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Abstract 

A new method of accurately calculating two stretched-exponential (Kohlrausch-Williams-Watts (KWW)) models and 
fitting them by complex non-linear least squares (CNLS) to small-signal frequency-domain data is described and used for the 
detailed analysis of data for the disordered materials Li20-A1203-2SiO 2 glass at 24°C and N a 2 0 . 3 S i O  2 from 303 K to 
398.5 K. Fitting was carried out with two different KWW models, KWW0 and KWWl,  and with others, and included 
possible electrode polarization effects and Eta, the high-frequency-limiting dielectric constant, taken as a free parameter. 
For conductive-system dispersion, e i~  and e~ are usually unequal. The present most-physically-appropriate KWW model, 
the KWWl,  was much superior for the present data to all other models investigated. In particular, the power-law or 
'Jonscher' model was found to be inferior for fitting the trisilicate data, contrary to earlier conclusions of Nowick and Lim, 
based on their comparison of the fitting utility of the power-law model and the Moynihan KWW modulus formalism. In 
addition, serious limitations of the modulus formalism were found and are illustrated; indicating that it should not be 
considered for future fitting. For the Na20 • 3SiO 2 data, very-high-accuracy CNLS KWW1 fitting disclosed a small change 
in activation energy near 341 K and somewhat irregular, but well-determined, temperature dependence of the /3 exponent of 
the KWWI model. Although the differences between fit predictions and the trisilicate data are too small to distinguish on 
ordinary M"(w) or - p " ( w )  plots, the very small relative residuals of the fit nevertheless show appreciable serial 
correlation, rather than random behavior, indicating that some systematic errors still remain. 

PACS: 66.90.tr; 77.22.Gm 

1. Introduct ion 

Stretched-exponent ial  t ime response, also known  
as K o h l r a u s c h - W i l l i a m s - W a t t s  ( K W W )  response 
[1-3] ,  is f requent ly  observed in amorphous  poly-  
mers, glasses, and other disordered materials.  It ap- 
pears, for example,  in mechanical ,  dielectric, NMR,  

* Tel.: + 1-919 962 2078; fax: + 1-919 962 0480; e-mail: 
macd @gibbs.oit.unc.edu. 

dynamic  light scattering, and spin-glass remnant  
magnet iza t ion experiments .  References to both its 
widespread experimental  appearance and to the large 
n u m b e r  of  theoretical approaches which lead to such 
behavior  are given in Ref. [4]. In spite of  the experi- 
mental  and theoretical interest of  K W W  behavior,  
serious problems with fitting f requency-domain  data 
to the K W W  response model  have persisted. K W W  
data fitting, in either the t ime or f requency domain,  
is usual ly  carried out to est imate model  parameter  
values and adequacy of fit of  the model.  If the data 
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are temporal, weighted non-linear least squares fit- 
ting of  the original data with the stretched-exponen- 
tial retardation [5] function, 

~b(t) = ~ b ( 0 ) e x p [ - ( t / ' r 0 ) t ~ ] ,  0 < / 3 <  1, (1)  

is straightforward [6]. The simpler alternative of  
fitting after logarithmic transformation introduces 
bias in at least one of the parameter estimates and 
should be avoided [7]. For dielectric response, Eq. 
(1) describes the decay of polarization after a polar- 
izing field has been removed. The current is propor- 
tional to -dqb(t)/dt [2]. It is customary to take 
~b(0) = 1 and consider a normalized distribution of 
relaxation times (DRT), gk(~'), with which ~b(t) is 
associated [8-10] 1,2. The distinction between retar- 
dation and relaxation times [5] will hereafter be 
ignored, in keeping with common usage. 

Now some other important distinctions need to be 
made for frequency-domain behavior. First, one 
needs to distinguish between two types of dispersion: 
dielectric-system dispersion (DSD) and conductive- 
system dispersion (CSD). For a dielectric system, the 
dominant AC behavior arises from induced a n d / o r  
permanent dipoles a n d / o r  from relatively localized 
charges which are unable to percolate throughout the 
material, and thus a separate treatment is required to 
describe any dc response present. When such dielec- 
tric response shows dispersion, it is an instance of 
DSD. For CSD, on the other hand, long-range mo- 
bile charges dominate the response at low frequen- 
cies, and the unblocked dc part of  the total response 
is just the zero-frequency limit of the ac response. 
Although both DSD and CSD may appear in the 
same frequency range [10-14], the data analyses 
discussed herein were not found to require this com- 
plication. But note that even when there is no DSD 
in the frequency range where CSD is observed, a 
non-zero dielectric-system dielectric constant will 
still contribute to the total response. Here it will be 
denoted eD~. The subscripts ' D '  and 'C '  are used 

herein to denote dielectric- or conductive-system 
quantities, respectively. A list of  principal acronyms 
and abbreviations is provided at the end of this work. 

Most of  the standard empirical frequency-re- 
sponse expressions, such as the Cole -Cole  [15] and 
Cole-Davidson ones [16], were originally developed 
and applied for DSD situations. Nevertheless, in 
normalized form, they have often subsequently been 
employed for analyzing CSD data as well (e.g., 
[10-14,17,18]). This amounts to using a particular 
DRT, g(~-), associated with dielectric response, to 
describe a distribution of  resistivity relaxation times. 
In 1972 and 1973, Moynihan and collaborators first 
discussed the effects of  a distribution of 'conductiv- 
ity' relaxation times [8,19] and described an approxi- 
mate method of fitting frequency response data to a 
K W W  model appropriate for CSD. Their approach 
involved describing CSD response in terms of a new 
DRT proportional to "rg(r) rather than to g(~-) 
[8,10]. Independently and later, a more general CSD 
approach involving thermally activated distributed 
behavior was described by the present author which, 
in its most likely form, also led to ~-g(~-) response 
(n = 1), rather than to DSD or CSD g ( z )  response 
(n = 0) [10,201. 

These results suggest that we need to distinguish 
two different types of  possible CSD response using 
n = 0 and 1. First, define x - T /% n, where Zo, is a 
characteristic relaxation time of the response, as in 
Eq. (1). Then a general expression for normalized 
small-signal electrical or mechanical frequency re- 
sponse associated with a single dispersion process 
involving the dimensionless DRT G,(x, p , ) -  
%,Gn(~', p , )  may be written [10,20] 

u . (o . ,  p.) - p°) 
- 1 . ( a . ,  p.) 

v.(0, p,,) - p,,) 

G.(x, p . )dx  f (2) 
)0 ' 

I The p(~') function in Ref. [9] is equivalent to the present 
G(~-) DRT function. 

2 Eq. (8), which was present in the final proof of Ref. [10], was 
unaccountably omitted in the printed version. See erratum in J. 
Non-Cryst. Solids 204 (1996) 309. Also, the quantity G D in eq. 
(A2) should be Gco. 

where Pn represents the set of  shape parameters 
involved for a particular DRT; U is a measured or 
model quantity of  interest; 12 n --- w%n; and w is the 
angular frequency. Since the value of n in ~(2 n will 
usually be clear from the context, we shall generally 
write ~ in place of  ~O n. For KWWn response, p,, is 
just ft,. 
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If we set n = D, then UD(/2) = e( /2) ,  the com- 
plex dielectric constant, while for n = C, Uc(/2)  = 
Z( /2)  the impedance, or p ( /2 )  the complex resistiv- 
ity. Alternatively and hereafter, we shall set n = 0 
for both dielectric-level DSD response and 
impedance-level CSD response (i.e., CSD0) involv- 
ing the same DRT. In addition, the choice n = 1 will 
be used to denote the second type of  CSD response, 
CSDI ,  one which involves the original CSD0 DRT 
multiplied by r (see Appendix A for more details). It 
is inappropriate to use a CSD1 response model to fit 
DSD behavior [20]. Note that because of  the rela- 
tions between the four immittance levels [10] and the 
form of  Eq. (2), CSD should properly be described 
by a distribution of  resistivity relaxation times (not 
conductivity relaxation times), and DSD by a distri- 
bution of dielectric relaxation times, actually equiva- 
lent to a distribution of  conductivity relaxation times. 
Even when dispersion is not actually associated with 
a physical process involving a DRT, it may still be 
formally expressed in terms of  one, as in Eq. (2). 

2. General CSD relations 

The minimum set of  parameters for KWW fitting 
of  e(to) DSD data includes ED~, AE D = %0 -- %++, 
/30 , and %0, where the latter two are those present in 
Eq. (1). Similarly, the minimum set of  parameters 
for general KWW CSD fitting is eD~, PC~, A p = 
Pc0 - Pc:~, 131 and rol, where n = 0 and 1 subscripts 
have been partly omitted. Although eo~ is never 
zero, one usually finds that in CSD situations p'(o¢) 
= Pc~ = P~ is zero or negligible. Since this is the 
case for the present data sets, the remaining parame- 
ters are eDoc, PC0 ~- P0 '  i l l '  and Tol. It turns out that 
CSD response always involves important limiting 
CSD-related dielectric quantities which may be de- 
rived from the CSD fit parameters and moments of  
the appropriate KW W  CSD distribution, G,,(x, Pn) 
= GK,,(x, fin). Expressions for the related n = 0 and 
1 dimensionless mth moments of a general G,,(x) 
distribution, ( x" )o  and (xm)l ,  are given in Ap- 
pendix A. The limiting CSD dielectric quantities for 
a general DRT for n = 0 and 1 [10] are 

( EC+)O ~- ErO/< X-I >0, (3) 

(ec:~), --- e , , / ( x - '  ) t ,  (4) 

( ,c0)0 - x)0,  (5) 
and 

(ec0) ,  - e~,< x ) , ,  (6) 

where 

e ~ , -  %,( A p ) , / [  ev{ ( Pc0) ,}z] ,  (7) 

e v is the permittivity of  vacuum, and the moments 
implicitly involve the distribution-shape parameter(s) 

Pn" 
Note that if P0 = P l  and e~0 = e<, then the use of  

Eq. (A.3) in Eq. (4) leads to (eco) 0 = ( e c = )  I. In 
actual CSD0 and CSD1 fits of  the same data, the 
above equalities do not hold, however, because the 
n = 0 and n = 1 fitting models are always different, 
causing parameter estimates to differ. This is the 
reason why the n = 0 and n = 1 relations are sepa- 
rately given above and are carefully distinguished. 
They were not always fully distinguished in Ref. 
[10]. For example, from the above relations we can 
write 

= <x>.<x '>.,  (8)  

but in [10], ( ec0) l / (%+) t  was also inappropriately 
set equal to (X2)o/[(X)o] 2 through the use of  Eq. 
(A.3). Such possible errors (when the values of  
equivalent P0 and Pl parameters differ) are easy to 
make because the moment expressions do not explic- 
itly show the shape parameters of  the distributions 
involved. Note that all the CSD dielectric quantities 
defined above involve only CSD parameters and are 
independent of  eo~. For KWW fitting, one need 
only use the specific KWW values of  the moments 
in Eqs. (3)-(6)  to calculate these quantities. But, as 
discussed later, ( x  -1 )o is infinite for traditional 
KWW response [9, l 0]. 

