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Abstract

The important effects of electrode polarization on the conductivity of ionic materials are illustrated for both low- and

high-frequency regions. Experimental data fitting and simulation with a fully complex model, including a part repre-

senting ionic dispersion and constant-phase-element (CPE) power-laws in series or in parallel, show that the series

element, usually representing electrode effects, can lead to r0ðxÞ log–log slopes of 1.3 or more. In addition, over a

substantial frequency region, such effects can yield rðxÞ response indistinguishable from that following from the

parallel combination of the ionic dispersion model, here a form of Kohlrausch–Williams–Watts behavior, and a CPE.

With a sufficiently wide experimental frequency range, one can discriminate between these two possibilities and identify

the one that is associated with the measured experimental behavior. The problem of discrimination is particularly

difficult, however, for low-temperature data that show nearly-constant-loss e00ðxÞ response. In contrast to recent

conclusions, such response can be modeled and well fitted with a composite model involving either a series or a parallel

CPE.

� 2002 Elsevier Science B.V. All rights reserved.

PACS: 72.20.-i; 66.10.Ed; 77.22.Gm; 81.05.Kf

1. Introduction and background

In the past, electrode effects in immittance
spectroscopy data have often been unmentioned,
unrecognized, characterized as unimportant, and/
or ignored [1–6]. A frequently used argument is
that presentation of data at the electric modulus
level, (where MðxÞ ¼ M 0ðxÞ þ iM 00ðxÞ ¼ 1=eðxÞ ¼
ixeVqðxÞÞ makes any electrode effects present
negligible in M 00ðxÞ. Here eðxÞ ¼ e0ðxÞ � ie00ðxÞ is

the complex dielectric constant; qðxÞ ¼ 1=rðxÞ is
the complex resistivity; rðxÞ is the complex con-
ductivity; and eV is the permittivity of vacuum. On
the other hand, some treatments of low-frequency
electrode effects have appeared (see for example,
Refs. [7–9]).

While it is true that low-frequency electrode
effects are reduced by a factor of x in an M 00ðxÞ
plot, as compared to a q0ðxÞ plot, they are, of
course, still fully present in the data, and propor-
tional-weighting complex non-linear least squares
(CNLS) fitting [10] of the same data expressed at
either the MðxÞ or the qðxÞ level leads to exactly
the same parameter estimates. Thus, if the model
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includes parameters representing electrode polar-
ization contributions, they will be identically esti-
mated by fits at either level.

Another frequent misconception is that because
one fitting model has fewer parameters than an-
other, the former is preferable to the latter [3]. This
type of thinking, not based on detailed CNLS fit-
ting of the data, has led, for example, to the wide-
spread use of the original three-parameter modulus
formalism (OMF), rather than a model with more
parameters. (see for example, the 20 references to
the OMF in Ref. [11]). But crucial defects in the
OMF model have been pointed out since 1996 and
a corrected version, the CMF, proposed and its
usefulness illustrated [12–16]. In addition to the
presence of a minimal number of free parameters
in the OMF, another of its apparent virtues and
one of the main reasons for its endemic use is its
fitting simplicity. Thus, the important shape pa-
rameter of the model, b ¼ b1, can be well esti-
mated entirely from a graphical determination of
the full width at half height of an experimental
M 00ðxÞ curve [17].

Unfortunately, as shown by fitting with the four-
parameter CMF model, OMF parameter estimates
of so, the characteristic relaxation time of the fitting
model (a form of Kohlrausch–Williams–Watts
(KWW) response [18], the KWW1) and its b1 shape
parameter are not appropriate and significant [12–
16,19,20]. This is because the OMF does not
properly include the effects of the bulk dielectric
constant of the material, eD1 [12–16]. It follows
that earlier conclusions about physical processes
such as ion–ion correlation, based on variation of
b1 with temperature or ion concentration, are
usually misleading and inapplicable [19,20].

