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Abstract

The plausibility of recent suggestions that the electrical conduectivity of crystalline and glassy disordered materials may
often arise from two separate physical processes, each involving dispersed response, is examined by means of a detailed,
complex-non-linear-least-squares analysis of small-signal frequency-response data on CaTiO;:30%A1%* over a temperature
range from 51 to 626 K. Earlier preliminary analysis on a few of the available 16 data sets, which showed that they could
indeed be described by a combination of conductive-system dispersion and dielectric-system dispersion, is confirmed and
extended. Complex non-linear least squares analysis provides a high-resolution method of isolating, identifying, and
examining these separate response contributions. It was found that the conductive-system part of the full response could be
well represented over a wide temperature range by a power-law model with an exponent close to 0.5, suggesting the
presence of diffusion. A new analysis procedure showed that the relaxation time and dc conductivity exhibited the same
thermally activated temperature response with no pre-exponential T dependence. The dielectric-system dispersion was well
described by a thermally activated exponential-distribution-of-activation-energies model, whose effective power-law expo-
nent exhibited [1 — (T/T,)] temperature dependence from 51 to 296 K. Thus, when the present analysis methods were
applied to these data, the constant-loss ‘second universality’, found earlier for this and other materials, one which involves a
power-law exponent of unity, did not appear in the 64 to 224 K region where it was previously identified for the present
material.

1. Introduction and background if the complex conductivity is written as o(w)=
' s : i = —
Several kinds of universal, small-signal, electrical o /(w) Al (/a)), with o'(0) U.O and Ao-(w)
ac frequency responses have been proposed over the o'(0) = ¢'(0), then s is defined as
duency resp e ProPo ) dinfAo(w)/c,]/dlnfw/w,]. Here, i=V—1, o,
years for materials exhibiting dispersive behavior n o .
. . . and w, are normalization constants of magnitude
[1-6]. They all involve consideration of the log-log . o ,
- unity, and we shall use just ‘slope’ to mean s
slope, s, of the real part of the complex conductivity !
. : hereafter. Although s is usually taken to be fre-
or admittance, usually described by the exponent vy . .
) . . quency independent over an appreciable frequency
in a power-law response model involving . Thus, . . k
range (e.g., one involving a decade or more), it need
not be. It is only when it is independent, however,

* Corresponding author. Tel.: + 1-919 967 5005; fax: +1-919 that it is reasonable to set s and y equal. Although
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exponent, it is better to use a different symbol, such
as the present vy, to avoid confusion between slope
and exponent quantities. Estimated exponent values
are always averages over the data considered. When
s or v is independent of temperature over a signifi-
cant temperature range (e.g., one from T to ~ 27 or
more), they will be denoted as s, or y,. The com-
plex resistivity is p(w) =[c(w)]™! = p'(w) +
ip"(w). A list of acronyms used herein appears at
the end of this work.

The earliest and most common universality is that
involving fractional-exponent, power-law response,
where 0 <y < 1. Such response, with y = 7y,, was
publicized by Jonscher and called universal dielectric
response [1,2], but more recently it has been termed
universal dynamic response [3], making it clearer
that it may appear in the response of either dielectric
or conducting systems. Fractional power-law re-
sponse is actually implicit, however, in the 1854
work of Kohlrausch on stretched exponential behav-
ior [4]. At the conductivity level it may be written as

oi(0) =Ao(w) =40, (1)

where A is frequency-independent.

In 1991, Lee, Liu and Nowick [5] proposed an
important ‘new universality’ in the frequency re-
sponse of ionically conducting crystals and glasses,
namely that, for a variety of data on different materi-
als over a range of relatively low temperatures (as
large as 95 to 400 K or 64 to 224 K [6]) y =y, =1,
disagreeing with many theoretical predictions con-

cerned with dielectric dispersion that, as the tempera-

ture T approaches zero,

7=1_(T/To)’ (2)

where T, is a constant temperature [7-12]. The
Yo = 1 result implies the existence of a frequency-in-
dependent loss represented by the quantity Ae"(w)
= Ao (w)/(wey), where €, is the permittivity of
vacuum. Here the complex dielectric constant is
defined as e(w) = €'(w) — ie"(w) =
o(w)/(iwey). It is worth noting that although Lee,
Liu and Nowick were not the first to publish results
indicating vy, =1 f{e.g, [13,14], and references
therein), they were perhaps the first to explicitly
identify it as a new or second universality.

Doubt has been cast on the appropriateness of the
constant-loss phenomenon by the results of my re-

analysis of two sets of data used by Nowick and his
collaborators [5,6]: that for NaCl doped with Zn?*
[15] and that for CaTiO;:30%AI13* [16]. It has been
stated by Nowick and associates that the former
material is a poor example for testing the hypothesis
because subsequent measurements over the original
temperature range did not verify it because of sample
aging [17]. Such aging is not necessarily relevant to
the original data [5] nor to the novel and self-con-
sistent results of their analysis [15]. In fact, as dis-
cussed below, the issue primarily involves differ-
ences in methods of data analysis for the same data,
rather than differences in the data. The question of
the existence of distinct constant-loss behavior in
CaTiO;:30%A1° " [16-18] is further addressed
herein. Further, the purpose of the present work is
not to show that constant-loss behavior may not
occur, but to demonstrate that careful data analysis
may not always verify previous conclusions that it
does.

An additional feature of the work of Nowick and
associates is that they found for temperatures appre-
ciably greater than those where they concluded that
an exponent of unity applied, that y decreased to a
final high-temperature limiting value, y,, of about
0.5 to 0.6 [5,6,17,18]. Later [6] they proposed that
instead of considering only a model involving a
single vy as a continuous function of temperature,
v(T) such behavior might alternatively be expressed
by the double-power-law response model,

oc'(w)=0'(0) + Aw” + Bw', (3)

where A is thermally activated; B involves only
small temperature dependence; and vy, = 0.6. Such
combined response may be considered a possible
third kind of universal response.

Socrates said: ‘*The unexamined life is not worth
living’*. Similarly, it is not much of an exaggeration
to say, ‘‘an inadequately analyzed data set is not
worth generating’’. The main aim of the present
work is to re-analyze the CaTiO5:30%A1°" data of
Nowick and associates using more objective and
powerful methods than those authors employed. Is it
possible, through the use of complex non-linear least
squares (CNLS) fitting methods and more appropri-
ate fitting models, to obtain new results significantly
different and more precise than those of Nowick and
associates, and, thereby, gain new physical insights
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into the electrical behavior of this material? I believe
that the results of the present work demonstrate that
it is indeed possible, and, in doing so, they illustrate
the utility of the analysis methods employed.

Nowick and associates rewrote their Eq. (3) in the
equivalent form

o'(0) =o' (0)[1+ (wr)”] + Bo', (4)

representing the superposition of two types of re-
sponse regimes [18]. The first term on the right was
defined as leading to the Jonscher regime and the
second as that associated with the constant-loss
regime. One of the objects of the present work is to
use high-resolution CNLS data analysis methods to
evaluate the applicability of such a two-regime rep-
resentation and to distinguish between true y(T)
response involving a single phenomenon and that
arising from the presence of two separate physical
mechanisms. Note that Eqs. (3) and (4) suggest that
the two responses are present over the entire fre-
quency range for any measuring temperature, though
one or the other will be dominant in different tem-
perature ranges.

