal- 
ysis errors, and inversion of discrete data 

The CTM modulus-level approach [1-5] has been 
and continues to be widely employed for 
conductive-system data analysis (see, for example 
Refs. [23,29,32,50,54-61]). This approach, which 
does not include consideration of a non-zero R~ and 
does not recognize the existence of such a CSD 
quantity as ec~, begins with a correct expression for 
the M(w) response associated with the capacitance, 
CD=, and the resistance corresponding to the dc 
conductivity, (r 0. The CTM single relaxation time, 
termed r~, and equal to ~V~D~/(r 0, was properly 
identified as the Maxwell relaxation time for an RC 
circuit. CTM then directly generalized their M(w) 

expression to involve a DRT at the complex modulus 
level, obtaining 

i w~'gD(r ) dr  
MCTM(W) = ( eD~ ) - 1  fo cc [1 +i~o~'] 

= ( eD~)-l [1 -- ID( W)], (37) 

similar to a distributed high-pass response function 
proposed earlier [17, p. 407]. The rightmost expres- 
sion in this equation appears in the CTM work [4] 
with the present ID(W) denoted there by N*(w). 
Because gD(w) is normalized to unity, Eq. (37) 
leads to M~rM(~) = 1/eD~, an incorrect result for 
CSD, as demonstrated in Appendix A and discussed 
briefly earlier [26]. As shown in this Appendix, the 
CTM generalization error may be corrected by 
changing eD~ in Eq. (37) to ec=, a change leading to 
numerous important consequences. 

To help illuminate the difference between the 
original CTM approach and an associated CSD ap- 
proach, let us write the Zc(O) expression following 
from Eqs. (7) and (34) at the M-level with R= = 0 
and G(r) set equal to the DSD distribution expres- 
sion gD(r). The result is 

iwgD(~" ) dt 
M c ( w ) = ( e v P ° ) £  I1 + iw~'] 

= (iW,v/O'o)I (w),  (38) 

where the CSD normalized response function /(to) 
is not generally the same as lo(w). If, however, we 
assume that they are the same and set the rightmost 
side of Eq. (37) directly equal to the rightmost part 
of Eq. (38), we obtain, on solving for /(to), the 
undispersed result I(w)= 1/(1 + i~o~'~), the origi- 
nal single-time-constant response. 

Note that Eq. (38) does not include the ~" present 
in the numerator of the integrand of Eq. (37), and 
Eq. (38) does not involve e~, since it represents only 
that part of the total response involving pure CSD. In 
fact, one can show with the help of Eqs. (10) and 
(20) that M~(~)= 1/ec~, as one would expect. 
When CSD is present, even if R~ = 0, it is improper 
to include Co~ as an integral part of the dispersive 
response, as in the original CTM approach. When 
the DRT is continuous rather than discrete, CSD 
response can be represented by a transmission line 
made up of an infinite number of individual differen- 
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tial R s and C s in parallel, all in series (similar to 
the Voigt response model for discrete elements). 
Taking CD~ separate from these series Cs is quite 
different from melding it into them somehow when 
the DRT is continuous or even if there is more than 
one discrete RC pair present. 

A CSD data-fitting approach employing Eq. (37) 
with eD~ replaced by ec~ will be designated by 
CTM hereafter (usually omitting the word 'cor- 
rected'), and one using Eq. (34) or Eq. (38), with an 
arbitrary DRT, by CSD. Note that when a fitting 
model is available in normalized form, i.e., Io(t°) or 
/(to), but integration using the (possibly unknown) 
associated DRT is inconvenient or impractical, one 
can use the model directly in the right-hand-sides of 
the corrected Eq. (37) or (38) for CNLS fitting. 
These possibilities are further compared in Appendix 
A. 

Finally, it is worth remarking that if data sets at 
different temperatures are found to be well fitted by 
CTM and lead to values of an estimated fractional 
exponent, say /3 D for the KWW gD(~') distribution, 
which, for example, decreases with increasing tem- 
perature, then the estimated /3 values obtained from 
Eq. (38) CSD fitting results of the same sets will be 
found to increase with increasing temperature. How- 
ever, for DSD response, the high-frequency-limiting 
log-log slope of tr'(og) v s .  f lDM ~ 1 - -  ]~D for the 
KWW fitting model, and therefore the temperature 
dependence and magnitude of this quantity should be 
comparable to that of the CSD-fit /3, even though 
the CTM approach is essentially a CSD, not DSD, 
one. 

In a complete treatment of CSD response, CD~ is 
in parallel with Zc,and one must write for the full 
system when R~ = 0 

M(to) = i ogCv Zc /  (1 + i ogCD~Z¢ ) 

=Mc(og) / [ l  +eD=Mc(og)]. (39) 

When to ~ oo, this expression leads to M(oo)- 1 = e ~  

~- 6Co o -[- EDo c. 

The actual CTM data analysis procedure [4] ap- 
proximates possibly continuous G(z) distributions 
by a sum of discrete ones but does not include an 
estimate of the errors in the estimated distributions 
which occur when G(r) is continuous, as it is in the 
KWW case they considered. Such approximation is 

equivalent to replacing a continuous DRT, G(~'), by 
EMm=t g m t ~ ( ' l  " -  "r m) and F(y) by the equivalent re- 
sult, EmM= ldmt~(y- Ym)' where the gm and d m coef- 
ficients specify the strength of each discrete relax- 
ation process at each z m value, and M is the total 
number of such coefficients. When these discrete- 
distribution expressions are substituted in Eqs. (34) 
to (36), one obtains 

M 

f ( t )  = Y'~ gmeXp(--t/'rm), (40) 
m = l  

M gm 

I (o9 )=  E [l+iog~-m]' (41) 
m = l  

M 

f ( t )  = E dmexp{-( t / ' ro)exp(-Ym)} ,  (42) 
r n = l  

and 

M dm 

1(o9) = m=lE [1 +iogq" o exp(ym) ] ' (43) 

where the choice of % is arbitrary. These equations 
are exact for true discrete distributions. 

In order to obtain estimates of the gm coefficients 
from temporal data, CTM set the right side of Eq. 
(40) equal to the DSD KWW response function, 

f ( t )  = e x p [ - ( t / t o ) t 3 ] ,  (44) 

with 0 </3 < 1. This KWW inversion approach was 
proposed earlier by Majumdar [62], who used Eq. 
(33) to estimate a continuous G(r) for KWW stress 
relaxation in glass. Although Majumdar obtained a 
closed-form approximation for G(r), the CTM anal- 
ysis, which employed linear least-squares fitting, 
actually led to an approximation not of G(r) but of 
the F(y) or H(x) distributions of Eq. (36). Al- 
though the CTM distribution coefficients were iden- 
tified as the gm s of Eqs. (40) and (41), CTM actually 
used logarithmic variables, thus making Eqs. (42) 
and (43) appropriate and yielding the d m coefficients 
appearing in these equations. The truth of these 
statements is further demonstrated by the results of 
the next section. Finally, once an estimate of a DRT 
is available, it can be used in Eqs. (33) or (34) or 
(40)-(43) to generate the estimated approximate as- 
sociated time or frequency response. This is the 
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approach developed by CTM [4] to allow fitting of 
the KWW model for any value of /3  within its range 
to experimental IS data. As discussed below, differ- 
ent and often better alternatives to this specific task 
have existed for some time. 

In passing, however, it is worth emphasizing that 
the transformation of measured temporal (frequency) 
response data to the frequency (time) domain, usu- 
ally accomplished by means of a fast Fourier trans- 
form [63], may often be carried out in simpler and 
more accurate fashion by using the intermediary of 
DRT estimation (employing the continuous-distribu- 
tion analogs of Eqs. (42) and (43), as incorporated in 
LEVM [27]; see the discussion in the next section). 
Fourier analysis of discrete data not only yields 
results different from such transformation of an 
equivalent continuous function [64], but it is cumber- 
some and difficult to apply when the data range 
extends over many decades. Alternatively, when in- 
version of the data in a given domain can be carried 
out to estimate the {d m, r m} DRT set with a suffi- 
ciently large value of M, good estimates of the 
response in the other domain may be directly calcu- 
lated. 

7. Estimation of the KWW distribution functions 
and frequency response 

Z1. % = = 0  

Although no general closed-form expression for 
the DRT associated with conventional KWW fre- 
quency and time response is known for arbitrary /3, 
an exact result for H ( x )  for /3 = 0.5 is included in 
Ref. [41], and an expression for G(~-)= gD(~') for 
the same /3 value was presented earlier [40]. It may 
be written in normalized form as 

G ( r )  = (4~rrro) - 1 / 2  exp( - ~'/4ro). (45) 

Because this result is exact and because the /3 = 0.5 
case of KWW response was explicitly considered by 
CTM [4], it will be used for illustrative purposes 
herein. Note especially that G(~') diverges as z --* 0, 
while the associated H ( x )  and F ( y )  distributions do 
not. Although the above expression does not lead to 
a physically realizable response (as discussed in 

Appendix C, where it is modified to provide such 
response), it may nevertheless apply adequately over 
a wide frequency range and will be so used in this 
section. Thus, this expression was used in Eq. (34) to 
calculate the 'exact' /3 = 0.5 frequency response for 
the KWW model. Numerical quadrature using 
Romberg integration was set to yield an accuracy of 
at least nine decimal places. 

Weighted, non-linear least squares procedures for 
the inversion of frequency-response data to estimate 
the elements of discrete distributions have been a 
part of the LEVM CNLS program for more than five 
years. Results of such estimation appear in Refs. 
[10,26,27,39,65]. Further, a new version of LEVM, 
V.7.0 (not commercially available until mid 1996, 
but used for the present work), incorporates means to 
estimate continuous (or discrete) distributions di- 
rectly from either frequency or transient response 
data. The continuous distribution approach uses nu- 
merical quadrature, yields points on the H ( x )  and 

F(  y)  distributions denoted by {c m, r m} or {c m, Ym}, 
and is further described elsewhere [27]. For graphical 
presentation of results, the variable s = logl0(x)= 
y logl0(e) is more appropriate than y. 

