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Many frequency-response analyses of dispersive relaxation for homogeneous glasses, polycrystalline mate-
rials, and single crystals involving mobile ions of a single type indicate that estimates of theb1 shape
parameter of the Kohlrausch K1 fitting model are close to 1/3 and are virtually independent of both tempera-
ture and ionic concentration. This model, which usually yields better fits than others, including the closely
related Kohlrausch K0 one, is indirectly associated with temporal-domain stretched-exponential relaxation
having the sameb1 parameter value. Here it is shown that for the above conditions several different analyses
all yield a value of 1/3 for theb1 of the K1 model. It is therefore appropriate to fix theb1 parameter of this
model at the constant value of 1/3, then defined as the U model. It fits data sets exhibiting conductive-system
dispersion that vary with both temperature and concentration just as well as the K1 model withb1 free to vary,
and it leads to a correspondingly universal value of the Barton-Nakajima-Namikawa parameterp of 1.65.
Composite-model complex-nonlinear-least-squares fitting, including the dispersive U model, the effects of the
bulk dipolar-electronic dielectric constant«D` and of electrode polarization when significant also lead to
estimates of two U-model hopping parameters that yield optimum scaling of experimental data involving
temperature and concentration variation.
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I. INTRODUCTION

In 1994 Phillips suggested that relaxation in complexsdis-
orderedd systems is one of the most important unsolved prob-
lem in physics today.1 Roling and Martiny have recently
stated that “Finding an explanation for this high degree of
universalitysi.e., the existence of master-curves for conduc-
tivity isothermsd is still one of the major challenges of solid
state physics.2” The present work addresses both these chal-
lenges. Dyre and Schrøder suggested various macroscopic
and microscopic models that predict universality of conduc-
tion in the strong-disorder limit.3 Since universality is an
idealized concept, it is not surprising that most claims for
universal behavior and modelsse.g., Refs. 4 and 5d have
been found too limited or even incorrect, but this should not
discourage new universality proposals, ones that may still
eventually suffer the same fate as new experimental results
are analyzed and the domain to which the model is applied is
widened.

The principal aim of the present work is to describe a new
universal, conductive-system frequency response expression,
the U model; define its range of application; and demonstrate
its usefulness in fitting and analyzing experimental immit-
tance data. Although this model has evolved from past mod-
els, it is both simpler and more general than its precursors.
Further, it has been derived from independent macroscopic
and microscopic analyses, and it and its three parameters are
thus physically well based. Complex-nonlinear-least-squares
sCNLSd fitting of dispersive data using the U model allows
highly accurate discrimination between bulk ionic response
and that associated with electrode effectsssee Refs. 6–10 and
the present workd. Although such effects are usually impor-
tant in the low-frequency region of experimental data, they
may sometimes be non-negligible in the high-frequency re-
gion as well.8

Since the U model involves temporal stretched-
exponentialsSEd behavior with a unique value ofb1, it is

useful to summarize other related work dealing with SE re-
laxation sSERd. In an earlier paper,11 both field-free SER in
the time domainsfor example, in stress relaxation experi-
mentsd and field-forced SER in the frequency domain, as in
the present work, were discussed. In the former situation, one
is concerned with residual relaxation of glasses after initial
transients have disappeared, while in the latter the frequency
domain is usually limited in practice to frequencies 106 times
smaller than those involved in atomic vibrations. Field-free
data sets are simpler than field-forced ones and are easily
fitted by SER. The work of Ref. 11 showed that recentb
estimates agreed within,1% with those predicted by a frac-
tal model in 1996sRef. 12d, but the field-forced limited data
require a much more sophisticated numerical analysis. That
model used the concept of fractal dimensionalities to de-
scribe the frequency-response behavior in a way that is quali-
tatively different from the way fractals are used to describe
scaling properties near threshold for percolation or near criti-
cal points. Readers who are concerned with the fundamental
nature of SER and its fractal aspects are encouraged to con-
sult Refs. 11 and 12.

II. DETAILS OF SOME CONDUCTIVE-SYSTEM
DISPERSIVE MODELS

A. General expressions

In order to distinguish easily between various fitting mod-
els, let the indexk take on values of 0 or 1, used in-line or as
a subscript. Then fork=0, if f0std is a conductive-system
correlation function, the corresponding normalized fre-
quency response complex function, defined at the complex
resistivity level, is9,13
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I0svd = I08svd − iI 09svd =
rC0svd − rC0s`d
rC0s0d − rC0s`d

=E
0

`

exps− ivtdS−
df0std

dt
Ddt, s1d

involving a one-sided Fourier transform. Note that a specific
expression for theI0svd response model only follows when
one is specified forf0std, as in the next section. Further, an
expression forf0std will involve one or more shape param-
eters which also require specification.

When the small or zerorC0`;rC0s`d quantity is ne-
glected as usual,14 the correspondingk=0 frequency re-
sponse at the complex modulus level is justMC0svd
=MC08 svd+ iMC09 svd= iv«Vr0I0svd. Here the subscriptC,
used for theoretical and model quantities, denotes
conductive-system response and«V is the permittivity of
vacuum. We shall not distinguish between thek=0 and k
=1 dc resistive quantitiesrC0s0d and rC1s0d, and will thus
user0=1/s0 for either. The quantitys0 is the dc limit of the
real part of the conductivity,ssvd=s8svd+ is9svd;1/rsvd,
wherersvd=r8svd− ir9svd. The corresponding complex di-
electric constant expression is«svd=«8svd− i«9svd
;1/Msvd.