In fact, Nowick and associates found that the A
term in Eq. (3) was dominant only in the high
temperature region and the B term only at low
temperatures and high frequencies. Later, Elliott [19]
termed such behavior Type I (high T, low w) and
Type II (low T, high @ with y > 1). This classifica-
tion is reminiscent of an earlier, somewhat more
general one [12,15,16,20] which includes it. The
more general approach proposes that the overall
behavior of a glass or other disordered material
exhibiting dispersed frequency response is often made
up of two separate and independent dispersion pro-
cesses whose contributions are electrically in paral-
lel. The first one is associated with charge carriers
whose motion can contribute to dc conduction and
dispersive ac response, often by hopping, and is
designated conductive-system dispersion (CSD). For
such response, a single process leads to both ac and
dc behavior.

The second process, termed dielectric-system dis-
persion (DSD), is associated with the presence of
induced or permanent dipoles (conventional dielec-
tric behavior) and /or with the motion of non-perco-
lating charges, for example ones associated with
localized hopping back and forth in an asymmetric

double well potential configuration, either by sur-
mounting a potential barrier separating the two sites
[21,22] and /or by tunneling through the barrier [23].
Tt is consistent with the above definitions to identify
the Type I behavior exemplified by the A term in
Eq. (3) with CSD and the B term with DSD, but it
should be remembered that in general CSD and DSD
responses need not be of the forms of those proposed
in Bq. (3) or Eq. (4). Note that even in the absence
of any DSD a high-frequency-limiting dielectric con-
stant, €p() = ep,,, will always be present. Here the
subscript ‘D’ denotes that ep,. is associated only
with conventional bulk dielectric effects and may be
different from the measured e..

Recently Sidebottom, Green and Brow [24] pub-
lished frequency response data for alkali oxide glasses
which show y(T) dependence similar to that found
by Nowick and associates, including v, =1 at lower
temperatures. Sidebottom et al. presented few analy-
sis results, but they emphasized that their data could
be best represented by the superposition of two
power laws involving different physical processes.
They did not point out that this conclusion was not
novel but is implicit or explicit in the earlier work of
Nowick and associates and others [6,12,15,18,25].
Sidebottom et al. ascribed their DSD-type response
to the limited motion of non-bridging oxygens [19]
present in their materials, behavior not directly re-
lated to the CSD response associated with long-range
ion motion.

In addition to possible universal response involv-
ing the effects of CSD and DSD simultaneously
present, Dyre [26] has proposed that an effective-
medium model originally published by Bryksin [27]
leads to universal CSD behavior. This model was
later generalized [28] to include explicit temperature
dependence, and it has been called the GBEM equa-
tion (see acronym list). A simplified version of the
GBEM model was termed the BDM equation [16,20].
Although later work [16,28] raises doubt about the
universality of any of these equations, they certainly
warrant continued comparison with experimental re-
sults. It is important to note that although the GBEM
model does not involve any explicit fractional expo-
nent, such as that present in Egs. (3) and (4) and
most other response models, it nevertheless leads to
similar y(T") behavior.

One result of the above work was the derivation
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of a somewhat modified type of Arrhenius activation
relation which may possibly be applicable to ther-
mally activated CSD behavior. Assume that there is
a distribution of free-energy barriers present which is
associated with a distribution of activation energies
(actually enthalpies), E. Then the relaxation time
may be written as usual as

=1, exp( E/kgT), (5)
where 7, is the inverse of a barrier attempt fre-
quency, one which is usually larger than 10 s7!
[29], and kg is the Boltzmann constant. Finally,
define E, as the maximum barrier height, take the
minimum height as zero, and let

Tc =1, exp( Ey/ksT). (6)

Then for an exponential distribution of activation
energies (EDAE), it has been proposed that [28]

p'(0) = (Ta/ev)(kBT/EH){eXP( Ey/kgT) — 1}-
(7)

Notice the presence of T in the pre-exponential
factor and that p'(0) reduces to the temperature-inde-
pendent or, at most, weakly temperature-dependent
value 7,/€y, when Ey/T — 0. Finally, a more gen-
eral expression for p’(0), involving an activation
energy, E,, not necessarily equal to Ey, may be

P
written as

p'(0) = (n/evKc)exp(E,/kyT), (8)

where K is a dimensionless quantity which may be
temperature-dependent but not thermally activated.

2. Fitting modeis
2.1. Full CSD and DSD response

If one accepts the possibility that the data of
Nowick et al. and that of Sidebottom et al. involve
CSD and DSD contributions, as well as possible
electrode effects, o,(w), then the overall response at
the complex conductivity level may be written in
general terms as {12,16,20]

o (@) =os(w)/[1+{os(w) /ou(@)}], (9
where og(w) = oc(w) + op(w), and the ‘C’ and
‘D’ subscripts identify CSD and DSD response terms,
respectively. Note that this general fitting model

involves all complex quantities, does not deal only
with o'(w), and still is sufficiently general that it
does not beg the question of whether the DSD term
in Egs. (3) and (4) involves just y, = 1.

Although Lim et al. [6] have stated that €'(w)
data (corresponding to o”()) are relatively uninter-
esting, this opinion should not be accepted because
the conventional approach of measuring the complex
conductance but analyzing only the real part of the
resulting complex conductivity is generally inade-
quate and inappropriate. Simultaneous fitting of both
the real and imaginary part of data to an appropriate
model is always superior to that of either separately,
not only because it leads to better error averaging,
but also because both parts of the data must simulta-
neously fit a model which satisfies the Kronig—
Kramers relations [30,31].

Even though the real and imaginary parts of
o(w), as well as all of the individual dispersive
parts of the quantities present in Eq. (9), must satisfy
the Kronig—Kramers relations, the exact real-parts of
different response models may be so similar that
even noise-free responses cannot be distinguished
over a finite but wide range of w on a log-log plot
of o’(w) versus w [32]. The frequency dependen-
cies of the imaginary parts of the response of two
such models may be appreciably different within the
measurement frequency window. Since model dis-
crimination using real-part fitting alone can, never-
theless, be carried out unambiguously for data with
sufficiently low noise which extends over a suffi-
ciently wide range of frequencies (the Kronig—
Kramers relations require an infinite range), clearly
the conventional approach is adequate for data of
sufficiently low errors and wide range. When such
data are unavailable, the usual situation, the ability to
distinguish between two such models with the avail-
able imperfect data is greatly improved when the
data are fitted to the models using CNLS fitting.
Here such fitting is carried out using the general
program LEVM with proportional weighing [33] L.
Finally, since no exact imaginary-part response is

! Version 6.1 of the LEVM fitting program may be obtained at
no cost from Solartron Instruments, Farnborough, Hampshire,
GU14 7PW, UK, attention Dave Bartram, e-mail:
bartram@solartron.com.
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available for the Nowick and associates real-part
responses of Egs. (3) and (4), fully complex fitting
models are required for CNLS fitting of the present
data.

2.2. Conductive-system response

Although the first term on the right of Eq. (4),
first suggested by Almond and West [34], has been
widely used for real-part data analysis, it is not
exactly the real part of an appropriate Kronig-
Kramers pair, and its interpretation has been criti-
cized [35,36]. A more appropriate empirical CSD
response model is that introduced by Havriliak and
Negami [37]

O'C(a))=a"(0)[1+(iwrc)y]ﬁ, (10)

where 0 <y, yB8<1, and y and B are frequency
independent. Even though this model is not physi-
cally realizable because it predicts infinite o¢(w) in
the limit of high frequencies (unless v = 3= 1) [38],
it is still useful in many situations because the region
where o(w) data must approach a constant value
often appears far beyond the highest measurement
frequency. Eq. (10) with y <1 is also non-physical
in the w — 0 limit for any value of 3, but this is not
the case when y=1. Physical realizability can be
ensured by truncation of the distribution of relax-
ation times associated with Eq. (10) response, but
such truncation is often unnecessary because of the
limited frequency range of the available data.

