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ABSTRACT

Immittance spectroscopy [IS] involves the measurement of the small-signal frequency
response of dielectrics, semiconductors, electrolytes, biological cells, and polycrystalline,
amorphous, and single-crystal electrically conducting materials. Analysis of such data to provide
insight into the detailed, microscopic, physicochemical processes present in the full electrode and
bulk material system is a crucial part of IS. Background information on IS and a discussion of its
strengths and weaknesses are presented. The use of weighted, complex, nonlinear-least-squares
for direct data fitting and for the solution of the ill-posed inversion problem of estimating
continuous distributions of activation energies for important response models and for
experimental data is illustrated. Replacements for the widely used, but incorrect, complex-
electric-modulus data-analysis relations proposed long ago by C. T. Moynihan and associates for
disordered ionic conductors, are presented and discussed. Recent proposals for various kinds of
universal response behavior are examined and found to be unjustified. The present analysis
methods are illustrated by applying them to 24°C data on a lithium aluminosilicate glass and to
data over a wide temperature range on single-crystal CaTiCs:30%A%".

INTRODUCTION TO IMMITTANCE SPECTROSCOPY

Electrical frequency-response measurements are usually carried out at the impedance or
complex-dielectric-constant level, Measurements which involve ionic or defect conduction are
typically made at the impedance level, and so the general measurement and analysis approach has
come to be called "Impedance Spectroscopy.” But impedance, which is an intrinsically complex
quantity, is only one of the four connected levels of the more general field of Immittance
Spectroscopy.  These levels are impedance: Z{w) = Z'{w) + i‘Z"(m); admittance: Y{(w) =
[ZeN™t = V') + iY"(w); complex dielectric constant (or complex capacitance):
elw) = YW/ (iwCe) = €' (w) — ie”(w), where Ce is the capacitance of the empty measurement
cell; and the complex electrical modulus: M (w) = [e(wjé'l. Here, i = x/“:-ii Also relevant are
the related specific quantities, the complex conductivity: o(w) = (iwey )e(w) = o'(w) + 1o (W),
where ey is the permittivity of vacuum, and the complex resistivity: p(w) = [o)]™! =
pw) 4+ i (w). A glossary of acronyms and other definitions appears at the end of this work.

A brief introduction to IS appears in [1], and many details in [2]. In recent years, a great
many practical applications of IS have been found [3], such as corrosion analysis, battery testing,
characterization of anodized and other films, tooth decay, concrete testing, and even detection of
micropores in condoms. Raw measurements, even over a very wide frequency range, are rarely
enough, however, and detailed analysis of the data is usually required to elucidate the often
complex phenomena involved in the response. The present work is concerned both with methods
of analysis and with their results. We may adapt Socrates' dictum: "“The unexamined life is not
worth living,” to the present area as: Inadequately analyzed data are not worth generating!
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A crucial procedure in IS analysis is the use of complex nonlinear least squares [CNL5]
fitting of data to a model [4-6]. The LEVM CNLS program [4] has been used for the present
analyses. CNLS fitting has been shown to have tremendous resolving power [6,7], and it is
indispensable in allowing one to resolve the many different processes possibly present and
intertwined in measured data, leading to objective estimates of the parameters of the models
representing such response, and then, finally, to insight and understanding. Not only can CNLS
fitting be used for this purpose, but it also provides a simple way of testing whether data are
time-varying or not [8,9], particularly important in corrosion studies, and it allows one to identify
and estimate any continuous or discrete distribution of relaxation times [DRT] or distribution of
activation energies [DAE] which may be implicit in measured data [7,8,10].

Imimittance spectroscopy data analysis allows one to estimate the values of many
macroscopic and microscopic properties of the owverall material and electrode system. For
example, one can, in favorable cases, obtain values for bulk resistivity and dielectric constant,
mobile-charge concentrations and mobilities, bulk dissociation and recombination rates, and
electrode reaction and adsorption rate constants. Further, when significant bulk dispersion
processes are present, they can be identified and analyzed, as illustrated herein.