Consider now the differentk=1 I1svd response, closely
related to I0svd, as demonstrated in the equation below.
When the famous 1973 continuous-time, random-walk
sCTRWd approximate microscopic model of Scher and Lax15

is extended slightly to make its imaginary part fully consis-
tent with its real part at the complex conductivity level,14 this
conductive-system hopping model may be expressed most
simply at the complex modulus level as.9,14,16

MC1svd = MC18 svd + iMC19 svd

= iv«Vr0I1svd ; f1 − I01svdg/«Z, s2d

where the important effective-dielectric-constant quantity«Z
is defined as«C18 s`d;«C1`=1/MC1s`d and the 01 subscript
in Eq. s2d indicates thatI01svd is of the form ofI0svd, but it
involvesI1svd fit parameter values rather than those obtained
by direct fitting of the same data with thek=0 I0svd model.
In Ref. 15, thef0std correlation function that leads to the
I0svd normalized frequency response is defined as the prob-
ability that a hopping entity remains fixed in place over the
time interval from 0 tot.

Equations2d provides a direct connection between the dif-
ferent I1svd and I0svd responses, but the time domain re-
sponsef1std directly following from I1svd is not of the same
form as that ofI0svd.11,14 Importantly, Eq.s2d, arising from a
detailed microscopic analysis, is, however, of exactly the
same form as that derived macroscopically, contemporane-
ously, and independently by Moynihan, Boesch, and
Laberge17 by considering electric field decay at constant di-
electric displacement. This formal micro-macro agreement
for the k=1 model, unique among dispersive conductive-
system response models, thus provides additional justifica-
tion for it. It remains general, however, until specific forms
of f01std and«Z are introduced. Heref01std is thek=0 cor-

relation function that leads toI01svd through Eq.s1d and then
to the k=1 I1svd response from Eq.s2d. Thus f01std is the
effective correlation function leading toI1svd and it will in-
volve the same form asf0std, but a different shape parameter
value.

It follows from the work of Scher and Lax,15 Eq. s2d, and
Refs. 6–9, 14, and 18 that for the general presentk=1 dis-
persion model the very important quantity«Z=«C1` may be
expressed as

«C1` = ss0/«Vd/kt−1l1 ; «Ma/kx−1l1 = «Makxl01

= fgNsqdd2/s6kB«Vdg/T, s3d

a purely conductive-system quantity. Herex;t /to, to is a
characteristic relaxation time for the model that determines
the placement on the frequency scale of the model response,
«Ma;s0to/«V, andkt−1l1 andktl01;tokxl01 are different av-
erages over thek=1 and k=0 distributions of relaxation
times, respectively. When the form off0std is known, one
can calculatektl0 from ktl0=e0

`f0stddt sRefs. 13 and 15d and
a similar equation applies with thek=0 subscripts replaced
by 1. Although thef1std temporal-response function can be
calculated numerically from thek=1 distribution of relax-
ation times,13,16 it is not needed here in order to obtain an
expression forktl1. When both thek=0 andk=1 distribu-
tions involve the same value of the shape parameter, as de-
noted in Eq.s3d by the 01 subscript, they are closely related,
yielding the normalized relationkx−1l1=1/kxl01 used in Eq.
s3d.6,16 Equations3d is consistent with the Scher-Lax result
thatr0 is proportional toktl01, identified in their work as the
mean waiting time for a typical hop,14,15,18a physically plau-
sible result.

The quantityN is the maximum mobile charge number
density,g is the fraction of charge carriers of chargeq that
are mobile,d is the rms single-hop distance for a hopping
entity, and kB is the Boltzmann constant. The high-
frequency-limiting effective dielectric constant«C1`, associ-
ated entirely with mobile-charge effects, is likely to arise
from the short-range vibrational and librational motion of
caged ions. The CTRW microscopic analysis of Scher and
Lax15 does not include a maximum transition rate, and so its
relaxation-time distribution is not cut off. Numerical analysis
shows, however, that a cutoff at the plausible value of 1 ps
has a negligible effect on the value of«C1` in the usual
experimental frequency range. Further, when the accurate
U-model«C19 svd response was inverted to estimate its distri-
bution and then that distribution employed to calculate the
associated«C18 svd response, the latter showed a clear ap-
proach to a constant limiting value of«C1` sRef. 14d. There-
fore, it is clear that a nonzero value of«C1` is an intrinsic
consequence of both the macroscopic and microscopic analy-
ses yielding the K1 response, although nonzero but small
values of the limiting quantityrC0` cause«C18 svd to approach
zero at sufficiently high frequencies.14

In addition to«C1`, a bulk high-frequency-limiting dielec-
tric constant«D`, associated with nondispersive dipolar and
vibratory effects of the elements of the basic material, is
always present. Thus, for an appreciable range of high
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frequencies,14 the total limiting dielectric constant is«`

=«C1`+«D`. Although the important quantitys8svd ap-
proaches a final plateau at sufficiently high frequencies,14 we
shall be concerned here only with high-frequency behavior
occurring before the effects of the plateau become important,
the usual experimental situation.

Because of the endemic presence of«D`, a quantity not
directly associated with mobile-charge effects, it is necessary
in fitting data to always include a free dielectric parameter in
the fitting model,«x, to represent«` for k=0 or «D` for k
=1 situations, as discussed in the following section. Two
fitting parameters present in all the following models arer0,
a quantity that determines the magnitude or scale of the re-
sponse, andto, defined above.