Although Eq. (A.5) relates general CSD0 and 
CSD1 normalized response models at the impedance 
or complex resistivity level, it is desirable to also 
express the relationship at the electrical modulus 
level when Pc~ = 0 the situation considered by 
Moynihan et al. [8,19]. Then, M 1 ( / 2 ) -  ioJe v Pl ( /2)  
= iWev( Pc0)t 11(/2, Pt). It follows from Eqs. (A.5) 
and (4) that 

M , ( / 2 )  = [itOev( P c o ) , ( x  -1 ) 1 / i / 2 ]  

× [1 - / O ( / 2 ,  P l ) ]  

= [ (x - ' ) Je . . . l ] [1 -1oC /2, p,)  ] 

= [1 - / o ( / 2 ,  p l ) ] / C e c + ) , .  (9)  
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An expression equivalent to the final result in Eq. (9) 
appeared in Ref. [8] but with (ec~) replaced by e~, 
where this quantity was defined as involving all 
ordinary contributions to the relative permittivity of  
the material except those connected with long-range 
ionic diffusion [19]. It can thus be identified with the 
present eD=. Such identification led Moynihan and 
his associates to obtain incorrect expressions for 
(eC~)l and ( eC0)l, ones which improperly connected 
CSD and DSD quantities [8,19]. These and other 
limiting results of  these authors have been discussed 
and corrected in Ref. [10]. 

3. KWW fitting approaches 

As mentioned in Ref. [10], the CSD1 Moynihan 
approach, exemplified by Eq. (9) with (ec~) 1 re- 
placed with e~, continues to be widely applied to the 
present day (e.g., [21-24]), where it is often identi- 
fied as the Moynihan electrical modulus formalism 
(MMF), and e~ is itself now usually replaced by ~ ,  
the limiting-high-frequency real part of E(J2). Here, 
let MMF denote the actual fitting procedure used by 
practitioners of  the modulus formalism, one based on 
Eq. (9) with ~ rather than (ec~) l, but one which 
does not actually fit data directly to this equation. 
Now when Pc~ = 0 ,  e~ = ( e c ~ ) l  + eD~ always un- 
equal to eD~. On the other hand, when Pc~ v~ 0, 

= e t~  [10]. In this less likely case, it nevertheless 
turns out for CSD1 behavior that when e ' ( O )  de- 
creases to (ec~) 1 + eD~, it may remain at this value 
for an extended frequency range and then only de- 
crease from this plateau towards eo~ at frequencies 
possibly beyond the measured range [10]. When 
(Ec~) ~ > eD~, often the case, it is easy to identify 
(ec~)~ wrongly as ~ = eD~. But whatever the value 
of Pc~, neither e~ nor eD~ should appear in Eq. (9), 
and e 0 = %,  = (ec0) ~ + ei~.  

The major problem in fitting frequency-response 
data to a K W W  model is that an analytic expression 
for GK,,(x, /3,) is unavailable, except for the special 
choice /30 = 0.5 [9,10], so that Eq. (2) cannot be 
used for the calculation of IK,(g2, /3~). Although 
other integral expressions are available for this com- 
plex quantity [3,25,26], they involve rapidly oscillat- 
ing integrands and are correspondingly difficult to 
use for accurate calculations and fitting involving 
numerical integration, particularly for /3, < 0.5. 

In the work of Moynihan et al. [8], numerical 
approximations to GK0(X,  /30 ) for given /30 values 
were obtained by a linear inversion approach, one 
which has been discussed and compared with a 
superior approach in Refs. [10,27]. The Moynihan 
analysis method [8], the MMF, is essentially a ' few- 
point'  CSD1 fitting procedure which allows esti- 
mates of  parameters such as r o, /3, and e~ (not 
(ec~) l) to be obtained from a few values of  the 
frequency-response data of  the imaginary-part of  the 
complex modulus. The method tends to emphasize 
points near the peak of the M " ( w )  data curve, is 
very approximate and fails to properly distinguish 
n = 0 and n = 1 quantities (see later discussion), 
takes no account of  other processes such as electrode 
effects which can influence the measured results 
[10,13,14], and even when automated [21] it is inap- 
propriate for complex non-linear least squares 
(CNLS) fitting of the data. The use of  the modulus 
formalism has been strongly criticized by Elliott [28], 
and some of its errors are identified and discussed in 
Ref. [10]; in addition, Dyre [29] has pointed out that 
the shape of the M"(w) peak is not of  fundamental 
significance. These matters are of  no particular im- 
portance, however, when CNLS fitting is employed. 
With proportional weighing [10,13,14,27,30] 3, 
CNLS fitting yields exactly the same parameter esti- 
mates whether data at the modulus or complex resis- 
tivity level is analyzed (e.g., compare the model 
expressions given in Eqs. (A.5) and (9)), uses all 
data points, and readily allows one to take account of 
all processes thought to contribute to the measured 
response. But the use of  CNLS fitting requires that 
one be able to calculate the fitting model accurately 
and quickly for any values of  its parameters. The 
present work shows how this may be done for the 
CSD0 and CSD1 K W W  response models and illus- 
trates the utility of  the CNLS approach. 

Consider now fitting to a K W W  frequency re- 
sponse model. Since CSD0 and CSD1 response mod- 
els may be used to fit data at any of the four 

3 The latest version of the LEVM CNLS fitting program, V. 
7.0, may be obtained at no cost from Solartron Instruments, 
Victoria Road, Farnborough, Hampshire, GUI47PW, United 
K i n g d o m .  E - m a i l ,  a t t e n t i o n  D a v e  B a r t r a m ,  
bartram @ solartron.com. 
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immittance levels, and since the modulus level holds 
no favored position, the designation KWW-CSD1, or 
KWWl,  is more appropriate than 'modulus formal- 
ism' to designate such KWW fitting models and 
approaches. Therefore, KWW0 and KWW1 will be 
used hereafter, and 'modulus formalism' will be 
taken to mean only the few-point Moynihan CSD1 
fitting approach [8], the MMF. In Ref. [10], CSD1 
models and fitting were identified by Class-A and 
CTM, and CSD0 models and fitting by Class-B and 
CSD, but the present notation is preferable. Note that 
n is the power of ~- present in the DRT ~-nG0(~-). 

Another few-point KWW fitting approach was 
proposed by Weiss, Bendler, and Dishon [26]. It was 
applied only for DSD situations, however, and thus 
used only ~"(oJ) data for parameter estimation. These 
authors made the important observation, which ap- 
plies to all KWW few-point fitting approaches, that 
"...the physical assumption that the system is charac- 
terized by a single degree of freedom may not be 
valid, with the consequence that the Williams-Watts 
model will not be a useful tool for describing the 
data." While the first part of this quotation is true, 
the second part need not follow when CNLS fitting 
is employed. 

In an effort to overcome the difficulty in ade- 
quately fitting frequency data to a KWW model, an 
approximate KWW0 fitting algorithm was developed 
[ 17] based on the accurate KWW0 response tables of 

Ref. [25]. It was incorporated in the LEVM CNLS 
fitting program [30] and has been available since 
1986. It can be used to analyze either DSD or CSD 
data, and, since it is a part of the general LEVM 
program, all other processes likely to be present may 
also be included in the full fitting model. Although 
this KWW0 approximate model, denoted by AKWW 
hereafter, is accurate enough for fitting most noisy 
data, it is far less accurate when converted to KWWI 
response using Eq. (A.5), particularly in the low- 
frequency region where [1 - l~ (g2 ,  Pl)] becomes 
very small. 

Therefore, a new approximate KWW0 model has 
been developed whose relative errors are so small 
(less than one part in a million for any /3 value of 
experimental interest), that fit errors are completely 
negligible for either the KWW0 or its KWW 1 exten- 
sion model. As described in Appendix A, the new 
approach uses two types of series and a conver- 
gence-enhancing procedure to achieve this accuracy, 
yet it allows rapid CNLS fitting. Here, the utility of 
the new approach will be illustrated for data involv- 
ing two different disordered materials, but extensive 
efforts to discover more appropriate fitting models 
than the KWW ones will be deferred. All CNLS fits 
in the present work were carried out using a new 
version of LEVM, one which incorporates the pre- 
sent KWW0 and KWWl models. It become avail- 
able for free distribution in January 1997. Propor- 

Table 1 
Results of KWW CNLS fitting of 24°C Li20-A1203-2SiO z data. Here AIB indicates the estimate of the quantity, A, and its estimated 
relative standard deviation, B. All quantities shown without such uncertainties were calculated from other fitting estimates 

Column A B C D 
Method/model KWW0 KWW0-S KWWI KWW1-S 

S F 0.0161 0.0313 0.0129 0.0245 
10- 9p0 (El cm) 1.07610.0033 1.075D.0057 1.07610.0026 1.07510.0042 
e~ 11.59 D.012 11.57 10.015 0.735510.0028 0.7865 [0.023 
1047"0 (S) 11.04 11.01 0.7008 0.7486 
103(7") (S) 1.963 1.948 2.450 2.444 
/3 0.5350[0.0071 0.536810.0049 0.359810.0012 0.3637 D.0035 
109BE 8.2510.013 - 8.3010.010 - 
n E 0.52510.013 - 0.55010.011 - 
~E 74.010.027 -- 92.010.016 -- 
E x 9.429[0.0053 9.43310.0050 5.75210.0075 5.65310.0095 
ec~ 0 0 3.370 3.478 
e~ extr., calc. 8.363, 9.429 9.433, 9.433 8.299, 9.122 9.131, 9.131 
e¢0 20.61 20.46 25.71 25.59 
E 0 extr., calc. *% 30.04 31.41, 29.89 0% 31.46 31.24, 31.24 
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tional weighing was used, and Eq. (A.5) with 
( x - l > l  =/31/F{1/ /31}) ,  rather than Eq. (9), was 
employed for KWWl-modei  fitting. Most CNLS 
fitting was done with the data expressed in complex 
resistivity form, or equivalently, modulus form, but 
fitting results for the other two levels were also 
routinely examined and were found to be quite com- 
parable. 

4. Fitting of Li20-AI203-2SiO2 frequency-re- 
sponse data 

Frequency-response data for the L i 2 0 - A I 2 0  3-  
2SiO z glass were kindly provided by Professor 
Moynihan [31]. Since they have been analyzed previ- 
ously by several authors and, most recently, by 
fitting them to the A K W W  model using CNLS [10], 
it is worthwhile to provide accurate fit results for this 
data set, both to allow comparison with other pub- 
lished fit results and for future comparison using 
different fitting models. 