Further, the number of free parameters in-
cluded in a fitting model is far less important than
are the relative standard deviation of the fit, SF,
and the relative standard deviations of the indi-
vidual free parameters for a given model. Clearly
a poor fitting model with one or more non-sig-
nificant parameter standard deviations should not
be preferred to a more appropriate better fitting
model with all of its parameter standard deviations
highly significant, even when the latter involves
more parameters than the former. The LEVM
CNLS computer program [10] leads to fitting re-

sults that may be used in an included F-test
statistical estimate of the probability that adding
additional free fitting parameters to a model is
warranted. This test, when applied for fits of many
different materials, shows, statistically speaking,
that the OMF is much less appropriate than the
CMF. See Refs. [13–16,20] for other facts sup-
porting this conclusion.

Both the OMF and the CMF models use the
conductive-system KWW dispersion model, the
KWW1, here abbreviated as the K1 [16]. Although
the frequency response of the K1 cannot be ex-
pressed in closed form for arbitrary b1 values, the
LEVM program allows one to calculate such res-
ponse to an accuracy usually better than one part
in 105 and thus to simulate or fit data accurately.
Contrary to earlier statements or implications, K1
frequency response is not a direct Fourier trans-
form of stretched-exponential temporal response
[13,14,19,21]. Unlike most other response models,
the K1 leads to a non-zero high-frequency-limiting
value of eCðxÞ, eC11, where the subscript ‘C’ in-
dicates conductive-system response.

The CMF includes a separate free eD1 para-
meter in parallel with the K1 ion-only response, and
is designated the CK1 model. In addition, in the
present work the following composite models will
be used or discussed, the CK1S, the PK1, and the
PK1S. Here, the S symbol stands for SCPE res-
ponse, a constant-phase-angle element [22,23] in
series with the rest of the response and represented
by rSCðxÞ ¼ eVASCðixÞcSC with 06 cSC 6 1. The P
symbol stands for PCPE response, a constant-
phase-angle element in parallel with the K1 dis-
persion model. It is expressed as rPCðxÞ ¼
eVAPCðixÞ1�cPC with 06 cPC 6 1. Note that when
cSC ¼ 1 the SCPE leads to complete blocking of
mobile charges at the electrodes. When cPC ¼ 0 the
APC element of the PCPE represents a frequency-
independent dielectric constant and the PK1
model reduces to the CK1 one. Thus, when cPC �
1, we can set APC ’ eD1. For this condition, or
when 0 < 1 � cSC � 1, the response will include
e00ðxÞ power-law response with a very small ex-
ponent: nearly constant loss (NCL) behavior [23].

In a recent analysis of data involving variable
ionic concentration [20], it has been demonstrated
that the assumption of a frequency-independent
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eD1 parameter is apparently only entirely appro-
priate in the limit of zero ionic concentration. For
non-zero concentrations, accurate fitting requires
that in addition to the zero-concentration value of
eD1, denoted eD10, a small, complex, frequency-
dependent term must be added, well represented
by the PCPE element with cPC � 0 and with APC

increasing as the concentration increases. These
results imply that this NCL increase in the effective
bulk dielectric constant associated with dipolar
and vibratory effects of the network material arises
from interaction with mobile charges, particularly
at high frequencies where ions are localized and
librate [20].

Finally, it should be mentioned that Nowick
et al. [9] and others have shown that considerable
conductive-system data may be fitted with a
composite model that may be expressed as

r0ðxÞ ¼ r0½1 þ ðx=x0Þn� þ Axm; ð1Þ
with 0 < n6 1, m � 1 and r0ð0Þ  r0. Here the
Axm term with 1 � m � 1 and positive represents
the real part of NCL response. The first expression
on the right models mobile-charge dispersion
effects and has been called universal dynamic res-
ponse [9,14]. Although Eq. (1) fits of r0ðxÞ data
have usually led to 0:66 n6 0:7 values and to
m ’ 1, they can only be trusted to involve NCL
when electrode effects are either negligible in the
measurement range or are separately accounted
for, as in the PK1S model. Otherwise, the Axm

term may unwittingly represent electrode effects
rather than NCL ones. See further discussion of
this matter in Section 3. Note that CMF fits with
either the CK1S or PK1S model lead to estimates
of the high-frequency-limiting slope associated
only with K1 of ð1 � b1Þ ’ 2=3. Such values have
been shown to be virtually independent of both
temperature and ion concentration [16,19,20].

