
c%@J . _- 
B fiid 

ELSEVIER 

16 September 1996 

PHYSICS LETTERS A 

Physics Letters A 220 (1996) 3.5 l-360 

Comment: Re-evaluation of a Coulomb-fluctuation 
frequency-response model for disordered conductors 

J. Ross Macdonald ’ 

Department of Physics and Astronomy, Uniuersiv of North Carolina, Chapel Hill, NC 27599-3255, USA 

Received 5 September 1995; revised manuscript received 12 June 1996; accepted for publication 12 June 1996 
Communicated by A.R. Bishop 

Abstract 

Various problems and limitations of a recent Coulomb-fluctuation model by Bondarev and Pikhitsa [Phys. Lett. A 196 
(1994) 2471 for the transient and frequency response of disordered conductors are considered. The model can be expressed in 
terms of a simple Gaussian distribution of activation energies, contains an inconsistency, and is of much less general 
applicability than is claimed by its authors. 

PACS: 66.90. + r; 77.22.Gm 
Keywords: Coulomb interactions; Gaussian response; Disordered conductors 

1. Introduction 

Recently, Bondarev and Pikhitsa [I] (abbreviated 
hereafter as BP) have published an interesting treat- 
ment of the transient and frequency responses of a 
disordered conductor associated with Coulomb fluc- 
tuations. of the field of mobile charged defects, such 
as ions. Their response equations, expressed only in 
quadrature form, were used to obtain numerical val- 
ues for comparison with the measured frequency 
response of superionic Na p-alumina and with exact 
Kohlrausch-Williams-Watts (KWW) stretched-ex- 
ponential transient response in dimensionless form 

01, 

fK(f) =fIc(O) exp[ -(V%Y]r (1) 

’ E-mail: macd@gibbs.oit.unc.edu. 

using fK(0) = 1. The good agreement they showed 
between the predictions of their theory and these 
frequency and transient responses seems to support 
their claims that their approach yields “universal 
frequency response” and “allows one to give a 
complete quantitative description of a large number 
of experimental data on the relaxation dynamics of 
disordered conductors”. But, as discussed below, 
these claims are unjustified. 

Define U(O) = CT’(W) f icr”(o> as the complex 
conductivity and ~(0) = U’(O) as the DC conductiv- 
ity. The corresponding complex resistivity is p(o) 
= r(w) -’ = p’(w) + ip”(o), and p(O) = U(O)-‘. 
By universal frequency response, BP mean that 
AU(W) = a’(w) - cr(O) is proportional to ws, with 
0 < s < 1, over a wide frequency range. The s- 
parameter of this power-law response is consistent 
with the basic definition of the log-log slope, S, 
defined by s = d ln[Aa(o)/a,]/d ln[w/w,l. Here, 
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CT,, and o0 are normalization constants of magnitude 
unity, and we shall use just “slope” to mean s 
hereafter. 

Power-law response with s frequency indepen- 
dent was publicized by Jonscher and called universal 
dielectric response [3,4], but more recently it has 
been termed universal dynamic response [5], making 
it clearer that it may appear in the response of either 
non-conductors or conducting systems. Fractional 
power-law frequency response is actually implicit in 
the 1854 work Of’Kohlrausch on stretched exponen- 
tial behavior [2]. Because the BP treatment involves 
mobile charges and leads to a frequency-response 
equation which combines ac and dc response so that 
the dc response is just the zero-frequency limit of the 
ac response, it is an instance of what has been called 
conductive-system dispersion (CSD) [6,7]. By con- 
trast, for dielectric-system response, the dominant ac 
behavior arises from dipoles or from relatively local- 
ized charges which are unable to percolate through- 
out the material, and a separate treatment is required 
to describe any dc response present. When such 
dielectric response shows dispersion, it is an instance 
of dielectric-system dispersion (DSD). 

Unfortunately, the BP claims do not withstand 
detailed examination. First, these authors did not 
recognize and state that their final response equa- 
tions (their Eqs. (9) and (10)) were instances of the 
transient and frequency response arising from a 
zero-mean Gaussian distribution of logarithmic re- 
laxation times, which implies a Gaussian distribution 
of activation energies (a&tally enthalpies) in their 
thermally activated situation [8]. This is demon- 
strated analytically in the Appendix, but the analysis 
there also shows that the relaxation times appearing 
in the BP transient and frequency-response expres- 
sions are inconsistent with the simultaneous applica- 
tion of these equations to the same material. It is 
shown that a corrected. calculation of the frequency 
response leads to a result which involves the same 
Gaussian distribution as that involved in the transient 
response. Finally, the actual expression for the relax- 
ation time, rap, presented by BP is shown to be 
inappropriate for a conducting system. 