The CTM group [4], and recently Sarkar and 
Nicholson [58], have presented numerical tables of 
what they identify as gm VS. S for the KWW 
distribution with /3 = 0.5. In spite of using different 
inversion methods, their results agree well. Unfortu- 
nately, however, as discussed in the last section, they 
both obtained not the gm coefficients associated 
with G(r)  = gD(r), but the dimensionless ones asso- 
ciated with H ( x )  or F ( y )  instead. 

Since the weighted, non-linear least squares inver- 
sion methods for either temporal or frequency data 
included in the LEVM fitting program can yield 
estimates of both discrete coefficients, din, and of 
continuous-distribution ones, c m, it seemed desirable 
to obtain these quantities for the /3 = 0.5 KWW 
situation using LEVM and 181 points of virtually 
exact KWW transient response data spanning the 
region 10 -7 < t/7- o < 102, with equal logarithmic 
intervals. Similar data were used by CTM and Sarkar 
and Nicholson. Note that while no ED= was included 
in the data generating model, effects of its inclusion 
are discussed below. To distinguish various inversion 
possibilities, it is helpful to introduce the letters 'D', 
'C', 'F', and 'V' to designate the type of inversion 
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Fig. 1. Comparison of various inversion estimates of the fl = 0.5 
KWW continuous distribution of relaxation times, rgD(~'), de- 
fined in Eqs. (36), (43) and (45). A list of acronym definitions is 
provided at the end of this work. The quantities d m and c m are 

estimated points on a discrete- or continuous-distribution, respec- 
tively. The solid line and asterisk points in the figure show the 
exact distribution behavior for fl = 0.5. Sarkar and Moynihan 
used the DF inversion method, one which treats the distribution as 
discrete and employs fixed abscissa values, to invert exact tran- 
sient data. Those fit results marked CV used an inversion method 
which is appropriate for a continuous distribution, one which also 
involves freely-variable abscissa fitting values. For one of these, 
the exact KWW transient-response data were inverted, and the 
other CV estimates show the results of inverting frequency-re- 
sponse data calculated from an approximate KWW model, one 
also appropriate for arbitrary /3. The results denoted by triangles, 
squares, and crosses were obtained by inverting exact transient-re- 
sponse data, while those denoted by open and solid circles in- 
volved the inversion of frequency-response data. The CV inver- 
sion estimates shown by open triangles agree accurately with the 
exact distribution when the triangles evenly enclose the exact 
datapoints, denoted by asterisks. The KWW relaxation time, %, is 
taken as 1 s here. The present inversions were carried out using 
exact transient and frequency-response data arising from the /3 = 
0.5 KWW distribution alone, without any eD= contributions. 

procedure used [27]. They denote discrete or continu- 
ous distributions fitted using a se-t of  discrete inde- 
pendent-variable, Tin, values held fixed (i.e., con- 
stant) during the inversion or all free to vary. Thus 
'DF '  denotes inversion involving a discre~-distfibu- 
tion approach with fixed ~- values. 

Fig. 1 shows the results of various inversions with 
M = 19. First, the d m estimates of  CTM and Sarkar 

and Nicholson are nearly indistinguishable in this 
graph. Were all the ' × '  symbols exactly centered in 
the open-square symbols, there would be no differ- 
ences between them. The solid line in this graph was 
calculated from an H ( x )  expression taken equal to ~- 
times the G@-) of  Eq. (45). Because CTM and 
Sarkar and Nicholson obtained discrete-distribution 
estimates of a continuous distribution, their results 
are evidently not very accurate estimates of  the exact 
distribution. But clearly their results approximate 
H ( x ) ,  rather than the G(~-) of  Eq. (45). Further, a 
DF LEVM inversion of the transient data yielded 
results sufficiently close to those of  these authors 
that they are not worth including separately in the 
graph. It should be noted that although DF inversion 
of  transient data can be accomplished with linear 
least squares, such fitting usually leads to some 
non-physical negative d m values, as in Ref. [4]. In 
the non-linear least squares LEVM approach, all d m 

and c m values are usually constrained to be positive 
but need not be. 

The open triangular c,, points of  Fig. 1 were 
obtained from a CV inversion of  the time data using 
LEVM. The CV method is further described in [27], 
and results included therein suggest that frequency- 
domain CV inversion results for a continuous DRT 
may be of  the order of  ten times more accurate than 
CF ones, and both are appreciably superior to DV 
and DF estimates. The exact-distribution asterisk 
points shown in the figure were calculated from the 
exact distribution at the ~-,, (or s m) values obtained 
from the converged CV inversion. Thus, when the 
CV triangles surround the asterisk points evenly, 
their positions agree with the exact distribution, not 
only by falling on its line but by falling on it in the 
right places. Such agreement is excellent here, justi- 
fying the use of  the CV inversion method as com- 
pared to a DF or DV approach. 

The DV d m estimated points on the dashed line 
included in the graph were calculated, using LEVM, 
from exact KWW frequency-response ( 1 0 - 2 <  ~m 
___ 107)  data. They are, of  course, inferior to the CV 
temporal-inversion results but are superior to either 
DF or DV temporal-inversion results. Since 1987, a 
fitting model for generating approximate KWW fre- 
quency-response data [36] has been included in 
LEVM. It is applicable for the range 0.2 < /3  < 1 and 
has been used with /3 = 0.5 to calculate such approx- 



ZR. Macdonald~Journal of Non-Crystalline Solids 197 (1996) 83-110 95 

imate response over the above frequency range. Then 
this data set was inverted using the CV approach, 
yielding the open-circle points shown in Fig. 1. 
Although the results are inferior to those obtained 
from the inversion of exact time or frequency-re- 
sponse data for, they are nevertheless far superior to 
those obtained by the DF approach. 

Interesting and instructive as it may be to estimate 
DRTs associated with time or frequency response, 
the usual task in IS is to fit experimental data to one 
or more response models. Although LEVM allows 
one to fit with more than ten different continuous- 
distribution models, the lack of exact general expres- 
sions for KWW G(7") and frequency response makes 
it difficult to fit data for arbitrary KWW/3 values. 
This lack was the reason for the development of the 
approximation method mentioned above [36]. CTM 
have used the DF method and tables derived from 
such inversion to provide a means to fit frequency- 
response data to the KWW model for arbitrary/3. As 
shown above, it does not yield very accurate esti- 
mates of the /3 = 0.5 H(x) or F(y) response points. 
Nevertheless, because continuous-distribution fre- 
quency response is obtained as an integral over a 
distribution, as in Eqs. (34) or (36), errors in the 
estimates of the distribution points are partially aver- 
aged out in the calculated frequency response. It is of 
interest to quantify this expectation in order to evalu- 
ate and compare the utility of the two different 
methods of fitting KWW frequency-response data 
discussed above for/3 = 0.5. 

Table 1 compares various standard-deviation fit 
measures, S F, for fits of transient data, distribution 
estimates, and frequency-response data. The various 
different S F quantities are defined in the table head- 
ing. The values listed in lines A and B in the table 
are the results of inverting exact KWW transient 
response to yield distribution estimates, while those 
presented in lines C and D were obtained by the 
direct inversion of KWW frequency-response data. 

The estimated KWW distribution of lines A and B 
was used to calculate the associated frequency re- 
sponse, and the model for the exact response was 
fitted to it, yielding A p and r o parameter estimates 
and the estimated relative standard deviation of the 
fit, SFo ,. Note that the SFO A quantity, unlike the other 
standard deviation estimates, involves residuals rather 
than relative residuals. It therefore measures the 
degree of fit primarily in the region of the peak of 
the distribution, while all other SFS provide measures 
of the goodness of fit over the entire range of the 
dependent variable. 

The extremely small value of SFt in line A of the 
table shows that the Eq. (42) DF model fits the 
KWW transient response data very well. The values 
of the two standard deviations in line A associated 
with the fit of the d m coefficients to the exact F(y m) 
distribution, SFO A and SFDP, confirm the poor fit of 
the DF inversions shown in Fig. 1. The value of 1.4, 
for example, indicates an overall average error of fit 
of either sign of about 140%. But the corresponding 
frequency-response standard deviations are quite 

Table 1 
Standard deviations (SD) of fits of exact KWW data with fl = 0.5; M = 19 used for inversion 

Fit type Model Svt SFD A SFD P SFo ~ 

Z 

A t/DF exact 7.1 × 10 -5 1.4 × 10 -2 1.4 1.8 × 10 -4 1.1 × 10 -2 
B t /CV exact 1.2 × 10 -6 2.6 × 10 -4 3.6 × 10 -3 3.5 × 10 -5 1.1 × 10 -4 
C to/CV exact - 3.5 × 10 -4 0.045 2.2 × 10-14 3.0 × 10 - 8  

D to/CV approx. - - - 6.1 × 10 -4 2.3 × 10 2 

Lines A and B show results of inversion of exact transient-response data using proportional weighting, and lines C and D show results of 
CNLS inversion of exact frequency-response data with proportional weighting. Here, fit types t/DF and co/CV indicate inversion of 
transient data (t) using the DF method or frequency-response data (to) using the CV inversion method. See Appendix B for further 
definitions. SFt is the SD of the transient-fit relative residuals, the point-by-point differences between inversion fit values and the exact 
transient data, divided by the latter. SFO A and SFD P, in contrast, indicate the degree of agreement between predicted distribution values and 
exact values. SFD A is the SD of the direct residuals, and SFD P is that of the relative residuals. Finally, SFo , is the SD of the relative residuals 
of the frequency-response data sets calculated from exact and estimated distributions. The ~-level results were obtained by transforming 
Z-level estimated frequency-response data to the ~-level and fitting the results with the exact (or approximate: line D) KWW response model 
at this level. 
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small, confirming the good degree of fit found origi- 
nally for this case by CTM [4]. The first of the two 
SFo standard deviations is that for a CNLS fre- 
quency-response fit at the impedance level. The data 
and model values were then transformed to the com- 
plex dielectric constant level and fitting again carded 
out. As shown, the fit is far worse at this level even 
with the proportional weighting used for such fitting 
[24-27]. The parameter estimates for Z-level fitting 
were all excellent, generally within 0.1% or better of 
their exact values, but those obtained for epsilon-level 
fitting were appreciably worse. For example, that for 
% was 1.01 s, rather than its exact value of 1.0 s. 

