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Abstract 

New analyses were carried out of previously published TbZn resistivity temperature-deriva- 
tive data just above the Curie temperature, To. Fitting was accomplished using a weighted 
nonlinear least-squares program, GENLS, which allows one to take proper account of errors 
present in both the independent and the dependent variables. The utility of fitting with 
equations of either logarithmic or power-law form (involving a critical exponent 2), both with 
a pole at the Curie point, was investigated in detail. Fitting results were uncertain for the 
four-parameter power-law choice but, with one parameter fixed, led to estimates of Tc of 
199.61 _ 0.02 K and of 2 of 0.16 ___ 0.01. The latter value is rather far removed from the value of 
0.104 which is expected for a three-dimensional (n = 1) Ising model and from the value of 0.014 
for a three-dimensional (n = 2) XY model. By contrast, fitting with a three-parameter logarith- 
mic law, corresponding to a three-dimensional (n = 2) XY model, led to estimated standard 
deviations of all three free parameters much smaller than the corresponding ones of the 
four-parameter power-law fit and to a Tc estimate of 199.56 + 0.03 K. The present results thus 
indicate the presence of marked XY or even Ising anisotropy. Quadrupolar effects seem 
irrelevant. 

PACS: 72.15.Eb; 02.60.Ed; 75.40.Cx; 02.50.Sk 
Key  words: Critical exponent; Electrical resistivity; TbZn; Curve fitting; Magnetic model 

1. Introduction and background 

A number of studies have been published on critical-point singularities in fluids and 
in magnets. Historically, the works of Ahlers on the specific heat singularity at the 
superfluid transition [1] and those of Vicentini Missoni et al. [2] on the fl and 

critical exponents and the equation of state [3] were crucial. The situation is more 
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complicated when the physical property remains finite on both sides of the transition 
temperature. This is the case of the electrical resistivity in metallic magnets, for 
example [4]. A "background term" has to be taken into account, with the complica- 
tion that the "background" contains at least some mean field contribution from the 
order parameter itself below the critical temperature. Therefore, it is difficult to 
disentangle the truely critical singular term, one is looking for from the measured 
behavior. The best resort is to take the derivative of the physical property up to the 
order at which one obtains a divergence, the so-called 2-like transition. The first 
derivative is enough for metallic magnets [4]. 

Then, an analysis of the resistivity(p)-temperature (T) data near a critical point 
can, in principle, yield valuable information about the origin of the phase transition. 
However, the problem of obtaining good estimates of the parameters of a fitting 
model, such as the critical temperature and the critical exponent, is not yet entirely 
straightforward because of the presence of the critical-point singularity itself [5]. One 
of the best-test cases to our knowledge lies in the excellent resistivity-temperature 
data for the magnetic material TbZn obtained and analyzed by Sousa et al. [6]. Some 
very careful painstaking work allowed them to use very closely spaced temperature 
values in order to numerically differentiate p values and obtain reliable data for the 
resistivity derivative, d p / d T  = p'. Particular attention was devoted to the temperature 
region just above the Curie point, To. 

By fitting such (p', T) data to various equations which have a singularity at T = To, 
one can attempt to estimate such important properties of the phase transition as its 
critical exponent, 2, and T¢ itself. The above data were later re-analyzed [4,7] with 
different fitting equations and methods. But in none of these fittings were estimates of 
parameter standard deviations presented, making the choice of the most appropriate 
fitting equation uncertain, as well as the validity of the parameters themselves. 
Therefore, no definite physical conclusion could be reached concerning the order- 
parameter symmetry at the transition. 

Fortunately, more definite conclusions are possible using a different and more 
powerful fitting procedure than those employed earlier. Suppose that one has carried 
out a new fit of precise, high-resolution data to an appropriate singular-response 
model (see below) one will obtain not only an estimate of T~ and of the leading 
singularity but also an estimate of the standard deviation, sro. Only after this, will it 
then be natural to ask whether scaling corrections to the fitting model are needed 
when individual temperature measurements fall inside or near the range (T~ - STc) to 
(T~ + STo), where these limits involve the estimated values. Notice that such correc- 
tions have indeed been calculated previously for anisotropic (anti- and ferro-) mag- 
netic metals by one of us [8], following an earlier analysis of the spin-spin correlation 
function [9]. It was found that the leading correction term involved a positive critical 
exponent 0, estimated to be 0.5 [7], which would lead to a vanishing correction at the 
critical temperature itself. 