Bondarev and Pikhitsa claim that the close agree- 
ment they present between the transient response 
predictions of their theory and that of stretched 
exponential response confirms the applicability of 

their theory for use in quantitative analysis of relax- 
ation phenomena in disordered conductors. Their 
claim of ‘ ‘universal’ ’ frequency response is based on 
their demonstration that their theory can lead to 
frequency dependence of the power-law form men- 
tioned above. But the majority of experimental data 
and most fitting models (including the KWW model 
at high relative frequencies) yield such response with 
s frequency-independent over an appreciable fre- 
quency range, often extending for many decades. 
Unfortunately, a Gaussian-response model yields fre- 
quency-dependent s response, with no actual non- 
zero-length frequency-response region involving 
constant-s behavior [8]. Furthermore, most frequency 
response dispersion data for conducting systems in- 
volve asymmetric response (such as that of the KWW 
and many other models) for complex-plane plots of 
--p”(w) versus p’(w), but the simplest Gaussian 
response model, that exemplified by the BP results, 
leads to completely symmetric response [8]. Thus, 
for both reasons the BP model is quite limited in the 
range of experimental data to which it may apply. 

The BP approach involves averaging over random 
potential differences with a type of exponential dis- 
tribution [l] but leads to final response associated 
with a Gaussian distribution of activation energies, 
perhaps an instance of the operation of the law of 
large numbers. A nuclear-magnetic-resonance re- 
sponse model involving a Gaussian distribution of 
barrier heights for ionic motion has been found to be 
useful for analyzing data in this area [9]. By contrast, 
the GBEM frequency-response model [lo], a mean- 
field treatment of an effective-medium approxima- 
tion, starts with a random-free-energy model having 
a uniform distribution but finally yields response 
which is quite close to that arising from the assump- 
tion of an exponential distribution of activation ener- 
gies [ll]. Finally, Dieterich and associates 112,131 
have carried out Monte Carlo simulations of charged 
particles diffusing on a simple cubic lattice with 
local site energies taken as uncorrelated Gaussian- 
distributed random variables. These lattice-gas, 
Coulomb-interaction calculations led to approximate 
Cole-Cole [14] frequency response behavior at the 
dielectric level: E(W) - ~(00) a l/[l + (iorO)a], 
where 0 < CY < 1, and (Y is frequency-independent. 
Thus, different assumptions about initial distributions 
can lead, not surprisingly, to quite different final 
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ones. It certainly remains to be shown, however, 
which assumptions yield best agreement with a vari- 
ety of appropriate experimental data. 

In spite of its limitations, the BP analysis is of 
some interest because it provides explicit expres- 
sions, in terms of microscopic quantities, of some of 
the various parameters which enter the Gaussian 
response model. Thus, in instances where data may 
be well fitted with this model, one can use estimates 
of the meso- and macroscopic fitting parameters to 
estimate values of some microscopic quantities in- 
volved in the BP Coulomb-fluctuation approach. 

2. Parameters of the Bondarev-Pikhitsa Gauss- 
ian-response model 

There are three fitting parameters involved in a 
Gaussian time or frequency response model. For 
frequency response they are: p(O), the dc resistivity; 
T,,, a relaxation time which equals 1 /w,, where or 
is the frequency at the peak of the - p”(o) response 
curve; and 5, a measure of the width of the Gaussian 
distribution [7], being fi times the standard devia- 
tion of the djstribution. In the BP work, the related 
quantity v = 5 ’ is used. According to the BP analy- 
sis, p(O) = [(T(O)]-’ = U; ’ exp( .$/2j2, where they 
define ma as the thermally activated conductivity of 
the system in the absence of disorder. Bondarev and 
Pikhitsa have expressed this o0 in the form 

fla = z-’ exp( -E/R,T), (2) 

where E is the activation energy in the absence of 
disorder, T is the absolute temperature, and z is an 
undefined pre-exponential factor. A more explicit 
expression for CT(O) was suggested for the exponen- 
tial distribution of activation energies model [6,11]. 
If it is used to obtain a,, one has 

a0 = (+/r,>( WV) [exp( E/&J) - 11-l y 

(3) 

where E” is the permittivity of vacuum; l/3-, is a 
barrier-attempt phonon frequency; and T= is usually 
smaller than IO-” s [15]. This expression not only 
involves the usual pre-exponential l/T response, but 
it also reduces plausibly to the nearly temperature-in- 
dependent quantity eV/ra in the limit of small E/T. 