The PK1S model is a generalization and im-
provement on that of Eq. (1) in several respects.
First, it is fully complex and its real and imaginary
parts satisfy the Kronig–Kramers relations. Sec-
ond, the K1 model has been found to be more
appropriate for conductive-system data fitting
than the complex version of the first term on the
right of Eq. (1), the ZC model [14,22]. One reason
is that, unlike the K1, the ZC involves a non-

physical low-frequency limiting slope. Finally, the
inclusion of SCPE response allows the importance
of electrode effects to be evaluated, and, when they
are significant in the measured frequency range, it
leads to their quantification and to better fits. In
this case, fitting yields a clear distinction between
the K1 limiting slope ð1 � b1Þ and electrode-effect
slopes associated with cSC.

It should be mentioned that constant-phase-el-
ement (CPE) response elements have been in-
cluded as parts of a full fitting model in the present
work because of their simplicity and fitting utility,
not because their forms are expected to apply ex-
actly over the full frequency range from zero to
infinity. At the extremes of frequency their forms
must change to satisfy physical realisability, but
actual data do not usually extend to such extremes.
Nevertheless, CPE elements provide a good first
approximation to fractal and other more compli-
cated electrode-related responses. In the following,
first low- and high-frequency electrode effects are
illustrated for wide frequency ranges and CK1S
fitting carried out. Then, comparisons are made
between fitting CK1S synthetic data with a PK1
model and vice versa in order to suggest how one
can discriminate between the effects of a CPE in
parallel with an ionic dispersion model and a CPE
in series with it.

2. Data and electrode-effects fitting and analysis

Fig. 1 shows wide-temperature-range 0.88ZrO2 �
0:12Y2O3 r0ðxÞ data [4], kindly supplied by Dr C.
Le�oon. We see that the data become irregular at
the lowest frequencies and temperatures and show
different behavior at low temperatures than at high
ones. Interesting details of the response appear in
the Fig. 2 plot of the slopes of the log–log curves
of Fig. 1. Particularly significant are slope values
exceeding unity for the three lower temperatures.
Also notice the abrupt change at about 67 kHz in
the slopes of the lower-temperature curves.

It is clear that much of the data shown in Figs. 1
and 2 are entirely inconsistent with models such as
those recently summarized by Dyre and Schrøder
[24] and Funke [25,26]. These models lead, in the
absence of a high-frequency plateau in r0ðxÞ, to
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slopes monotonically increasing toward a unity
asymptote. Incidentally, unpublished work of the
author shows that the DCA symmetric-hopping
dispersion model [24] may be exceptionally well
fitted over eight or more decades of r0ðxÞ using a
PK1 model, quite different in form from the Dyre
and Schrøder model. In addition, unlike the DCA

model, the PK1 leads to physically plausible low-
frequency-limiting slopes of the quantities ðr0ðxÞ�
r0Þ and r00ðxÞ.

Fig. 3 shows a CK1S fit of the present 302 K
data with a few very irregular low-frequency
points omitted and with fixed values of the three
K1 parameters extrapolated from higher temper-
ature fits [20]. The figure also includes the separate
K1 and SCPE contributions to the full fit and thus
shows low- and high-frequency limiting slopes. It
is clear that the full model fits the data very well
and that the SCPE, here modeling electrode effects,
dominates the response at high frequencies. In
previous work [23], it has been shown that the se-
ries combination of an ideal capacitance and a CPE
can lead to r0ðxÞ response with a slope of ð2 � cSCÞ
over an appreciable frequency range. Here the ef-
fective ideal capacitance at high frequencies is that
associated with e1 ¼ eC11 þ eD1, thus arising from
both ionic motion and dipolar/vibratory contri-
butions of the bulk material.

These results show that electrode effects can be
dominant at high frequencies, although they are
usually thought to be important only at low fre-
quencies [7–9]. It is thus of interest to show wide-
range simulated data calculated with the CK1S
model using the parameter values estimated from

Fig. 1. Log–log plots of 0.88ZrO2 � 0:12Y2O3 r0ðxÞ data for a

range of temperatures. The quantity rn ¼ 1 mho/cm and tn ¼ 1

Hz.