The line-B CV results are all much better than the 
DF ones and should be compared to the line-C ones. 
Here the exact Z-level frequency response was first 
calculated, and it was then inverted to yield the 
distribution estimate. Naturally, the accuracy of the 
direct Z-level fit results were limited only by round- 
off, but one again sees that transformation to the 
complex dielectric constant level before fitting to the 
original model leads to an inferior, but still excellent, 
fit. It is interesting to note that the distribution 
standard deviations of line C are inferior to those of 
line B, suggesting that the best estimates of the 
distribution for any appropriate /3 value should be 
obtained by inverting Eq. (35) rather than Eq. (36), 
at least for exact discrete data. 

Finally, line D shows results of fitting the approx- 
imate KWW model in LEVM to exact /3 = 0.5 
frequency response. Let a quantity written as P[Q 
indicate the estimate of the quantity, P, and its 
estimated relative standard deviation, Q. The raw 
parameter estimates obtained for the two levels for, 
Ap, r ° and /3 were, respectively, 1.000418 × 10 -5, 
0.99617 × 10 -4,  and 0.4965~4 × 10 -4 for Z-level fit- 
ting and 1.0000110 -9, 1.01416 × 10 -3, and 0.524313 
× 10 -3 for epsilon-level fitting. Within its range of 
applicability, the approximate KWW fitting model 
yields Z-level parameter estimates with errors of the 
order of 1% [36], but their accuracy can usually be 
somewhat improved by an interpolation method. For 
example, this method changes the above value of 
0.4965 to 0.5004, much closer to the exact value. 

The above results provide some basis for compar- 
ing the strengths of the various methods one can use 
to fit KWW data with an unknown /3 to a KWW 
model. The CTM method [4] apparently uses mostly 

graphical and tabular values to obtain estimates of 
the three relevant parameters. It is therefore a small- 
number-of-points fitting method and may be ex- 
pected to yield rather poor estimates (see example 
presented in the next section), even if it were based 
on CV rather than DF inversion. Clearly, a better 
alternative is to fit using the LEVM approximate 
model [36]. For most data, those with errors of the 
order of a few percent or more, this approach should 
be preferred. 

On the other hand, if the data appeared particu- 
larly good and one wanted to obtain more accurate 
parameter estimates, one could use an iterative 
method. Initial parameter estimates obtained from 
fitting with the approximate method could be used to 
calculate, as discussed below, the associated KWW 
transient response and then the CV {c m, Ym} distribu- 
tion estimates. These could then be used to obtain 
the associated frequency response and that then com- 
pared with the original data. Fitting of this calculated 
frequency response data with the approximate model 
would then yield new parameter estimates, and the 
process could be continued until, hopefully, suffi- 
cient convergence was obtained. An alternate ap- 
proach might again start with the experimental fre- 
quency-response data and obtain the associated DRT 
and transient response data. The latter could then be 
fitted by the exact KWW transient response function 
to obtain new parameter estimates. But it should be 
noted that the larger the error in the original data, the 
smaller the number of significant Cm estimates that 
can be obtained. Thus, for most KWW fitting situa- 
tions, the approximate KWW model should be used 
and its adequacy compared with results obtained 
from fitting with other reasonable models such as 
that of Cole and Davidson [66]. 

7.2. ED~ = 10 

There is a problem in implementing the fitting 
possibilities mentioned above. When one contem- 
plates using any of Eqs. (33)-(36) with experimental 
data in order to estimate a DRT such as H(x), it 
must be recognized that the data will always involve 
a contribution from ED~. It is then improper to use 
full 2~(to) or M(to) data directly with any of these 
equations. If one does so, the H(x) DRT obtained 
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from a CV inversion of  the data will include the 
effect of  ED= and will thus not represent only the 
DRT of  the actual response model. Instead, one must 
represent the response associated with ED= sepa- 
rately so as not to confound its effect with that of  the 
actual proper  DRT [27]. The general situation is 
illustrated in Fig. 2, which shows how the effects of  
CSD, DSD, and electrode and wiring contributions 

can be combined into an overall equivalent circuit. In 
the present situation, the DSD dispersion element, 
DED, should be omitted; C= is CD=; the CSD disper- 
sion element, DEC, represents A RI(o)) at the Z-level; 

and electrode effects will be discussed later. 
To illustrate the problem, let us generate synthetic 

impedance-level  frequency-response data with no 
electrode-polarization contribution; with ~o~ = 10 

and Pc= = 0; with the DEC entity taken as the DSD 
K W W  frequency-response model, I(o9) times AO 
for/3 = 0.5 and % = 1 s; and with a value A p  = 1 / ~  0 
determined from the CTM Eq. (1). Then take (X)D 
= 2 ,  SO A p = 2 . 2 5 8 8 4 9 5 × 1 0 1 2  l )  cm. For  such 

data, it follows that ec= = 10. 
This data set, extending from /2 = 10 - 4  to  10 6 

with equal logarithmic intervals, was then used for 
two separate CV inversions with M =  19. Results 
are shown in Fig. 3 with a l o g - l o g  presentation, one 
which better illustrates the degree of  fit in the tails of  
the distribution than does that of  Fig. 1. In the first 

inversion, the DRT set {c m, %} was determined with 
the C~ of  Fig. 2 included as a separate fitting 

KWW D I S T R I B U T I O N ~  

© 1 0  - 

t 0  

1@ 

1@ / 

~ , l , i  , , , , [ , , , , , l l l , l J l , , , l l ~ J  

- 4  - 2  0 2 
Loglo('r/%) 

Fig. 3. Log-log plots of CV inversions of exact /3 = 0.5 KWW 
frequency-response data which also involved the presence of an 
~D~ value of 10. The CmS are estimated points of the continuous 
KWW distribution. The solid-line distribution curve, involving 
open triangular points, where ~o= was treated separately from the 
DRT itself, as in Fig. 2, agrees very closely with the correspond- 
ing one of Fig. 1 for which no Eo® was present. The dashed curve 
was derived by inverting the data without separate account of 
ED=. Thus the effects ~o= of are included in the derived DRT, 
yielding an inappropriate estimate of it. 

parameter of  the complete model. It led to the points 
denoted by open triangles in the l o g - l o g  plot of  Fig. 
3. These results represent the true DRT curve nearly 

L 

II 
C2 

[ -  . . . . . . . . . . . . . .  i 
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L . . . . . . . . . . . . . . .  
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L . . . .  J 
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Fig. 2. An equivalent circuit implemented in LEVM for fitting small-signal ac frequency-response data. Here 'DE' denotes a distributed 
circuit element, one which cannot be represented by a finite number of ideal circuit elements; 'C' denotes conductive response, and 'D' 
dielectric response. Thus, the element marked DEC (_dispersive _element, _conductive) designates conductive-system dispersion (CSD). In 
actual situations, some of the circuit elements shown may be unnecessary. For ~D~ @ 0, C~ --- CD~ must be taken non-zero. 
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as accurately as those shown in Fig. 1, except for 
slight deviations at the endpoints. When these were 
omitted, the SFD A and SFo P values were 3.2 X 10 -4 
and 0.033. 

The second inversion did not include Coo sepa- 
rately in the fitting model, so its effect thus became 
melded into the DRT estimate. It led to the curve 
denoted by the dashed line and open circles. This 
curve shows a left-side slope of 1.5 rather than the 
0.5 of the proper KWW DRT. For the first fit, the 
EDo~ estimate was 10.004 + 0.003, and the estimated 
(x ) t )  and (X2)D values were 1.9992 and 11.997, 
very close to the correct values of 2 and 12. For 
continuous data with Xmi n = 0, < X- 1 >D and ( x -2 >D 
should be infinite, but with the limited span of the 
present data, their estimates were large but finite. 
The estimates of (X)D and (X2)D for the second 
inversion were 4.00003 and 23.9995. The above 
values for the fit with ED~ separate and not included 
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Fig. 4. Complex-plane and frequency-response curves of M(/2)  
obtained by CNLS fitting of exact data calculated using the KWW 
DRT and eo~ as in Table 2 and Fig. 3. The CSD and CTM 
designations (see acronym listing) refer, respectively, to the dis- 
parate KWW fitting approaches defined by Eqs. (38) and (37) (as 
corrected in Appendix A, both with the KWW G(~') of Eq. (45), 
and both using Eq. (39). Here O ~ tar o and % = 1 s. 

in the DRT yield ec0 = 10 from Eq. (16). Similarly, 
the CTM Eq. (3) leads to ec0 = 20 and 5, for ED= 
not included in the DRT estimate and included in it, 
respectively. 