When =1, the choice with which we shall be
most concerned for the present CSD response regime,
Eq. (10) has been named the ZC model [39], and its
use for CSD data fitting predates that of the Al-
mond—West work. When =1, the ac part of Eq.
(10) may be written C(iw)”, where C is a fre-
quency-independent parameter. This part has also
been found useful for data fitting [39] and has been
termed the constant-phase element (CPE).

We use the ZC model for CSD fitting in the
present work because it is the complex version of the
first term of Eq. (4), that used by Nowick and his
associates; because it yields good fitting results with
a minimum of parameters; and because it allows the
present results to be directly compared to those of
Nowick and his colleagues. But many more CSD

fitting models are available, and a particular one
should not be chosen without comparing its utility
with that of others, such as, for example, the general
Havriliak-Negami equation, the EDAE model (see
Section 2.3), and two different stretched-exponential
(Kohlrausch—Williams—=Watts (KWW)) response
models, KWW0 and KWW1. These KWW models
both involve the slope-related exponent S3. The
KWWO model amounts to using usual DSD KWW
response at the impedance rather than at the complex
dielectric constant level [9,40]. The second is a cor-
rection and extension [40] of the modulus formalism
introduced by Moynihan and his co-workers [41,42].
Instead of involving the usual KWW distribution of
relaxation times, say gx(7), it uses 7gy(r) [9,40].
Fitting frequency response data to a KWW model by
either CNLS or non-linear least squares (NLS) has
been notoriously difficult because an accurate closed
form-response model has been unavailable [40,43].
Recently, however, exceptionally accurate CNLS fit-
ting routines for both models with arbitrary 8 have
been added to the LEVM program and will be
available when its next version is released in late
1996. All the models mentioned here have been used
in order to help select the most appropriate one for
fitting the present data, and some of their fitting
results are discussed later.

When CSD response is thermally activated, the
usual situation, one generally finds that the activation
energy for the dc conductivity, E_, and that for the
associated 7 relaxation time, E_, are nearly identi-
cal [18,25,44], a result in agreement with the empiri-
cal Barton, Nakajima and Namikawa (BNN) relation
[45-47]. This means that when parameters such as
p'(0)=[0’(0)]"}, the dc resistivity, and 7. are ob-
tained by least squares fitting of data, their correla-
tion approaches unity closely, making it difficult to
obtain good estimates of the fitting parameters, their
standard deviations, and their associated activation
energies. It has therefore been suggested [15,40] that
the 7¢ in Eq. (10) and similar models be replaced by

e =p'(0)evec,, (11)

where €.. is a new dielectric constant, a quantity
which will be less correlated with p’(0), and one
which should show less temperature dependence than
7o itself when E = E,.

It turns out to be possible to give a theoretical
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interpretation to the new quantity e,.. Conductive-
system dispersion leads to a contribution to the
overall dielectric constant, €-(w), independent (to at
least first order) of any DSD dielectric-constant con-
tribution. Let ec, = €c(0). Recent work [40] has
shown that when p'(%) =0, the usual situation, the
BNN relation should be replaced by the first equality
below :

/P (0) ey = (eco/ X)) = ec,
=Kcexp|(Ey—E,)/ksT],  (12)

and Eqgs. (6), (8) and (11) have been used for the rest
of the expression. Here x=17/7-, and (x) is the
first moment of the normalized, dimensionless distri-
bution of relaxation times or activation energies that
is associated with the CSD response [40]. Note that
(x)={7)/7c depends only on the shape of the
distribution rather than directly on 7. For example,
for the Cole—Davidson model, Eq. (10) with y=1,
(x) equals B [48]. When the temperature dependen-
cies of p'(0) and 7. are exactly the same, €., equals
K, a temperature-independent quantity. On the other
hand, if Egs. (6) and (7) apply, €., will be propor-
tional to 7!, while otherwise it may show thermally
activated temperature dependence. Thus, direct esti-
mation of €., by CNLS fitting provides a sensitive
test of the relation between the temperature depen-
dencies of p'(0) and 7.

It is worth mentioning that since the LEVM fit-
ting program allows one to estimate numerically the
actual distribution of activation energies associated
with the available data of limited range [20,49,50],
the estimated distribution can be used to estimate
(x) at each temperature, allowing €.,(7) to then be
estimated, especially valuable when insufficient
low-frequency data is available to allow its direct
estimate.

2.3. Dielectric-system response

Finding an adequate replacement for the DSD Bw
term in Eqs. (3) and (4) is not entirely straightfor-
ward. First, one needs an equation whose real part
can yield a value of s, not only of unity over an
appreciable frequency range, but, for generality, also
values either less than or greater than 1. The corre-
sponding exponent of Ae”’(w) can then run from

positive to negative. Although the CPR might be
thought to be useful, it degenerates to a pure capaci-
tance for y=1 and to a pure conductance for y =0
thus, it does not yield a real part like Bw and an
imaginary one. Further, the long-known, approxi-
mate Kronig—Kramers relation used by Nowick et al.
[17] to obtain an estimate of Ae’(w) from €(w)
data is often too inaccurate [50], is unnecessary with
CNLS fitting, and is inappropriate for fitting pur-
poses in any event.

Prior work indicates, however, that the above
requirements are well met by the EDAE response
model. Although such a distribution has been primar-
ily used in the past to fit CSD impedance spec-
troscopy data [12,20,39,51], it has been shown in
Ref. [9] that any CSD model can be formally trans-
formed to a corresponding DSD model. Further,
Wang and Bates [22] have demonstrated that a dou-
ble-potential-well model can lead to EDAE response
of DSD type. Therefore, an EDAE model will be
used here to represent the DSD part of the complete
response. Let uy = Ey /kyT and ¢ = ¢. Next, de-
fine r=expluy)=r1y/7, and Q= o7, where
Tp 1S assumed to be thermally activated as in Eq.
(6). Then EDAE model response may be expressed
in normalized form at the complex-dielectric-con-
stant level as

Ip(p) = [eD(‘QD) - 61)(“)]

/[€5(0) — ep(=)]. (13)
with
In(Q2p) = ¢[1 — exp( — puy)] -

uy  exp(—¢x)dx
[o 1+i0pexp(—x)

(14)

where uy is a cut-off parameter. Here the parameter
¢, which falls in the range —% < ¢ << is closely
equal to (1 — y,) when —0.5< ¢ <0.5 and 02, >
1. For [¢|>0.5, s begins to become frequency
dependent. When ¢ = 0, the exponential distribution
degenerates to a flat-top box distribution, one where
all activation energies are equally probable.
Although Eq. (14) must be evaluated numerically
for most values of ¢ [9], it is incorporated as a
fitting mode] in LEVM and so may readily be used
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for any ¢. When ¢ =0, however, a closed-form
result is available [9,20], namely

I(2p)=1—ug' m[(1+i0Qp) /(1 +i2pr7").
(15)

For r>> 1, the usual situation, and 2, > 1, the
imaginary part of Eq. (15) leads to the result

op( ) = eyAep(m/2)(ksT/Ey) w, (16)

which is of the form of the Nowick et al. Bw term.
But note that it is not of this form for all frequencies,
and it is associated with a proper Kronig—Kramers
real part. Eq. (16) leads to Ae"(w) =
Aey(m/2XkyT/Ey), where Aep = [ep(0) —
ep(@)]. If Ae”"(w) were constant at the value 0.03
over an appreciable frequency range [15], T=512
K, and E, =0.5 eV, this expression would predict
A€y =2, a reasonable value. Although the EDAE
model can lead to power-law response over a wide
frequency range, it can also yield more complex
behavior at low relative frequencies, behavior needed
to fit some of the present data (see Section 3.2).