A potential weakness of IS analysis is the possibility of ambiguity in the choice of an
appropriate data fitting model. If this model is made up only of N ideal circuit elements, such as
resistors and capacitors, then there are many different connections of these N elements which can
lead to exactly the same frequency response over the entire frequency range when the parameter
values are properly selected. But usually one of the set of connections is more appropriate
physically than the others. It is then necessary to use additional information, such as IS results
over a range of temperatures, to allow choice of the best fitting model. A simple example of this
ambiguity is presented in Fig. 1 [11].

Many different equivalent circuits have been proposed as models for data fitting when a
detailed microscopic model is lacking. Most of them involve distributed cireuit elements [DCE],
such as transmission lines, as well as ideal elements. An important power-law DCE is the
constant-phase element {CPE], o(w) = C(iw)?, where 0 < v < 1. The presence of one or more
DCE's in an equivalent circuit greatly reduces or removes the ambiguity mentioned above. But
there are still instances where two different models can yield essentially identical real- or
imaginary-part fits, especially of noisy band-limited data [12-14].
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Fig. 1. Four circuits with the same frequency response. Units: Farads and ohms.
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It is important to distinguish between response contributions arising from conductive-
system dispersion [CSD], which includes a DC path as an intrinsic part of the total response, and
dielectric-system dispersion [DSD}], which does not. DSD response is associated with ordinary
dipolar dielectric behavior and possibly with the localized motion of charges which cannot
percolate through the entire material [10,15]. We may represent either type of dispersed response
by means of the normalized immittance response function

() = [Ui(Cl) — Uk(00)V[U(0) — Ukloo)] = I +j I, (1)

where “"k" is taken as "C" for CSD and "D" for DSD. Then, Uc{flc) = Zc(Qe),
Up(Op) = ¢, *({1p), and U = w7y, where 7y is a relaxation time associated with the appropriate
dispersion model. With these definitions, [(0} = 1 and Ix(oco) = 0. Here the important quantity
£p{00) = €peo 18 the high-frequency dielectric constant associated with the bulk capacitance of
the filled measuring cell. An important equivalent circuit for representing CSD, DSD, and
possible electrode response is presented in Fig. 2 [16]. Here, Rey = Reoo = Zeloo) and
Coo = Choo = £pooCe. We may also write peg = pl=(0), and oy = o’ (0) = pzd. Note that og
and oo, = o’'(co) are intrinsically CSD quantities and need no identifying subscript. Further, let
A = g (0) — ¢ (00) and Ao’ (w) = o (w) — 0.

It has been known for a long time that nearly all materials exhibiting CSD are thermally
activated. Further, gy and 7¢ are usually found to have the same or approximately the same
activation energies. We may write a typical activated relaxation time as

7 = Taexp{E/kgT), (2}

where 771 is a barrier attempt frequency, usually larger than 10'2s"!, and kp is the Boltzmann
constant. But dispersed response of a thermally activated material can always be represented by
a model involving a DAE, and so by an associated DRT. Consider CSD response involving a
DAE with 0 < F < Eg. Then we may define

Te = Taexp(Eu/ksT). {3)
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Fig. 2. Equivalent circuit which includes electrode polarization, CSD (i.e., DEC}, and DSD (i.e.,
DED) effects [16]. DE3, DEC, and DED are distributed circuit elements. Not all circuit
elements shown need be present and operative.

73



Let us now write
peo = (tafev Kedexp(E, /kgT), (4)

where K is a necessarily dimensionless parameter. Consider the situation where ¢ and peg
have exactly the same temperature dependence. Then if E, = Ey, K¢ must be temperature
independent, while if B, # Ey, it must be thermally activated with the energy E, — Ey. Even
when E, = Ey, the temperature dependences of 7¢ and peg may differ slightly when K¢ is
proportional to T™. Because of inaccuracies in experimental data, it is usually difficult to
distinguish between these various possibilities, but a helpful approach is discussed later.