B. Specific models associated with stretched-exponential
temporal response: K0, K1, and U

1. Stretched-exponential temporal response, the K0
frequency-response model, and electrode effects

As already mentioned, an explicit expression forf0std is
required in order to calculate specifick=0 and k=1 fre-
quency responses for data fitting or data simulation. Thek
=0 choice leads to the K0-model response when the ubiqui-
tous stretched-exponential relationf0std=exph−st /todb0j
with 0,b0ø1 sRefs. 1, 11, 12, 19, and 20d, originally in-
troduced by Kohlrausch, is used in Eq.s1d to obtain an ex-
plicit expression, or numerical representation, forI0svd.
Then, such results may be used to calculate the K0-model
modulus-level frequency responseMC0svd= iv«Vr0I0svd
sRefs. 6–11d. Next, Eq.s2d leads to the K1-model frequency
response.7,9,11,21Here b0 is both the stretching factor in the
time domain as well as the parameter that determines the
shape of the K0-model frequency response. The correspond-
ing K1 shape parameter, unequal tob0, is defined asb1 and
appears in the SE expression forf01std. Although both the
K0- and K1-model responses must actually be calculated nu-
merically for arbitrarybk values, the freeLEVM CNLS com-
puter program allows the parameters of these models to be
very accurately determined for both data fitting and simula-
tion tasks.22

Unlike the K1 model, which involves the nonzero high-
frequency-limiting effective dielectric constant«C1` of Eq.
s3d, the conductive-system K0 response involves no such
limiting value and so«C08 s`d=0.6,9 But for experimental data
that are well fitted by the K1 model, the actual total high-
frequency-limiting dielectric constant implicit in the data is
«`=«C1`+«D`, and it will be this value, rather than just«D`,
that is estimated by the«x free parameter that must be in-
cluded in fitting using the K0 model. Such a composite
model has been designated the CK0, where the “C” here
represents the capacitance associated with«x sRefs. 7 and 9d.

For most data situations, one should also include in a
composite fitting model a separate electrode-effects model in
series with that representing bulk conductive-system disper-
sion. The electrode model should represent the effect of par-
tial or complete blocking of mobile charges at the electrodes.
Surprisingly, it has been shown that such effects can some-

times be important at high frequencies, as well as at the
low-frequency end of the data range.8 Since electrode effects
may thus appreciably influence experimental data, as demon-
strated in Sec. III B below as well as in Ref. 8, it is important
to initially include this possibility in a composite fitting
model and evaluate the need for such inclusion.

In recent work,6,7,9,11 CNLS fitting results, using several
different Kohlrausch and other fitting models, with and with-
out electrode-effect model contributions, have been com-
pared using experimental data for glasses, polycrystalline
materials, and single crystals. The inclusion of electrode ef-
fects led to important improvements in the fit accuracy for
most of the model fits, particularly for the best-fit K0 and K1
ones. Further, for K1 fits without such inclusion estimates of
s1−b1d were sometimes as small as 0.5, but increased to
very close to 0.67 when such effects were included. Even
when not mentioned explicitly in the following work, it
should be understood that the fits of experimental data sets
discussed herein included not only a bulk-dispersion model
such as the K1 or U one, but also a series electrode-model
contribution when needed.

2. Two different K1 models

a. Original-modulus-formalism fitting model. The widely
used pioneering treatment of Ref. 17, now termed the origi-
nal modulus formalismsOMFd approach and involving the
k=1 K1 response model defined in Eq.s2d, is unfortunately
critically flawed by its improper identification of the«Z of
Eq. s2d as «`;«8s`d, a quantity that includes all contribu-
tions to the high-frequency-limiting dielectric constant.11,21

Since the authors did not recognize the existence of«C1`,
their «` was considered to be just«D`, rather than«`

=«C1`+«D`. In the usual case where both quantities are non-
zero, data fitting would yield an estimate of«x=«`, identified
as«D`, but actually including both contributions to«`. The
failure to distinguish between these two quantities by not
including a separate fit parameter such as«x leads to an
inappropriate mixing of dipolar dielectric effects and those
associated only with mobile charge, and thus to both theo-
retical and experimental inconsistencies, especially in the es-
timation of b1 sRefs. 7, 9, and 21d. In particular, fits with
data expressed at theM9svd level yield quite different esti-
mates ofb1 than those ofs8svd for the same data.21

Many hundreds of published data fits and analyses since
1973 ofM9svd data using the OMF, and thus the K1 model
alone, have yielded strong dependence of the estimatedb1
values on ionic concentration and appreciable temperature
dependence as well. For example, as the ionic concentration
approaches zero, the OMF fits lead tob1 estimates that ap-
proach unityse.g., Ref. 23d. This is because then«C1`→0,
«`→«D`, and true dispersive effects become more and more
negligible compared to Debye-type relaxation involving only
s0 and«D`, a response that necessarily involves ab value of
unity. It is clear that all OMF fits should be fully discounted
and such fitting replaced by a consistent approach such as the
corrected modulus one described below.

b. Corrected-modulus-formalism approach. The corrected
modulus formalismsCMFd also uses the K1 model, but in-
cludes a free«x parameter, therefore denoted the CK1 model.
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For this model,«x=«D` because«C1` is not a free parameter
of the fit and is completely determined, as in Eq.s3d, by the
estimates of the K1-model parameterss0, to, andb1. It has
been found that CK1 fits for a variety of materials, ionic
concentrations, and temperatures lead to virtually constant
estimates ofb1, all very close to a value of 1/3, along with
both better fitting and no inconsistencies.6–9,11,21

Let us temporarily replace the symbolb1 by b1C to dis-
tinguish it from ab1 obtained from OMF fitting. Then for the
K1 model with«Z=«C1` in Eq. s2d, Eq.s3d may be expressed
as

«C1` = «Makxl01 = «Mab1C
−1Gsb1C

−1d = A/T, s4d

appropriate for CK1 fits. This equation applies when cutoff
of the K1 distribution of relaxation times is either absent or
negligible. HereA is the term in square brackets at the right-
side end of Eq.s3d and depends on the ionic concentration,
but not usually on the temperature,7 G¯ is the Euler gamma
function, andb1C is a value ofb1 obtained from fitting using
the CMF with the separate free parameter«x to estimate«D`.
It follows from Eq. s4d that whenA is temperature indepen-
dent, the thermally activated quantitiesTto and to each ex-
hibit Arrhenius behavior and their product is itself tempera-
ture independent.