There is, however, general agreement that the possibility of isolating a vanishingly 
small power-law term from a finite dominant term is questionable. Therefore, we 
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avoid such an investigation of 0 here, concentrating on obtaining the first (most 
singular) term in p'. For  these reasons, we have omitted any scaling corrections in the 
present work. Furthermore, we selected from Refs. [6,7] data, all those on the high 
side of (the to be estimated) T¢, in order to avoid the difficulty of the treatment below 
T¢, but we let T¢ to be a free parameter. Thus, the number of treated data points was 
not always the same depending on the initial choice of T~. 

In Section 2, we outline the method and equations used for fitting, considering 
a priori similar formulae, but having different arrangements of the parameters which 
should lead to different correlations during the optimization routine. This is not 
usually much investigated or discussed and thus we feel it worthwhile to stress a few 
points. In Section 3, we analyze the fitting results and discuss the possible symmetry of 
the order parameter. Section 4, serves as a conclusion. 

2. Method 

When significant measurement errors are present in the independent variable 
values, here denoted as xi, as well as in the dependent ones, y~, it is important to use 
a fitting method which treats these errors together and does not ignore those in the 
independent variable, as does the usual least-squares fitting approach. The TbZn data 
were analyzed with such a bivariate method [5], but, one which did not minimize all 
residuals simultaneously. Instead, a sequential approach was employed which led to 
neither accurate least-squares minimization nor to a maximum-likelihood solution. 
But fitting methods exist which avoid this difficulty and yield estimates of the 
parameter standard deviations as well as those of the free parameters themselves. 

A powerful and convenient method for treating such an "errors-in-variables" 
situation has recently been discussed and illustrated [10]. It has been installed in the 
(freely available from the authors) computer program GENLS. This weighted non- 
linear least-squares program allows one to use arbitrary individual uncertainties for 
the x and y data values, Sx, and st,. When sx, = 0 for all i = 1, 2, . . . ,  N data values, the 
method reduces to ordinary weighted nonlinear least squares. Here, we shall use the 
GENLS program to fit the N = 33 TbZn data values listed in [6,7] for the ca. one 
degree temperature range (199.5-200.8 K)just  above Tc. The program minimizes the 
following objective function O of the weighted residuals Rx, and Rr,, 

N N 

o = y ,  i f ( x ,  - x , ) / sx , ]  ~ + [(y,  - Yi)/s,,,] ~} = ~ { [ r x , ]  ~ + [ r , , ] ~ } ,  ( I )  
i = 1  i = 1  

where the X:s  and Y:s are adjusted values of the variables [10]. The standard 
deviation of the fit, sv, is calculated from the final converged value of this weighted 
sum of squares, O = Oc, as sv = [ O ~ / D ]  1/2, where D - N - F is the number of 
degrees of freedom and F is the number of free fitting parameters [10]. When values of 
sx, and st, are used, which at best take account of the actual expected errors in the data, 
sr should be close to unity. 
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The three singular equations which have been used earlier I-5-7] to fit the TbZnp' 
data will be expressed here in terms of the same adjusted variable p' and the adjusted 
dimensionless temperature variable, x = T / T o ,  where To is conveniently set to 1 K. 
Then the magnitude of Tc is given by xc =- To~To.  The three equations previously used 
for the temperature region above Tc are 

p' = p + (q/2) [1 - I(x - r ) / r l ]  -~  , (2) 

p' = p  + q [ l ( x - r ) / r l ]  - ~ ,  (3) 

where we recall that we do not consider scaling corrections, and 

p' = p + q In [l(x - r) l ] ,  (4) 

where r = xc. We have also investigated the utility of fitting with the following three 
variants of Eq. (4): 

p' = p + q l n [ l ( x -  r ) / r l ]  , (4a) 

p' = q l n [ p / l ( x -  r) l ] ,  (4b) 

and 

p' = q l n [ p r / l ( x -  r) l ] .  (4c) 

These equations are clearly all equivalent to Eq. (4) as far as their functional 
dependence is concerned, so they should all yield exactly the same fits (same residuals). 
However, the different arrangements of the parameters lead to different correlations 
between them when they are used to fit the same data set. That arrangement which 
leads to the smallest correlations is generally the one which yields the smallest 
parameter standard deviation estimates, the best choice. 

In some of the earlier works, the dependent variable was taken as P'/Pc, where 
Pc = p(Tc) ,  instead of p'. The p and q parameter values obtained here with the choice 
of p' can be converted to those appropriate for the other choices by dividing them by 
Pc = 84.4922/1~2cm, i.e. the value at T = 199.556 K ,~ To. 