Now BP also found that (+(x> = o(O) exp( ,$ */2> 
[l]. Recent work of the author [7,16] has demon- 
strated that for a dispersive, thermally activated, 
conductive system involving a distribution of relax- 
ation times or, equivalently, activation energies, as- 
sociated with physically realizable response, univer- 
sal expressions for the low- and high-frequency lim- 
iting values ofo(o) and +(o) may be written in 
terms of the moments of the distribution. Here’ the 
subscript C denotes a quantity arising solely from the 
conducting-system response, omitting any dipolar 
contributions [7]. One of these universal expressions 
leads to the result o-(30)/~(0) = ((~/r,>-~)/ 
[((~/r~>-‘)l*, equal to exp(t2/2) for a Gaussian 
distribution, using the values of the moments of this 
distribution listed in the Appendix. Thus, the above 
BP expression is consistent with such a distribution, 
as one would expect. Incidentally, normalized mo- 
ments of a distribution, such as ((T/T~)-‘) = 
(x-i >, depend only on the shape of the distribution 
and involve only the variable x = T/Q-~, not r. 
separately. 

Bondarev and Pikhitsa have defined their T (used 
for either the T, or the T, of the Appendix) as 

(4) 

where they define l , as the high-frequency dielectric 
constant. Since they do not discuss the CSD contri- 
bution to & arising from mobile charges (see below), 
their E, will be interpreted herein as a dipolar DSD 
quantity and will be designated as en,,. Thus, Eq. (4) 
COmXtS the purely CSD Cpntity ~~~~~ With the 

purely DSD quantity l u,_. But this is a most implau- 
sible equation since it indicates that changes in cnrn, 
usually associated only with dipolar processes, result 
in direct changes in 7Bp co, CSD quantities associ- 
ated with mobile charge motion. This problem has 
been discussed at some length recently 171, and it has 
been shown that the expression for the r0 associated 
with a CSD process involves only CSD quantities, as 
one would expect. It should be emphasized, how- 
ever, that a non-zero l nm will always be experimen- 
tally present (even in the absence of dielectric dis- 
persion in the measured frequency range), and it will 
have an effect on the total measured response. But to 
at least first order, it will be an excellent approxima- 
tion to calculate CSD response separately and then 
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include the effect of ena; as an independent part of 

the total response [6,7]. 
Recent work [7] leads to the universal 

conducting-system expressions 

70 = [e”ec(O)/o(O)(X)l 

= [eyec(=J)(x-‘)/o(0)], (5) 

which become for a Gaussian distribution, 

ro= [~“Gw%I = [ v&9 exp( 5 2/2)/ab] p 
(6) 

on the introduction of oa and the use of the values 
of the Gaussian moments listed in the Appendix. Eq. 
(6) is thus the necessary relation associated with the 
CSD response of a thermally activated material in- 
volving a Gaussian distribution and, therefore, should 
be used to replace Eq. (4). In addition, it should be 
set equal to the BP transient response relaxation time 
7, of Eq. (A.l). Finally, note that the Gaussian 
distribution imposes a ratio between ~~(0) and cc(=) 
which depends on 5. For the value of Y = 5 ’ = 15.65 
used by BP, the ratio is about 2500. 

Bondarev and Pikhitsa provide a complicated for- 
mula for v, which, however, is proportional to 
l/en-T. In view of the above considerations, such 
instances of l n% in the BP work should perhaps be 
changed to ~~(0). When one neglects any enm tem- 
perature dependence and takes the BP expression for 
the Debye length of the “plasma” of mobile defects 
proportional to T ‘I’, it turns out that E a T- ’ , so 
one expects the frequency width of such curves as 
- p”(o) to increase as the temperature is lowered, 
usual experimental behavior. It is important to note 
that this temperature dependence for 5 is the only 
one which allows a Gaussian distribution of activa- 
tion energies to be temperature independent, the 
usual situation [8,11,17]. 