Complex-plane and frequency-response results of 
the two separate inversions of the same data set are 
shown graphically in Figs. 4 - 7  for the four immit- 
tance levels. To produce these results, the CV {c m, 
~'m} DRT sets obtained from the two separate inver- 
sions were used with CV quadrature to obtain sepa- 
rate estimates of I( /2).  These estimates were used in 
Eqs. (38) and (39) to obtain the proper CSD results, 
which agree with the original p-level data very 
closely, and were then used in Eq. (37) to calculate 
CTM predictions. Comparisons of the three different 
response curves at each of the four levels are instruc- 
tive. Because the DRT in which the effects of eD~ 
are included is so different from the proper one, it is 
not surprising that its results differ as much as they 
do from the results obtained by using a close esti- 
mate of the exact DRT used in generating the data. 
In the log-log plots of Fig. 6, the lower t r ' ( O )  
curves show t r ' ( O ) - o -  0 response, and so they 
approach limiting slopes of 2, consistent with Eq. 
(12). Fig. 7 demonstrates that the values of ec0 
calculated above are consistent with the E 0 values 
shown. The differences between the CSD and CTM 
fit curves are most extreme at the dielectric level. 

7.3. CSD and CTM direct data fits with different eDoo 
values 

Although the results of Sections 7.1. and 7.2. 
demonstrate clearly the effects of proper and im- 
proper treatment of eD~ in inversion, they deal only 
with a DSD data situation, not particularly appropri- 
ate for the original or even the corrected CTM 
frequency-analysis approach. Therefore, it is impor- 
tant to compare the CSD and CTM fitting results for 
exact CSD data (see Appendix A for further details). 
Two exact Class-A KWW data sets with fl = 0.5 
and ~oo~ -- 10 ad 2 were therefore prepared and were 
fitted with the Class-B approximate KWW model of 
LEVM, including the effect of an eDo~ as a free 
parameter of the fitting circuit. The results of these 
fits are shown in Tables 2 and 3. 

For the present fits, the CSD results using PWT 
are comparable to the CTM ones with unity weight- 



J.R. MacdonaM / Journal of Non-Crystalline Solids 197 (1996) 83-110 

Table 2 
Results of CNLS fitting with proportional or unity weighting of synthetic CSD KWW frequency-response data 
10 and /3 = 0.5 

99 

involving a value of eo~ of 

A B C D 
Fit method Exact CSD/PWT CTM/PWT CTM/UWT 

S F - 0.027 0.22 - 
e~ 20 19.8410.0003 18.68 20.01 
% (s) 1 2.05[0.008 0.43910.23 0.98310.028 
/3 0.5 0.4951 [0.002 0.5201 [0.02 0.498210.004 
10-12/90 (l') cm) 2.2589 2.21210.003 1.744 2.503 
(~-) (s) 6 4.18 0.819 1.98 
ec0 30 30.22 15.82 29.78 
e 0 40 40.22 25.87 40.08 

The notation P]Q used herein and later indicates the estimate of the quantity, P, and its estimated relative SD, Q; values without SD 
estimates are calculated. Here and elsewhere, S F is the relative SD of residuals formed by taking the differences between frequency-re- 
sponse points obtained by fitting and corresponding exact data values. ~ is the high-frequency-limiting value of e'(to). % is the relaxation 
time in the KWW transient response expression, and /3 is its fractional exponent. P0 is the DC resistivity, and (~-) is the first moment, or 
average, of r over the KWW distribution (seeAppendix A). Finally, eco is the zero-frequency limiting value of E arising from CSD, and 
here ~0 = eco + eD~ since no DSD is present. 

ing (UWT). The large S F values in the CTM/PWT 
columns arise from the inaccuracy in the approxi- 
mate KWW model at low frequencies (see Appendix 
A), a region which plays much less of a role in UWT 
fitting at the modulus level. With a model involving 
accurate response in the low-frequency region, it 
would be preferable to use PWT. For the calculation 
required for these tables, the values of needed ( x  m ) 

quantities associated with each ft. estimate were used 
[41], and the CTM P0 figures are extrapolated val- 
ues. Further, known values of ~D~ were used as 
needed. For the Table 2 fit, where exact eD:o and 
Ec~ values were each 10, estimated values of these 

quantities for Cols. C and D were 12.9110.08, 
5.7710.19 and 10.1010.02, 9.9110.02, respectively. The 
exact values for Table 3 were 2 and 10; no separate 
estimates of them could be obtained for the 
CTM/PWT fit, but the CTM/UWT estimates were 
2.1810.05 and 9.8310.01, respectively. 

8. Detailed analysis of the relaxation frequency 
response of a model glass 

Finally, it is worthwhile to apply some of the 
results discussed above to the analysis of experimen- 
tal data for a conducting system showing dispersion. 

Table 3 
Results of CNLS fitting with proportional or unity weighting of synthetic CSD KWW frequency-response data 
2 and /3 = 0.5 

including a value of ED~ of 

A B C D 
Fit method Exact CSD/PWT CTM/PWT CTM/UWT 

S F - 0.030 0.246 - 
e~ 12 11.9210.003 11.1810.02 12.01 
to(S) 1 2.01 [0.008 0.95510.03 0.970 [0.02 
/3 0.5 0.4965 [0.002 0.5635 [0.008 0.496210.002 
10-1200 (1") cm) 2.2589 2.211 [0.003 1.671 2.511 
(~") (s) 6 4.08 1.57 1.967 
~co 30 30.24 29.2 30.03 
% 32 32.24 31.2 32.03 

See footnote of Table 2 for further information. 
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Recently, Moynihan [32] has re-analyzed the relax- 
ation data for a typical ionically conducting glass, 
that of LiEO-A1203-2SiO 2 (LAS) at 24.0°C. These 
data were first considered in Refs. [1,4] and have 
also been analyzed by others since then (e.g., [54,67]). 
According to Moynihan, they exhibit one of the 
broadest distributions of relaxation times found for 
such materials. Here I shall follow Moynihan and 
primarily consider fitting of KWW and Cole-David- 
son (CD) models. The data themselves were kindly 
provided by Dr Moynihan [68]. CNLS fitting was 
carded out with proportional weighting of a circuit 
involving the approximate KWW response element 
of LEVM or another I(to) response model. 

The empirical response function introduced by 
Havriliak and Negami [69] is 

I ( O )  = [1 + (i~(~) @] -y , (46) 

where 0 < ~b,~b~/< 1. When T = 1, it reduces to 
Cole-Cole response, and for ~b = 1 it yields Cole- 
Davidson behavior. Here O---09% as usual. The 
Cole-Cole form of Eq. (46), originally introduced to 
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describe dielectric dispersion, was perhaps first intro- 

duced at the Z-level in 1957 by Schwan [70] (see pp. 
160-161), and it and the general Eq. (46) function 
are now widely used for fitting CSD response [11]. 

The CD form was first used in the context of the 

CTM fitting method in 1977 [54]. 

It is worthwhile to compare fitting results for 

these data using the CTM and CSD fitting methods. 
The A, B, and C columns of Table 4 show results of 
fitting with the CTM method. Column A summarizes 

parameter estimates obtained from the recent Moyni- 

han KWW fitting using graphical and tabular meth- 

ods [32]. These parameter values should be com- 

pared to those in Col. B obtained with full CNLS 
fitting of the data at the M- (or p-) level. Initial 

CNLS fitting of the data without any account of 

electrode polarization effects led to very poor results, 

with S F values for the K W W  and CD fits of greater 

than 0.2. Such poor fits are inconsistent with the 

statements in Refs. [3,54] that large electrode capaci- 
tances need not interfere with analysis of relaxation 

data using the CTM M-level formalism. The reason 

is that with CNLS fitting using proportional weight- 

ing the results of p-level and M-level fitting are 

exactly the same, and although low-frequency polar- 

ization behavior appears obscured in M"(to)  plots, 
its role in CNLS fitting is not reduced by transforma- 
tion from the Z- to the M-level. Incidentally, in none 

of the fits presented in Table 4 was a statistically 

significant estimate of Pco~ different from zero ob- 
tained. 

Clearly, to obtain a useful CNLS fit of these data, 

one must add response elements to account for elec- 
trode polarization and any other interracial effects. It 

has been found that the combination of the capaci- 

tance C 2 and a specific form of the DE3 distributed 
element of Fig. 2 does so very well when DE3 is 

taken as a constant-phase element, a common choice 
for representing such behavior [11,71]. The resulting 

electrode response may be written at the complex 
conductivity level as 

O'E(tO) = itOeve E + a f f l ( i t o )  hE, (47) 

where 0 < n E < 1, e E is a dielectric constant associ- 
ated with the electrode capacitance, and A E is inde- 

pendent of frequency. Note that the corresponding 

pE(tO) response is in series with the bulk response, 
as shown in Fig. 2. Although inclusion of a non-zero 

Table 4 
Results of CNLS fitting with proportional weighting of 24°C Li20-A1203-2SiO z frequency-response data by CTM and CSD fitting 
methods using approximate KWW and exact CD response models 

A B C D E F G 
Method, model CTM, KWW CTM, KWW CTM, CD CSD, KWW CSD, KWW CSD, KWW CSD, CD 

S F - 0.066 0.050 0.028 0.016 0.034 0.041 
e~ 8.475 9.2910.021 8.4410.015 9.04[0.005 9.42[0.005 9.43[0.005 10.310.011 
10- 9po (f~ cm) 1.098 1.019 0.997 1.08910.005 1.07610.003 1.07510.006 1.06810.008 
103% (s) 0.365 0.36[0.044 2.7710.041 1.19710.016 1.10510.013 1.09510.014 4.25[0.048 
/3 or 3' 0.47 0.468[0.027 0.269[0.035 0.5586[0.008 0.535410.007 0.5347[0.005 0.375[0.027 
10-SAE - 1.7712.1 11.710.5 1.2310.22 1.2110.013 - 1.3110.028 
n E - 0.64310.175 0.81010.038 0.63610.004 0.52610.014 - 0.46310.017 
~E . . . .  74.8[0.027 -- 50.0[0.047 
(X) D 2.257 2.277 0.269 1.663 1.776 1.780 0.375 
( X z ) D/((X)D) 2 3.484 3.522 -- 2.354 2.201 2.207 -- 
103(r)D (S) 0.82 0.82 0.745 1.991 1.963 1.949 1.59 
ec0 29.5 32.7 - 30.9 31.6 31.5 27.1 
e 0 29.5 32.7 - 30.9 31.6 31.5 27.1 