Results of  four different CSD KWW fits are 
presented in Table 1. The quantity S v is here taken 
as the standard deviation of  the relative residuals and 
is thus a measure of  the goodness of  fit. It has been 
alternatively defined as the standard deviation of  the 
weighted residuals. The definitions are the same for 
proportional weighing. Here, proportional weighing 
using model values (FPWT) [30], rather than that 
using data values (PWT), was usually used for fit- 
ting, but the differences in results were found to be 
negligibly small. All parameter estimates shown 
without estimated relative standard deviations in 
Table 1 except the first value of  the ~ and •0 pairs, 
were calculated from Eqs. (3)-(7)  using fit estimates 
of  the parameters. The initial values shown for E~ 
and •0 are fitting-model extrapolations. Subscripts 
distinguishing between the n = 0 and n = 1 parame- 
ter estimates are unnecessary here and are omitted 
below except when needed for clarity. Assume now 
that the dominant dispersion is of  CSDI  rather than 
CSD0 type. The fitting parameters for the bulk dis- 
persion are P0, •~, /3, and •~, where •x is • i~  for 
CSDl-model  fitting and is approximately •= (see 
below) for CSD0 fitting. The difference arises be- 
cause (•c=)0 = 0 (or is very small for cutoff distribu- 
tions), and thus the separate CSD0 •~ free fitting 

parameter tries to compensate to match the data. 
Therefore, CSD0 fitting does not allow separate 
estimation of •c~ and •D~ for the assumed condi- 
tions. If  KWW1 fitting is most appropriate for the 
data, the KWW0-fit  •x will actually approximate 
~c = (•C~c)I + •Doo, not (•c=)0 + •D~" One can alter- 
natively use % rather than •~ as a fitting parameter, 
but there are some advantages in the latter choice 
[10,13,14]. 

Some fits have been made with exact simulated 
data in order to clarify the conditions which lead to 
various • estimates. In carrying out CNLS fits, as in 
the present work, •o~ is always included as a free 
fitting parameter. When fitting CSD0 data with a 
CSD0 model, one obtains a direct fit estimate of  eo~ 
and can obtain an estimate of  e~ by evaluating the 
model at a very high frequency using parameter 
estimates from the fit. In this case, the •02 and •~ 
estimates are the same since (•c~)0 will always be 
negligible. In cases where the data are noisy a n d / o r  
the model is not fully appropriate, the fit estimate of  
• v~ may be zero. Then the extrapolated e~ estimate 
will still approximate eoo~. When one fits CSD0 
response with a CSD1 model, very poor results are 
obtained when •o~ is taken free. When it is fixed at 
zero, one again obtains an approximate estimate of  

either from extrapolation (when fitting with Eq. 
(A.5)) or from (•C~)l when using Eq. (9). 

In the case of  most present interest, where the 
data involve CSDl- type  dispersion, some of the 
results are different. When CSD1 fitting is carried 
out, one obtains both •Dec and (•Co~) 1 estimates when 
using Eq. (9), and their sum agrees with the extrapo- 
lated ~ estimate. When 6D~ is taken fixed at zero, 
however, the free (ec~) ~ parameter is forced to 
estimate e~, and no co= estimate is available. When 
fitting involves the Eq. (A.5) form, 6D~ and e~ 
estimates are available, and one must estimate (ec~) 1 
from their difference. Again in this case, if the eD~ 
fitting parameter is taken fixed at zero, or forced to 
this value by the fitting, an e~ estimate may be 
obtained by extrapolation but no separate 6O~ and 
(Ec=) 1 estimates are then available. Note that the 
results shown in Table 1 are in accord with the 
present conclusions. These results also show why for 
the MMF model, which takes no account of  6D~, the 
(•c~)~ parameter of  Eq. (9) must be re-interpreted as 
e~, as has been done in recent times by Moynihan 
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[22]. However this ¢: value must not be used in Eq. 
(4). 

In addition to the fitting parameters discussed 
above, the fits of  columns A and C include three 
electrode-polarization parameters. Their effect is in 
series with that of  the bulk response and may be 
expressed at the complex conductivity level as 

O'E(W) = i o)e v eZ + BE(i O))"E, (1o) 

the combination of  a capacitance and a constant- 
phase-element (CPE) in parallel [10,30]. Further dis- 
cussion of  such effects appears in Refs. [10,13,14]. 
Eq. (10) will be referred to here as the electrode 
response model (ERM), although other expressions 
are of  course possible. 

There are three reasons why the additional re- 
sponse expression of  Eq. (10) has been associated 
with the electrodes. The first, a necessary but not 
sufficient condition, is that best-fit results are ob- 
tained when this contribution is in series with the 
rest of  the response, here that associated with CSD 
and possible DSD processes, which are in parallel. 
The second is that the form of Eq. (10) has been 
successfully used for other disordered-material situa- 
tions and electrochemical impedance spectroscopy 
data and is appropriate for describing space charge, 
diffusion in the electrode, and rough-surface elec- 
trode effects [ 12-14,32,33]. But no electrode-process 
identification is certain unless one can show that the 
electrode parameters obtained from fitting at the 
conductance or impedance level are independent of  
the electrode separation of  the cell, requiring mea- 
surements at constant temperature for cells with two 
or more separations. Although such data are not 
available for either of  the materials considered herein, 
recent unpublished work of  the author on data for 
CaTiO3:30%A13÷ of  Nowick at 575 K with separa- 
tions of  1.28 mm and 2.98 mm [31] strongly suggests 
that the ERM part of  the fitted response is indeed 
thickness independent within experimental uncer- 
tainty. 

The column-B and -D fits, designated with -S, 
involved subtraction from the data of  the effects of  
the electrode polarization parameters shown in 
columns A and C, an easy process with LEVM, and 
subsequent refitting. The resulting larger values of  
S F are associated with the subtraction process, one 

which may involve some small differences between 
nearly equal quantities. Comparison of  the results 
shown in columns A and B and in C and D indicates 
that the elimination of  estimated electrode effects 
changes all remaining parameter estimates slightly. 
The CPE is physically unrealizable in the limit of  
high frequencies [34] and requires a high-frequency 
cutoff to be made physically realizable when n E < 1. 
In addition, it leads to e'(o2)--9 oo as o2---} 0, as in 
columns A and C. 

Note that only for the column-B and -D fits does 
the relation (~)~  = (ec~) . + Eo~ hold exactly. These 
results suggest that CSD1 is preferable to CSD0 
fitting, as also indicated by earlier analyses [8,10,20]. 
In addition, comparison with earlier A K W W  CNLS 
fits of  the present data [10] indicates fairly good 
agreement between the CSD0 fits, but poor agree- 
ment between the CSD1 ones. For example, esti- 
mates of  fla near 0.47 obtained earlier [10,22] are 
quite different from the values in columns C and D. 
Thus, the present work shows that accurate K W W l  
CNLS fitting is required here in order to obtain the 
most meaningful parameter estimates. 

The LEVM fitting routine allows either G or T O 
to be taken as a free parameter. As discussed else- 
where [10,13,14], one may generally expect smaller 
parameter cross-correlations with G rather than ~'o 
taken free, and G is particularly diagnostic for com- 
paring results at different temperatures. When fitting 
was carried out with ~'o free, values very close to 
those shown in the table were obtained, but their 
relative standard deviations were appreciably larger 
than those listed for G- Although the table shows 
that KWW0 G estimates are more than 14 times 
larger than the KWW1 ones, reflecting a similar ratio 
for the T O estimates, note that the ( r )  estimates 
show much less variation because they are averages 
over the full data. Finally, it is clear that the /3 
estimates do not satisfy the relation /30 +/3J = 1. 
This failure does not arise because of  errors in the 
data but because of  the intrinsic differences between 
KWW0 and KWW1 response. To confirm this con- 
clusion, exact KWW 1 data were generated using the 
parameter values of  column C. Fitting these data 
with the KWW0 model led to S F = 0.006 and /30 = 
0.52610.003. Similarly, when the same process was 
carried out with electrode polarization effects re- 
moved, the result was S r = 0.037 and /30 = 
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0.56610.006, where this notation is defined in the 
caption of  Table 1. 

Although tabular fitting results, which are always 
averages, can be instructive and interesting, it is also 
useful to consider the point-by-point details of the 
shape of  the data and its fits at one or more immit- 
tance levels. For the present data, this has already 
been done in Ref. [10] and need not be repeated here 
in the same format, even though the present fits are 
different and better than the earlier ones. An impor- 
tant conclusion of  the earlier work was that electrode 
effects were not negligible both at low and at high 
frequencies, and that taking them into account could 
explain the appreciable excess high-frequency loss 
evident in earlier fittings of  the present data (e.g., 
[8,22]) and termed endemic to the vitreous state by 
Moynihan and his associates [8]. It now appears that 
this effect is just an artifact arising from inadequate, 
few-point, modulus-formalism fitting of  data, a pro- 
cedure which deals only with the main dispersion 
process. In fact, Elliott [35] recently raised the ques- 
tion of  whether such excess loss arose from a failure 
of  the KWW model or from the presence of  an 
additional dispersive contribution significant at high 
frequencies. Although the latter choice, electrode 
effects here, seems to be the dominant contributor, 
the situation requires a closer examination, one only 
practical with CNLS fitting. 

Conventional plots of  data and fit versus log 
frequency exhibit little or no visible discrepancy 
between the two when the fit is as good as the 
present ones, so greater resolution is required. This 
may be provided by plots of the relative residuals 
themselves versus log frequency. Fig. 1 shows such 
a plot for the real and imaginary relative residuals 
for the complex resistivity fit of  column D of  Table 
1. The lines are included here to guide the eye. Since 
CNLS fitting with proportional weighing leads to 
exactly the same parameter estimates for modulus- 
level fitting as those obtained from fitting the data at 
the complex resistivity level, the residuals must also 
be the same. But the real and imaginary parts are 
reversed. Thus, r~ = r~/ and r~ = r~t, so the figure 
actually shows both types of  residuals. The residuals 
directly indicate percent difference between model 
predictions and data values. Thus the left-most r o 
value, of  about - 0 . 1 ,  corresponds to a 10% differ- 
ence. Since the S F value for column D is consider- 
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Fig. 1. Frequency dependence of real- and imaginary-part relative 
residuals obtained from fitting of frequency-response data of 
Li20-A1203-2SiO2 glass at 24°C using the KWWl bulk re- 
sponse model; see Col. D results in Table 1. Here and hereafter, 
f0 ~ 1 Hz, and lines between points are provided to guide the eye. 

ably larger than that of  column C, we should expect 
the residuals for the latter fit to be smaller. They are 
not presented here because only the first few r~ ones 
at the low-frequency end and the last few r' o ones at 
the high-frequency end are smaller. For example, for 
r~ the - 0 . 1  value is reduced to - 0 . 014 ,  and the 
first positive peak value of  0.037 is reduced to 0.020. 
The more central residuals remain nearly unaltered. 