3. The U model and some of its consequences

a. b1 derivations. The U model, a simplification of the
corrected modulus formalism approach, is particularly im-
portant both because of its simplicitysonly two free param-
etersd and because of its universal character over a widesbut
still limitedd domain of applicability. It is defined as a Kohl-
rausch K1 model in which the important shape parameterb1
is fixed at the nonarbitrary, required value of 1/3, as dis-
cussed below. In practice, it will represent the conductive-
system dispersive-model part of a composite fitting model
that includes not only«D`, but also a part that accounts for
electrode effects when important.

The U model applies only to materials that are micro-
scopically homogeneous with respect to density and compo-
sition. Such materials should allow conduction in all three
dimensions and involve mobile charge carriers of a single
type.11 Only materials and data satisfying these conditions
are discussed here for U-model applications. Fitting results
with the CK1 model andb1 taken free to vary may be ex-
pected not to satisfy one or more of these criteria when the
estimate ofb1 is appreciably different from 1/3 and is not
limited by a very small available frequency range. An experi-
mental finding ofb1 close to 1/3 for materials with mobile
charge carriers of a single type may be taken, however, as an
indication that the materials are homogeneous in the present
sense.

Some further clarification of the homogeneity requirement
that leads to the present kind of universality is worthwhile
since it has been found present, by the above definition, for
examples of glasses, single crystals, and polycrystalline ma-
terials. For glasses and deeply supercooled ionic melts, mi-
croscopic homogeneity is necessary.11,12Amorphous materi-
als are not usually homogeneous, and for single crystals to
qualify for the present universality class, they should be uni-

formly pervaded by strongly interacting native defects, such
as oxygen vacancies. Finally, for polycrystalline materials
the bulk crystallites should also contain homogeneously dis-
tributed defects, and analysis should account separately for
grain-boundary and electrode effects when significant.

In earlier work, data fitting with either the original or
corrected modulus formalism, both of which involve the K1
model, has involved ab1 parameter usually taken free to
vary and therefore determined by the fit estimate. Such
analyses suggest either no physical explanation ofb1 values
or they have been improperly interpreted, on the basis of
inappropriate original-modulus-formalism fit results,21 as a
concentration-dependent measure of correlation between
hopping ionsse.g., Ref. 24d. It is therefore of great impor-
tance to provide an experimentally and physically based jus-
tification for the present fixed value of 1/3, one that is not
interpreted as associated with such variable ion-ion correla-
tion. Three different approaches are presented below. The U
model is the only one available for fitting conductive-system
data that is supported by both macroscopic and microscopic
analyses and involves a nonarbitrary and well-defined shape
parameter.

i. Experimental. Define n, n0, and n1 as the high-
frequency-limiting log-log slopes ofs8svd for data and for
the K0 and K1 models, respectively. Data fitting and analysis
show that these quantities are closely frequency independent
for sufficiently high frequencies in the absence of nearly con-
stant loss and high-frequency electrode effects, and so they
are the exponents of power-law responses. Thus, fitting in
such a high-frequency region with a power-law model is ap-
propriate for determiningn. Good fits ofs8svd experimental
and synthetic data extending to sufficiently high frequencies
indeed show that all three of these slopes are equal as they
should be, and for materials satisfying the present U-model
criteria n has been frequently found to be very close to 2/3
in value for many different glasses.25–27

Fitting estimates ofb0 and b1 using the CK0 and CK1
models lead tob0=n0=n and to 1−b1=n1=n when the data
include an appreciable high-frequency response. The usual
relation9,14 1−b1=b0 follows immediately. When the limit-
ing slopes are 2/3, it follows thatb0=2/3 andb1=1/3, the
value used in the U model. Therefore, it seems likely that the
U model would be most appropriate for fitting all data for
which n<2/3.

ii. Hopping theory. Although Phillips1,12 has treated
stretched-exponential relaxation in great detail, his work pri-
marily considered mechanical and dielectric relaxation re-
sults for nonconductors, with little consideration ofb1 esti-
mates obtained from data involving frequency dispersion
associated with mobile charge carriers under field-forced
conditions. As he discusses, however, several treatments of
the trapping model involving fixed trapping sites lead to the
result

b = de/s2 + ded, s5d

wherede is the effective dimensionality of the configuration
space in which dispersive effects occur.

For Coulomb interactions, the valuede=3/2 wasderived,
leading tob=3/7, while for spin glasses on cubic lattices a
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value of 1/3 was obtained withde=1. The spin-glass model
is not directly appropriate for the present situation, and the
maximum-disorder universal-model treatments of Dyre and
Schrøder3 do not involve explicit Coulomb effects. A value
of de=1.35 was found to be most appropriate by these au-
thors. Further, there is no reason to believe that the stretched-
exponential correlation functionf0std, with 0,b0ø1, nec-
essarily includes such effects.