Fig. 2. Slopes of the r0ðxÞ lines of Fig. 1.

Fig. 3. CK1S fit of the 302 K data of Fig. 1. The fit involved

only three free parameters: two SCPE ones and eD1.
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the Fig. 3 fit. Such results, along with approximate
slope values, are shown in Fig. 4 for the very large
range of 25 decades. As the temperature decreases,
an experimental frequency window of five or six
decades will move to the left of the graph and
beginning to show electrode-effect low-frequency
deviations from CK1 response. Note that in ad-
dition to the results following from the Fig. 3 fit,
ones with the very small cSC value of 0.001 are also
included. Then the SCPE closely approximates a
series resistance. For the present situation, it is
evident that there is only a relatively small fre-
quency range over which separate CK1 response is
significant. Further, the high-frequency end of the
data here is nearly high enough that the final high-
frequency SCPE slope of cSC is apparent. Never-
theless, electrode-related slopes of ð2 � cSCÞP 1
have frequently been evident in r0ðxÞ data.

Fig. 5 presents CK1S fitting results for the 624
K data of Fig. 1. For clarity, only every other fit
value is included here. Note the different scales for
r0ðxÞ and r00ðxÞ. Again, the fits are excellent and
CK1S response dominates for vP 104 Hz. For
v6 103, on the other hand, SCPE ‘low-frequency’
contributions become evident. Note that the b1

values in Figs. 3 and 5 are the same, consistent
with the b1 temperature independence found for

CK1 CMF fits at other temperatures for the pre-
sent material [20].

Fig. 6 shows the wide-range extrapolation of
the CK1S fit of Fig. 5. We see that although the
same general behavior is apparent for both the 302
and 624 K extrapolations, the lower-frequency
part of the r00ðxÞ curves of Fig. 6 appear roughly
eight decades higher than those of Fig. 4 and the
lower-frequency r0ðxÞ ones are at least four de-
cades higher. The limiting very low-frequency cSC

Fig. 4. Log–log plots of rðxÞ model response calculated by

extrapolation of the CK1S-fit results of Fig. 3.

Fig. 5. CK1S fit of the 624 K data of Fig. 1. The fit involved six

free parameters.

Fig. 6. Log–log plots of rðxÞ model response calculated by

extrapolation of the CK1S-fit results of Fig. 5.
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slopes shown in Fig. 6 are rarely evident in actual
data because insufficient low-frequency data are
available. Nevertheless, Fig. 4 of Ref. [8], for Ca-
TiO3:30%A13þ data, presents a good fit of curves
of exactly the same shape as those shown here
below about 108 Hz, r00ðxÞ peak and all, and even
Fig. 5 shows the beginning of the rise toward such
a peak.

3. Discrimination between response models involving

series or parallel elements

Here I consider the similarities and differences
between NCL response associated with the CK1S
and PK1 composite models, both instances of the
corrected modulus formalism approach [12–16].
To do so, data sets were generated for a range of
frequencies and temperatures using plausible pa-
rameter values for both models. Values were se-
lected to be at least roughly appropriate for the
response of tri-silicate glass presented in Figs. 7
and 9 of Ref. [9].

The K1 mobile-charge dispersion model leads
to

eC11 ¼ r0hsi01=eV ¼ r0soCð1=b1Þ=b1eV / 1=T ;

ð2Þ

where hsi01 is the mean of the K1 characteristic
relaxation time, so, over the distribution of relax-
ation times associated with stretched-exponential
response with shape parameter b1, and Cð Þ is the
Euler gamma function. For the thermally acti-
vated so, we use so ¼ 8:355 � 10�17 expðE=kT Þ with
E ¼ 0:71 eV. In addition, we set b1 ¼ 0:35 and
eD1 ¼ 5, both independent of temperature. It then
follows from Eq. (2) that r0 ¼ a=T so, and we use
a ¼ 2:566 � 10�11 with the units of r0 taken as
mho/cm. For this situation Tr0 involves the same
activation energy as so. Data sets were constructed
with values of so ranging from 10�5 to 107 s in
steps of 100. The corresponding temperatures
varied from 323 K down to 155 K.