3. Model-fitting comparisons 

To help evaluate the BP claims of universality 
and wide applicability for their model, it is useful to 
compare the predictions of that model with those of 
others. Luckily, an algorithm which allows one to 
calculate very accurately the frequency response aris- 
ing from a Gaussian distribution has been a part of 

Exact Gaussian 
KWW fit, BP VC&_J!Z~~ 
KWW fit, UWT 

Fig. 1. Comparison of normalized transient response of the Gauss- 

ian model with KWWmodel predictions using Bondarev-Pikhitsa 

fitting paramekrs and with the results of a unity-weighting nonlin- 

ear least squares KWW fit to the Gaussian data. Here, T,, = 1 s. 

the readily available LEVM complex nonlinear least 
squares (CNLS) fitting program for several years 

[1812, and the current version also allows the associ- 
ated transient response to be calculated correspond- 
ingly accurately. These procedures make it possible 
for one to fit experimental or synthetic data to the 
Gaussian response model very precisely, and their 
use will be demonstrated below in evaluating the 
appropriateness of the BP claims. 

3.1. Transient response 

Because BP compared the transient response of 
their model to KWW response, it is worthwhile to 
consider how well a Gaussian response model can fit 
KWW synthetic data or vice versa. The following 
results were all calculated using the LEVM program 
and involved calculation of “exact” Gaussian or 
KWW data for fitting which had relative accuracies 
of 10e9. Fig. I shows the Gaussian f(t) transient 
response of Eqs. (A.2) and (A.3) for r0 = 1 s and 

2 The latest version of the LEVM fitting program may be 
obtained from Solartron Instruments; attention Dave Bartram: 

e-mail: bartram@solartron.com. 
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“-1 
2 Transient. Response: 

4 Gaussian DAE 

Fig. 2. Comparison of the logarithm of normalized transient 

response of the Gaussian model with that of KWW-model predic- 

tions using Bondarev-Pikhitsa fitting parameters and with the 

results of a proportional-weighting nonlinear least squares KWW 

fit to the Gaussian data. 

,.f= 2, equivalent to the values used by BP. Also 
shown are two fits of these data, one using BP’s 
KWW parameters: fK(0) = 1, TV = $ s, and j? = 
0.58, and the other obtained by unity weighting 
(UWT) [18] nonlinear least squares fitting of the 
Gaussian response data with the Eq. (1) model. The 
following parameter estimates were obtained from 
the latter fitting: ~“~(0) = 1.019, rK = 1.195 s, and 
p = 0.601. The T~ value listed by BP was $T~ [I], 
but ~~~ was actually used by these authors [19]. The 
BP fit results presented in their Fig. 2 are very close 
to those shown here, but BP only extended their 
curve down to t/~~ = 0.1, thus omitting the short- 
time region where their fit curve diverges most from 
Gaussian response. Had they not done so, they might 
have modified their claim of close agreement be- 
tween their response and KWW response. 

But a better assessment of such agreement or 
disagreement may be obtained by plotting log[ f( t)], 
rather than f(t), versus log(t/~,). Fig. 2 shows two 
of the same data sets of Fig. 1 plotted in this manner 
and, in addition, a proportional weighting (PWT) 
KWW fit of the Gaussian response. Here, 184 points 
extending from t/~~ = 10e4 to about 125 were 
used. The estimated parameters for this fit were 
f&O) = 1.168, TV = 0.603 s, and p = 0.382. Note 

the large differences in some of these parameter 
values from those of the UWT fit. Such differences 
are an immediate indication that the KWW model is 
inappropriate for fitting Gaussian data. 

Proportional weighting makes the relative residu- 
als of the fit as equal as possible over the whole 
range. It is clear from the results shown in Fig. 2 that 
it yields much closer agreement in the high-frequency 
tail of the response than does the BP parameter set. 
Because Gaussian and KWW responses both reduce 
to single-time-constant Debye response as 6 + 0, the 
degree of agreement between KWW and Gaussian 
response will increase as 5 decreases, and vice 
versa. Thus, had the BP transient response compar- 
isons been carried out using the larger value of 5 
that they employed for their frequency-response 
comparison, the discrepancies between the Gaussian 
and KWW model predictions would have been ap- 
preciably larger than those present in Figs. 1 and 2. 