3. CaTi0,;:30%A1*" fitting results
3.1. Background and earlier slope estimates

Nowick and associates [6,17,18] have used fre-
quency-response data of CaTi0;:30%A1%*, as well
as that of several other materials, to illustrate and
verify their new or ‘second’ universality. Some inde-
pendent analysis of their CaTiO;:30%Al** data sets
has been carried out recently using a combination of
CSD and DSD response [16]. It used the BDM
response model to represent CSD and employed the
EDAE model for DSD response. The BDM was used
because it shows intrinsic s(7) behavior with very
few fitting parameters. Although this analysis made
it clear that combined response was necessary to
represent these data adequately, it was later found
that better fits could be obtained with other CSD
models than the BDM. Because the analysis to date
of these data has either been overly simplistic or has
been incomplete and unoptimized, I decided to carry
out a detailed re-analysis of them over the available
temperature range of 51.2 to 625.7 K using the CSD

and DSD models described in the last section. Of
particular importance is a comparison of such CNLS
fitting results with the real-part ordinary-least-
squares-fit results obtained by Nowick and associates
using Eq. (3).

Although Nowick and associates state that the
accuracy of their temperatures can be controlled to
within 1 K [52], which might suggest rounding their
temperature values to integers, it is a mistake to omit
data which may be significant and whose omission
might possibly bias results. Thus, in order to help
obtain the best activation-energy estimates allowed
by the data, I have used the original three- and
four-figure temperature values without rounding. It is
worth emphasizing that for an activation energy of
1.13 eV, Eq. (8) with K. temperature-independent
Jeads to values of p'(0) at 50.7 and 51.7 K that differ
from that for 51.2 K by factors of more than 12.
Even at room temperature, a temperature difference
of 0.5 K leads to more than a 7% change in p'(0).

To set the stage, Fig. 1 compares four sets of
slope and exponent results for this material, three of
them representing previously published curves. The
two BDM curves show actual slopes at f= 10° Hz,
obtained using best-fit BDM parameters [16]. The
other estimates are of exponents and so are averages
over all or part of the available frequency range.

1.15

CaTiOg:30%A1%

BDM~fit o’gw) s ost. %
IEESSN BDM-fit (¢'-00) s est. e
@090 Lim et al, s estimates =\
(.55 -OIITIIRM NL8~fit s estimates ‘@@ ooy

50 150 250 350 4507550
Temperature (K)

Fig. 1. Temperature variation of conductivity slope and power-
law-exponent estimates, s and y. The BDM points and line are
actual log—log slope predictions of the model. The open-square
points show power-law exponent values obtained from nonlinear-
least-squares fits of o'(w) data.
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Exponent values were obtained either by graphical
estimation [6] or by ordinary least squares fitting,
followed by the identification of the y, of Eq. (3)
(taking B =0) or the y of Eq. (10) (taking B=1)
with the effective slope. Jain and Hsieh [53] have
published results similar to those of Fig. 1 (with
v>1 at low temperatures) for a different glass than
that of Fig. 1. Such similarity suggests that the
methods of analysis applied herein might also be
useful for analyzing their data as well.

First, we see that the solid-dot BDM slopes of
Ao (w) disagree with the Lim, Vaysleyb and Now-
ick results [6,18], particularly at the high-temperature
end where the BDM results begin to approach a
slope of 2, which persists until the transition to a
constant value of o'(w) in the high-frequency limit,
behavior, required by physical realizability [38,50].
This limiting behavior appears at lower temperatures
than is suggested by the data themselves, which do
not extend to frequencies high enough to show such
response. This comparison suggests that the BDM,
and by extension, the GBEM model, is not universal.

In order to obtain results as close as possible to
those of Nowick and associates for the present mate-
rial, new NLS fits of o'(w) or €"(w) were first
carried out using the DSD Eqgs. (13) and (14) for the
lower temperatures, where the effects of &'(0) are
entirely negligible. For such fitting with proportional
weighing, the fits of data at the o(w) and e(w)
levels yield exactly the same parameter estimates
and relative residuals [33,40,49]. The fit results are
indicated by the open-square points in the figure
Because the data do not extend to frequencies high
enough to allow significant estimates of uy to be
obtained, large enough fixed values of this parameter
were used so that increasing each value had no effect
on the fit estimates.

Nowick and associates have questioned whether
their low-temperature results, where vy > 1, should be
taken seriously [18]. If one does so, they disagree
with the ‘new universality’ hypothesis. This question
has been addressed in Ref. [16] and is further an-
swered below. Incidentally, complex or real-part fit-
ting of the o(w) data using the CPE model did not,
of course, yield slopes and exponents greater than
unity. For the 51.2 K data, such fitting of the o'(w)
data led, after very long iteration, to a value of the y
of Eq. (1) of unity to better than four decimal places,

the upper limit of this quantity allowed by the model.
Better and less restricted estimates are discussed
later.

For the higher temperatures where o/(0) was
sufficiently large to allow significant estimates of it
to be obtained, the ZC CSD model of Egs. (10) and
(11) with B=1 was used for fitting, with the esti-
mates of y taken as a measure of the slope. Al-
though the open-circle points in Fig. 1 were almost
certainly obtained graphically [6,18], their agreement
with the present NLS results is good except at the
highest temperatures. The reason for this discrepancy
is discussed in Section 4.3.

3.2. Fitting of the low-temperature data

Before presenting CNLS-fit slope estimates, it is
useful to look at the form of the data. Although the
present data are noisy and have poor resolution,
especially at low temperatures, and would be much
improved for fitting purposes if they extended to
both lower and higher frequencies with more points
per decade, it is surprising how much can, neverthe-
less, be learmned from them with CNLS analysis.
Figs. 2-4 show data and fitting results for a low
temperature, an intermediate temperature, and a high
temperature.
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Fig. 2. Frequency dependence of 124.9 K €¢” = A¢” data and of
various DSD CNLS fits to the data. The EDAE fit and the
extended EDAE fit lines include the effect of a small series
resistivity parameter, ps. Here and elsewhere, f; is taken as 1 Hz,
and the vertical dashed lines delineate the measured frequency
range.
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Once a good fit has been obtained at a given
temperature, the fit parameters may be used to calcu-
late the model predictions over a frequency range
arbitrarily larger than that of the original data. Fur-
thermore, since CNLS fitting may be expected to
yield the most significant, objective values of the
free fitting parameters, compared to any alternative
approach, the best estimates of the effects of the
various contributions to the total response can be
individually calculated using only the relevant pa-
rameters [16]. This procedure is particularly helpful
in obtaining Ac{w) in the low-frequency range
where the estimate of o'(0) used in calculating this
difference quantity becomes crucial, since other
methods yield less accurate estimates for o'(0).