The AE, hE, and E E parameters account for electrode polarization effects; see the heading of Table 2 for other definitions. Column-A 
parameter estimates are those of Moynihan [32], obtained largely by graphical and tabular methods. All other results were obtained by full 
CNLS fitting. Some otherwise comparable fits include two or three electrode parameters while others do not. For the fits of Cols. B and C, 
only two such parameters are included because the results better agreed with those of Col. A. The electrode parameter ~E was omitted from 
the Col.-D fit to allow direct comparison with the results shown in Col. E, where it was included. The estimates shown in Col. F were 
obtained by first using LEVM to eliminate estimated electrode effects from the Col.-E fit data predictions and then refitting the results 
without electrode parameters included. 
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Fig. 8. Plots of M" vs. log(f/fo) for LAS glass at 24°C. Lines 
and open-symbol points show KWW and CD CNLS fits to the 
data using the corrected CTM approach. Here and subsequently, 
'KWW fit' denotes the use of the approximate KWW-model 
algorithm of the LEVM CNLS fitting program; PWT stands for 
proportional weighting; and fo = 1 Hz. The estimated fit parame- 
ters of the KWW and CD fits are listed in Table 4, Cols. B and C, 
respectively. 

value of e E leads to smaller S F values than shown, 
the fits of Cols. B and C were carried out without 
this element, since the results obtained were closer to 
those shown in Col. A and that quoted in Ref. [54]. 
In fact, most of the common Col.-A and Col.-B 
results are quite close, except for those of EDoo and 
ec0. The only parameter value available from prior 
CD fits of these data is that of y, 0.26 [32] and 0.262 
[54]. Fig. 8 compares M" data with the Cols. B and 
C KWW and CD model fits. These CTM-approach 
fit results appear close to those presented earlier 
[32,54], but it is clear that neither model leads to an 
adequate fit of the data. 

Columns D - G  of Table 4 list the results of CSD 
fits of these data. Those of Col. D should be com- 
pared with the values in Col. B. Note not only the 
differences in the corresponding parameter estimates 
but also the much smaller values of the Col. D S F 
and parameter relative standard deviation estimates. 
Especially noteworthy are the differences between ~-o 
and (X)o  values. 

The fit of Col. E included a non-zero e E and it is 
clear that its presence greatly improves the fit but 
does not appreciably change the estimates of most of 
the bulk parameters. By contrast, the use of a non- 
zero E E with no added constant-phase element 

yielded a very poor fit. One can use LEVM to 
eliminate the effect of any fitting parameters from 
the data. The fit results of Col. F are for fitting of 
data from which the effects of the electrode-polariza- 
tion parameters of Col. E were so eliminated. The 
parameter estimates are virtually identical to those of 
Col. E, but the S F value is larger because of the 
magnification of data errors arising from subtraction. 

In addition to the KWW and CD model fitting 
results of Table 4, the usefulness of several other 
fitting models available in LEVM was also investi- 
gated. Of these CSD fits, only two other models led 
to S F values comparable to that of the Col.-E fit of 
Table 4. The full Havriliak-Negami model yielded a 
S F value of 0.0216 and the general exponential 
distribution of activation energies model [7] led to 
0.0177, nearly as good as the value following from 
the present approximate KWW model. 

All the CNLS fit results in Table 4 are for the 
Class-B type of dispersion models discussed in Ap- 
pendix A. There, it is shown that fitting with Class-A 
models leads to more complete and accurate results 
than fitting with Class-B models. Thus, it is worth- 
while to present a few results with Class-A model 
fitting using PWT, especially since they may help 
separate the ec~ and I~D~ contributions to e=. The 
Col.-F data were therefore first fitted with an expo- 
nential-distribution-of-activation-energies model 
[6,9]. The fit yielded a zero estimate of the separate 
eD~ fitting parameter and an estimate of ec~ of 
9.41, close to that for e~ in Col. F. Then the same 
data were fitted with the fl = 0.5 exact KWW model, 
even though the /3 estimate shown in Col. F is 
somewhat larger than 0.5. Again, a zero estimate of 
eD~ was obtained, along with an ec~ estimate of 
9.35. The KWW fit involved a 20% larger S v value 
than did the exponential-distribution one, probably 
mostly because of the /3 mismatch arising from the 
restriction to /3 = 0.5. Finally, the data were fitted 
with the approximate KWW model using the CTM 
approach with UWT. Although an estimate of eo~ 
of 1.1210.63 was obtained, the value seems too small 
and the relative standard deviation too large to allow 
meaningful conclusions to be reached. The two 
Class-A ec~ estimates and the inability to obtain 
significant non-zero eD~ estimates strongly suggest 
that the CSD-approach Class-B e~ estimates shown 
in the table are dominated by ec~ and justify the 
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Fig. 9. Log-log plots of e' vs. frequency for a CSD-method, 
KWW-model fit which includes both bulk and electrode contribu- 
tions to the fitting model, and for a fit to data from which the 
electrode contributions determined in the first fit were subtracted. 
See Table 4, Cols. E and F, respectively. 
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Fig. 10. Plot of M" for a CSD-method fit to the original data set 
and a fit to that with the electrode contribution subtracted. See 
Table 4, Cols. E and F, respectively. The dashed line shows the 
electrode polarization contribution that was subtracted. 

neglect of eD~ in the calculations of ec0 and e o 
presented in the table. 

It is interesting to compare some normalized fre- 
quencies associated with the Col.-F fit results. Let 
J'~x ----" toxTo = ('Tx//'/'o)-I and take ~'x as ( T ) D  , 'Tpp, 
rgp, and ~',p where the 'p '  subscript denotes the 
value of to at the peaks of the p"(to), M"(to) and 
e~'(to) curves. Then one finds for g2x: 0.615, 0.392, 
1.75, and 0.289, respectively. Thus, for the present 
data, the peak of the M" curve appears at a fre- 
quency about 6 times greater than that of the e" 
curve. For comparison with the Col.-F value of 
(X)D, calculated from the estimated value of fl 
listed, an M = 7 DRT inversion of the present data, 
where eo~ was accounted for separately, led to an 
estimate of this quantity of about 1.88. The differ- 
ence between the two values probably arises from 
the use of the approximate Class-B KWW model, 
from a relatively small value of M, and from errors 
in the data. 

The three CSD KWW fits of Table 4 yield mutu- 
ally consistent estimates of ec0 and e 0, ones better 
than the others listed in the table. Fig. 9 shows a 
log-log plot comparing the frequency dependence of 
the original ~' data with that predicted from the 
Col.-E fit, and a comparison of the data with elec- 
trode polarization effects subtracted from it with the 
Col.-F fit results. It is clear that polarization makes a 

non-negligible contribution to the total response at 
both the low-frequency and the high-frequency ends 
of these curves. Figs. 10 and 11 show similar results 
for M" and M' and include curves showing the 
separate contributions from electrode polarization as 
well. The high-frequency polarization effects present 
here are associated with the semi-blocking response 
of the electrodes. This response may arise from the 
use of non-parent-ion electrodes. It seems likely that 
such polarization effects together with the use of 
more appropriate fitting methods may explain much 
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CSD Method ~' . . . . .  Orig. data 
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/1% 0.00 ~==~- -, - 
-1  1 3 5 7 

Log(f / to)  
Fig. 1 l. Plot of M'  for a CSD fit to the original data set and a fit 
to that with the electrode contribution subtracted. See Table 4, 
Cols. E and F, respectively. The dashed line shows the electrode 
polarization contribution that was subtracted. 
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Fig. 12. Plot of P'/Pn and P"/Pn CSD fit results to the original 
data set and to that with the electrode contribution subtracted. See 
Table 4, Cols. E and F, respectively. The dashed line shows the 
electrode polarization contribution that was subtracted. Here for 
clarity the P"/P, results are magnified by a factor of two 
compared to the P'/Pn ones. The units of Pn are £~cm. 
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Fig. 14. Plot of ~ / ~ n  CSD fit results to the original data set and 
to that with the electrode contribution subtracted. See Table 4, 
Cols. E and F, respectively. Here % = 1 for the real part and 0.5 
for the imaginary part of es; ~s (I2)--- e(~O)-o-0/ i toe~;  and 

of the excess high-frequency absorption that CTM 
[4] have termed "endemic to the vitreous state". 

Fig. 12 presents p' and /9" response comparisons 
and shows that, for these p-level plots, electrode 
effects only make significant contributions at low 
frequencies. Here the polarization curve is only 
shown for p" response. Fig. 13 is similar to Fig. 6 
but, again, makes it clear that electrode polarization 
contributes significantly to the data at both low and 
high frequencies. Note especially the reduction in the 
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Log(f/fo) 
Fig. 13. Log-log frequency-response curves of o-(f2)/o-. CSD 
fits to the original data set and to that with the electrode contribu- 
tion subtracted. See Table 4, Cols. E and F, respectively. The o-' 
curve which approaches the x-axis is that for ( o - ' ( / 2 ) -  
o-0)/o'n;/2 -= to%; and here o-n = 1 (1"~ cm) -1 

slope of the original log-log o-' vs. f frequency-re- 
sponse curve, which reaches a maximum exceeding 
0.75 at the highest measured frequencies, to a con- 
stant slope near 0.5 over a wide frequency range for 
the subtracted data and fit. The KWW model without 
any polarization contributions thus fits the subtracted 
data much better over a wide frequency span. The 
excellent agreement between data and CSD fit re- 
sults shown in Figs. 9-13 is much superior to earlier 
fitting results of others. The present fit results 
strongly indicate that the approximate KWW model 
is appropriate for these data. At most only slight 
deviations between data and fit appear at the ex- 
tremes of frequency. 