3.2. Frequency response 

Both because BP compared their transient behav- 
ior with that of the KWW and because they state that 
“experimental data on non-Debye relaxation are 
usually fitted by the Kohlrausch function”, it is 
useful to compare Gaussian and KWW response in 
the frequency domain as well as the time domain. 
Bondarev and Pikhitsa actually fitted their real-part 
Gaussian-model prediction of (T’(O) to data for Na 
p-alumina at 113 K and found good agreement for a 
two-decade frequency range. An asymmetric fitting 
model was used earlier by the present author to fit 
this and data sets at other temperatures for this 
material [20], but here the emphasis will be on the 
adequacy of mutual fitting of Gaussian and KWW 
model data. First, it must be stressed that, as demon- 
strated below, model comparison using only real- (or 
imaginary-) part fitting is generally greatly inferior 
to full CNLS fitting of the real and imaginary parts 
of the data simultaneously. Similarly, fitting a model 
to experimental frequency-response data should also 
be carried out with full CNLS fitting. 

First, 121 points of exact Gaussian data with 
frequency range from 0.01 to 10” Hz were pro- 
duced using the BP-fit p-alumina parameter values 
~(0) = 2.51 X 10m7(fi cm>-’ and V= 15.65. Thus, 
t- 3.956, and a value of the Q-~ of Eq. (A.8) of 
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- 

-1 8’1 
1 
C > 

Fig. 3. Comparison of exact Gaussian-model frequency response 

with the results of a CNLS fit of the data with an approximate 

KWW response model using proportional weighting. Here and 

hereafter, cr,, = 1 (fi cm>-’ and fa = 1 Hz. 

10d4 s was used. Because the distribution of relax- 
ation times for KWW response is only known ex- 
actly in closed form for p = 0.5 [21] 3, making the 
calculation of accurate KWW frequency response for 
arbitrary /3 very difficult [7,22], the above data were 
initially fit using an approximate KWW frequency- 
response algorithm [22] included in the LEVM CNLS 
fitting routine. Results for PWT CNLS fitting are 
presented in Fig. 3, and the parameter estimates 
obtained were about o(O) = 2.96 X 10w7(Q cm)-‘, 
r0 = 2.36 X 10m6 s, and p = 0.989! It is clear that 
both the real and imaginary fits are very poor. They 
are, however, much improved when each fit is car- 
ried out separately. Then the separate real and imagi- 
nary fit estimates of p were found to be about 0.47 
and 0.57, respectively. None of these values are 
arbitrary: they represent the optimum least squares 
estimates for the conditions considered. 

Because the approximate KWW fitting model used 
above becomes less accurate at low relative frequen- 
cies, it was decided to reverse the above procedure 

3 The lower limits of the integrals in Eqs. (9.1)-(9.4) of Ref. 

[21] should be -m, not 0. 

1 Imp' 
~ Exact KWW, &0.5 
----- 

-% ,/, 0 2 , 

Gaussian CNLS 

, 4 , , 6 , fit, 8 , 

PWl 

1 
Log wo> 

Fig. 4. Comparison of exact p = 0.5 KWW frequency response 

with the results of a CNLS fit of the data with an accurate 

Gaussian response model using proportional weighting. 

and fit exact p = 0.5 KWW calculated frequency 
response with the accurate Gaussian response model. 
In generating the exact KWW data, the same a(O) 
and TV values as above were used. Fig. 4 shows the 

7 

< 
b 

- 
0 
.+ 

F 

I-J 

- Exact KWW, Re 
------- Gaussian Re fit, PWT 
6 0 0 00 Exact KWW, Re 

Gaussian Re fit, P 

q Frequency Response: 
’ Stretched Exponentia 

13=0.5 

Log Wfo) 
0 

Fig. 5. Comparison of exact p = 0.5 KWWmodel, o’(w) fre- 
quency response with the results of a CNLS tit of the data with an 

accurate Gaussian response model using proportional weighting. 
Both a’(o) and Au(w) = a’(w)- o(0) response curves are 
shown. 
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L.” 

i 

-0 ~ Exact KWW, Re 

s 

o ----- Gaussian Re fit. PWT 
+a+00 Exact KWW, Re 
. . * . . Gaussian Re fit, PWT 1 - e 

’ *’ 1 Slope:Aa 
’ Frequency Response: 

Stretched Exponential 
p=o.5 

1 SI or3e:d.F’ I 
0.0 1 , I__--9 I I I 

-20 2 4 6 810 
Log; Wfo) 

Fig. 6. Slopes, s, of the curves of Fig. 5. 