DISTRIBUTIONS AND MODELING EQUATIONS

For convenience, define « = 7/7 and ¢ = In({z). Let G(2) represent a DRT: then since
F(y)ldyt = G(z)ldzl, it follows that F(y) = x G(x) and is proportional to the associated DAE
[12,15]. Then one may write in general [7,8,10],

. [ Glz)dr o F(y)dy .
e )
o 1+ il —oo L+ 4 Q exply)
Other quantities needed later are the moments of the distribution. They are given by
[o2e] OO0
<zt > o= [ 2"Glx) dx :/ exp(ny) Fy)dy. (6}
] Q0

They are non-zero and finite, at least for Inl < 2, for physically realizable distributions [10,17].
For properly normalized distributions, < 2 > = 1. Note that G(z), F(y), and < 2" > depend
only on the shape of the distribution, not on 7y directly.

Although the estimation of F'(y) for either CSD or DSD is an ill-posed inversion problem
when the distribution is intrinsically continuous, it has, nevertheless, been found possible to
obtain excellent estimates by using LEVM 1o fit frequency response data to an appropriate
equivalent circuit. For CSD, the circuit is composed of M blocks in series, each block made up
of a resistor and capacitor in parallel, while for DSD, the dual of this circuit is used: M blocks in
paraliel, each made up of a resistor and capacitor in series [7,8,16].

An instructive CSD example is provided by the distribution for the Kohlransch-Williams-
Watts [KWWT] fractional-exponential response model [18], which, for a value of the exponent
of 0.5, may be expressed as

G(z) = (4mz) Pexp( - z/4), 7

or, on transforming to F{y),

Fly) = lexply) /4] ?expl — exp(y)/4]. (8)
Figure 3(a} shows results for the inversion of accurate CSD data calculated using Eqgs. (5) and
(8). For this data set, ecg = €-{0) = 20 and epes = 10, so e{0) = 30 [10]. Here the c,, values
are points on the continuous-distribution line. For the bottom curve, inversion was carried out

without explicit recognition of the presence of a non-zero value of €Dco, While the top one
incorporated this element as a separate part of the fitting model. The graph shows that the
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Fig. 3. {a) Distribution estimates for inversion of exact KWW frequency response data. Here and
data. The values {Cpm,Tm) (1 < m < M) specify estimated points on a continuous distribution.

estimated points (circular symbols) for the top curve agree very closely with the true values
(since they enclose the exact data points quite evenly) and involve a left-side log-log slope
{hereafter just “slope"), s, of 0.5, in agreement with the predictions of Eq. (8). But the limiting
slope of the bottom curve is 1.5, properly accounting for the presence of the non-zero épe but
izading to an entirely wrong estimate of F'(y).

Figure 3(b) shows inversion results for experimental glycerol DSD data at 230 K.
Because of noise in the data, the maximum useful value of M was about 10. For comparison, a
KWW distribution with fractional exponent of 0.72 is shown. It was obtained by directly fitting
the frequency-response data to the KWW model with weighting that emphasized the peak region
of the response, and then estimating the distribution from fit-model data. Clearly, the KWW
mode] represents only part of the response [7). The LEVM inversion method leads to both high
resolution and high discriminatory power because it allows the 7,'s to be free fitting parameters.
Fig. 4 shows the inversion of data which involve both a continuous distribution and a single-
point discrete distribution. The sharp transitions of the continuous distribution are far better
predicted than is possible with other inversion methods, and the discrete point is fully
discriminated from the continuous ones. The positions of the latter vary with different M values,
but that of the discrete point does not.