Fig. 2 for €"(w) shows that the actual response
differs appreciably from constant-Joss data involving
v, = 1. At this low temperature, o, plays a negligi-
ble role. The CPE curve shown is the best fit to the
data of a model with such a ‘new universality’ value.
Nowick and associates have suggested that a high-
frequency increase apparent in their
CaTi0,:30%A1°* and Na,O - 3Si0O, data may be an
experimental artifact. They state that ‘‘€” shows no
systematic deviation from a constant value; however
the last value, at 10° Hz, often shows an abrupt
increase’’ [17]. The situation is more complicated: all
their low-temperature data sets show a decrease at
low frequencies and a sharp but smooth increase at
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Fig. 3. Frequency dependence of 422.2 K ¢'(w) data and of a
combined CSD and DSD CNLS fit to the data. Also shown are the
responses of the various individual parts of the fit response. Here
and elsewhere o, is taken as 1 (€ )™,
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Fig. 4. Frequency dependence of 625.7 K ¢'(w) and (@) data
and of a combined CSD and electrode-contribution CNLS fit to

the data. Also shown are the responses of the various individual
parts of the ¢'(w) fit response.

the high end (one which certainly involves three or
more points, not just the highest-frequency one), as
in the present figure. Note that the decrease in €” at
low frequencies is inconsistent with the simple
power-law response function used by Nowick and
his collaborators, but is well described by the EDAE
model of Eq. (14), a model which can nevertheless
predict a wide range of constant-slope behavior at
higher frequencies.

The high-frequency rise shown in Fig. 2 and
present in the other low-temperature data sets in-
volves systematic, non-random behavior. It has been
found that this behavior can be well represented by a
small resistance in series with the DSD EDAE re-
sponse model. The figure compares fit results with
and without such a series element, and it is clear that
CNLS fitting allows an account for its effect, making
it possible to obtain meaningful results for the DSD
part of the response. The estimated series resistivity,
ps, varies slowly and monotonically from about 200
Q cm at 51.2 K to about 286 { cm at 252.9 K. It is
reasonably well determined: e.g., the relative error
estimated from the CNLS fit of the series element at
51.2 K is less than 7%. Its temperature dependence
can be adequately fitted with a linear equation in 7T,
suggesting a thermal expansion effect. If we assume
that the cell constant for the present data is 10 cm,
then these results are consistent with a temperature-
independent resistance, in series with the bulk of the
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sample, of less than 20 (), although the linear ther-
mal expansion coefficient required for full tempera-
ture independence is somewhat larger than expected.
Although this small series element might arise from
electrode resistance, it might alternatively be associ-
ated with the measuring apparatus itself. Simple
experiments could readily resolve this uncertainty.
Whatever the genesis of the series element, its identi-
fication and inclusion in the fitting model is impor-
tant, since doing so allows one to eliminate its effect
on the bulk response of the material and, concomi-
tantly, shows how more accurate than otherwise
high-frequency results may be obtained from the
measuring equipment.

The Fig. 2 curve with open-square points shows
how well the EDAE model plus a series resistive
element fits the data. For a perfect fit, the squares
would evenly enclose the solid data points. The
actual ¢ estimate obtained from this fit was 0.0217
£ 0.0045. Here and elsewhere, the uncertainty listed
is that of a single standard deviation, and similar
values are obtained for the other low-end fits. The
relative uncertainties of these ¢ estimates are small
enough that they can be unambiguously distin-
guished from 0, and so they do not support the
assumption of a temperature-independent exponent
of unity (¢ = 0).

For comparison, the EDAE-fit results without pg
do not agree as well with the data and involve a
much more uncertain ¢ estimate of about —0.01 +
0.006, leading to the exponent estimate of about 1.01
shown for this temperature in Fig. 1. Thus, it seems
likely that exponent values which exceed unity in
Fig. 1, as well as others showing such behavior (e.g.,
[13,14,53]), arise because the data used for their
determination, whether graphical or NLS fitting, in-
cluded the influence of pg, but its effects were not
explicitly accounted for in the fitting model. Thus, in
the absence of more careful analysis, they should not
be interpreted as indicating the presence of a disper-
sion process with y>1, and the present results
therefore do not support the new universality hypoth-
esis. More discussion of the low-temperature fitting
results is included in Section 4.2.

3.3. Fitting of intermediate-temperature data

In the temperature range 270 K < T < 510 K, the
data could best be fit by combined CSD and DSD

response, Eq. (9). No pg parameter was needed;
Eqs. (10) and (11) with 8=1 were used for CSD
response; and Egs. (13) and (14) were employed for
DSD response. In addition, in all present CNLS
fitting, €. = €c., + €p.. was taken as a free fitting
parameter. Within the uncertainties of the data, it
was found to be substantially temperature indepen-
dent and close to 60. Although simultaneous fitting
of both o'(w) and o"(w) data is crucial to getting
an optimized and adequate fit of the data, especially
when several different processes are involved as in
Eq. (9), only the o'(w) part of the combined CNLS
fitting is shown here because o”(w) curves usually
show somewhat less detail in this temperature range.

Typical intermediate-range data and fit results are
presented in Fig. 3; as usual, the fit results have been
extended on either side of the actual data range. Note
that the full-fit points are indistinguishable from the
corresponding data points. As mentioned earlier, one
of the advantages of CNLS fitting is that the result-
ing parameter estimates may be used to predict the
responses of the CSD and DSD processes separately
at any immittance level [16]. The figure shows that
the CSD part of the response is dominant up to
~10° Hz and the DSD becomes important above
~ 10* Hz. The fit estimates of v and 1 — ¢ were
0.488 £ 0.006 and 1.046 + 0.009, respectively. The
standard deviation of the relative residuals of the
present fit, Sp, was about 0.003, indicating an excel-
lent fit of the data. For comparison, the fit using Eq.
(10) with y =1 and B free to vary, led to 8 = 0.406
1 0.007 and Sg = 0.006. Besides yielding a substan-
tially poorer fit, this model also led to a less consis-
tent estimate of ¢'(0) than did the ZC fit.

Jain and Hsieh [53] have recently considered the
effect of the width of the available frequency win-
dow on estimates of power-law exponents of o'(w)
CSD data fitted using NLS. Define w(f, ) as the
ratio a'(f)/c'(0), where f= w/2%. Using sodium
aluminosilicate glass data, they have shown that as w
decreases and the dc plateau becomes a larger and
larger part of the window range, the estimated vy
increases [53]. Although these authors seem to sug-
gest that this is a general result, simulation results
with actual power-law data similar to that presented
in Ref. [53] indicate otherwise. In general, in the
absence of systematic errors, one would expect win-
dowing effects to depend on the number and spacing




80 J.R. Macdonald / Journal of Non-Crystalline Solids 210 (1997) 70-86

of the points in the window, on the type of random
errors present, and on the type of fitting used. Some
pertinent results are presented below.

Data were formed by adding 2% independent,
normally distributed errors to both the real and imag-
inary parts of exact power-law response which in-
volved a value of ep,, of 7. The original exact o (w)
data, extending from 50 to 10° Hz with 10
points /decade equally spaced in log(w/w,), in-
volved y=0.67 and w(10°)=8.9. CNLS fitting
with proportional weighing of the full noisy data
yielded an estimate for y of about 0.683 £ 0.005,
while fitting with the w(10%) =2.7 window led to
y=0.664 + 0.010. Finally, for w(10*)=13, y=
0.588 & 0.050. Separate real-part (as in Ref. [53])
and imaginary-part fitting led, respectively, to results
for the three window widths of 0.693 4 0.012, 0.683
+0.020, and 0.688 4+ 0.147; and 0.681 £ 0.011,
0.655 + 0.025, and 0.604 4 0.107. We see that al-
though the CNLS uncertainties are appreciably
smaller than those for the other fits, there is no
apparent tendency for y to increase as w decreases,
even for the real-part fitting. Next, similar exact data
to the above were produced with 10 <f< 10° Hz
and 40 points /decade. From this set, data sets with
three different sizes of random errors were then
constructed. Fitting estimates of y for the CNLS and
real-part fits of the 0.5, 1, and 2% error data sets
yielded, respectively, 0.668 =+ 0.002, 0.667 & 0.004,
and 0.663 +£0.008; and 0.748 £0.047, 0.835 %
0.083, and 1.0 + 0.17. Note that only the minus sign
is operative in £0.17 since the fit model does not
allow y > 1. These last results show a slight decrease
of the CNLS v estimates with increasing error rela-
tive standard deviation, but a strong increase in the
estimates obtained with real-part fitting. It is thus
quite clear that CNLS fitting is much superior to
real- and imaginary-part fitting for noisy power-law
data of the present types. The present results provide
further justification for the use throughout this work
of CNLS rather than NLS fitting.