The U model is consistent with a value ofde=1 when Eq.
s5d is applicable. Some implications of the above results are
as follows. The Scher-Lax stochastic model, the microscopic
basis for the K1 and U models,15 is a three-dimensionals3Dd
one that treats all sites on a discrete lattice as equivalent and
independent and leads to a frequency response substantially
different from that of a later on-off one-dimensional bond-
percolation stochastic model.28,29 Thus, while theb1=1/3
value does not directly imply that the motion of the hopping
charge carriers is always one dimensional, it does imply that
the SE correlation function determining the K1 response,
f01std, is associated with a waiting-time distribution best in-
terpreted in terms of correlated processes occurring in a con-
figuration subspace with an effective dimension of unity. In
contrast, if Eq.s5d were applied directly to the K0 model,
then theb0=2/3 value would be associated with an unlikely
effective dimensionality of 4. These conclusions raise the
need for a detailed microscopic treatment that justifies the
U-model requirement that the effective dimensionality of its
ion-ion correlation function be unity.

Although a recent geometric derivation of stretched-
exponential response for mobile charge carriers leads to a
continuously variableb sRef. 30d and so is not relevant to
the present results, a much earlier CTRW treatment,19,20 in-
volving some elements of the Scher-Lax equations2d model
derivation, showed that the value ofb in stretched-
exponential temporal response was determined by the rate at
which mobile defects find new sites where dipole orientation
then relaxes. Although this defect-diffusion model involved
dielectric dispersion and dipolar reorientation, it may be ap-
plied to the present case of conductive-system dispersion as-
sociated with mobile charges. It then shows that for one-
dimensional motion the value ofb0 is half that for three-
dimensional diffusion, sob0s3d=2b0s1d. The corresponding
I0svd frequency responses involving the K0 model should
also satisfy this relation, as should their associated SEf0std
correlation functions, but not the corresponding K1-model
quantities not directly involving SER.

Although the dimensionality of a hopping material is an
intrinsic property of it, its effective dimensionality also de-
pends on material structure and external factors, such as the
presence or absence of a uniaxial forcing field. One therefore
needs to consider both the actual dimensionality of the ma-
terial and its effective dimensionality in considering appro-
priate values forb0 andb1 for different dimensionalities. In
particular, the effective dimensionality of the configuration
subspace for mobile charge correlations, and so that of their
correlation function, is not necessarily the same as the perti-
nentd value.

For the usual field-forced situation, both experimental re-
sults, discussed in the preceding section, and theoretical

ones, presented in the following section, show that for the
K0 model,b0s3d=2/3 is awell-justified choice. It then fol-
lows from the above defect-diffusion-model expression that
b0s1d=1/3, avalue also consistent with the limited experi-
mental frequency-response data currently available ford=1
situations and with the topological approach of the next sec-
tion. Because of the equality of the high-frequency log-
log s8svd slopes for thed=3 andd=1 K0 and K1 models, as
further demonstrated in Sec. III C, we may writeb1sdd=1
−b0sdd, and sob1s3d=1/3 and b1s1d=2/3, thus defining
unique K1-model shape parameter values.

It is important to note that although in the temporal do-
main the K0 response is of SE form, this is not the case for
the U model. Transformation of its frequency response to
that domain leads to a response that involves an effective SE
b value of unity in the short-time limit and a decrease reach-
ing 1/3 only in the long-time limit.11 Although both the K0
and U models can be used to fit the same data set, the U
model is not only better justified theoretically, but it gener-
ally leads to better fits, even for limited-range data. There-
fore, it should be used for fitting in place of the K0.

iii. Topological and conclusions. A recent treatment of the
motion of ions of a single type in homogeneous materials
makes use of physically based topological considerations,11

not to be confused with geometrical ones. The analysis starts
with the recognition that a forcing electric field present be-
tween two charged plane-parallel electrodes induces a
uniaxially anisotropic local dynamical metric. Within a local
polar coordinate frame there is a radial coordinate andsd
−1d angular coordinates. For thed=3 situation, local motion
with respect to the azimuthal coordinate is irrelevant for ho-
mogeneous materials, so the effective dimensionality isde
=2, while for streaming motion transverse to the electrodes
de=1. When the approach is applied to temporal stretched-
exponential behavior, it leads to justb=de/d, consistent with
the present results ifde=2 for the K0 model andde=1 for the
K1 one.

A natural interpretation is that for high frequencies, where
hopping motion is local, both models should lead to a limit-
ing slope of 2/3, as observed for both synthetic and experi-
mental data. The motion of the charges at very low frequen-
cies should be of streaming one-dimensional character,
consistent with the U-model value ofb1=1/3 andwith the
observation that the synthetic U-model frequency response
transformed to the time domain to yieldf1std is not of
stretched-exponential character except in the limit of long
times where its stretching parameter is indeed 1/3sRef. 11d.

The three disparate approaches above all lead to the same
unique value ofb1=1/3 for the Umodel and to the corre-
sponding K0 value ofb0=2/3. Although both models in-
volve the same high-frequency limiting slope of 2/3, their
responses are different except in the extreme high-frequency
region, and one generally finds that U-model fits of appro-
priate experimental data are much better than K0 ones with
b0 fixed at 2/3 or free to vary, as demonstrated later.

b. Consequences of theb1=1/3 requirement and the BNN
relation. Now when one setsb1 fixed at 1/3 in the K1 model
of Eqs.s2d ands4d to obtain the U response model, one finds
that «C1`=6«Ma, «C10=60«Ma, and so D«C1;«C10−«C1`
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=54«Ma=D«, since«D` subtracts out from the experimental
D«;«0−«`, one of the virtues of usingD« rather than either
of its two components. In addition, if one defines«C1S9 svd
;«C19 svd−ss0/v«Vd, then the resulting dielectric loss arising
from charge motion rather than from dipolar dispersion in-
volves a peak response atnp;vp/2p>0.011 22/2pto, with
«C1S9 svpd>14.405«Ma for the peak value.