3. Fitting results 

Besides obtaining some information on the nature of the order parameter symmetry 
through the related critical exponents, we are concerned with testing two general 
hypotheses: first, whether the errors-in-variables fitting approach is needed for 
the present data, and second, whether one of the fitting models can be reasonably 
judged as more appropriate than the others. Conclusions will be based on a compari- 
son of fitting values of sF and  on comparisons of parameter relative standard 
deviation (RSD) estimates. Our main GENLS fitting results are listed in Table 1. For 
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comparison purposes, some estimated parameter values and their estimated standard 
deviations have been listed with more significant figures than are justified by the 
results. The first three fits were carried out using ordinary unweighted (i.e., unity- 
weighted) nonlinear least squares. 

There is no series or renormalization group analysis for the critical exponent 2 of p' 
near To. From the work of Fisher and Langer [11], it can be expected that the critical 
exponent characterizing p' in magnetic materials like TbZn is the same as that for the 
specific heat, i.e. 0t. The specific-heat exponent can be roughly estimated from contour 
plots given in Ref. [12] or from recent new results. 

3.1. Power-law fits 

The Eq. (2) results presented in Table 1 show that the data lead to a significant 
parameter estimate here is only for To (i.e., only for parameter r is its RSD, 
the magnitude of the ratio s,/r, less than unity). As we shall see from the subsequent 
fits, even this estimate is quite rough. The situation is a little better for the 
Eq. (3) fitting, since the new q parameter estimate is statistically significant. But 
it is clear from the large standard deviation of 2 that it cannot be distinguished 
from zero on a statistical basis, in accordance with earlier analyses [5-7]. If 2 
was in fact close to zero, this would suggest that the system acts like a three- 
dimensional (3D) XY system with an (n = 2) 3D order parameter according to [12,13]. 
In fact, 2 = 0.014 when derived from more recent work [14] and using the Josephson 
equality [3]. Some specialists think that for this 3D XY case ct, thus 2 could be small 
and negative [15]. 

The small values of sF in lines 1-3 of the table show that the choice s r = 1 is 
inappropriate for the present data. Although p is extremely uncertain here, when it is 
held fixed at its converged value and a new fit is carried out, the q, r, and 2 parameter 
estimates remain essentially the same but their estimated standard deviations become 
0.084, 0.017, and 0.0096, all of which should be considered as significant values. Thus, 
although the need to fix p in order to obtain significant estimates for the other 
parameters is unfortunate and greatly reduces the credibility of these estimates, the 
results nevertheless suggest that the new 2 estimate of 0.1635 __+ 0.0096 may not be 
completely meaningless. 

A positive value ca. 0.1 for ~ or 2 can be estimated to correspond to 3D anisotropic 
1 (so-called XYZ) magnets [16,17]. The 3D Heisenberg magnet has ~ near ~. The line of 

constant 2 = 0.16 (~  ~) is not shown in Ref. [12] but can be estimated to correspond 
to a system with an order parameter having a symmetric between zero and unity, the 
latter like an Ising model. For a three-dimensional Ising-like system, corresponding to 
an (n = 1) 3D order parameter should then be 2 = 0.104 [18]. This 0.104 value derived 
from high-temperature series expansion agrees better with field-theoretic-method 
values which yield 2 = 0.10 to 0.11 [9,19]. 

Before leaving power-law fitting, another physical possibility needs consideration. 
If quadrupolar as well as dipolar effects were present and important, one would expect 
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1 a negative a, i.e. 2 = - 5 for an order parameter with n = 4 in 3D [12]. Thus, it is 
worthwhile to investigate the case of 2 < 0 (see also the above remark on the 3D XY 
model). We found that fitting using Eq. (3) (or Eq. (2)) with 2 free but constrained to be 
negative did not converge, even with very large number of iterations. On the other 
hand, when 2 was positive and fixed at ½, convergence was rapid and led to the Eq. (3) 
estimates p = 0.106 ___ 0.036, q = 0.0656 _+ 0.0069, and r = 199.42 _+ 0.04, with a value 
of sv of 8.9 x 10- 3. We see that p is not very well determined here; the value of r is not 
as plausible as the other estimates of this quantity; and the sv value is larger than sv 

values associated with the other fits. These results suggest that it is unlikely that 
quadrupole effects are important above To for the electrical resistivity behavior of the 
present material, in contrast to the region below Tc as seen in the specific heat or the 
magneto-elastic effects [20-22]. 

Although, all the above results were obtained using ordinary nonlinear least 
squares, it turns out, as discussed below, that errors-in-variables fitting with plausible 
non zero values of both s~ and sy do not lead to smaller estimated standard deviations 
and is thus an unnecessary complication for the present data. 