The above results provide one with some idea of
what to expect when fitting the ZC power-law model
to experimental data for which it is the proper (or
inappropriate) model. It is thus of interest to investi-
gate windowing effects for the present experimental
data. Is the power-law approach indeed the most
appropriate for these data? CNLS fits at the complex

conductivity level of the 393.2 K experimental data
117] were carried out for the ZC, KWWO0, and KWW1
models with w(10%) = 4720 and w(10%) =g88. At
this temperature, no electrode effects were signifi-
cant. First, it was found that all fits were good and
that there was negligible difference between the CSD
exponent estimates for these two windows for all
three models. For example, for the ZC, v estimates
of 0.500 and 0.492 were obtained. Second, the de-
gree of fit was negligibly different between the three
models, indicating that any of them would be satis-
factory. The values of 3 found for the KWWO and
KWW1 fits, 3, and B,, were B8, = 0.490 and 0.485
for the two windows, and B, =0.517 and 0.530,
respectively. We see that the expected relations S,
=] — B, = y = s are approximately satisfied. The ¢
estimates for the full-data fits using the three models
were about —0.051 using the ZC and KWWO0 mod-
els, and —0.048 for the KWW1. Finally, parameter
estimates and degree of fit were essentially indistin-
guishable for fitting with proportional weighing of
the data at the modulus level and at the complex
conductivity level, again indicating that all the mod-
els can represent the data exceptionally well. To
distinguish between them at this temperature, it would
be necessary to use more accurate data with an
appreciably wider frequency spar.

3.4. Fitting of high-temperature data

Fig. 4 shows fitting results of the highest-tempera-
ture data available for the present material. Here the
data and fit results are shown for both the real and
imaginary parts of the conductivity. The individual
Sy values for the real and imaginary parts of the
CNLS fit were 0.007 and 0.011, respectively, indi-
cating that few relative residuals exceeded 1%. De-
fine a value of o/0, as V. Then Vy = V4, T R,
where R is here the residual for the selected point. If
Irl=|R/V,,,l < 1 the situation for the present fits,
then log(Vy,) = log(Vy,,) + r log(e) where r is the
relative residual. Since r is of the order of 1% for
the fits of Fig. 4, it is clear why ‘error’ bars for the
fit points are too small to show up there, and a better
indication of the adequacy of fit is the degree to
which the open-circle fit points are centered on the
data points.

Particularly significant in Fig. 4 are the large




J.R. Macdonald / Journal of Non-Crystalline Solids 210 (1997) 70-86 81

low-frequency electrode contributions. Their influ-
ence is not entirely limited to low frequencies alone,
and it continues to be non-negligible to 10° Hz or
above for the present data. In the temperature range
where good fitting required the presence of addi-
tional parameters to account for such electrode con-
tributions, it was found that their estimated values
depended somewhat on temperature but eventuaily
decreased toward zero as the temperature decreased.

In order to obtain adequate CNLS fits, electrode
contributions had to be included, as in Eq. (9), for all
temperatures above 460 K. At this end of the temper-
ature range, it was found that they could usually be
represented by a capacitor and a CPE in parallel, all
in series with the parallel combination of CSD and
DSD response contributions. This combination has
also been found appropriate for representing elec-
trode effects in the response of a Li,0~Al,0,-2Si0,
glass [40]. The value of the capacitor required for the
present material remained constant within a factor of
two in the range 531.2 K<T7T=<6257 K. At T=
625.7 K, the further addition of a series resistance
improved the fit by yielding an estimate of ¢/(0) in
better agreement with values for nearby temperatures
than that obtained without such an addition, but no
such element improved the fit for lower tempera-
tures. With the resistor present, Sy was 0.008, and it
increased to 0.012 without this element, but its pres-
ence or absence had only minimal effect on the other
parameters. With no electrode effects included in the
fitting model, it was found that at 625.7 K the ZC
model did not lead to a converged fit at all. Thus, a
power-law CNLS fit could not be obtained unless
electrode contributions were explicitly accounted for.

Electrode effects clearly lead to a peak in the
o”(w) response in the low-frequency region for the
data of Fig. 4. It disappears when the response is
calculated from the final values of the fitting parame-
ters without including the electrode elements. The
figure shows both ¢’(w) response and Ao (w) re-
sponse with all electrode effects eliminated in this
way. Note that the power-law contribution, whose
exponent is here about 0.56 4+ 0.02, only begins to
dominate the CSD part of the response beyond the
highest measurement frequency. Therefore, graphical
estimation of the exponent from the available data
would be uncertain, and even the present CNLS
estimate is likely to be considerably more uncertain

than indicated above — principally because of un-
certainty in finding an appropriate model for the
electrode contributions.

Windowing effects [53] are more important for
the present high-temperature range than for lower
temperatures because with a fixed measuring fre-
quency range from 10 to 10° Hz, the higher the
temperature the less of the final rise of o'(w) at
high frequencies falls within the available range.
Consider fitting results at 7=1531.2 K, where
w(10°) = 9.6, and for w(5 X 10°) = 3. CNLS fitting
of o(w) data using the ZC, KWWO0, and KWW1
CSD models over the full frequency range yielded
Sg values of 0.009, 0.0124, and 0.029, respectively,
showing that the ZC was superior to the other mod-
els. For fitting only up to 5000 Hz, the values found
were 0.007, 0.027, and 0.055, respectively, using the
same electrode parameter values obtained for the
full-range ZC fit. The estimates of y, 3, and B, for
the large and small values of w were, respectively,
0.485, 0.429, and 0.614, and 0.494, 0.343, and 0.573.
The (B values and their changes, as well as the
corresponding Sg values, show that the KWW mod-
els are appreciably inferior to the ZC one at this
temperature. The slight increase, rather than de-
crease, in y as the range is decreased possibly
indicates that the CSD part of the data is not per-
fectly modeled by even the ZC. Because of the
appreciable contribution of electrode effects at this
and higher temperatures, which themselves must be
modeled perfectly before even the most appropriate
CSD model can yield entirely proper fitting, the
present small discrepancy is not unexpected, how-
ever, and it does not necessarily indicate that the ZC
is not a proper CSD fitting model for these data.

4. Temperature dependencies of fitting parame-
ters

4.1. Querall slope estimates and background

The results of the present work which are most
relevant to universality or its absence appear in Fig.
5. First, we see the regions over which DSD and
CSD models were useful in fitting the data. Both
regions are here limited, but, I believe, only by the
finite resolving power of CNLS fitting and the rela-
tively narrow frequency range of the available data.
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Fig. 5. Temperature dependencies of DSD and CSD log—log slope
estimates obtained from CNLS fitting involving an exponential-
distribution-of-activation-energies model for DSD and a power-law
one for CSD.

With data extending over a wider, but still finite
frequency range, one would expect to be able to
follow DSD response to higher temperatures and to
identify CSD behavior to lower ones. But even then,
at sufficiently high temperatures the DSD contribu-
tion would eventually become too small compared to
the other parts of the data to allow its estimation, and
similarly at low temperatures for the CSD part of the
total. There seems to be no suggestion in the data
that, in principle, these separate contributions only
apply in limited temperature regions — they just
become too small, comparatively, to analyze.