CNLS fit results: still very poor. But Fig. 5 presents 
the PWT fit of the real part only, an apparently good 
fit with parameter estimates of o(O) = 2.31 X 

10m7(s1 cm)-‘, t- 4.066, and r0 = 1.44 X lop4 s. 
This generally good agreement between the fit and 
the model is comparable to that found by BP for 
their real-part Na p-alumina fit. But the present 
results clearly show that such agreement alone is 
insufficient to allow one to conclude that full Gauss- 
ian response can be well fitted by the KWW model 
or vice versa. Thus, the BP claim that their theory is 
applicable for good quantitative analysis of disor- 
dered conductors must be unequivocally rejected for 
those that exhibit KWW response and for most other 
responses, even most of those that involve symmetri- 
cal behavior. 

Also shown in Fig. 5 are the exact KWW- and 
Gaussian-fit results for AU(W)_ They make the dif- 
ference between these models in the low-frequency 
region very clear. But it can be made even clearer by 
plotting the slopes of the four curves of Fig. 5 versus 
frequency. Accurately calculated slopes for both 
o’(o) and AU(O) are presented in Fig. 6 and show 
that there is appreciable difference between the real- 
part KWW and Gaussian predictions even in the 
higher-frequency range. The Gaussian low- 
frequency-limiting slope of Aa( o) is 2 and the 
high-frequency-limiting slope is 0, since as BP have 

shown, (r(m) is a non-infinite constant even when 
p(m) = 0. The results shown in the figure clearly 
demonstrate that there is no non-zero-length fre- 
quency range where s is constant for Gaussian re- 
sponse. But for noisy data fitted over a limited 
frequency range, it can, nevertheless, sometimes be 
difficult to distinguish Gaussian response from that 
with a constant slope [8]. 

Note that the KWW A a( w> slope properly ap- 
proaches a value of 2 at low frequencies and the 
value of p (= 0.5) at the high end [2,23]. The latter 
response is non-physical, however, if it extends in- 
definitely because it would then lead to infinite 
conductivity in this limit [23]. It is therefore neces- 
sary to cut off the KWW distribution at some small r 
value [7]. Such a cutoff, whose effects often appear 
well beyond the range of usually measured frequen- 
cies, leads to a limiting high-frequency slope of 0 
and thus to o.(w)< 03. For simplicity, no cutoff 
effects are included herein. 

It is interesting that exact Gaussian response with 
the above parameter values leads to the large value 
of ~~(0) = 1.4 X lo4 and to ~c(m) = 5.7. Neither 
quantity was recognized or included in the BP work. 
Thus, it is important to emphasize that e,-(m) is an 
intrinsic part of CSD response and is unrelated to 
l nm. In general, e(M) = et(w) + eom [71. The exact 
/3 = 0.5 KWW model with the same parameter val- 
ues used above and without cutoff leads to e,(O) = 
567 and to et(m) = 0. The cutoff value may be 
adjusted to make the KWW et(m) comparable to the 
Gaussian value. No cutoff is needed for the Gaussian 
distribution because of the rapid decrease of its 
response away from the peak region. Limiting ep- 
silon values may be calculated as in Eq. (5) from the 
value of o(O) and the moments of the appropriate 
distribution when it is known. When the distribution 
is unknown, the averages may be determined directly 
using LEVM fitting [6]. 

The present limiting high-frequency s = 0.5 
KWW behavior is just an indication that even for 
data which are well fitted by the KWW model over 
an appreciable frequency range, one should not nec- 
essarily expect a low-frequency model to continue to 
apply as the frequency approaches phonon frequen- 
cies. In fact, Petersen and Dieterich [ 131 mention that 
it is a general property of lattice gas models that 
o(w) must be < 00. Both the Gaussian response 
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model and the GBEM model satisfy this condition, 
as does KWW response derived from a cut off 
distribution [7]. A plateau in Na p-alumina a’(o) 
response in fact appears near 10” Hz [24]. 