Moynihan Relations and Limiting Frequeney-Response Equations

In 1972-1973, Moynihan and associates presented some related equations connecting
limiting high-frequency and low-frequency results for a material showing CSD [19]. Written in
the present notation, these widely used equations are, for the usual condition pz(o0) = 0,

oofey = (epafTC) <>, (9}
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Fig. 4. LEVM inversion results for combined continuous and discrete distributions. The discrete
point is that with a solid enclosed dot. Here p,, denotes either ¢, or dg,.
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Teof€v = (€poo/T0) < 27! >, (10)

and
fco = €poel{ < ¥ > J( <z > )P}~ 1], (11)

where a KWW DRT was usually used for the G(z) of Eq. (63 [19].

Equation (9) indicates that og and 7c will have the same activation energy if €peo 18
independent of temperaiure and the shape of the distribution is temperature independent, so that
< x> does not vary with temperature. But these equaticns are physically unrealistic because
they connect CSD quantities with €peo, a purely dielectric response element. One would expect
CSD response to be essentially independent of ep.o, and even for simultaneously present CSD
and DSD responses, it should be a good approximation to take their effects independent, as is
implicit in the circuit of Fig. 2. Thus, Eqs. (9-11) need to be replaced.

It hias been shown elsewhere [8,10] that the Moynihan CSD analysis involves an improper
generalization from a sitwation with a single Maxwell relaxation time to one with a continucus
DRT. For an arbitrary, normalized response function, I(w), it leads to the following modulus-
level response when gi{c0) = 0,

Mey(w) = [1 — I/ €poo, (12)
instead of the standard result Meo{w) = (iwey /og)I(w). These expressions are only consistent
for & single relaxation time, but when Eq. (12) is corrected by the replacement of €pee bY €0
[8,10], it represents a valid alternative to the use of Mey(w) for fitting experimental CSD data.

A recent analysis of a general CSD sitation has led to exact relations similar to those of
Moynihan and associates but ones which apply for pi»(c0) = Dor non-zero [10]. Inthe pi(oo)
= O situation, they reduce to

ao/ey = (ECQ/T(;}‘/ <z >, (13)
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Too =00l <x7? > f( <zl > )7, (14)
and
fcoo = ecofl <z > <z > (15)

Note that only CSD quantities are involved in the above equations; the moments involve a CSD
DRT; and Eq. (13) replaces both Egs. (9) and (11). With the help of one of the Kronig-Kramers
relations [8], one can transform Eq. (13) to yield

<o > = liml - o' (@) pevors) = (2/m) [ 1= (o) peoldw, (16

Here, no knowledge of G{x) is needed, but a good estimate of py, is required, and accurate
evaluation of the integral may require extrapolation beyond the measured « range. The subscript
"C" denotes, as usual, that pl-{w) involves only CSD response and must not include electrode
andfor DSD contributions. Because of a certain duality between CSD and DSD response
functions [12], DSD equations similar to those above also hold exactly. The one of most interest
is

oo = (Aepp/eveby) < x>, (17)

where here the average is over the DSD distribution, and ppo leads to no contribution to cg.
It is instructive to consider results for a specific DAE. The simple, symmetric Gaussian
DAE will be used for this purpose. It can be expressed in terms of F(y) as [13]

Fy) = m 2 "exp| - (/€)7), (18)

Hers, £ is a width parameter, and F(y) approaches a d-function as £—-0. Under certain
conditions it has been shown that £ is proportional to T™* [20,21], sothe dispersion becomes

roader for smaller T, and some of its moments are, for n = x2, +1, and O exp(ﬁz),
exp{(£/2)%], and 1, respectively [20]. It follows that oe/d0 = €co/€cco = exp(£2/2), results
which have also been verified numerically. Incidentally, it has recently been claimed that a new
Coulomb-fluctuation response model [21] yields universal frequency response, but the model has
been shown to involve just a Gaussian DAE, as above [20]. It cannot lead to such response both
because it involves symmetrical behavior in the frequency domain and because it does not yield
finite-length frequency regions with CPE-type fractional power-law response, a truly universal
characteristic of nearly all dispersed behavior.