Instead of presenting results like those shown in
Fig. 5, Nowick and associates assumed an ab initio
DSD power-law exponent of unity and quote a value
for the vy, of Eq. (3) of 0.55 for the present material
[18]. They state that there is no evidence for the
dependence of y on temperature over the entire
temperature range of the experiment, so the value
0.55 should apply over that full range. But their
results are based on graphical and least squares
analysis of only the ¢'(w) data and thus are more
uncertain and do not yield the detailed estimates
shown in Fig. 5.

4.2. DSD results

I conclude from the results shown in Fig. 5 that
for the present data, the first universality is alive and

well: power-law response is endemic, certainly not
surprising. Further, the third universality, which may
now be defined as a combination of CSD and DSD
responses, each with its own nearly temperature-in-
dependent y values of less than unity, also appears
plausible. But there is more to be concluded. The
presence of well-defined Eq. (2) response for the
DSD exponent in the range 51.2 K<T<296.2 K
indicates that when the data are more completely
analyzed the y, = 1 ‘second universality’ posited by
Nowick and associates disappears, as already sug-
gested earlier on less evidence [16]. Incidentally, the
T, value listed in Fig. 5 corresponds to an activation
energy of about 0.5 eV.

But what about the higher-temperature DSD ex-
ponent estimates? Those with y =1 only appear in
the combined DSD-CSD fitting region and may be
expected to become less and less accurate as the
temperature increases. In fact for T=490.2 K, the
1 — ¢ estimate was about 1.3, and DSD fitting was
impossible for higher temperatures. Thus, while the
data do not suggest that the exponent cannot be
larger than unity for the higher temperature range, it
would be conservative to conclude on the basis of
the more accurate lower-temperature results that it is
not. Finally, it should be reiterated that the thermally
activated EDAE DSD response model predicts just
the behavior exemplified by Eq. (2) and illustrated in
Fig. 5 by the fit results over the DSD-dominant
temperature range [9,12].

If the DSD response is indeed thermally activated,
as suggested by its Eq. (2) response, it is necessary
that 7, satisfy an equation like Eq. (6) with an Ey
value appropriate for DSD response. But once 7y
becomes large, so 2, > 1, Eq. (16) shows that it no
longer plays an active role in the response when
¢ =0. Similar behavior applies for the ¢ values
near 0 involved in the present DSD response. It thus
turns out to be impractical to obtain good estimates
from the present data of the 7, thermally activated
parameters. All one can conclude is that 7, << 1 in
the low-temperature region and it is > 1 in the
high-temperature region. Nevertheless, the evidence
suggests that it is indeed thermally activated, cer-
tainly a possibility for DSD [54,55].

There is no need for Aep to be thermally acti-
vated, nor should it be expected to be since indepen-
dent dipoles lead to 7~! Curie-law behavior [54].
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Unfortunately, it is impossible to estimate the uy
parameter of Eq. (14) from the present limited high-
frequency data, and, as Eq. (16) indicates, fitting can
then only provide an estimate of the combined quan-
tity Aep/uy. If one selects any reasonable tempera-
ture-independent value for Epy = Ey, estimates of
Aep may be calculated from the fit results, and they
turn out to be nearly independent of temperature,
within a reasonable random variation, for the range
51.2 K <T=<296.2 K and even somewhat higher.

4.3. CSD results

The middle CSD exponent estimates in Fig. 5
evidently tend to cluster around a value of 0.5. The
increasing trend of y in the upper range where no
DSD fit is possible may arise just because as the
temperature increases there is progressively less and
less useful high-frequency data available to estimate
v adequately. Likewise, the sharp drop below 339.7
K is likely only to be a consequence of the difficulty
of resolving small CSD contributions in the presence
of much larger DSD ones. Incidentally, the differ-
ences between the exponent values above 490 K in
Fig. 1 and those in Fig. 5 arise because the Fig. 5 fits
include electrode effects as required and those shown
in Fig. 1 do not.

The CNLS fits of the data allowed p'(0) to be a
free fitting parameter in the range 4222 K< T<
625.7 K. The resulting values led to the following
estimates of E, from untransformed NLS fitting with
Egs. (7) and (8), respectively: 1.174 & 0.017 eV and
1.130 £ 0.016 eV. Nowick and associates obtained
the surprisingly larger value of 1.22 eV, but did not
specify their actual fitting formula or method [18].
The Eq. (7) fit also gave a 7, estimate of 1.1 X 10~
s while that of Eq. (8), taking K. as a constant,
yielded 7,/K- = 1.1 X 107'¢ 5. As discussed below,
there is good evidence that K is indeed temperature
independent and approximately equal to 36. Then the
Eq. (8) prediction of 7, is about 4 X 107! 5. The
above Eq. (8) estimate for E, implies that there is
approximately a 68% probability that its value lies in
the range 1.114 eV < E, < 1.146 eV, equivalent to
an uncertainty of about =+ 1.4%. For comparison, the
Nowick estimate differs from the two present esti-
mates by about 4% and 8%, respectively, implying
no overlap, even at the 95% probability level. I

believe that the present values, which are based on
CNLS estimates of p'(0) having estimated relative
standard deviations of 1% or less, are to be preferred
to those obtained by graphical methods, which may
lead to uncertainties of 10% or more, perhaps a
reason why no such uncertainties are usually quoted.

Incidentally, fitting of logarithmically-trans-
formed data leads to bias in problems of the present
type [56]. The range of possible CSD fitting was
extended below 422.2 K by using fixed values of
p'(0) calculated from Eq. (7) with the above parame-
ter values. No significant differences were obtained
using Eq. (8) instead. This procedure is, of course,
another source of uncertainty in the results, particu-
larly for the lower three temperatures, but it allows
CSD estimates to be obtained at temperatures where
CNLS fitting does not lead to significant and plausi-
ble p'(0) values.

The result that most of the middle-temperature
CSD vy estimates are quite close to 0.5 is strongly
suggestive of a diffusion process. Therefore, some
fits were carried out using the ordinary finite-length
Warburg diffusion model, often observed in ionic
CSD systems [39,57], rather than the ZC model. The
signature of this response is an exponent value of
0.5, but it is quite unsymmetric and led to much
poorer fits.

Another fitting possibility might be thought to be
the diffusion-controlled relaxation model (DCRM)
for ionic transport in glasses [58]. It has indeed been
suggested as a possible fitting model by Nowick and
associates [18], where it is implicitly identified as a
CSD response theory by the present definition of
conductive-system dispersion. It too can lead to an
exponent near 0.5, but it seems inapplicable to the
present situation because it was derived as a dielec-
tric response model; does not yield a dc conductiv-
ity; and so represents DSD rather than CSD re-
sponse.

Contrary to an earlier assertion [18], the ac and dc
conductivities of a system where the DCRM applies
are not necessarily parts of the same interactive
ion-jumping process. The DCRM involves diffusion
between two neighboring negatively charged (possi-
bly non-bridging oxygen) sites. Even if the dc con-
ductivity of the material is taken proportional to a
diffusion constant [58], it must involve percolation
through the entire material or else it is zero, and it is
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thus most unlikely to be directly related to local
DCRM response, which does not require such perco-
lation. Although the DCRM might be transformed to
CSD response by formally changing ep(w) quanti-
ties to pc(w) ones [9], new physically-based justifi-
cation would then be required. In any event, it
appears more likely that the ZC y parameter is a
constant of 0.5 rather than the value of 0.55 obtained
earlier {18].