In order to demonstrate the differences between 
the basic Gaussian and KWW CSD responses alone 
without other perturbations, the comparisons pre- 
sented in the present figures. do not include any 
contribution from a non-zero em. It is therefore 
useful to summarize what happens when such a eDno 
is included. To do so, a new exact KWW data set 
was prepared which was identical to that discussed 
above except that enm was taken as 5 rather than 
zero. Full CNLS fitting of these data with the Gauss- 
ian model led to worse real-part agreement than that 
shown in Fig. 4 but to appreciably better imaginary- 
part agreement. In particular, the Gaussian-fit a” 
response exhibited the correct slope of unity at low 
frequencies and approached the same proper slope at 
high frequencies, with principal deviations appearing 
in the middle region. Neither full complex fitting nor 
imaginary-part fitting with .501; taken as a free pa- 
rameter allowed a meaningful estimate of this quan- 
tity to be obtained, however. The reason is that when 
fitting Gaussian response to non-Gaussian data in- 
volving. ena the Gaussian parameters adjust them- 
selves to yield an estimate of ~(00) as close as 
possible to the value of eom. Of course, when the 
Gaussian model is fitted to low-noise or to apprecia- 
bly noisy Gaussian data involving a non-zero en__, 
full CNLS fitting can yield a good estimates of eom 
even when it is much smaller than ~(03). 

4. Conclusions 

The Bondarev-Pikhitsa conductive-system re- 
sponse model is just that of a material with a simple 
Gaussian distribution of activation energies. 

The relaxation times which appear in the BP 
quadrature expressions for transient and for fre- 
quency response are inconsistent; the source of the 
error is identified, and the inconsistency corrected. 

The ‘BP expression for their basic relaxation time 
in terms of other model’ parameters is physically 
implausible and inappropriate; a correct, purely con- 
ductive-system expression is provided; and the dis- 
tinction between mobile-charge and dipolar contribu- 

tions to the total high-frequency dielectric constant, 
one not recognized in the BP work, is elucidated. 

The BP claims that their dispersion-model treat- 
ment provides closed expressions for the “universal” 
response functions of disordered ionic materials “and 
allows one to give a complete quantitative descrip- 
tion of a large number of experimental data on the 
relaxation dynamics of disordered conductors’ ‘, are 
unjustified. Not only does the simple Gaussian distri- 
bution of the BP theory lead only to loss-response 
symmetric about a peak, although most conductive- 
system data involve asymmetric response, but also it 
does not lead to power-law frequency response with 
a log-log slope independent of frequency over an 
appreciable range, the definition of universal dy- 
namic response. 

Appendix 

In this appendix, it will be shown that the BP 
transient and frequency response results involve a 
Gaussian distribution of activation energies and that 
the r’s which appear in their expressions for such 
response are mutually inconsistent. Thus, a correc- 
tion is needed to enable their time and frequency 
response expressions to apply to the same material. 
Here, the limiting transient response as t + 0, f(O), 
is taken as unity since we shall deal with normalized 
distributions. 

The BP dimensionless transient response result 
(their Eq. (9)) may be written as 

f(t) = %--“* 

X lrn du exp[- u* - (r/7,) exp( eu)] y 
-02 

(‘4.1) 

where their r has been replaced by r1 and their 
parameter Y by 5 ‘. If G(T) is a normalized distribu- 
tion of relaxation times involving a constant relax- 
ation time, 3-a’ then the corresponding normalized 
distribution of logarithmic relaxation times, F(y), 
equals rG(r), where y = ln(r/r,) 16-81. The re- 
lated distribution of activation energies is just K(E) 
= F( y)/kT, and for a log-normal G(r), F(y) and 
K(E) are both Gaussian in form [7,8]. 