3.2. Logarithmic-law fits 

In view of the small value of estimated standard deviations derived in the previous 
paragraphs, it is worthwhile to investigate the constrained case, i.e. 2 strictly equal to 
zero, corresponding to a log law (Eq. 4), which has in fact one less parameter available 
for the fit. The first fit with Eq. (4) shows that although sv is only slightly reduced 
compared to the value obtained with Eqs. (2) and (3), all the three free parameters of 
Eq. (4) are now very well determined by the data. Thus, one cannot depend very much 
here on sv values alone in picking an appropriate fitting equation. The next results in 
the table for Eq. (4) fitting used the weighting choice sx = 0 and sy = 0.01. The value of 
0.01 was employed earlier [4] and is relatively consistent with the p' experimental 
accuracy estimate of 1% of Sousa et al. [6] for these data. Although the change of 
sx = 0 and sy = 1 to sx = 0 and sy = 0.01 for Eq. (4) fitting in lines three and four of the 
table can only chance the value of sv proportionately, as shown, the line-3 results are 
included for direct comparison with those above and the line-4 results for comparison 
with those below. Notice that using sy = 0.01 leads to sv values much closer to unity, 
further confirming this choice as a plausible one. Fits using Eqs. 4(a)-4(c) (not shown), 
led to sp values over ten times larger than that for the Eq. (4) fit (line-4 in the table), 
confirming the latter as the more appropriate choice. 

In order to obtain some idea of the stability of estimates obtained with Eq. (4) 
fitting, further fits were carried out using only the first 17 values above Tc (marked 17L 
in the table) and for the 17 points starting with the one closest to Tc and omitting the 
subsequent even points (marked 17A in the table). Although the parameter standard 
deviation estimates are somewhat larger, the parameter estimates mutually agree to 
within one of their own standard deviations or better, indicating excellent stability. 
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3.3. Weighting considerations 

Thus far, we have dealt with constant weighting uncertainties. But G E N L S  allows 
one to use power-law variable uncertainties. We therefore carried out Eq. (4) fits with 
N = 33 and s~ = 0 and sy = (Yi) z, where z = 1 gives proport ional  weighting and 

z = 0.5 is appropriate  for integer data with Poisson-distributed errors [10]. Fitting 
with several different values of z showed that best results were obtained as z ~ 0, 

leading to constant unity weighting. This is contrary to the hypothesis introduced 
earlier following Sousa et al. [4] (private communication) that the precision of the 
data was likely to be varying over the temperature run. See also the discussion of 

residuals presented below. 
Finally, the last two lines in the table, whose results should be compared to those of 

the fourth line from the top, show the results of error-in-variables fitting runs using the 

fixed s~ = 0.0007, s r = 0.01 and s~ = 0.01, s r = 0.01 uncertainty values. The 0.0007 
value, as well as even smaller values, have been employed in the earlier bivariate 
analysis [4], where discussion of these sx choices may be found. The next to last line in 

the table shows that the accurate solution using Sx = 0.0007, sy = 0.01 is essentially 
indistinguishable from that with sx = 0, s r = 0.01. Thus, the likely errors in the 
temperature measurements are evidently sufficiently small to be completely neglected, 
allowing ordinary nonlinear least-squares fitting to be used for the present data 

values. 
This result is an a posteriori strong evidence of the excellence of the Sousa et al. 

data [6]. If the errors in temperature were, in fact, very much greater, so that 

the choice sx = 0.01, s r = 0.01 were appropriate,  one would find the results 
shown in the last line of the table. Even with this much larger choice for s~, one sees 
that the parameter  estimates and their estimated standard deviations are scarcely 

changed. 

4. Conclusions 

In fitting the present singular equations with the TbZn data, it was found necessary 
to use very stringent iterative convergence criteria in order to obtain consistent 
estimates of parameter  standard deviations and parameter  correlation coefficients. 

Much less stringent conditions were needed just to obtain consistent parameter  
estimates. In nonlinear least-squares calculations of this kind, the standard deviation 
and correction estimates are obtained by linearization around final converged condi- 
tions and are associated with the elements of the inverse of the design matrix of the 
problem [23]. They are thus approximations, and ones which may be particularly 
poor  for the correlations since they are calculated from off-diagonal elements of the 
matrix. Nevertheless, it is worth quoting the correlations estimated from Eq. (4) fitting 
and with the choices sx = 0, sy = 0.01, sx = 0.0007, s r = 0.01, and s~ = 0.01, r = 0.01. 
Let us identify the correlation between the mth and nth parameters as C,,,. Then the 
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C12 , C13 , and C23 correlation estimates were 0.56, - 0.74, and 0.95; - 0.57, - 0.74, 
and 0.95; and - 0.62, - 0.79, and 0.95, respectively. They have the same signs and are 

comparable  in magni tude to the Monte -Car lo  values obtained earlier [4]. For  the 

sx = 0.0007, s r = 0.01 weighting choice, the correlat ion between the x and y residuals 

was found to be 0.81. 