FITTING FREQUENCY-RESPONSE DATA
Lithium Alumingsilicate Glass

For simplicity, it is worthwhile to begin with data which can be well analyzed without the
need to include DSD response. The Li;O-Al,03-2810; [LAS] glass data set, kindly provided by
Dr. Moynihan, has been fitted by several investigators since its first publication [19]. Their
results [22], as well as those for other similar disordered materials, showed excess loss in the
high-frequency region which was not well accounted for by fitting with plausible response
models. Such excess loss has been characterized as endemic in the vitreous state [19].
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Fig. 5. CNLS fits of lithium aluminosilicate glass data using the KWW model and electrode-
polarization circuit elements in series. Here “Subt.” denotes subtraction of electrode effects.

The response of the above material has been fitted using an approximate but quite
accurate KWW model incorporated in LEVM [10]. It involves the parameters pcg, ¢, and the
fractional exponent 5. In addition, ep., was also a free fitting parameter, and it was found
desirable to account for additional response, almost certainly electrode polarization effects, by
means of the parallel combination of a CPE and ideal capacitor, all in series with the KWW CSD
response model, as in Fig. 2 [10].

Figure 5 shows the data and M-levei fit resulis for M (w) and o(w). In Fig. 5(a), the
electrode contribution is also shown separately. A great advantage of CNLS fitting is that once
best-fit, objective estimates of the free parameters of the model have been obtained, they may be
used to predict the response of the individual parts of the full fitting model. In Fig. 5(a), we see
that the data are very well fitted by the full model, and that when electrode effects have been
subtracted from the data and the it model, the excess high-frequency loss is eliminated and the
KWW model alone yields an excellent fit of the resultant data.

Similar results appear in Fig. 5(b). The o}’ curve shows the response with the electrode
contribution subtracted, and the o} curves involve such subtraction and that of ogas well. We
see that electrode effects are most important for of at low frequencies and for of at high
frequencies, contrary to the usual expectation of the dominance of such effects at low
frequencies. The limiting slope of of is f and is abour 0.53 here. These fits are much better than
previous ones of the same data, particularly ones that used Eq. (12) [22]. But in a recent KWW
fit of sodium trisilicate glass data, Nowick and Lim reported poor results [23], ones which
possibly arose from the use of the incorrect approach of Eq. (12) rather than proper CSD analysis
[8,10].

AlP*-doped Crystalline CaTi0y

Data for this material over the temperature range from 51 K to 626 K were kindly
provided by Professor Nowick, who, with his associates, has published several frequency-
response analyses for these data and several other disordered materials [24-27]. They suggested
that the response of many such materials could he well described by the expression
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o' (w) = oy + Aw” + Bw', (19

where A is thermally activated; I involves only small temperature dependence; and ~y =~ 0.6,
independent of temperature [25-27]. The first two terms on the right may be identified as
representing CSD and the last as DSD. The last term is an example of the "new" or "second”
universal response first proposed by these authors [24], one which corresponds to frequency-
independent dielectric loss. Here "first” universality refers to ordinary power-law response, as
exemplified by the CPE. A serious problem with the use of Eq. (19) is that it does not lend itself
to CINLS analysis, required in order to better separate ambiguous fitting models [10,20]. Thus,
more appropriate fully complex CSD and DSD fitting models are needed.