Fig. 2 shows the relative residuals obtained when 
the data of  column D were changed by eliminating 
the first low-frequency point and the last three high- 
frequency ones. Fitting then led to S F -~ 0.008. The 
present results indicate that the dominant relative 
residuals are those of  rM in the low-frequency region 
and those of  r~ at the high-frequency end. It is 
likely that the low-frequency ones arise from a 
somewhat inadequate expression for the electrode- 
polarization model, one whose defects are greatly 
amplified in the M'  << 1 region when subtraction is 
carried out. The recognition of  such a possibility is 
the first step towards improvement of the model. On 
the other hand, the last three high-frequency points 
of  the original data are separated from the other 
points by a large frequency ratio and are irregular. 
This difference suggests that the corresponding three 
r~ residuals arise primarily from systematic errors in 
the data, perhaps associated with the use of  a differ- 
ent measuring instrument in this region. 
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Fig. 2. Same as Fig. 1 except that the lowest frequency and the 
three highest frequency points were removed from the data before 
re-fitting. 

It is important to point out that plots of  M(o~) 
emphasize the high-frequency part of  the data, as 
compared to p(o~) ones. Thus, in linear plots, differ- 
ences (residuals rather than relative residuals) be- 
tween M" data and fit predictions show up better 
than do the p'  ones to which they are related. 
Therefore, linear plots of  M(to)  should be used to 
illustrate high-frequency discrepancies, and ones of  
p(oJ) should be used for low-frequency ones. Fi- 
nally, although some small random contributions are 
evident in the central residuals of  Fig. 2, it is clear 
that these residuals are primarily dominated by sys- 
tematic long-period, high-serial-correlation behavior, 
possibly indicating that even the K W W I  model is 
not entirely appropriate for the present data. 

5. Cutof f  effects 

The KWW fitting results and the e c calculated 
values shown in Table 1 were all obtained from fits 
using the series approach discussed in Appendix A. 
Thus, they do not and cannot include any cutoffs of  
the generally unknown KW W  G K o ( x ,  / 3 o )  distribu- 
tion. But, as discussed elsewhere [10,34], IK0(~Q, 
/3o) response is not physically realizable in the high 
frequency limit, where it leads to infinite conductiv- 
ity. Thus, it is of  interest to consider the effect of  

cutoff on KWW response, which can be readily done 
for the known GK0(X, 0.5) distribution, since its 
response models with cutoffs are included in LEVM 
[10]. Highly accurate numerical quadrature calcula- 
tions of  I K ~(~,0.5) with cutoff were carried out in 
terms of  the variable y = In(x), not over its full +oo 
range, but from - o o  <Ymin = ln(Xmin) < 0 to  0 < 

Ymax = ln(Xmax) < oo. For convenience, we take ]Ymin] 
= Y~ax = U > 1. This choice leads to Xmi n = e x p ( -  u) 
and to Xm~ x = exp(u). Finally, using the relation 
w~---- ~2x, we can s e t  ~ m i n X m a x  = ~ '~maxXmin = I. 
NOW the cutoff at x = Xmax usually has little or no 
effect, since for reasonable values of  x . . . .  ~'-~min 

will be below the natural low-frequency rolloff of  
KWW response, that where it approaches its limiting 
single-time-constant ~2 behavior [10]. Thus, the ma- 
jor effects of  cutoff should appear at the high- 
frequency end of  the response range, that where 
cutoff enforces final high-frequency-limiting single- 
time-constant ~ -  1 behavior of  - I~ n(~'~). 

For KWW0 fitting, Table 1 shows that (ec~) 0 is 
zero. With no cutoff, the moment ( x -  1 )0 is infinite, 
but for the present / 3 = 0 . 5  KWW case, it ap- 
proaches (TrXmin)-l/2 as Xmi n becomes smaller and 
smaller [10]. For example, for u = 5, 10, 20, and 40, 
its values are about 6.68, 83.6, 1.24X 10 4, and 
2.74 X 108, respectively. Thus, (ec~) 0 is finite and 
non-zero when the distribution is cut off. 

To show explicitly the effects of  different cutoff 
values of  u at limiting high and low frequencies, 
accurate data were calculated for the/3 = 0.5 KWW0 
and KWW1 response models, both for the choice 
G = 10. As already discussed, when /3n and Gn are 
the same for these two models, (ec~) j and (ec0) 0 are 
equal. Because cutoff, particularly when it is ex- 
treme, will affect the values of  the moments present 
in Eqs. (3)-(6), one may expect some dependence of  
the limiting E c values on the size of  u. The values 
found for (~c~)0, (ec~)l, and (eco) l were, respec- 
tively, for u = 4 0 : 3 . 6 5  × 10 s, 20, and 60; for 
u = 20:8 .05 x 10 4, 20.0001, and 60.0001; for u = 
10: 0.120, 20.08, and 60.0001; and for u = 5: 1.5, 
20.97, and 60.004. Since fitting results for wide- 
frequency-range real data generally show that u > 15, 
it is clear that for the /3 = 0.5 case at least, reason- 
able cutoff values will have negligible effect on all 
quantities but (ec~) o. But since (E~) o = (ec~) o + eD~ 
and since G cannot be less than unity, (ec~) o may 
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generally be ignored with little loss of  accuracy. To 
express these results another way, for analyzing most 
experimental  K W W  data it seems very l ikely that the 
present no-cutoff  series fitting models will be quite 
satisfactory. 

6. Fitting of Na20-3SiO z frequency-response 
data 

6.1. Fitting results for  T = 321 K data 

In evaluating and illustrating accurate CNLS 
K W W  fitting it is important to consider data for a 
range of  temperatures. Thanks to the kindness of  
Professor Nowick [31], the data on N a 2 0 - 3 S i O  2 
which Nowick and Lim (abbreviated NL hereafter) 
analyzed in Ref. [11] were made available to me. 
The M"(~o) data curves for those temperatures to be 
considered herein are shown in Fig. 3. The window- 
ing effect of  a constant frequency range for different 
temperatures is clearly evident. Had - p " ( w ) c u r v e s  
been plotted, it would be evident that at 303 K not 
even the peak of  the curve is reached at 10 Hz. The 
relation between the peak frequencies of  M~ and 
- p ~  model  predictions is illustrated later for the 

present material. 
The present data were earlier analyzed by the 

M M F  approach at the Naval Research Laboratory 
and results appear in Ref. [11]. Particular attention 
was devoted in Ref. [1 1] to fitting results for the 321 
K data. As usual for modulus-formalism fitting, the 
calculated response fell below the data points in the 
high-frequency tail, as expected from the foregoing 
results and discussion. Several fits have been carried 
out to demonstrate the phenomenon and its cure. 
Their results appear in Fig. 4 and in Table 2. In an 
effort to duplicate some features of  electric-modulus 

0,i03 

M 

0.02 

0.01 

0.00 

363 380 ~398.5~ 
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Fig. 3. Variation of measured M"(~o) data with frequency for the 
Na20.3SiO 2 glass at six temperatures. 

behavior, CNLS KWW1 fitting with unity weighing 
(UWT) was first carried out. Such weighing empha- 
sizes response around the M " ( w )  peak region. First, 
all the model  parameters were taken fixed at the 
values quoted by NL except P0 and Eo~ (a quantity 
not considered by NL), both of  which were allowed 
to vary. As shown in Table 2, such fitting yielded a 
large value for S F, a zero estimate for t~Doo, and a P0 
value appreciably different from those obtained with 
much more accurate fits. The corresponding fit curve 
in Fig. 4 shows the expected behavior. Appreciably 
better results were obtained when all parameters 
were taken free in the fitting, but some high- 
frequency discrepancies are still evident. 

Although the fit is further improved when PWT is 
employed instead of  UWT, it is still unsatisfactory. 

Table 2 
Results of CNLS fitting of 321 K Na20 • 3SiO 2 data to the KWWl model for various weighing choices without (first three lines, last line) 
and with electrode polarization parameters 

Weighing, par. S v /3 1047"0 (s) E T 10- 9 P0 (12 cm) eo~ 

UWT, P0 free 0.18 0.5 8.0 5.16 1.75310.006 
UWT, free 0 . 0 4 8  0.32110.111 0.488 0.35810.80 1.54010.021 
PWT, free 0 . 0 3 5  0.32710.120 0.523 0.40110.87 1.47510.012 
PWT, el., free 0.0025 0.425 D.069 2.42 1.9010.38 1.44110.010 
PWT, el. fixed 0.0023 0.42510.003 2.42 1.9010.02 1.44110.001 
PWT, el. subtr. 0.0027 0.42510.003 2.42 1.9010.02 1.441}0.001 

o 
7.0910.11 
6.8510.14 
4.8olo.19 
4.80110.o13 
4.80210.013 
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Fig. 4. Plot of original M" data and KWWl-model fits for the 
sodium trisilicate glass at 321 K. See the specific parameter 
estimates for these fits listed in Table 2. Except for the last 
proportional-weighing (PWT) curve (see the last row in Table 2), 
no correction for electrode effects has been made in obtaining 
these fitting results. The unity-weighing (UWT) fit with /3 and 7"0 
fixed uses the Nowick-Lim [11] values obtained by modulus-for- 
malism KWW fitting at the Naval Research Laboratory (see the 
results shown in the row with P0 free in Table 2). 

As shown by the results in Table 2, S F is decreased 
by a factor of more than ten when the full fitting 
model includes the three electrode parameters of Eq. 
(10). Note that the estimated relative uncertainties of 
most of the bulk parameters are greatly reduced 
when the electrode parameter values are either taken 
fixed at their CNLS estimated values or their effects 
are subtracted from the data. When electrode effects 

are included, the fit is so close that its predictions are 
indistinguishable from the data within appreciably 
less than the width of a line and are thus not 
included in Fig. 4. On the other hand, the dashed line 
shows the response when electrode effects are re- 
moved and the KWW1 model, without the Eq. (10) 
addition, is then fitted to the revised data. 

The present results again show that accurate 
KWW1 CNLS fitting is far superior to the approxi- 
mate MMF method, and that the full fit with elec- 
trode parameters included yields KWW1 parameter 
estimates completely in consonance with those ob- 
tained when data with electrode effects subtracted 
are fit with the KWW1 model. Although this latter 
fit is exceptionally good and involves no readily 
identified remaining low- or high-frequency elec- 
trode-effect residuals, the very small fit residuals 
nevertheless still show dominant serial correlation. 
Unless this is associated with systematic measure- 
ment errors, it appears that the KWW1 model is not 
quite ideal for fitting the present data. But for practi- 
cal purposes, including parameter estimation, it is 
nevertheless quite satisfactory; it is the best one 
found so far for the present data; and the present fit 
is probably the most accurate K WW frequency-re- 
sponse one carried out to date. 