An empirical expression that has been of considerable im-
portance in the past is that of Barton,31 Nakjima,32 and
Namikawa,33 commonly known as the BNN relation,

s0 = p«VD«vp, s6d

where p is a numerical constant of order 1 andvp is the
radial frequency dielectric loss peak, only equal to the value
listed above for the U model. For that model, however, it
follows that p=1/s0.011 22354d>1.65, a universal value
for all conductive-system data that are well fitted by the U
model.

Figure 3 in Ref. 3 is a log-log BNN-related plot that in-
dicates that most estimates ofp are close to the above value,
a satisfying result in view of the usual uncertainties associ-
ated with estimates ofD« and vp from experimental data.
Although Portoet al.34 have recently questioned the applica-
bility of the BNN relation under changes in charge carrier
concentration, excellent U-model fittings for wide concentra-
tion variation7 and the results discussed below show that
estimates ofp from such fits confirm the 1.65 value. Thus, it
will usually be appropriate in future to replace the BNN re-
lation by any of those listed above that connect effective
dielectric quantities, such as«C1`, to «Ma.

III. FITTING AND SCALING RESULTS FOR THE U
MODEL

When one has available an excellent fitting model appli-
cable for a particular experimental and material domain,
there is no need for scaling since data fitting with such a
model leads to explicit parameter estimates and thus to more
information than does the development of a master scaling
model. Although the U model is thus superior to scaling

within its domain of applicability, it is instructive to discuss
the scaling parameters following from it and to show their
applicability for data that include variations of both tempera-
ture and relative ionic concentrationxc. For this purpose,
data for the following materials will be used, as listed in
Table I: 0.5Li·0.5La·TiO3 sRef. 35d, xcK2O·s1−xcdGeO2

sRef. 23d, and 0.3s0.6Na2O·0.4Li2Od+0.7B2O3 sRef. 2d. The
first material is a polycrystalline fast-ionic Li+ conductor, the
second is a homogeneous glass with mobile potassium ions,
and the third is a mixed-alkali borate glass with mobile so-
dium and lithium ions.

A. Scaling possibilities and limitations

Before presenting fitting and scaling results for these ma-
terials, it is desirable to consider scaling approaches. It has
been customary to write a general scaling relation in the
form

s8svd/s0 ; r0s8svd = F8svtSd ; F8sn/nSd, s7d

where the left-hand parts refer to data and the right-hand
ones to a fitting model, andnS;1/s2ptSd is the scaling fre-
quency. The essence of good scaling then involves choosing
appropriatenS scaling values. Usually, no fitting is actually
carried out, and an equation such as Eq.s7d is merely written
to define the type of scaling to be used fors8svd data. Vari-
ous explicit choices fornS and discussions of the historical
background of scaling appear in Refs. 2, 3, 6, and 34. Here,
scaling will be carried out employing a fully complex ver-
sion of Eq.s7d for fitting, one that may be used to fit complex
data at any immittance level and may include nonhopping
processes.

Of the many past choices fornS, we here consider only
those of Sidebottom,5 Dyre and Schrøder,3 Macdonald,6 and
Roling and Martiny.2 The first two are essentially equivalent,
are both related to the BNN relation, and when expressed in
terms of «Ma are nS;s«Ma/D«dto

−1 and nS;s«Ma/D«d /
s2ptod, respectively. For the U model, wheretS becomes the
explicit characteristic response time of the model,to, esti-
mated from data fitting, these results lead tonS=0.0185/to

TABLE I. The U row is that for exact scaled U-model data. Rows A–D:rsvd-level U-model CNLS fits to materials with different
temperatures and ionic concentrations. The K0 row involves real-part CK0 fitting results of the scaled U-model data, and MA stands for
mixed alkali. All fits used modulus weightingsMWTd except those of rows A and K0, where proportional weightingsPWTd was usedsRef.
22d. Here 100SF is the percentage value of the relative standard deviation of a fit, and the last column lists its value for fits of the scaled and
subtracted data to the U-model hopping response.

Type/Ref. Material T sKd 100SF

10−7r0

sV cmd
10−7to

ssd «C1` «D`

100SF

or fb0g

U Scaled master: UM 10−7 107 6 0

A/35 0.5Li•0.5La•TiO3 179 0.98 6.25 233 25.27 65.01 1.65

B/35 0.5Li•0.5La•TiO3 225 0.42 0.018 0.0467 17.72 80.13 1.29

C/23 0.2K2O•0.8GeO2 414 1.13 22.8 87.4 2.60 9.29 1.68

D/23 0.02K2O•0.98GeO2 602 0.45 24.8 2.82 0.077 9.51 1.99

K0 Fit s8snd UM data 7.4 9.4310−8 1.63108 6.13 f0.638g
MA/2 0.3s0.6Na2O•0.4Li2Od

+0.7B2O3

Scaled tos8snd UM data
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and nS=0.00295/to, respectively. In contrast, the earlier
work of the author6 involved just theto quantity derived
from CMF fits of the K1 model. For the U model, that result
becomes nS;1/s2ptod=0.1592/to. Finally, Roling and
Martiny setnS;np, wherenp is the frequency at the peak of
the mobile-charge dielectric loss response, discussed in Sec.
II B. For the U model, the frequency of the«C1S9 svpd peak is
np=0.001 786/to, a factor of exactly the U-model BNNp
value of 1.65 smaller than the Dyre-Schrøder result.