Fig. 1 shows the actual Rr, residuals obtained with the sx = 0, s r = 0.01 weighting 

choice compared  to the Rx, and Rr, residuals obtained with the s~ = 0.01, sy = 0.01 

values. Note  the relative smallness of the R~, values even with this much- too- large  

value for s~ and note also that, except at the low-temperature end of  the range, the 

Rr, residuals are virtually identical for the two weighting choices. Examinat ion of  the 

Rr, values shows no apparent  trend of their magnitudes with T. Thus, to a good  

approximat ion  the data  involve errors with constant  variance and are thus homos-  

cedastic. 

Therefore, the present choice of constant  sx and s r values is indeed appropriate.  N o  
R~, values are shown for the sx = 0.0007 choice since they are more  than ten times 

smaller than those shown. A cumulative normal  probabil i ty plot of  the sx = 0, 

sy = 0.01 and Rr, values indicated that, to an excellent approximation,  these values 

were sampled from a normal  probabil i ty distribution. Therefore from the results in the 

table that  To~To ~ 199.556 + 0.028, one can conclude that  in similar replications of 

the experiment there would be a 68% chance that  an estimate of T d T o  would fall in 

the range 199.53-199.59. 

The present analyses do not  allow a more  precise estimate of  T¢/To to be obtained. 

The estimates of the critical temperature obtained here are, fortunately, consistent 

2 .0  

£t:::: ~ c-~ ~-~ 1.0 l 
0.0 .=  , 7  - 

(-~ - 1 . 0  

-2~°9 .6 . . . .  2 0 d . b  . . . .  ~66.~. . . . .  2de .8 
T(K) 

Fig. 1. Weighted residuals, obtained from fits with Eq. (4), vs. unadjusted temperature values. The data 
uncertainties (Sx, st) were sx = 0, sy = 0.01 for the Ry residuals (open circles), and s~ = 0.01, s r = 0.01 for the 
Ry residuals (asterisks) and Rx residuals (bullets). The lines connecting points are included solely to guide 
the eye. 
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with those found earlier for the present material. The present work leads, however, to 
appreciable differences in conclusions about the critical behavior itself. 

The above results suggest that it is highly unlikely that 2 could be negative and as 
large as ½, the result expected when quadrupolar as well as dipolar effects are 
present and important, but they do not entirely rule out the possibility of power-law 
response with a value of 2 near 0.11, the expected value for • n = 1, three-dimensional 
Ising-like model. Nevertheless, it is clear that a log-behavior law, consistent with an 
n = 2 (XY model) for the transition, yields much better defined parameter estimates 
than does power-law fitting equation with 2 > 0, (even on taking into account some 
possible lattice softening), unless one of the power-law parameters is held fixed. Even if 
the log law is not strictly obeyed, the small values of 2 theoretically predicted for the 
3D XY model are consistent with the log-law predictions. Therefore, we conclude that 
the 3D XY model is that best representing the phase transition in TbZn, and that 
well-known [10] fitting methods can lead to reliable conclusions in magnetic systems, 
just as was the case in previously studied ones like He, near its lambda point. The best 
estimate for To, itself obtained from fitting with the log-behavior law, was 
199.56 _ 0.03 K. 

It should still be emphasized that, here we investigated only the temperature range 
above To. There is no doubt, that it is of interest to investigate the behavior below 
a critical temperature if one wants to discuss the critical amplitudes [9,24]. They also 
help deciding on the order parameter symmetry. We cannot realistically do so here, 
as we have mentioned in the introduction, first because the contribution from 
the ordered state is roughly proportional to the square of the magnetization, leading 
to two extra parameters: the critical exponent and the amplitude of the magnetization; 
secondly, because in magnetic systems, domains appear in the ordered phase, 
leading to a definite noise depending on the sweeping (cooling or heating) rate 
[25]; and because the lattice might have a softening behavior 1-21,22]. Even though 
the latter effect is sometimes taken into account in calculating critical exponents, 
the first two causes make analysis of the low-temperature side uninteresting at our 
present level. 

In conclusion, this study has illustrated difficulties inherent in reaching definitive 
conclusions about appropriate fitting models and their parameter values near a criti- 
cal point, even when excellent data are available. Carefully performed statistical data 
analysis can, however, lead to unambiguous interpretation of physical processes. This 
was demonstrated here for the (temperature derivative of the) electrical resistivity at 
a magnetic transition. 
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