Before considering K W W 1-fit temperature-depen- 
dence results, it is worthwhile to present a few fitting 
results obtained with bulk-response models different 
from the KWWI one. First, Table 3 shows that the 
KWW0 model leads to a somewhat smaller SF value 
than the last three KWW1 results shown in Table 2. 
Since the KWW0 is, however, less theoretically 
appropriate than the KWW1 and does not allow 

Table 3 
Comparison of PWT CNLS fitting of 321 K Na20 • 3SiO 2 data with various models. The first three rows involve CSD0 fitting and the last 
ones involve combined CSD1 and DSD fitting. Here ~ is the ZC exponent and ~ is associated with the exponential distribution of 
activation energies (EDAE) model 

Type 10 2 S F f l ,  ~b, t~ 1 0 - 9  Po ( ~  c m )  10 3 7" 0 (s)  E r e r 

KWWO-el. 0,16 0.536 10.001 1.43610.0007 1.321 10.3910 002 
ZC-no el. 2,05 0.64210.006 1.56510.007 1.446 10.4310.020 
ZC-el. 1,17 0.69210.032 1.479[0.055 1.400 10.6~:F0.039 
KWW 1 / 0.20 0.406 t0.018 1.46010.0007 O. 190 1.4,.7 j0.105 
EDAE-no el. - 0.05810.10 0.059 10.13 
KWW 1 / 0.09 0.45710.029 1.436[0.004 0.352 2.770[0.151 
EDAE; el. -0.042[0.038 0.11910.15 

10.2910.001 
9.41210.004 
10.25]0.056 
0 
5.30[0.05 
0 
3.6910.13 
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separate estimation of eDoo, it will not be considered 
further. Table 2 also shows fitting results for the 
CSD0 ZC model [15,33,36,37], given by 

O'zc ( w )  = t ro l l  + ( i  w'ro)'/'] ~', 

0 < e _ < l ,  T = I ,  (11) 

where % = (p0)  - j .  A function of  this form, but 
without the ' i ' ,  was used by Nowick and associates 
[11,38] for analyzing o-'(~o) response. It was termed 
the Jonscher approach, but the present full and more 
appropriate [36] form of Eq. (11) was introduced 
much earlier for CSD0 [33,39,40] and for DSD [15] 
analysis. When T is variable and 0 < T < 1, Eq. (11) 
represents Havril iak-Negami (HN) response [41]. 

Nowick and Lim [11] obtained an estimate of  
#J = 0.60 for the present data. This value is apprecia- 
bly different from the ZC-fit estimates of  0.64 and 
0.69 shown in Table 3. Further, the high-frequency 
limiting slope of  Ao-(~o) -- o " ( w )  - o" o is 0 for the 
ZC and 1 - / 3  for the KWW. Note, however, that 
this slope is the limit of  the K W W l  model a lone  

when an ERM is part of the full fitting model, but all 
fits which do not explicitly take electrode effects into 
account, such as that shown in the ZC-no el. line of  
Table 3, implicitly involve high-frequency slope esti- 
mates which include both bulk-model and ERM 
contributions. 

On using the K W W l  fit value of  /3 of  0.425, as 
in Table 2, one obtains a limiting slope estimate of  
0.575, reasonably close to the 0.60 NL estimate but 
in disagreement with the CNLS-fit ZC ~ estimates 
of  Table 3. In this table the first three fits are of  
CSD0 character and so involve the combined quan- 
tity e = e ~  of  Table 1. Fig. 5 compares Acr(o~) 
response curves for the fit of  the KWW 1 model to 
the data with electrode effects subtracted and to the 
data without such subtraction. It is clear that the 
high-frequency slope of the latter fit is appreciably 
greater than that of  the former. By contrast, Fig. 4 of  
Ref. [11] shows a decreasing modulus-formalism 
slope at high frequencies. Further, at low frequencies 
the approach to the necessary limiting slope of  two is 
evident in both of  the curves of  the present Fig. 5, 
but it is hardly apparent in the corresponding A o-(~o) 
curve of  NL [11], evidence for a smaller and less 
appropriate choice of  o- 0 in that work. 
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Fig. 5. Plots of log[Ao'(w)/~,] versus log frequency, where 
Act(o))------ o"(w)-- o" 0 and o-~ --- 1 s, for the original 321 K data 
without and with electrode effects subtracted from the data, and 
the predicted response for a KWWl fit of the subtracted data (last 
line of Table 2). 

Nowick and Lim concluded that the Jonscher 
fitting model they used is more meaningful than the 
MMF approach for the present data. They found that 
in order to obtain better fits with the latter at high 
frequencies an 'excessively high' constant-loss con- 
tribution needed to be added at all temperatures [11]. 
Here, by contrast, we find that electrode effects must 
be added in order to improve KWW1 fits at both low 
and high frequencies. To test the appropriateness of  
added constant loss, the last two fits of  Table 3 were 
carried out. They included both a CSD1 KWW1 
model and an exponential distribution of  activation 
energies (EDAE) DSD model in parallel, as in earlier 
work [ 10,13,14]. The latter model involves a separate 
relaxation time, shown in the T O column of  the table, 
and an exponent-type parameter ~b = 6( ,  and leads 
to a A o- slope contribution of 1 - 4 ~  for small 4~. 
Only when 4) -- 0 is one dealing with a constant-loss 
situation, not the case here, as shown by the EDAE 
results of Table 3. For these combined CSD and 
DSD fits, the parameter relative standard deviations 
are appreciable, even though the S F values are small, 
in part because of the large number of  highly corre- 
lated free fitting parameters involved. The ~ values 
for the two EDAE fits are comparable to the eD~ 
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values shown for the last three KWW1 fits of  Table 
2. Finally, it is evident that although the ZC CSD0 
model is indeed somewhat superior to the modulus- 
formalism one [11], the accurate KWW1 model is far 
superior to the ZC for the present data. 

6.2. Some problems of the Moynihan modulus-for- 
malism CSD fitting approach 

Because of the widespread past usage of this 
formalism, it is desirable to illustrate some stumbling 
blocks inherent in it, ones which generally render 
fitting results obtained by this method inadequate. 
The modulus approach is so called because it primar- 
ily deals with the M"(o))  data. Consider now the 
task of obtaining plausible CSD1 parameter esti- 
mates by the conventional MMF approach. The usual 
parameters that are obtained from the data by inspec- 
tion and graphical extrapolation, interpolation and 
fitting are P0, TMdp' /3' and e~. The TMd p quantity is 
defined by O)MdpTMd p ~ 1 where &}Mdp is the value of 
~o at the peak of the M " ( w )  data curve. In addition, 
define O)Mp as the value of o) at the peak of the 
Mi'(o)) model response associated with Eq. (9), and 
rMv as the r associated with it. Although TMd p and 
rMp are always different for CSD situations, as we 
shall see, this is often unremarked or unrecognized in 
MMF fitting. Note that the situation is different for 
DSD K W W  fitting since there the key frequency is 
that of  the peak of e~ (w)  [9] and electrode and O'c0 
effects are usually zero or negligible. 

If  we now incorrectly replace (ec0)o by 
(M'(~c)) i = (M~) - i  = E~ in Eq. (5), we obtain the 
modem form of a basic equation of the MMF ap- 
proach: 

( r )o  = roo( X)o = ~v~PoCro, (12) 

when Pc~ = 0 [22,42]. But this is a KWW0, not a 
KWW1 result, as confirmed by the use in K W W  
M M F  a n a l y s i s  o f  ( r o / / 3 ) F ( l / / 3 )  = 
(roO//3o)F(l//3 o) for ( r ) 0 ,  an appropriate expres- 
sion for this quantity [9]. When P0 and /91 values 
are taken equal, however, one can use the Eq. (A.3) 
result to replace ( x ) o  by ( ( x - l ) j )  - I .  Then on 
setting %0 to to1, Eq. (12) becomes the same as Eq. 
(4) except for the difference between ~ and (ec~) 1. 
Thus, while one may sometimes need to interpret the 
(ec~) I parameter in Eq. (9) as ~ for fitting pur- 

poses, as already discussed, this substitution is im- 
proper in Eq. (4). 

Inadequate distinction between CSD0 and CSD1 
situations in MMF analyses also leads to problems 
with obtaining a meaningful estimate of  %~. Eq. (9), 
even with (ECho) 1 replaced by e~ or eD~, is a CSDI 
fitting model and thus should lead to an estimate of  
%1, not to the inconsistent To0 of Eq. (12). In 
practice, MMF analysis first obtains an estimate of  
~'Mdp from M"(w)  data. Then this estimate is taken 
equal not to the K W W l - m o d e l  TMp -- (rMp)l , but to 
(rMp) o associated with KWW0 response. To see that 
this is the case, define Qn(/3n) - log[ron/(rMp),], a 
function which may be used to obtain an estimate of  
Zon when values of  Qn(/3n), and (rMp) n are avail- 
able. Moynihan et al. [8] provide a table of  Qo(/30) 
and Lindsey and Patterson [9] present a corrected set 
of  its values. But although the latter authors properly 
relate these results to dielectric response, the former 
use them for MMF analysis instead of using the 
function QI(/31), and Q l ( /31 )#  Qo(/3o), even for 
/30=/31 = / 3 v  a 1. 

For example, for /3 = 0.5, 0.45, and 0.40, the 
values of  {Q0(/3), Ql(/3)} are { -0 .1294 ,  -0 .1325},  
{ -0 .1810 ,  -0 .1454} and { -0 .1784 ,  -0 .1581},  re- 
spectively. The Qo values are taken from [9], and it 
appears that - 0.1810 is a misprint and should possi- 
bly be -0 .1510 .  Values of Ql may be readily 
obtained to five significant figures or more since one 
can use LEVM to calculate M' 1' accurately for K W W I  
response, with the to points as closely spaced as 
desired. As a check of the present results, KWW1- 
model Mi'(o)) values were also calculated for/3 = 0.5 
using the known KWW0 DRT expression [9,10] for 
this value of /3 .  The relative accuracy of the integra- 
tion was set to 10 -9,  and the values of  exp(Ql(0.5)) 
differed only in the sixth place for the two indepen- 
dent methods of calculation. 

Even when one ignores the above difficulty, there 
is still a further problem. MMF analysis implicitly 
assumes that the estimate of  rMd p obtained from the 
data is an adequate approximation to rMp. But this is 
only likely to be true when electrode effects and eD~ 
do not appreciably perturb the peak frequency of the 
M I' curve. Since such perturbation is usually present, 
MMF estimation of ro through the use of  "rMd p is 
always suspect. Since it is only by CNLS fitting of 
the KWW1 model, as in the present work, that one 
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can adequately take these effects into account, it is 
unnecessary and not worthwhile to use the flawed 
MMF analysis approach. 