Recent preliminary CNLS analysis of the present data showed that it indeed involved
both C5D and DSD contributions [28], but an effective-medium CSD response model which has
been claimed to be universal [29] was used. It turned out to be unsatisfactory and non-universal,
and therefore the following empirical ZC model [2] has been employed in its place [30],

oe(w) = gl + {I WTe }‘n'rﬂ, (20)
where 0 < v < 1. When one combines Eqgs. (3), (4), and (13), it follows that
Teoo/ ey = ecof < @ > = ec, = Heexpl(Ey — E,)/kaT), (21)

where €cr is a new 7-related quantity which usually exhibits much less temperature dependence
than does 7 or og. Now Eq. (20) may be rewritten as

oelw) = opfl + {1 wmec,./a@}*], (:22)

An important virtue of the introduction of ¢, as a fitting parameter in place of ¢ is that it
provides a sensitive measure of the equality or inequality of Ey and E, and of possible
differences in temperature dependence between o and 7c. Note that when By = E, and K¢ isa
constant or proportional to T™!, ec, will be temperature independent or proportional to T~
Elliott [31] has characterized a parameter equivalent to K¢ as containing "information on the
{active) carrier concentration, ionic hopping distance, etc" of ionic glasses. Equation (21)
connects Ky explicitly to measurable quantities of the overall CSD response.

In the earlier analysis of the some of the present data [28], the use of an exponential DAE,
leading to fgpap(w), was found satisfactory for the DSD part of the response. It involves a
parameter ¢ which satisfies — 0o < ¢ < oo, and 1 — ¢ is equal to the slope of the o'(w), or,
more properly, the Ac'(w) response, for lgl < 0.5. When ¢ = 0, the DAE reduces to that of a
flat-top box from 0 < E < Eg [10, 12, 13]. The DSD part of the response may be written as

eplw) = op(w)/iwey = €peo + Aeplppas(fp), (23)

where Op = wry and Tgpap(w) is only defined in quadrature form for arbitrary ¢ but is included
as a DCE in LEVM.. The full response model, including a possible electrode-polarization
contribution, oq(w), is

o(w) = op{w)/[1 + {op(w)/oalw)}], (24)

where opiw) = oclw) + opw).

Figure 6(a) compares two different estimates of the slopes of the present Ag'(w) data.
The solid-circle ones [25,27] were probably mastly or entirely obtained graphically, while the
open-square points are the results of NLS fitting of the Eq.-(23) model to €’ (w) data at low
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Fig. 6. (a) Temperature dependence of two different estimates of the log-log slope of
[o'(w) — gyl data. (b) Frequency dependence of typical low-temperature € (w) data and fits.

temperatures where oy was megligible, or of the Eq.-(22) model to o’'{w) data at higher
temperatures.  The difference between the results at the highest temperatures arises from
electrode effects and is discussed below. Before considering the possibility of using Egs. (22)-
(24) to try to take account of different processes which may be present, it is worthwhile to look at
some of the data themselves.

Figure 6(b) shows the ¢”(w) data available at 124.9 K. Besides the large noise at low
frequencies, an appreciable increase in loss is apparent at the high-frequency end; certainly the
data do not indicate a close approach to constant loss. CNLS fitting results using Eq. (23) are
shown with and without the presence in the model of a series electrode resistivity oo, Without
separate account of gy, the high-frequency limiting slope is about 1.01, as in Fig. 6(a), while it is
reduced to about 0.98 when the effect of per 1s properly accounted for. These results do not
indicate the presence of a "second universality,” but they explain the reason for the s > 1 values
in Fig. 6(a), an effect which disappears when detailed analysis is carried out [30].

Figure 7(a) shows the frequency response and CNLS fit results for the highest available
temperature.  Good fits of the high-temperature data sets were obtained with an electrode
contribution represented by a CPE and an ideal capacitance in parallel, just as in the LAS glass
analysis. But a slightly improved fit was found for the present temperature when a series Pel WS
also allowed to be present. Both the o'{w) and o (w) fits are exceptionally good, although
electrode polarization evidently plays a dominant role over much of the range. The figure shows
the op{w) and of'(w) responses with electrode effects removed and the further result of
subtracting the effects of oo as well. It is clear that the extent of the available high-frequency
data is insufficient to vield an accurate estimate of «y for this temperature.