The differences in the numerical values of the numerators
of the expressions for all of the above scaling quantities are
not significant for scaling, so they are all equivalent in this
sense. Nevertheless, the choice of a proper value ofto is of
the greatest importance for good scaling. Note, however, that
sinceD« andnp may be directly estimated from experimental
data without fitting, a good estimate ofto is not actually
necessary to form a scaling value ofnS when a value ofs0 is
available, also necessary for scaling ofs8svd itself.

But consider the following: the estimation ofD« from
data requires separate estimated values of both«0 and «`.
Estimation of both of these quantities, especially that of«0, is
rendered uncertain by the usual presence of electrode effects,
as demonstrated in the next section; in addition, the data
often do not extend to high enough frequencies to yield a
good estimate of«`. Further, estimation ofnS;np requires
subtraction using a good estimate ofs0 and then the deter-
mination of the frequency of the peak of a curve that usually
varies slowly in the neighbourhood of the peak, again an
inherently inaccurate process for ordinary experimental data.

B. U-model fitting

The above discussion shows that the usual determination
of scaling factors may depend on the use of only one or two
points of the data, rendering the results uncertain. On the
other hand, CNLS estimation of values ofs0, to, and«C1`

from U-model fitting makes use of all the data in an optimum
way, also provides an estimate of«D`, and allows electrode
effects to be adequately accounted for as part of the fitting.
Therefore, scaling with values of these quantities so esti-
mated is much more appropriate than are other approaches.
Let us define the resulting scaled variables ass̄;s /s0 and
n̄;vto; v̄;n /nS, wherenS;1/s2ptod.

Various fitting results are presented in Table I. The U line
in the table involves only the K1-model response withb1
fixed at a value of 1/3 and the other two parameters each
having their scaled values of 1. When, in addition,«V is also
set to the scaled value of 1, then, from Eq.s3d, «̄C1`=6. All
fits of experimental data shown here also used the U model
with an extra free parameter to estimate«D` and usually with
additional free parameterssnot shown in the tabled to account
for electrode polarization effects. No such series parameters
were needed or could be reliably estimated for the fit of row
C, but they were found necessary for all the other fits in
order to obtain best overall fits and best bulk parameter es-
timates. For the fit of row A, a series constant-phase distrib-
uted element, the SCPE, defined at the admittance level as
sSC;«VASCsivdgSC with 0øgSCø1 syielding complete
blocking when gSC=1d, was needed withgSC.0.89. Al-

though inclusion of only a SCPE was found to yield a good
fit for the row-B data, the better results shown in the table
included a SCPE with a capacitor in parallel, all in series
with a completely blocking capacitor.7,9,10 For the polycrys-
talline material of rows A and B, the data did not extend to
low enough frequencies to allow one to entirely rule out
grain-boundary effects. Finally for row D, although again a
reasonable fit was obtained on including a SCPE in the com-
posite fitting model, a better fit of the table was found by
replacing it by an additional K1 model with itsb1 parameter
also fixed at 1/3.

Other fits of the present data using the K1 model withb1
free to vary led to estimates of it that were, as usual, very
close to 1/3. See also the fitting results of Refs. 7, 9, and 11
for results for other materials. Even when the relative stan-
dard deviationSF of one of these fits withb1 free was
slightly smaller than that obtained with it fixed at 1/3, the
relative standard deviations of the free parameters were usu-
ally smaller than those with it free, indicating a more signifi-
cant fit. It is also worth emphasizing that comparison of the
to estimates for the two types of fit show that they are far
less stable than those ofb1 since a small change in the esti-
mate of the latter results in an appreciable change in the
correspondingto estimate.

The results shown in the A, B, C, and D rows in the table
are consistent with earlier results for different materials
where K1-model data fits of the present kind led tob1
>1/3 estimates that were nearly independent of both tem-
perature and ionic concentration, making it reasonable to use
the fixed value ofb1=1/3 in thepresent work.6–11 It is worth
noting, however, that the A- and B-row estimates of«C1` are
not exactly proportional here to 1/T, as expected from Eq.
s4d and from earlier work.7 This discrepancy may be associ-
ated with the large role that electrode effects play in the
present data, as indicated in the response curves presented
below. Fitting results for the data of the mixed-alkalisMA d
material listed in the final row of the table is discussed in
Sec. III C.

The K0-row results in the table involved real-parts̄8 fit-
ting except the listed«̄C1` value where full complex-data
fitting was used. Such fitting necessarily used both the K0
model and a free dielectric-constant«x parameter to estimate
the «̄C1`=6 present in the U-model scaled data. The scaled
s̄8sn̄d U-model data, designated UM, extended up to a maxi-
mum value of n̄=105 where the finaln slope was about
0.664. This data set was fitted by the real-part K0 model
using nonlinear least squares. The last column in the K0 row
shows itsb0 estimate in square brackets. For much experi-
mental data wheres̄8sn̄d is no larger than 102 to 103, CK1-
model fitting still leads tob1.1/3 estimates, but CK0 fitting
yields 0.5,b0,0.6, even though separate power-law fitting
of the bulk part of thes8svd data at the high-frequency end
usually results inn estimates much closer to 2/3. Note that
although the present CK0-model fit of the virtually exact K1
scaled synthetic data leads to a value of«C1`= «̄C1` reason-
ably close to the exact value of 6, the estimate oft̄o is about
16 rather than 1. Such a larger value than that for K1-model
fits is characteristic of K0 fits. Because of the importance of
the K0 model to the K1 one, results of fitting the UM data of
row 1 of the table using the K0 model with various weight-
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ing choices are presented and discussed at the end of Sec. III.
Finally, the other quantities in the last column of the table

are percentageSF values for fits of each set of A–D data after
subtracting the effects of estimated«D` and electrode polar-
ization parameters from the original data and then fitting the
subtracted results to the scaled U model. As expected, such
subtraction of comparable quantities leads to less accurate
fits than those involving the full data because it involves the
subtraction of nearly equally large quantities to find their
small differences. Nevertheless, the two parameter estimates
of the model were very close to the exact U-model data
values of unity for all four fits of subtracted data.