Consider now the MMF fitting results for the 
present T =  321 K data listed in [11] and summa- 
rized in the first row of  Table 2 (except for the value 
of  P0 which was not explicitly given by NL). We 
first note that the quoted NL % value (designated by 
NL as ~- * ) is actually an approximation of  "TMdp, one  
obtained by using the frequency of  the peak point of 
the M"(w) data, not the M'l'(w) curve of  the fitted 
KWW model. Thus we designate the NL 'T o' as 
~'MNL. We see that the Ql( /3)  value has been implic- 
itly taken as unity by NL and no distinction made 
between M"(to) and MI'(w). It is therefore hardly 
surprising that the /3 estimate of  0.50 differs appre- 
ciably from the present KWW1 fit estimate of 0.425. 

Although the Q transformation may be carried 
out, there is little that can be done about the remain- 
ing problems of  the MMF approach. These problems 
are primarily associated with the effect on the data of  
an ubiquitous non-zero value of ED~. Its presence 
ensures that actual measured M(~o) data always 
differ from the Eq. (9) M~(oJ) KWW1 model results, 
even if the data were perfectly described by the 
model when eo~ was zero. But the modulus formal- 
ism allows no explicit correction for the difference to 
be made since the information to do so is usually 
missing. Also significant, but often less important, is 
the effect of  an ERM contribution. The most appro- 
priate fit estimate of  Eo~ is given in the last row of  
Table 2. Not shown there is the estimate of (ec~)~, 
5.368, leading to an ~ value of 10.170. Thus, the 
use of  10.170 rather than 5.368 for the (ec~)l of  Eqs. 
(4) and (9) will itself lead to error. 

Further crucial problems arising from a non-zero 
Eo~ are well illustrated by accurate calculations of  
the ~- corresponding to the peak of  M"(to)  data with 
and without various contributions to the data; call 
this ~'M~p- Because the present fit of  the total data, 
one which includes ERM and ED~ contributions and 
the KWW1 model, is so good, as shown in Table 2, 
we may use the total fit model to generate synthetic 
data with as many points as desired, which can then 
be used to obtain TM~ p estimates of  very high accu- 
racy. For the full model including ED~, I find, on 
using the parameter estimates shown in the fourth 
and fifth rows of  Table 2 to generate accurate data, 

t h a t  TMd p = TMx p = 1.0142 × 10 -3  S. When the data 
are generated without ERM contributions, ~'Mxp = 
1.0271 × 10 -3  S, a minor change. Similarly when 
the ERM effects are subtracted from the original data 
and the result refitted without the ERM, as in the last 
row of  Table 2, TMx p = 1.0148 × 10 -3  S, a com- 
pletely negligible change. But when the data are 
generated without the presence of eo~, one obtains 
~'~xp -- 3.3653 × 10 -4  S, and when the ERM effects 
are not included in the model as well, one finds 
~'Mxp = 3.4312 × 10 -4  S. It is only this last result, 
equal to rMp, which is obtained from the Eq. (9) 
KWW1 response alone, that should be used to esti- 
mate the zol value appropriate for the model. It is 
thus evident that in the present situation the MMF 
will yield a T O estimate too large by a factor of  about 
three, even when a correct value of Ql(/3)  is used. 

Moynihan has recently [42] applied the MMF to 
the L ieO-A1203-2S iO 2 data of Section 4 using the 
HN fitting model, Eq. (11) with ~b and y variable. 
Although he obtained an apparently good fit of the 
M"(to) data except at the highest frequencies, he 
found that his parameter estimates led to a continual 
decrease of  the predicted o"(oJ) at low frequencies, 
with no approach to o- 0, contrary to the behavior of  
the data or of a MMF KWW fit. For these reasons, 
he characterized the HN relaxation function as patho- 
logical, unsuited for CSD1 fitting, and he rejected it 
in favor of  the KWW model. It is therefore worth- 
while to compare proper HN CSDI fitting predic- 
tions, using Eq. (9), with his results and with the 
present K W W I  ones of  Table 1. 

To do so, I set the I 0 function of Eq. (9) equal to 
the inverse of the O'HN(~0)/O" 0 expression of Eq. 
(11), obtaining IHN. Now there is indeed a 'pa- 
thology' in the resulting MHN ~ expression, one aris- 
ing because for the HN model I~N 0 becomes propor- 
tional to w ~ at sufficiently low frequencies, and thus 
when ~0 < 1 the quantity l~No/~O does not approach 
a constant as it should [34]. Although this pathology 
can be elimimlted by introducing a low-frequency 
cutoff, one po,;sible choice in LEVM, this problem 
usually apl-,~'.~rs at frequencies below those com- 
monly employed in the present area. When this is the 
case, one need not reject the HN model out of hand 
as Moynihan has done. 

First, a LEVM UWT fit of  the full M"(to) data 
was carried out using Eq. (9), with all parameters 
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b u t ( ~ c ~ )  1 fixed at the values found by Moynihan 
[42]. The resulting (ec~)l estimate was only 1.5% 
larger than the value of ~ ( =  I/M~) found by 
Moynihan, thus confirming his value and indicating 
that such analysis does not yield separate estimates 
of (ec~) and eDoc, but only their combination. The S F 
value for the fit was 0.14. Now it is a legitimate 
question to ask whether this is the best CSD1 HN fit 
possible, especially since 0.14 is a relatively large 
value. The next step, therefore, was to take all four 
parameters free to vary. The parameter estimates 
found were not very different from those of Moyni- 
han with UWT but they changed appreciably with 
PWT and yielded a value of S F of 0.046. The 
estimate of ~b was 0.97, rather than the 0.90 value of 
Moynihan; that of y was appreciably smaller; and 
that of % = rUN was appreciably larger. Inciden- 
tally, when eD~ was also allowed to be a free fitting 
parameter, its estimate approached zero for all of the 
present fits, again indicating that it cannot be re- 
solved for the present data from (Ec~) 1 in an Eq. (9) 
fit, so that it is e~ which is actually estimated. 

Next, when ERM parameters were added to the 
fitting model, the S F for UWT fitting fell to 0.089 
and that for PWT to 0.022. Particularly significant 
was that the two ~b values increased to 0.98 and 
0.998, respectively. Further, neither of these fits 
showed the pathological behavior at the o" level 
discussed above, thus indicating that the introduction 
of electrode-polarization effects in the model and the 
approach of ~b toward unity allowed the HN to show 
non-pathological behavior in the measurement range. 
Finally, when CNLS fitting was carried out using the 
full M(to) data, and the CSD1 HN, and ERM pa- 
rameters, it was found that for the more appropriate 
PWT fitting the estimate of ~b iterated to unity, 

changing the HN to Cole-Davidson response [16], 
one which does not involve low-frequency HN-type 
pathology. The value of S F for this fit was 0.036, 
and the estimates o f  (Ecoc) 1 (here e~), ~b, y, and rUN 
were 9.8010.01, 1.0, 0.20210.02, and 3.97 X 10- 310.02 
s, respectively. For comparison, the Moynihan val- 
ues are 8.48, 0.90, 0.33, and 2.10 X 10 -3 s. Compar- 
ison with the KWWI-fi t  results of column C of 
Table 1 and with earlier CSD0 Cole-Davidson fit 
results [10], shows that although the CD model is 
viable, the KWW1 one is the most appropriate one 
found thus far for these data. 

It seems likely that in the past it was felt that 
because the modulus formalism involved eD= or 
even e~, the effect of eD~ was properly accounted 
for. As shown here, since it is actually (ec~) 1 which 
is involved in Eqs. (4) and (9), it is desirable to treat 
eD~ separately, as in all present KWW1 CNLS 
fitting. 

In summary, the major problems of the CSDI 
MMF approach are: 

(a) The quantity e~ is improperly used in place of 
(ec~) l, and %1 is estimated inaccurately. 

(b) The MMF does not treat the dielectric-system 
contribution to ~ ,  eD~, separately. Thus, its effects 
in the data are not properly distinguished in the 
fitting model. 

(c) MMF treatments take no account of 
electrode-polarization effects possibly present in the 
data. 

(d) MMF fitting usually deals only with M"(to) 
data; no complex non-linear least squares fits of the 
full complex quantities M(to), p(to), or o-(to) are 
carried out. Weighted CNLS fitting is always prefer- 
able to NLS fitting or to graphical analysis [10,14]. 

Therefore, not only should the MMF not be used 

Table 4 
Results of PWT CNLS fitting of Na20 • 3SiO 2 data, with electrode effects subtracted from the data, using the KWW1 fitting model for six 
temperatures 

T (K) 102 SF fl P0 (12 cm) T o (S) ~r ~D~ 

303 0.29 0.39010.003 5.509 × 10910.002 6.37 x 10- 4 1.30610.021 
321 0.27 0.425}0.003 1.441 X 10910.001 2.42 x 10 -4 1.89710.020 
341 0.63 0.36510.001 3.710 x 10810.002 2.33 x 10 -~ 0.70910.007 
363 0.55 0.38310.003 8.624 x 10710.001 6.70 x 10 -6 0.87710.016 
380 0.94 0.35710.001 3.017 x 10710.002 1.49 x 10 -6 0.55610.006 
398.5 1.06 0.32610.001 1.054 x 10710.002 2.55 × 10 -7 0.27310.006 

5.3310.011 
4.8010.013 
6.8510.003 
6.9010.005 
7.1410.005 
8.0710.006 
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Fig. 6. Comparison of the temperature dependence of /3 as 
obtained from the present study and from the modulus-formalism 
analysis carried out at the Naval Research Laboratory [11]. 

for future KWW fitting, but all previously published 
results obtained with it are suspect. 

6.3. KWW1 fitting results for six temperatures 

Table 4 shows the KWWl-fit parameter estimates 
obtained for the temperature range from 303 K to 
398.5 K. As noted, ERM effects were subtracted 
from the data using parameters obtained from CNLS 
fits of the original data, and then fitting was carried 
out without such effects. Because of the high resolu- 
tion of the present fitting procedure and the evident 
appropriateness of the KWW1 model, some new and 
surprising effects are apparent in these fittings. First, 
Fig. 6 compares the NL /3 estimates with those 
obtained here. We have already seen that the NL 
MMF estimates are inappropriate; here we see unex- 
pected behavior for the present estimates. In particu- 
lar, although Table 4 shows that the present KWW1 
values of /3 are very well determined by the data, 
they nevertheless show somewhat irregular tempera- 
ture dependence but dependence roughly opposite to 
the NL-NRL MMF dependence. 