Fig. 7 presents CK1S data involving the SCPE
parameter expressions shown on the graph. Here
ASC varied from about 186 to 1000 as the tem-
perature increased. The 0.01 value in the exponent

of the ASC exponential expression is of the order
of magnitude of values found in Refs. [20,27]. In
addition, Fig. 7 shows the results of PK1 CNLS
fits of two CK1S data sets with all five PK1 pa-
rameters free to vary. It is evident that the PK1
cannot model the rapid low-frequency decrease in
r0ðxÞ apparent in the top curve, but it turns out
that it can fit the response at frequencies beyond
this extremely well with values of cPC 6 0:01, true
NCL. Note that the present modeling results show
the same crossover of curves present in the data of
Fig. 1 at low temperatures and high frequencies.
But there the maximum slope was of the order of
1.7, while here it does not quite reach unity.

It is the bottom four of the curves in Fig. 7 that
approach NCL behavior at their higher-frequency
ends, and it is response of this type which can
alternatively be excellently fitted with the PK1
model. Although even CNLS fitting will not allow
clear discrimination between the present series and
parallel models for such data, it is evident that if
the temperature is raised enough, or if the fre-
quency range is extended to sufficiently low values,
such discrimination will become possible.

Fig. 8 starts with the same K1 values as those
used to obtain the results of Fig. 7, but synthetic

Fig. 7. Log–log plots of synthetic data generated using a series

CK1S composite response model with two CNLS fits of such

data using the parallel PK1 model.
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data were here calculated with the PK1 parallel
model using the fixed PCPE parameter values
shown on the graph. Unlike the CK1S curves, the
PK1 ones do not lead to a crossover at high fre-
quencies, and the general shape and spacing of the
PK1 lines are quite similar to those shown in Fig. 9
of Ref. [9]. The two CK1S six-parameter CNLS fit
results included in Fig. 8 are consistent with the
fitting comparisons of Fig. 7 and demonstrate that
the CK1S model can here fit PK1 complex data for
the so P 10 s responses. Earlier work has shown
that a capacitance in series or in parallel with a
CPE element (CP and CS models) can lead equiv-
alently to a type of NCL response [23]; here more
complicated composite response models are also
shown to lead to NCL.

Even in situations where the CK1S and PK1
models can fit putative NCL data equally well, it
may be plausible, in the absence of evident elec-
trode polarization effects in the data, to chose the
PK1 model rather than to assume that nearly, but
not quite exact complete, blocking of the mobile
charges at the electrodes is present. Nevertheless,
for most experiments on disordered materials and
glasses with non-parent-ion electrodes, it is rea-
sonable to expect that electrode polarization with
nearly complete blocking will be important in some

frequency-response regions, often those outside
the experimentally measured frequency range. It is
therefore wise to fit data with such a model as the
PK1S and obtain estimates of PCPE and SCPE
parameter uncertainties. Such fits often allow one
to discriminate between the effects of these two
elements and to identify the PCPE contribution
with NCL behavior and the SCPE one with elec-
trode polarization [20,23].

Finally, important recent r0ðx; T Þ results of
Le�oon et al. [27] dealing with NCL effects, but not
including CNLS fitting, led these authors to con-
clude that their data could not be explained by an
additive (parallel) model such as that of Eq. (1). In
contrast, the present results suggest that at least
trisilicate data, such as that of Ref. [9], can indeed
be explained over substantial frequency and tem-
perature ranges (including those where NCL
effects are evident) by a parallel or a series com-
posite model, the PK1 or the CK1S. As discussed
elsewhere [20,27], the work of Ref. [27] led to a
physical model for ionic motion yielding NCL at
odds with that following from detailed CNLS
analysis of experimental data [20]. Future work
should help decide the applicability of these two
disparate NCL explanations and show whether
data such as those considered in Ref. [27] can be
properly explained by a series or by a parallel re-
sponse model (or by either!).
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