Since f(0) = 1 for Eq. (A.l), the underlying dis- 
tribution involved in it must be normalized. Now the 
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general expression for the fit) response associated 
with F(y) is [7,16,21,25,26] 4 

f(t)=/ymdYZ?Y) exp[-(l/ra) exp(-Y)], 

( A.2) 

and the normalized F( y) for the simplest zero-mean 
Gaussian distribution is [8] 

F(y)=r -r’?T1 exp[ -( Y/5)‘] y (A-3) 

where 5 is the breadth parameter of the distribution. 
Finally, when one substitutes Eq. (A.3) into (A.2) 
and then makes the substitution u = -y/t, it fol- 
lows that the result is exactly the same as that of Eq. 
(A.l) when T, is set to ~a. Therefore Eq. (A.l), 
which BP characterized as an elegant formula, is not 
novel in form since it is just an expression for the 
transient response associated with a Gaussian distri- 
bution. 

The unnormalized BP frequency response expres- 
sion (their Eq. (10)) may be written at the complex 
resistivity level, after some rearrangement and the 
replacement of their i by -i, as 

P(O) = ,-“*Q I 

a: duexp[-(U’+cn)] 
_-m I +io7 

0 
exp(_5u) ’ 

(‘4.4) 

where the BP T, here that which appears in their 
frequency response expression, has been renamed ro. 
It follows when p(m) = 0, as is the case here, that 

P( W)/P(O) 
=1(w) 

/ 

m 

= T-i/* 
du exp (-[uz+5u+(5/2)2]} 

-a 1 +iwr, exp(-cu) ’ 

(A-5) 
where Z(w) is a normalized response function 
[6,7,10]. Now substitute - u = u + 5/2 in Eq. (A.5). 
Then 

Z(w) = ?r-1’2 

00 
X 

/ 

dv exp( -u”) 

--m 1 +io[?; exp( (*/2)] exp( tv) . 

(A.6) 

4 The G(T) and P(T) functions defined in Ref. [26] are equiva- 

lent to the present F(y) and G(T) functions, respectively. 

The general expression for Z(w) in terms of F( y) is 
[6,7,16,25,26] 

z(W)=/= 
dYF( Y) 

(A.3 -cc 1 +iw’rO exp(y) ’ 

where the present T,, must be the same quantity as 
that appearing in Eq. (A.2) when the same F(y) 

distribution is used in both equations. Note that the 
moments of an arbitrary F(y) distribution, 
((T/T$), may be calculated by multiplying F(y) 

in Eq. (A.71 by (T/T$ = exp(ny) and setting o = 0. 
It follows that the moments of the normalized Gauss- 
ian distribution of Eq. (A.3) are, for TZ = 52, f 1, 
and 0, exp( 5 2>, exp[( c/2)*], and 1, respectively. 

Now substitute the Eq. (A.3) expression for F(y) 

into Eq. (A.7) and let u = y/c_ One then obtains 

Z(m) = n---1/2 
/ 

a 
dv exp( -v’) 

--m 1 + iora exp( cv) * (A-8) 

Comparison of Eqs. (A.6) and (A.8) shows that they 
are only identical when 

T, = ~a exp( - E 2/2) = TV exp( - 5 */2). (A-9) 

Thus, although the BP transient and frequency re- 
sponse results both involve a Gaussian distribution, 
the T’S present in their expressions are inconsistent 
except in the limiting c= 0 case. But it is clear that 
in order for their results to apply to the same mate- 
rial it is necessary that the TV of Eq. (A.4) be 
replaced by the Eq. (A.9) expression. 

Although it is shown above that Eq. (A.8), not 
(A.6), is the normalized frequency response expres- 
sion consistent with the transient response of Eq. 
(A. 11, BP did not deal with distributions and formu- 
las such as (A.21 and (A.7). Instead they used Fourier 
transforms to connect their f(t) and Z(w) responses 
(see, eg., Ref. [7,21,25,26]), as in their Eq. (2). But 
these relations, in either Laplace or Fourier form, 
properly connect not At>, the basic transient relax- 
ation function (often denoted as 4(t) [26]), but 
essentially [7,25,26] - df(t)/dt and Z(o). Since it 
turns out that their use with the f(t) of Eq. (A.l) 
(with r1 replaced by ~~1, rather than with 
- dflt)/dt, leads to the BP Eq. (10) in the form of 
Eq. (A.4) (with rti replaced by T& while transfor- 
mation using - dfirt)/dt yields the correct Eq. (A.81 
result, the source of the error in Eq. (A.41 is evident. 
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