Now Nowick and Lim found that their power-law 
exponent, identified as a slope, was 0.60, indepen- 
dent of temperature [11]. Although the results of ZC 
fitting with ERM effects included are shown in 

Table 3, the parameter uncertainties are mostly much 
greater than those obtained without taking account of 
such ERM contributions. Since this is opposite be- 
havior to that found for the present KWW1 fits with 
and without ERM contributions, it seems likely that 
the difference arises because of the much greater 
appropriateness of the KWWI model than that of the 
ZC for the present data. It is therefore likely that the 
0.64 estimate obtained without ERM contributions is 
superior to the other ZC one listed. But, since none 
of the ZC-fit results takes adequate account of ERM 
effects, neither the NL value of 0.60 nor the 0.64 
value is trustworthy. For comparison with /3, the 
corresponding 1 - ~ b  values are 0.4 and 0.36, and 
the mean of the present six /3 estimates is about 
0.374. 

Although there is a small possibility that the 
present irregular KWW1 /3 behavior arises from the 
use of an inadequate electrode polarization fitting 
model, and that we see in Fig. 6 just random varia- 
tions about a temperature-independent mean value, 
the excellence of the overall fits and the fact that the 
ERM parameters were quite well determined over 
the full temperature range both suggest that, at the 
least, a definite temperature trend is present. Inciden- 
tally, the irregularity of the /3 estimates is associated 
with an even greater variability in the G estimates. 
Although no appropriate theory is available for CSD1 
/3(T) dependence, we expect that, in agreement with 
the KWW1 results shown in Fig. 6, /3 should de- 
crease with increasing temperature in the higher 
temperature range, and, in the absence of melting, 
approach zero, consistent with limiting Debye behav- 
ior at high temperatures where o-'(o9) is proportional 
to o9. Although the behavior of /3(T) is complicated 
by the possible presence of a phase change near 
T =  341 K as suggested below, it seems reasonable 
to expect that it should approach a constant of < 1 
at low temperatures; thus the reason for its final 
decrease at 303 K remains mysterious. 

Fig. 7 shows Arrhenius plots for a variety of 
7-related KWW1 quantities. Except for the ( 7 ) =  
(z)~ results, the lines just connect points directly. 
But for the KWW1 (~-) response, two NLS-fit sets 
of points are shown, covering the ranges from 303 K 
to 341 K and from 341 K to 398.5 K. It turns out, 
particularly for P0 and ( r ) ,  that the data show a 
definite abrupt change in slope at 341 K, as illus- 
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trated more specifically in Table 5. See also the 
change in sign of the slope of  the /3 curve of  Fig. 6 
at this temperature. In addition to these surprising 
effects, which may indicate some kind of  a small 
phase change near this temperature, Fig. 7 shows 
that ( z )  is exceptionally well approximated for the 
present data by ~'op' the ~- corresponding to the peak 
of  the - I[(o9) or - P'i(og) KWWl-mode l  response 
curve, where o9= ogpp = "Cpp 1. Here ( z )  values are 
calculated as part of  the LEVM fit procedure and 
wov values were obtained by accurate, high-resolu- 
tion estimation from the fitting model, as discussed 
in Section 6.2. To the degree that the above relation 
holds in general, it provides, as is evident from Eq. 
(6), a direct estimate of  ev(ec0) 1 po/'ro~ without the 
need of  anything like the Q1(/3) function or of  
separate knowledge of (~-). A preliminary check of  
its generality for another fit model showed that the 

-2 Na~O.3Si0z~ 

CY~_ 4 s ~ 

.._1 

1 .,~ x-~ * x--x T ¢  2 

- 6  ] / ooooo 

. ' 5 '  ' ' 2.'9  ' 5 . 3  

1000/T (K-') 
Fig. 7. Arrhenius plots for a variety of CSDI relaxation-time 
estimates. Here L, -= Is. Only the two ( z )  sets of points include 
nonlinear least squares fit lines, for separate low- and high-tem- 
perature regions, of the original KWWl-fit results. Other lines just 
connect points to guide the eye. Here the subscripts 'M' and 'MP' 
indicate that ~- was obtained from the peak of a M"(~o) or M[(w) 
curve, and 'pp '  indicates that a - p ] ' ( w )  peak was involved. 
Further, the subscript '1' designates a KWWI-fit model quantity, 
as opposed to experimental data. ~'~2 is the ~- corresponding to the 
frequency at which o-{(oJ)= 2 0- o. Accurate methods of calculat- 
ing some of the present quantities are discussed in the text, and 
the activation energies associated with the present responses are 
presented in Table 5. 

Table 5 
Activation energy estimates in eV for various quantities obtained 
from PWT NLS fitting of Na20.3SiO 2 fit data 

Quantity Full Low temp. High temp. 

P0: TO 0 .68210 .017  0.63210.006 0.725 
P0: TI 0 .71210 .017  0.66010.007 0.757 
(~') 0 . 7 2 1 1 0 . 0 1 3  0.679[0.003 0.756 
r,~ 2 0 . 7 2 1 1 0 . 0 1 4  0.67910.012 0.760 
~pv 0.70410.016 0.65710.005 0.745 
TMp 0.667[0.022 0.60910.014 0.719 
"rMN L 0 .67310 .021  0.63410.058 0.706 
eco 0.03810.081 0.04710.130 0.031 

0.008 
0.008 
0.007 
0.009 
0.011 
0.019 
0.031 
0.166 

peak approximation to ( z )  was about 9% too high at 
4) = ~b0 = 0.4, dropping to about 5% at 4, 0 = 0.6, 
and to about 2% at ~h0 = 0 for an EDAE CSD0 fit. 
Note that for the EDAE response model the only 
difference between CSD0 and CSDI fits arises from 
a difference in the ~b n fit value, with ~b 0 = 1 + ~b 1 
[20]. 

Fig. 7 also shows that even though the tempera- 
ture dependence of  (~-) is very regular, that of  % 
reflects the variability of  /3 shown in Fig. 6. Thus, 
( z )  is the more significant quantity here. Finally, 
Fig. 7 also presents accurate results for 'l'Mp~ TMN L 
TMdp~ and %2, where the TMN L points are those of  
NL, and %2 corresponds to the frequency at which 
o-;(o9) = 2 cr 0, the point at which the ac part of  the 
response is generally taken to begin to become sig- 
nificant. The difference between the curve for ZMp 
and that of ZMN e arises primarily, as already dis- 
cussed in Section 6.2, from the presence of  the 
effects of  a non-zero eD~ in the NL data, and its 
separate treatment in the CNLS fit, so that the 
KWWl-model  shape and parameter estimates are 
unaffected by it. 

Finally, Table 5 presents proportional-weighing 
NLS Arrhenius fits of  several of  the quantities dis- 
cussed above. Because of  the slope change most 
evident for P0 and ( z ) ,  fit results are shown for 
each quantity for the full six points and also for the 
three low-temperature ones and the four high-tem- 
perature ones defined above. The much smaller SF'S 
for most of the separate low- and high-frequency fits 
compared to the full fits is an indication of  the 
reality of  the change in activation energy near T = 
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341K. For completeness, activation energies are 
shown for fitting of P0 without and with a pre-ex- 
ponential factor of T. For comparison, NL found an 
activation energy of P0 of 0.74 eV with the T factor 
included, a value of 0.76 eV for their ZC % results, 
and 0.65 eV for their ~'MNL (identified by them as r o 
quantities). The present results are more accurate and 
thus allow more discrimination. Note that if P0 (with 
T °) and r o had exactly the same activation energy, 
one would expect e~ to be temperature independent, 
not the case here [14]. It is unclear why the NL value 
for the activation energy of "Cgh L differs somewhat 
from the present full-fit estimate of about 0.67. 

Although the activation energy estimates for (~-) 
and Zpp are close, those for (~-) and ~'~2 are virtually 
identical. Also shown in Table 5 are results for ec0, 
actually (ec0)l here. It is evident that, in accordance 
with Eq. (6), the ec0 activation energy is just the 
difference between that for ( ~- ) and that for P0 (with 
no T factor!). It is worth remarking that the B E 
parameter of Eq. (10) is also thermally activated. 
Although its dependence shows appreciable variabil- 
ity, it involves an activation energy of approximately 
0.66 eV, suggesting that the charge carriers that are 
involved in the electrode response are likely to be 
the same as those leading to P0. Finally, the eD~ 
estimates of Table 4 are approximately proportional 
to T, particularly for 341 K and above. This depen- 
dence may provide an initial clue concerning what 
proportion of the estimated eD~ value arises from 
dipole effects and how much possibly comes from 
localized, non-percolating charge motion [14]. 

7. Summary and conclusions 

A new accurate method of calculating KWW 
frequency response has been developed and incorpo- 
rated in a complex non-linear least squares fitting 
program. Two fitting models, KWW0 and KWWl, 
which involve this method, have been used to fit data 
for two different disordered materials. The KWW0 
model is appropriate for dielectric-system dispersion 
and possibly for conductive-system dispersion as 
well, but the KWW1 model is most appropriate for 
CSD situations. 

Outstandingly good fits of the Na20 • 3SiO 2 data 

over an appreciable range of temperatures were ob- 
tained when the total fitting model included the 
KWWl model, electrode-polarization effects, and 
the high-frequency-limiting dielectric parameter eD~. 
Temperature dependence of many quantities, such as 
P0 and the average relaxation time, (~')l, were 
found to involve a small but significant change of 
activation energy in the neighborhood of 341 K, one 
not evident in earlier work involving fits with lesser 
accuracy and resolution. The present high resolution 
also led to the appearance of surprising non-mono- 
tonic temperature variation in the behavior of the 
estimated KWW1 /3 exponent. 

Previous analyses of these [11] and other data sets 
using the MMF are defective because the MMF form 
of CSD1 response does not allow eD~ to be sepa- 
rately estimated or estimates of the CSDl-model 
parameter (ec~) 1 to be obtained. In addition, the 
usual modulus formalism takes no account of elec- 
trode-polarization effects. A surprising result of the 
present fits is that the relaxation time derived from 
the frequency of the peak of a -p'~(w) KWW1- 
model response curve (not  that of the full data) 
approximates the KWWI value of (~')1 closely over 
the full range of temperatures analyzed. 