The most important results of the CNLS analysis of the present data are shown in Fig.
7ib). Although it is plausible to expect that the CSD and DSD responses extend over the entire
temperature range, toward the ends of the present range one or the other of these respomses
becomes too small to be resolved by the fitting procedure, and the accuracy of the slope estimates
for the smaller response suffers as one approaches such regions. Further, as discussed above, the
estimates of the CSD slope, v, become uncertain when most of the response is dorminated by
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Fig. 7. (a) Frequency dependence of ¢’ for the highest-temperature data available. (b) CNLS
estimates of the temperature dependences of the slopes of separate DSD and CSD processes.

og. Nevertheless, comparison of the two highest-temperature CSD slope estimates in Figs. 6(a)
and 7(b) shows that their small values in Fig. 6(a) arise from not accounting for electrode effects.
Incidentally, Nowick and associates assumed ab initio that the DSD slope was unity and
temperature independent, and they quote only a temperature independent value of the CSD slope
of 0.55[27].

The CSD part of the fitting led to nearly constant ec, estimates over the higher
temperature part of the range where og(T) could be best estimated. ¢, showed no activated
behavior and varied approximately randomly around an average of 36, strong evidence that
Ey = E, [30]. Then Eq. (21) shows that K¢ o 36. When this value is combined with the
estimate of 7,/Kc obtained from direct Eq. (4) NLS fitting of pco(T) data, the estimate
7o = 4.0x107Psis obtained. In addition, the fit yielded Ey = E, = 1.13 eV, surprisingly
smaller than the estimates of 1.22 and 1.25 eV found by Nowick and associates for E, and Ey,
respectively [27). Incidentally, when K¢ was set to Ey/kpT, as suggested in [32], estimates of
T2 LIx107%s and By = E, >~ 1.17 eV were found. The most significant estimates of -y
cluster near 0.5, suggesting that the response is associated with diffusion. The use of a finite-
length Warburg diffusion model [2] led, however, to far worse fits than did Eq. (22) [30].

CNLS fitting led to an approximately constant estimate for ecp of about 60 and to
approximate temperature independence of the Aep of Eq. (23). One would not expect it to be
thermally activated, but the EDAE model used for DSD fitting assumes that 7, is activated. It
was found to vary too irregularly to allow a significant estimate of its activation energy to be
obtained [30]. But one of the characteristic features of the thermally-activated EDAE model of
dielectric dispersion is that it predicts that ¢ be proportional to T [12,15]. We see from Fig. 7(b)
hat over a wide low-ternperature range the DSD slope, 1 — ¢, well satisfies this requirement. It
is likely that the larger DSD s values at higher temperatures, where the DSD response becomes a
smaller and smaller part of the total, cannot be estimated accurately enough to show the
continuation of this behavior. In any event, the agreement with the theoretical slope dependence
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at lower temperatures strongly suggests that the "second universality” proposed by Nowick and
associates fails to apply for this material over a wide temperature range.

GLOSSARY OF PRINCIPAL ACRONYMS AND SYMBOLS

C Subscript denoting conductive

€ Oy Pen Strength coefficients for distributions which are continuous, discrete, or both
CNLS Comnplex nonlinear least squares

CPE Comnstant-phase distributed circuit element

CSD Conductive-system dispersion

D Subscript denoting dielectric

DAE Distribution of activation energies

DCE Distributed circuit elment, such as the CPE

DRT Distribution of relaxation times

DSD Dielectric-system dispersion

EDAE Exponential distribution of activation energies

£Cr Important effective dielectric quantity defined in Eq. (21)

£y Permittivity of vacuum, 8.8542x107%% Fm™}

LAS Li; O-Al,05-25i0; glass

LEVM The CNLS fitting program used herein

M The number of RC blocks used for inversion of frequency-response data
NLS Nonlinear least squares

¢ A slope-related parameter of the EDAE model, here applied for DSD response
5 Log-log slope; either direct or average value from power-law exponent fit
ZC Cole-Cole DSD response model used at the impedance level for CSD response
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