Finally, what can one learn from the fit estimates
of the €., parameter of Egs. (11) and (i2)? Round-
ing off values, it was found to be 34, 30, 37, 42, 35,
and 36 for temperatures of 625.7, 574.7, 531.2,
490.2, 454.2, and 422.2 K, respectively. These re-
sults indicate that e..= 36 and is neither thermally
activated nor proportional to T~', and they suggest
that it is actually most likely to be temperature
independent. If so, Eq. (12) indicates that K, which
is not thermally activated, is itself constant, and the
temperature dependencies of p'(0) and 7. are the
same and involve no power of T in their pre-ex-
ponential factors. Then Eq. (8) should be preferred to
Eq. (7). For comparison, Nowick and associates
obtained an estimate of their E, of 1.25 eV [18],
considerably different from the present Eq. (8) E, =
E_ estimate of 1.13 eV.

At temperatures below 422 K, where the appro-
priate values of p’(0) are more uncertain, it is possi-
ble to obtain a value of €, of 36 by using somewhat
smaller values of p’(0) than those predicted by the
fit of higher-temperature p'(0) estimates. For T =
3932 K and 366.7 K, the predicted values yield
€, =49 and 77, respectively, while the values ob-
tained when p'(0) was allowed free to vary were 19
and 23, respectively. Even these more uncertain €.,
estimates still suggest, however, that e.. is likely to
be substantially independent of temperature for the
present data.

For many materials, it is common to find that
€'(w) increases rapidly down to the lowest measured
frequencies [40,59]. Very large values are observed,
especially at higher temperatures. For example, the
experimental value of €'(w) at 625.7 K and 10 Hz
for the present material is about 1.6 X 10%. Most of
this behavior arises from electrode polarization ef-
fects, since at T =422.2 K, where such effects seem
to be negligible, €'(w) is about 73 at this frequency
and is also still increasing with decreasing frequency.

In the absence of electrode effects, one can write for
the combined CSD and DSD contributions [40],

€'(0) = eco + €p(0) = ec{x) + €p(0), (17)

where here ep(w) may be taken as ep, in the
absence of DSD in the measured frequency range.
Because the ZC model is physically unrealistic in the
limit of low frequencies [38], it cannot be used to
estimate ec,. But fits with other models, such as the
Cole—Davidson model, which do not suffer from this
limitation, suggest that €q, is of the order of 60 at
4222 K.

5. Summary and conclusions

The present work is concerned both with the
description of data analysis methods heretofore little
used in the disordered materials area and with the
results of their application to data sets of Nowick
and associates which have been employed by them
to propose and justify the existence of a constant-loss
new universality.

The main analysis method used herein is complex
non-linear least squares fitting of frequency-response
data using proportional weighing, weighing which
does not emphasize peaks of the data at the expense
of the rest of the data, as does conventional unity
weighing [33,49]. CNLS fitting of both real and
imaginary parts of the data simultaneously is shown
to be more appropriate than the conventional ap-
proach of fitting o'(w) data alone, usually carried
out with ordinary least squares fitting or graphically.
An important virtue of the CNLS approach is its
objective character: it has tremendous resolving
power (one part in a million or better for good data
[33]) and thus allows all processes contributing to the
response, such as conductive-system dispersion, di-
electric-system dispersion, the high-frequency-limit-
ing dielectric constant, dc conductivity, and any
electrode polarization effects present, to be identified
and quantified. In addition, it not only provides a
statistical measure of the goodness of fit of the
analysis, but estimates of all parameters and their
standard deviations as well. These uncertainty esti-
mates are an essential aid in assessing the impor-
tance of the various contributions to the full response
but have been rarely provided in previous work.
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Finally, CNLS fitting of appropriate models allows
one to obtain the fit response of the system with or
without any of the above individual contributions,
over a frequency range which may exceed that of the
original data.

CNLS fitting of the CaTiO,:30%Al1°* dispersion
data of Nowick and associates led to the following
significant results. First, it was verified objectively,
rather than assumed ab initio, that the response could
be best represented by a combination of DSD and
CSD processes, rather than by a single dispersion
process involving complicated slope dependence on
temperature. Second, a plausible explanation has been
found for the slope estimates greater than unity
published previously for the present data at low
temperatures [6,18], allowing the problem to be
avoided herein. Next, the analysis showed, contrary
to previous conclusions based on less appropriate
methods and an inadequate fitting model, that the
dielectric dispersion does not involve a constant-loss
region at low temperatures, one assumed by the form
of the Nowick-and-associates analysis model. Instead
of yielding a temperature-independent frequency ex-
ponent of unity consistent with such loss, the analy-
sis led to a clearly defined temperature dependence
of 1—(T/T,) over the region 51 K< T<297 K,
agreement with many previous theoretical analyses
and consistent with the specific thermally-activated
distribution-of-activation-energies model used for fit-
ting the DSD part of the total response. The uncer-
tainties in the estimated points defining this depen-
dence were sufficiently small that it could be unam-
biguously distinguished from a constant value of
unity. Thus, although the new universality proposed
by Nowick and associates was not verified for this
material, the response seems likely to involve a
thermally activated distribution of activation ener-
gies.

For the CSD part of the response, it was found
that estimates of the frequency exponent yielded
values close to 0.5 over the range 339 K < T < 423
K, that where the exponents could be most accu-
rately determined. The value of 0.5 is suggestive of a
diffusion process, and it could be accurately discrim-
inated from the value of 0.55 cited by Nowick and
associates.

The analysis showed that electrode polarization
effects needed to be added to the total fitting model

for temperatures of 460 K and above in order to
obtain adequate fits of the data. Such polarization
was found to affect not only the low-frequency end
of the data range but, contrary to usual expectations,
the high-frequency one as well [40].

A sensitive differential method of distinguishing
between the activated temperature dependencies of
the de resistivity, p’(0), and the relaxation time of a
CSD response model, 7., was proposed and illus-
trated using CNLS fitting. It led to a well-defined
activation energy estimate of 1.130 + 0.016 eV for
both p’(0) and 7., appreciably different from the
values of 1.22 eV and 1.25 eV cited by Nowick and
associates for these quantities [18], and sufficiently
well determined that the present and Nowick values
are unlikely to overlap even within the largest likely
uncertainties of these quantities. The ratio 7. /p'(0)
was found to be essentially temperature independent
and not thermally activated, indicating more clearly
than previously that no T factor occurs in the pre-ex-
ponential term of the p'(0) Arrhenius temperature
expressions, since none occurs in the conventional
Tc one.

The present results demonstrate that the CNLS
data analysis method, which is readily available in
the LEVM fitting program [33], can lead to more
appropriate fitting results than can other less objec-
tive methods. Since more accurate and better re-
solved results help one to gain new physical insights
into the behavior of the material analyzed, it seems
clear that the CNLS approach should be more widely
applied in future for glasses and other disordered
materials.

6. Principal acronyms and subscripts

ac Alternating current.

BDM  Bryksin, Dyre, Macdonald CSD effective-
medium response model.

BNN  Barton, Nakajima and Namikawa equation.

C Subscript denoting conductive.

CNLS Complex non-linear least squares.

CPE  Constant-phase distributed circuit element.

CSD  Conductive-system dispersion.

D Subscript denoting dielectric.

de Direct current.

DCRM Diffusion-controlled relaxation model.
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DSD  Dielectric-system dispersion.

EDAE Exponential distribution of activation ener-
gies.

GBEM Generalized Bryksin (BDM) effective-
medium CSD response model.

LEVM The CNLS fitting program used herein.

NLS Non-linear least squares.

Se Standard deviation of the relative residuals
of a NLS or CNLS fit.

zC Cole—Cole DSD response model used at the
impedance level for CSD response.
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