The excellence of the full CSD 1 KWW fits of the 
Na20-  3SiO 2 data makes it reasonable for the first 
time to suggest that future data for this material be 
used to try to identify the dominant source of the 
residual misfits. Even though the present relative 
residuals are extremely small, they still show long- 
period serial correlation. Such systematic behavior 
could arise from measurement errors, model inade- 
quacy, or both. To discriminate between them, it is 
desirable that data over a range of temperatures have 
all or most of the following characteristics. First, 
they should extend over six to eight decades of 
frequency or more, with at least 10 points per decade. 
Measurements on the same material should be re- 
peated using three different apparatuses: e.g., a 
bridge, a frequency response analyzer, and an 
impedance analyzer, all with replication if practical. 
In addition, in order to verify that the apparent 
electrode-process parameters needed for the full fit 
are not associated with extensive bulk effects, one 
should make measurements at the same temperature 
on the same material with two or more different 
electrode separations. Finally, unless all activation 
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energies turned out to be quite small, temperature 
control to within _ 0.1 K or better should be en- 
sured. Some of these extreme measures would be 
unnecessary in future once one could either identify 
a measuring procedure with negligible (or random 
only) errors or could quantify its systematic errors so 
that they could be used to correct data before fitting 
and analysis. 

PWT 

SF 

UWT 

ZC 

Proportional weighing in least squares fit- 
ting; uses data values for weighing 
Standard deviation of the relative residu- 
als of a NLS or CNLS fit 
Unity weighing in least squares fitting; 
equivalent to no weighing 
Cole-Cole complex DSD response model 
used for CSD response 

8. Principal acronyms and subscripts 

AKWW 

C 
CNLS 
CPE 
CSD 
CSD0 

CSD1 

D 
DRT 
DSD 
EDAE 

el. 

ERM 
FPWT 

HN 
KWW 

KWW0 

KWW 1 

LEVM 
MMF 

NL 
NLS 
NRL 

An approximate KWW0 CNLS fitting 
model available in LEVM 
Subscript denoting conductive 
Complex non-linear least squares 
Constant-phase distributed circuit element 
Conductive-system dispersion 
A type of CSD response model involving 
the same DRT as DSD response 
A CSD response model involving a phys- 
ically reasonable modification of a CSD0 
model 
Subscript denoting dielectric 
Distribution of relaxation times 
Dielectric-system dispersion 
Exponential distribution of activation en- 
ergies 
Electrode-model parameters and /or  ef- 
fects 
Electrode response model 
Function-proportional weighing in least 
squares fitting; uses model values for 
weighing 
Havriliak-Negami response 
Kohlrausch-Will iams-Watts stretched- 
exponential model or response 
The present KWW response model of 
CSD0 type 
The present KWW response model of 
CSDi type 
The CNLS fitting program used herein 
Moynihan modulus-formalism CSDI 
KWW fitting method 
Nowick and Lim, Ref. [11] 
Non-linear least squares 
Naval Research Laboratory 

Appendix A 

The normalized frequency-response function, 
In(g2, Pn), satisfies I,(0, Pn)=  1 and I,(~, Pn)=  0 
in agreement with the left-hand part of Eq. (2) and 
requiring that the G,(x)  distributions be normalized. 
Now the dimensionless moments of the above distri- 
butions may be expressed by 

zc 

(xm)n~- fo x"G,,(x, p,)dx,  (A.1) 

where the ( x m)n clearly depend on both the shape of 
the distribution and on the value(s) of its p,  parame- 
ter(s). Since (x° )0  = (x°)l  = 1, it is necessary that 

G,( x, p) - [ x l (  x)o]Go( x, p), (A.2) 

where Pl =P0 = P  has been used. It then follows 
that [ 10] 

( Xm)l = ( xm+ l ) o / (  X)o , (A.3) 

so (x -1)1  = 1 / ( x ) 0 .  It is worth reiterating that 
actual fits of data with the CSD0 and CSD1 ap- 
proaches will lead to different estimated parameter 
values, so fit estimates of P0 and p~ will always be 
unequal. 

Now let us obtain a connection between I o ( ~ )  
and 11(~) when they both derive from a general 
Go(x, p) distribution. On using Eq. (A.2), we may 
write 

~Gj(x, P l ) d X  f I1( f2, Pl)  
= J o  [1 + i a x ]  

~ i~xGo( x, pl) dx 
= [ i g 2 ( x ) ° ] -  1 f0 [1 + i g ~ x ]  ' 

(A.4) 
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where [ (X)o ] - ]  involves Pl and so may be replaced 
by ( x  -1 ) 1. The right-hand side of  Eq. (A.4) may 
now be expressed as [10] 

oc  

11(/2, P l )  = [ ( x - 1 ) l / i / 2 ]  fc ~ Go(x, Pl) dx 

× 1 [1 + i / 2 x ]  

= [ ( x  1 ) 1 / i / 2 ]  [1 - Io( /2  , p l ) ] ,  

(A.5)  

where the T O associated with /2 = o9% is that be- 
longing to 11(/2, Pl).  Eq. (A.5) shows that one need 
only calculate 10(/2, p ] )  in order to obtain I1(/2, 
P l )  when ( x  -]  )1 is known. 

So far, so good, but the problem remains of  
obtaining accurate and useful expressions for spe- 
cific K W W  response, IKn(g2, /3,), because no gen- 
eral expression is known for GKn. It therefore be- 
comes necessary to calculate IKn(/2, /3) by either 
numerical integration or series methods [3,9,25,26]. 
Although the former approach is useful for checking 
results of  the latter one, accurate calculations by 
numerical integration without knowledge of G K n can 
be very slow, particularly for small /3. Since CNLS 
fitting requires the calculation of very many values 
of  IK0(/2, /3) to obtain a converged fit, such integra- 
tion is inappropriate for this application. But there 
are problems with the series approach as well. We 
shall use two series, one for the low-frequency re- 
gion (LF) and one for the rest of  the frequency range 
(HF). A problem arises because the intermediate, or 
transition, region between the two series can involve 
very slowly convergent or even divergent behavior 
[3,25]. This problem is solved, as discussed below, 
by the use of  the e-algorithm [43], a procedure 
included in LEVM which usually allows one to 
obtain useful results from a relatively small number 
of  partial sums of even a divergent series. It will be 
convenient to calculate IK0 results since those for 
IKI are then easily obtained. Although three different 
accuracy levels are available in the LEVM routines, 
all present results were obtained using the highest- 
accuracy choice. 

A.1. Low-frequency series 

An interesting way to develop the LF series is to 
carry out a Maclaurin expansion of Eq. (2) for the 

KWW0 case. On interchanging integral and differen- 
tial operators, one immediately obtains a simple 
series involving the moments ( x m )  K0 associated 
with GKo(X). Although no general expression for 
GK0(X) is known, its moments are given in terms of 
gamma functions as [9] 

( X m ) K O  ~ *'~m = F(m//3)/[/3r(m)], (A.6)  

where the ~, ,  notation is introduced for simplicity, 
and --~m becomes exceedingly large for large m. 
Now the series may be expressed as 

/ K 0 ( O )  = 1 + ~ ( - - i / 2 )  m~'-m, (A.7)  
m = 1 

which may be readily separated into real and imagi- 
nary parts. This series, a form of one given earlier 
[3], shows faster convergence the larger /3 and the 
smaller /2. For fixed /3, it becomes divergent for a 
sufficiently large value of /2. For /3  = 1 and g2 < 1, 
IK0(/2) = [1 + i /2]  -1, as it should. 

A.2. High-frequency series 

Here we use a form of a series given by G. 
Williams and co-workers [3]. Define a quantity gm 
analogous to ~--m as 

gm = ~F (  m/3 ) / F (  m), (A.8)  

which decreases as m increases. The series may be 
written as 

2C 

I K 0 ( / 2 ) =  y '  ( - - 1 )  m 1/2-ml3g m 

m = 1 

exp( - im/37r /2 ) .  ( a . 9 )  

It is convergent f o r / 2  > 0, but convergence becomes 
exceedingly slow as /3 increases and /2 decreases. 

A.3. Series summation and treatment of the transi- 
tion region 

During summation of the series for I~: 0 and that 
for I~:0, we calculate the absolute value of the ratio 
of  the (m + l)th term to the mth partial sum. Con- 
vergence is declared if this quantity is less than a 
number 6 given by 10 -7, 10 -5, or 10 -3 for three 
accuracy levels. If  not, summation is continued for a 
total of  N terms. The N partial sums, with N odd, 
are then input to the e-algorithm, and its output, a 
diagonal Pad6 convergent [43], is used as the best 
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es t imate  for  the value  o f  the funct ion f rom which  the 

series arose. There  is an over lap  region on the LF  

side o f  the H F  series and on the H F  side o f  the LF  

one  where  the e -a lgor i thm is needed  for both series. 

Because  even  double-prec is ion  ari thmetic  is insuffi-  

cient  to a l low the e-a lgor i thm to cont inue to yield 

high accuracy results as the series c o n v e r g e n c e / d i -  

ve rgence  becomes  more  and more  intractable, there 

is a c ross -over  value o f  12 at which  the LF  and H F  

e-a lgor i thm results are the same. At  this point  and 

for larger O ,  the H F  series is used in place o f  the LF 

one. The  c ross -over  point,  g2 c, depends  on /3, and 

the fo l lowing  express ions  have  been found satisfac- 

tory for it: for  /3 > 0.5, Oc = 1.5/3 5"41, and for /3 < 

0.5, Oc = 16.53/3 891. Thus Oc -~ 0.035 f o r / 3  = 0.5, 

and ~ - ~  0.0047 for /3 = 0.4. For  compar ison ,  the 

LF  series becomes  d ivergen t  at O - ~  0.0125 and at 

0.00143, for these two values  o f  /3, respect ively .  

W e  use different  values  of  N for the LF  and H F  

series and for  /3 > 0.6 and /3 _< 0.6. For  the three 

values  o f  6 g iven  above,  the values  for  the LF  series 

are 11, 7, and 5 and 21, 13, and 9, respect ively .  

S imi lar ly  for  the H F  series, the values  are 21, 13, 

and 9, and 43, 27, and 19. For  /3 = 0.5, the present  

approximate  K W W 0  method  may  be used to fit data 

calculated with a re la t ive  error  o f  10 9 using Eq. (2) 

with Gn(x) = GKo(X). For  121 points  with 10 -6  _< ~O 

10 6, the p ropor t iona l -weigh ing  S F values  for  the 

three accuracy levels  were  about  1.1 X 10 7, 2.4 X 
10 -6 ,  and 2.5 X 10 - s ,  respect ively .  For  o ther  values  

o f / 3 ,  the tables o f  Dishon  et al. [25] may  be used for  

compar ison ,  a l though they extend only ove r  the range 

10 3 < g2 < 2500. For  /3 ~ 0.5, it is found that even  

for the highest  accuracy  choice,  the accuracy of  the 

present  approximat ion  decreases  sl ightly as /3 de- 

creases  be low 0.5, with errors at the c ross -over  point  

o f  the order  of  10 - s  or  even  10 -4  in the c lose  

ne ighborhood  of  c rossover  for /3 < 0.2 or  so. The  
present  approach is never theless  more  than adequate  

for  rapid and accurate fi t t ing of  exper imenta l  data for 

the range 0.05 < / 3  < 1. 
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