Fig. 14 shows the dependences of the real and 
imaginary parts of e s on frequency, with the imagi- 
nary part expanded by a factor of 2 for clarity. It is 
important to emphasize that while the e~ curve in- 
volves data from which the electrode polarization 
contribution has been subtracted, the e~' data and fit 
curve also involve the additional subtraction of the 
estimated o- 0 value. At low frequencies, the sub- 
tracted e-level quantities are nearly equal, greatly 
magnifying the errors in the original data. Thus we 
see a small reduction in the e~ data at the lowest 
frequencies, and much more disagreement between 
data and fit for e~' in this range. The four lowest e~' 
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data values were so noisy that they have been omit- 
ted. The final low-frequency-limiting value of ~ 
from the fit is 31.474 here, the same as that shown in 
Col. F of Table 4. Note that these ~s results were not 
obtained by direct DSD fitting of the data at the 
epsilon or complex conductivity level but follow 
from the transformation of the Col.-F p-level CSD 
fits and data to the epsilon level. 

Fig. 15 shows complex-plane plots of the p, M, 
and E s fits and data, all normalized to afford easy 
comparison. Because of the large amount of noise in 
the low-frequency E~' data, the es curve shown is 
that for the Col-F fit only. It is interesting to note 
that for the present data, the M and es curves are 
nearly mirror images of each other, a consequence of 
/3 being near 0.5 for these data. 

The subtraction of the electrode polarization ef- 
fects from the full data is particularly easy with 
CNLS fitting because the electrode and bulk effects 
are in series, as in Fig. 2. The remaining bulk data 
and its separate fitting, as in Col. F, show extremely 
plausible behavior here, strongly justifying the iden- 
tification of the series fitting parameters with elec- 
trode processes. Since such parameters should be 
intensive and thus independent of electrode spacing, 
it is nevertheless always desirable to make measure- 
ments on samples of two or more thicknesses, allow- 
ing unambiguous identification of bulk and electrode 
effects. 

The Fig. 15 results again raise the question of 
identification mentioned in Section 4: do the data 
arise from DSD with a separate tr 0 or from CSD 
with a separate eo~? Although it may be possible, as 

discussed in Section 4, to discriminate on the basis 
of different temperature dependences, other means of 
identification would be welcome as well. The results 
of the following three tests seem to provide another 
such method. First, a CSD complex data set was 
formed using the CD response model with y = 0.6 
and ED~ = 10. These exact p-level data values were 
converted to the complex o- level and the effects of 
~r 0 then subtracted. These subtracted-data were then 
converted to the complex e-level and fitted to a 
response model which included CD response at the 
dielectric level and eD~, thus representing full DSD 
response. The second test was similar but started 
with p-level data containing 2% random errors drawn 
from a normal distribution having zero mean. The 
third test was also similar but involved fitting and 
analysis of the actual Col.-F LAS-glass data set. 

All three tests described above yielded similar 
results. With the exact data set, CNLS DSD fitting of 
the transformed, subtracted data yielded an S F value 
of about 0.044, not a good fit value for exact data. 
But, even more crucially, it was found that the 
separate S e values for the real and imaginary parts 
obtained with full CNLS fitting were about 0.0144 
and 0.0612. Separate fitting of the real-part of the 
data yielded a value of about 0.0056, and no separate 
converged fit of the imaginary part was found to be 
possible. With the data containing 2% random errors, 
similar results were observed but with a much larger 
ratio between the CNLS real and imaginary S F val- 
ues. The LAS-data DSD KWW fit led to an S F value 
of about 0.23, with real and imaginary values of 0.02 
and 0.34, and to a separate real-part fit value of 0.01, 
which dropped to 0.005 when the four lowest fre- 
quency points were omitted from the data fitted. 
These values were very sensitive to the exact value 
of 0% used in the subtraction and led to curves and 
comparisons much inferior to those plotted in Fig. 
14. 

The following discrimination procedure now 
seems reasonable. Suppose one is confronted with a 
given data set which includes a non-zero o- 0. First, 
eliminate electrode polarization contributions to the 
data, if present. If  the resulting data set can be 
adequately fitted using the CSD approach at the 
p-level and at the o-level, pick the better of the two 
fits and subtract the effect of the estimated cr 0 = Po 
value from the data. These data are then fitted at the 
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dielectric level using the DSD approach with the 
same or a different dispersion model as that used in 
the CSD fits. If this fit is poor and of the character of 
those described above, the original data set most 
likely arises from CSD. This is very probably the 
case for the LAS data. Alternatively, one can start 
with a DSD fit at the a-level, one including a 
separate cr 0 parameter, subtract its estimated value 
and try fitting again without it. The results of these 
various fitting procedures will often make it obvious 
whether the data involve CSD, DSD, or perhaps a 
combination of the two. To test for such combined 
response, one will need to fit the data with a model 
including both the DEC and the DED elements 
shown in Fig. 2. 

9. Conclusions 

Equations of Moynihan and his associates for the 
analysis of conductive-system dispersive response 
are shown to be physically implausible and to arise 
from incorrect generalization of single-time-constant 
response to dispersive response. New exact equations 
are derived to replace the Moynihan ones and their 
use is demonstrated. In addition, one of them pro- 
vides a rationale for the approximate Barton, Naka- 
jima, Namikawa (BNN) relation, an empirical equa- 
tion which has been found to be applicable for much 
disordered-material frequency-response data. 

The use and importance of complex-non-linear- 
least-squares data fitting is demonstrated for syn- 
thetic and experimental frequency- and transient-re- 
sponse data. When fitting is carried out with propor- 
tional weighting, exactly the same results are ob- 
tained for fitting at the complex resistivity and at the 
complex modulus levels, settling the argument about 
which approach is the better. The LEVM fitting 
program is used both to fit response models to 
frequency-response data and also to invert such fre- 
quency-domain data and time-domain data to obtain 
estimates of their underlying distribution of relax- 
ation times or activation energies. The role of the 
high-frequency-limiting dielectric-system dielectric 
constant, eD~, in both inversion and in direct data 
fitting is clarified. A valuable plotting approach is 
demonstrated in which each fit point is directly 
compared to its corresponding datapoint, rather than 

just comparing a fit line with the data. Thus, the 
degree of point-to-point fit agreement is much better 
demonstrated. 

The above methods were employed to fit the 
model-glass LAS frequency-response data of Moyni- 
han and his associates [4,32], and it was shown that a 
much better fit is possible over the seven-decade 
span of the data than any previously obtained. Such 
fitting used the approximate but quite accurate KWW 
response model incorporated in LEVM, a model 
which is applicable for a wide range of the fractional 
exponent, /3. To obtain a fit largely limited by the 
noise in the data, it was necessary to include elec- 
trode-polarization circuit elements in the full fitting 
model. Contrary to conventional wisdom, such polar- 
ization effects were found to be important at both the 
low and the high ends of the measured frequency 
range. After fitting of the full model, the effects of 
electrode polarization may be eliminated from the 
data, and the resulting subtracted-data fitted KWW 
model response very well over the entire extent of 
the data. A procedure for helping identify whether 
frequency-response data involve conductive-system 
dispersion or dielectric-system dispersion was de- 
scribed and applied to the LAS data. It suggested 
that these data involved conductive rather than di- 
electric dispersion. 

Appendix A. Comparison of CSD and CTM con- 
ductive-system dispersed fitting expressions 

I showed in 1985 [6,9], without knowledge of the 
relevant ground-breaking CTM approach to CSD 
data analysis [1-5], that if the energy-loss part of a 
distributed process was distributed but the energy- 
storage part was not (the usual situation), the same 
formal DRT or distribution of activation energies 
expression employed for calculating DSD response, 
gD(r), could be used for CSD response calculation 
provided that gD(r) was multiplied by a factor 
proportional to r. Some consequences of this unify- 
ing approach for the representation and fitting of 
CSD response are explored here, and a general rela- 
tion is derived between an arbitrary normalized DSD 
DRT, gD(r), and the corresponding CSD DRT, 
G(r) = GcD(r). 

If we replace the Z-level CSD G(r) of Eq. (34) 
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by ~'go(~') and normalize the new distribution, Eq. 
(34) becomes 

~'gD(~') d'r f / 
Jo I1 +ito~'] 

I(to) = Ico (o9) = (A1) 

~ "r gD('r) dr.  

However, since the denominator is, by Eq. (4), just 
(r)D, we may write [6,9] 

Go( r  ) dr  f /co(.,) (A2) =-to [1 
where 

(A3) 

It follows, in terms of x = ~-/r o, that 

( X m ) = ( x m ) c  = ( X m+ I)D//( X)D. (A4) 

By contrast, if we instead take G(T)= go(r), then 
from Eq. (10) (x  m) = (xm)D. For the exact KWW 
gD(~') with fractional /3 = 0.5, the values of (Xm)D 
and (xm)c are [41]: 12, 60; 2, 6; 1, 1; and ~, 0.5 for 
m = 2, 1, 0, and - 1, respectively. 

For comparison with the original CTM approach, 
write the M-level response associated with Eq. (A2) 
in full unnormalized form. The result is 

ito~vPc~ + [e v A p / ( r ) D ]  

Mct~(to) = fo 1 [1 +ito~-] gD(r)  d~" 

i toe v Pc~ 

+[ffvAp/( ' r )D][1 --/D(to)l, 
(A5) 

one which can be directly used for fitting when the 
form of ID(to) is known. Consider now the less 
general Pc~ ~ 0 case treated earlier by CTM. It then 
follows from Eqs. (20) and (A4) that 

[E V Ap/(T)D] ~ EvP0(~'-I)c = 1/Ec~. (A6) 

Comparison of Eq. (A5) (re-written using Eq. (A6)) 
with the CTM Eq. (37) expression shows that the 
Co= appearing in Eq. (37) is incorrect and must be 
replaced by ~c=- Such replacement in the CTM Eq. 

(1) corrects it and makes it consistent with the CSD 
Eq. (20). Further, because CTM used eD~ in their 
analyses instead of ~c~, the - 1  term in their Eqs. 
(3) and (6) must be eliminated. Then, for example, 
one obtains 

(AT) 

Note that et~ does not appear in any of the above 
purely CSD relations. It must be treated as a separate 
fitting parameter (i.e., not a part of ICD(to) or ID(to)) 
whether DSD response is present or not. Here, we 
shall use ED~ tO mean the ordinary dielectric-system 
contribution to the total high-frequency-limiting di- 
electric constant, e~ = ec~ + eD~o, wherever possible 
(but see the Class-B discussion below). When CNLS 
fit parameters have been estimated, LEVM extrapo- 
lation of the fitting model may be used to obtain the 
values of e 0, ~ ,  and P0 consistent with the model 
and its parameter estimates. Incidentally, the approx- 
imate KWW model does not involve sufficiently 
accurate behavior of [1 - ID(to)] in the to ~ 0 limit 
to allow adequate E 0 extrapolation for CTM fits. 

It is useful to distinguish between two different 
classes of CSD fitting models, A and B. Class A 
involves all those models which involve finite and 
non-zero values of Ec0 and ec~ as intrinsic parts of 
their response, such as the Gaussian and the cutoff- 
exponential distributions of activation energies mod- 
els [6,9], and the exact /3 = 0.5 KWW model. These 
models are just those that arise from the integrations 
of Eqs. (A2) and (A5) or are consistent with them. 
The analysis shows that, for such models, Ec~ is 
properly non-zero. Synthetic data calculated using 
the corrected CTM approach can be fitted exactly by 
Class A models. Eqs. (11)-(26) apply to/co Class-A 
fit results with all ( x  m) quantities replaced by the 
(x  m)c. For Class-A LEVM fitting, one will directly 
obtain a non-zero estimate of the separate eD~ pa- 
rameter if the data allow it to be adequately distin- 
guished. Let e, - ( ro/e  v P0), a quantity whose value 
may be calculated from the parameter estimates. Eqs. 
(16) and (20) apply using the (xm)c parameters of 
Eq. (A4), thus allowing ec0 = E 0 - eD~ = E~(X)c 
and e C ~ = ~ - - E D ~ = E , [ ( X - I ) C ] - I  to be deter- 
mined from the fit value of eo~ and the extrapolated 
values of eo and e~, all consistent with Eq. (A7). 
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These results also allow one to obtain estimates of 
(X)c and ( x - l ) c .  

The situation is somewhat different for Class B 
models, those for which eco~ = 0, such as the empiri- 
cal Cole-Cole, Cole-Davidson, and Havriliak-Neg- 
ami models. Class B models are generally less com- 
plete and less appropriate for CSD data fitting than 
are Class A ones. The present approximate KWW 
model without cutoff is also a member of Class B 
because it involves the Havriliak-Negami function 
as part of its response [36]. It is helpful to define two 
different Class-B situations. The first, which will be 
denoted by CSD, is that where Eq. (34) or (38) is 
used for fitting, and it either directly involves known 
I(to) = ID(to) models or the direct use of a known 
go(to) expression. The second type, which will be 
identified by CTM, involves the use of ID(to) in Eq. 
(A5) for fitting. 

Since most of the fitting of experimental data 
presented herein involves Class-B models, it is im- 
portant to distinguish their similar and dissimilar 
responses. First, important relations may most sim- 
ply be expressed in terms of the (xm)D quantities. 
For the CSD approach, fitting of CSD data involving 
eD~ 4~ 0 (the case for all real data), one finds that the 
free eo~ parameter actually estimates e~, rather than 
just eD~, SO no separate estimate of Ec~ is available. 
For the CTM situation, however, an estimate of ec~ 
is directly obtained, as well as a useful estimate of 
eD~ when its estimate is non-zero. Unfortunately, 
for limited-range experimental data, it is frequently 
found that the ec~ estimate cannot be adequately 
distinguished from that of ~ .  Because it is often 
observed for disordered solids that ~ fit estimates 
(usually identified as dielectric-system eD~ contribu- 
tions [1,2]) are larger than those expected from pure 
dielectric processes, and may be as large as 20 or 
more [32], it is likely that the ec~ part of an 
unresolved ~ sum is dominant in many such cases. 

For Class-B CSD fit analysis, a direct estimate of 
P0 is available but none of Ec~, while for CTM 
analysis a direct estimate of ec~ is available but 
none of P0 unless Eq. (AS) is used for fitting. 
However, the use of the directly estimated parameter 
values and extrapolation values, along with the equa- 
tions ec= = ~ - ED~ - ~ -  ff~r(X)D and ec0 = e 0 - eDoo 
= {(X 2)D/[(x)D]2}ec=, allows useful estimates of 
all relevant quantities to be obtained when a value of 

eD~ is available, and it yields less complete esti- 
mates when et)~ is unknown. The preceding equa- 
tions have been employed in the fit calculations in 
the text, and when a choice was needed to be made 
between alternate relations, that which seemed most 
plausible for the particular data being analyzed was 
used. CNLS fitting of CSD data with Class-B models 
is illustrated by the results in Tables 2-4. When EDo o 
cannot be separately estimated and is unknown but is 
expected to be significant, Class-B fitting is likely to 
be unsatisfactory, and one should use accurate Class- 
A fit models with appropriate weighting wherever 
possible. 

Appendix B. Principal acronyms and subscripts 

BNN 
C 

CD 
CNLS 
CSD 

CTM 

CV 

D 
DF 

DRT 
DSD 
DV 

IS 
KWW 

LAS 
LEVM 

PWT 

SD 

UWT 
V 

Barton, Nakajima, and Namikawa equation 
Subscript denoting conductive or continu- 
ous 
Cole-Davidson response model 
Complex non-linear least squares 
Conductive-system dispersion; also the 
CSD fitting approach 
C.T. Moynihan and associates and their 
corrected fitting approach 
Continuous distribution, variable (free)-7 
DRT fitting method 
Subscript denoting dielectric or discrete 
Discrete distribution, fixed (constant)-z 
DRT fitting method 
Distribution of relaxation times 
Dielectric-system dispersion 
Discrete distribution, variable (free)-~- 
DRT fitting method 
Immittance (or impedance) spectroscopy 
Kohlrausch-Williams-Watts fractional- 
exponential response model 
Li20-A1203-2SiO 2 glass 
The CNLS computer fitting program used 
herein 
Proportional weighting (in least squares 
fitting) 
Standard deviation. That for a fit is de- 
noted S F 
Unity weighting (in least squares fitting) 
Subscript denoting vacuum or variable 
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Appendix C. The fl = 0.5 KWW cut-off distribu- 
tion 

Physical realizability requires that all valid re- 
sponse functions must lead to complex-plane p or • 
plots that intersect the real axis at a 90 ° angle at both 
low and high frequencies [42,72], in agreement with 
the limiting responses of Eqs. (11)-(14). Many em- 
pirical response models, including the KWW one, do 
not satisfy this requirement. The GBEM effective- 
medium model [38,65], the jump-relaxation model 
[73] and the Gaussian model [7,8], however, do so. 
In addition, in current work I have shown that a 
recently proposed model involving Coulomb fluctua- 
tions [74] also leads to exact Gaussian response [75]. 

Lack of realizability may be cured by cutting off 
the model DRT response at the extremes of the 
relaxation-time range. Usually a sharp cutoff is suffi- 
cient. KWW response requires such a cutoff only at 
IOW T, say q'min (corresponding to the high frequency, 
tOma x), and the consequences of such a cutoff will be 
described here. When normalization is enforced for 
the /3 = 0.5 KWW G ( z ) =  gD(~') of Eq. (45) by 
requiring that it be zero for r(~-~, in Eq. (9), one 
obtains the following result in terms of the normal- 
ized r variable x -~ z / r  o, 

Ox(X) 

'[r(½)/r(½, Xmin/4)] 

= × ( 4 ~ r x ) - ' / 2 e x p ( - x / 4 )  

0 

(Xmi n -~ X-~ °°) ,  

(0  -~ X <~ Xmin), 

(C1) 

where F(½, Xmin//4) is an incomplete gamma func- 
tion and / ' (3 ,  0) = F(½) = v~- the ordinary gamma 
function. It follows from Eqs. (C1) and (10) that 

(Xm)D=4mF(m+ l Xmin/a)/r( , Xmin/4), 
(C2) 

consistent with the arbitrary-t, Xmi n = 0  result, 
f l - l F ( m / f l ) / F ( m )  of Ref. [41]. 

Since Xmi . will generally be very much smaller 
than unity, we may use the first terms of a series 
expansion of the incomplete gamma function to ob- 
tain a useful approximation for this function. This is 
r(v, z) --- r (v ) [1  - exp(-z)zVr(v + 1)]. For 

small z, it is only significantly different from F(v)  
for v < 1. It follows that the term in square brackets 
in Eq. (C1) may then be well approximated by 
[1 - (Xmin//ql') 1/2 ]-1. We also obtain the approxima- 
tion 

(xm)D 
m+ 1/2 F(m+½)[1-(XmiJ4 ) /r(m+ ~)] 

___ a m 

~ ' ~ - [ 1 -  (Xmin//Tl') 1/2] 

( c3 )  

which properly leads to (X°)o  = 1. To first order, 
one also obtains (X)o = 211 + (xmi°/1r)l/2}, and 
( X - I ) o  = (~Xrnin)-1/2 -I- ('IT -1 -- 0.5). Thus, for 
small xmi n the quantity ( x - ~ ) o  will be very large 
and ( x - 2 ) o ,  proportional to (Xmin)-3/2, will be 
much larger still. 

References 

[1] P.B. Macedo, C.T. Moynihan and R. Bose, Phys. Chem. 
Glasses 13 (1972) 171. 

[2] V. Provenzano, L.P. Boesch, V. Voltera, C.T. Moynihan and 
P.B. Macedo, J. Am. Ceram. Soc. 55 (1972) 492. 

[3] J.H. Ambrus, C.T. Moynihan and P.B. Macedo, J. Phys. 
Chem. 76 (1972) 3287. 

[4] C.T. Moynihan, L.P. Boesch and N.L. Laberge, Phys. Chem. 
Glasses 14 (1973) 122. 

[5] F.S. Howell, R.A. Bose, P.B. Macedo and C.T. Moynihan, J. 
Phys. Chem. 78 (1974) 639. 

[6] J.R. Macdonald, J. Appl. Phys. 58 (1985) 1955. 
[7] J.R. Macdonald, J. Appl. Phys. 61 (1987) 700. 
[8] J.R. Macdonald, J. Appl. Phys. 62 (1987) R51.1 
[9] J.R. Macdonald and J.C. Wang, Solid State Ionics 60 (1993) 

319. 
[10] J.R. Macdonald, J. Appl. Phys. 75 (1994) 1059. 
[11] J.R. Macdonald, ed., Impedance Spectroscopy-Emphasizing 

Solid Materials and Systems (Wiley-Interscience, New York, 
1987). 

[12] M. Pollak and T.H. Geballe, Phys. Rev. 122 (1961) 1742. 
[13] S.R. Elliott, Philos. Mag. 36 (1977) 1291. 
[14] S.R. Elliott, Adv. Phys. 36 (1987) 135. 
[15] F. Henn, S.R. Elliott and J.C. Giuntini, J. Non-Cryst. Solids 

136 (1991) 60. 
[16] A. Hunt, J. Non-Cryst. Solids 160 (1993) 183. 

i The KWW distribution is misidentified here as a stable LEvy 
distribution; instead it is the characteristic function of such a 
distribution. 



110 J.R. Macdonald~Journal of Non-Crystalline Solids 197 (1996) 83-110 

[17] J.R. Macdonald and M.K. Brachman, Rev. Mod. Phys. 28 
(1956) 393. 

[18] S.R. Elliott, Solid State Ionics 27 (1988). 
[19] J. Schrama, PhD thesis, University of Leiden (1957). 
[20] D.P. Almond and A.R. West, Solid State Ionics 11 (1983) 

57. 
[21] J.C. Dyre, J. Appl. Phys. 64 (1988) 2456. 
[22] Discussion session: Glassy Ionics, J. Non-Cryst. Solids 131- 

133 (1991) 1118. 
[23] S.R. Elliott, J. Non-Cryst. Solids 170 (1994) 97. 
[24] J.R. Macdonald and L.D. Potter Jr., Solid State lonics 23 

(1987) 61.2 
[25] J.R. Macdonald, Electrochim. Acta 35 (1990) 1483 
[26] B.A. Boukamp and J.R. Macdonald, Solid State Ionics 74 

(1994) 85. 
[27] J.R. Macdonald, J. Chem. Phys. 102 (1995) 6241. 
[28] R.H. Cole and E. Tombari, J. Non-Cryst. Solids 131-133 

(1991) 969. 
[29] H.K. Patel and S.W. Martin, Phys. Rev. B45 (1992) 10292. 
[30] B.S. Lim, A.V. Vaysleyb and A.S. Nowick, Appl. Phys. A56 

(1993) 8. 
[31] R. Diaz Calleja, J. Non-Cryst. Solids 172-174 (1994) 1413. 
[32] C.T. Moynihan, J. Non-Cryst. Solids 172-174 (1994) 1395. 
[33] J.R. Macdonald, J. Electrochem. Soc. 124 (1977) 1022. 
[34] J.R. Macdonald, A. Hooper and A.P. Lehnen, Solid State 

Ionics 6 (1982) 65. 
[35] J.R. Macdonald and G.B. Cook, J. Electroanal. Chem. 168 

(1984) 335; 193 (1985) 57. 
[36] J.R. Macdonald and R.L. Hurt, J. Chem. Phys. 84 (1986) 

496. 
[37] J.R. Macdonald, Solid State Ionics 58 (1992) 97. 
[38] J.R. Macdonald, Appl. Phys. A59 (1994) 181. 
[39] J.R. Macdonald, J. Electroanal. Chem. 378 (1994) 17.3 
[40] C.J.F. Bottcher and P. Bordewijk, Theory of Electric Polar- 

ization, Vol. II (Elsevier, Amsterdam, 1978). 4 
[41] C.P. Lindsey and G.D. Patterson, J. Chem. Phys. 73 (1980) 

3348.5 
[42] J.R. Macdonald, Solid State lonics 25 (1987) 271. 
[43] R. Kohlrausch, Pogg. Ann. Phys. Chem. 91 (2) (1854) 179. 
[44] G. Williams amd D.C. Watts, Trans. Faraday Soc. 66 (1970) 

80. 

2 Version 6.1 of the LEVM fitting program may be obtained 
from Solartron Instruments, UK, +44-1252 376 666, e-mail: 
briansayers 100444.3217 @ compuserve .com. 

3 The word 'relation' in the title of this paper should be 
'relaxation'. 

4 The lower limits of the integrals in Eqs. (9.1)-(9.4) should be 
-0% not 0. 

5 The G(r) and p(~') functions introduced in this excellent 
DSD work are equivalent to the present F(y)  and G('r) functions, 
respectively. 

[45] G. Williams, D.C. Watts, S.B. Dev and A.M. North, Trans. 
Faraday Soc. 67 (1971) 1323. 

[46] J.L. Barton, Verres Refract. 20 (1966) 328. 
[47] T. Nakajima, in: 1971 Annual Report, Conference on Electric 

Insulation and Dielectric Phenomena (National Academy of 
Sciences, Washington, DC, 1972) p. 168. 

[48] H. Namikawa, J. Non-Cryst. Solids 18 (1975) 173. 
[49] R.A. Huggins, in: Diffusion in Solids, Recent Developments, 

ed. A.S. Nowick and J.J. Burton (Academic Press, New 
York, 1975) p. 445. 

[50] S.W. Martin and C.A. Angel, J. Non-Cryst. Solids 83 (1986) 
185. 

[51] F. Stickel, E.W. Fischer and R. Richert, J. Chem. Phys. 102 
(1995) 6251. 

[52] K.W. Wagner, Ann. Phys. 4-40 (1913) 817. 
[53] J.R. Macdonald and C.A. Barlow Jr., Rev. Mod. Phys. 35 

(1963) 940. 
[54] I.M. Hodge and C.A. Angell, J. Chem. Phys. 67 (1977) 1647. 
[55] K.L. Ngai and U. Strom, Phys. Rev. B27 (1983) 6031. 
[56] K.L. Ngai and H. Jain, Solid State Ionics 18-19 (1986) 362. 
[57] K.L. Ngai, J.N. Mundy, H. Jain, 0. Kanert and G. Balzer- 

Jollenbeck, Phys. Rev. B39 (1989) 6169. 
[58] P. Sarkar and P.T. Nicholson, J. Phys. Chem. Solids 50 

(1989) 197. 
[59] H.K. Patel and S.W. Martin, Phys. Rev. B45 (1992-II) 

10292. 
[60] W.C. Hasz, C.T. Moynihan and P.A. Tick, J. Non-Cryst. 

Solids 172-174 (1994) 1363. 
[61] H. Jain and C.H. Hsieh, J. Non-Cryst. Solids 172-174 

(1994) 1408. 
[62] C.K. Majumdar, Solid State Commun. 9 (1971) 1087. 
[63] J.-S. Lee and H.-I Yoo, J. Electrochem. Soc. 142 (1995) 

1169. 
[64] W.J. Thompson and J.R. Macdonald, Proc. Nat. Acad. Sci. 

USA 90 (1993) 6904. 
[65] J.R. Macdonald, Phys. Rev. B49 (1994-11) 9428. 
[66] D.W. Davidson and R.H. Cole, J. Chem. Phys. 19 (1951) 

1484. 
[67] G.P. Johari and K. Pathmanathan, Phys. Chem. Glasses 27 

(1988) 219. 
[68] C.T. Moynihan, private communication. 
[69] S. Havriliak Jr. and S. Negami, J. Polym. Sci. C14 (1966) 

99; J. Non-Cryst. Solids 172-174 (1994) 297. 
[70] H.P. Schwan, in: Advances in Biological and Medical 

Physics, ed. J.H. Lawrence and C.A. Tobias (Academic 
Press, New York, 1957) pp. 147-209. 

[71] J.C. Wang, Electrochim. Acta 33 (1988) 707. 
[72] R. Syed, D.L. Gavin, C.T. Moynihan and A.V. Lesikar, J. 

Am. Ceram. Soc. 64 (1981)Cl18. 
[73] K. Funke, Prog. Solid State Chem. 22 (1993) 111. 
[74] V.N. Bondarev and P.V. Pikhitsa, Phys. Lett. A196 (1994) 

247. 
[75] J.R. Macdonald, submitted to Phys. Lett. A. 