C. U-model scaling

Complex-plane plots of resistivity data are particularly
useful in showing low-frequency electrode effects when
present. In order to compare curves for different materials
and conditions, all the figures presented here involve data
scaled as above usingr0 and to values estimated from the
unscaled U-model fits of Table I. Figure 1 presents such re-
sults for the A and B material listed in the table. In order to
maximize clarity, not all points used in fitting are included in
this and the other figures and in none does the size of a data
symbol indicate its error bar. In Fig. 1 only about half of the
data points are plotted, and, in addition, for the B data the
right-hand spur extending to over 1.3 for the actual fitting
was cut off as shown. No such cutoff was applied for the A
results.

The figure shows that the originalsscaledd data lines for
the two temperatures are similar for the high-frequency re-
sponse region, but begin to diverge at the lowest frequencies.
The remaining two curves are those for data from which the
effects of «D` and electrode polarization have been sub-
tracted before scaling, a simple procedure afterLEVM fitting.
It is clear that in the present representation the contributions
to the overall frequency response from nonhopping«D` and
series electrode effects dominate the dispersive U-model
hopping ones except at the high-frequency end of the curves.
Further, we see that the remaining hopping points, identified
by “sub” in the figure, fall closely on the U-model master-
curve solid line, although those for the A situation show a bit
more deviation than do the B ones.

It is particularly important to emphasize that, to the de-
gree that the nonhopping effects were adequately estimated
by the fit of the full data, the hopping response shown here
does not consist of points fitted to the master curve, but
instead it represents the besthopping-dataestimates obtained
from the fits of the full data. The excellent agreement of the
hopping points with the exact U-model master curve for both
temperatures shows not only that the present scaling is ap-
propriate, but that the hopping response is indeed very well
described by the U model and its restriction tob1=1/3. As
we shall see, these conclusions are further confirmed by the
results shown in the subsequent figures. Fitting with a com-
posite model to allow the nonhopping contributions to the
full response to be subtracted does not guarantee that the
resulting data points will lie close to the U-model hopping
curve. That they actually do so is confirmation that the U
model represents the dispersive hopping part of the response
adequately.

Figure 2 shows a more stringent fitting situation, one
where the unscaled dispersive part of the response is much
smaller for the low-concentration D condition than that for
the C one. Here, in order to maximize resolution and clarity,
the y-axis-scale unit length is made greater than thex-axis
one, so this is not quite a traditional complex-plane plot.
Low-frequency electrode effects are somewhat less apparent
for the present data than are those of Fig. 1, and the differ-
ences between the original-data curves and those represent-
ing only hopping arise primarily from the relative sizes of
the dispersive contributions and those associated with the
values ofr0 and «D`. As the limit of zero concentration of
mobile ions is approached, simple nondispersive Debye re-
laxation behavior stemming entirely fromr0 and «D` be-
comes more and more dominant in the data, as discussed in
Sec. II B 2 a anddemonstrated in detail below.

The second curve from the top of Fig. 2 shows scaled
Debye response as a dashed line. Just below it appears the
D-material points denoted “sub el” obtained after subtraction
of electrode effects from the top D-data curve. The “sub el”
points are exceptionally close indeed to the Debye response

FIG. 1. Complex-plane resistivity plots of scaled data for the A
sT=179 Kd and B sT=225 Kd rows of Table I, before and after
subtraction of all nonhopping contributions and including compari-
son of the latter results with the exact U-model hopping response.

FIG. 2. Stretched complex-plane resistivity plots of scaled
variable-concentration data for the C and D rows of Table I, before
and after subtraction of all nonhopping contributions for the C data
sdenoted “C sub”d and separate subtractions of electrode effects
s“sub el” pointsd and then of«D` effects for the D datasdenoted “D
sub”d. The sub el results are compared with pure Debye response
and the others with the exact U-model dispersive response.
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curve here. When the effect of«D` is then subtracted from
these points, however, the resulting D-material bulk disper-
sion points lie close to the U-model scaled response, but
show some scatter arising from stringent subtraction effects.
Without such subtraction, however, the resulting original
modulus formalism approach leads to ab1 estimate of about
0.9 instead of 1/3sRefs. 6, 7, and 23d. Because the C data
set involves appreciably smaller electrode effects relative to
dispersion effects than does the D data, its points after all
subtractions lie somewhat closer to the U-model master
curve than do the D ones, but their final dispersive hopping
responses still show some scatter. Nevertheless, it is clear
that both the C and D results scale to the U-model data
curve.

Figure 3 presents scaled frequency-response results at the
modulus level for the A and B situations. The scaled master
curve and the subtracted points all lie appreciably above the
original data points primarily because of the subtraction of
the effects of«D` sRefs. 6 and 9d. The dispersive B points are
poorer, however, than the A ones in the high-frequency re-
gion past the peak because electrode effects dominated the
former data more than the latter, resulting in greater subtrac-
tion errors. Nevertheless, when the somewhat irregular B
data points are fitted to the master curve with CNLS, the
resulting open-circle points fit excellently.

Figure 4 shows similar results for the C and D material.
Note that even with a magnification factor of 10 the original
D data curve is appreciably smaller than the corresponding C
one, resulting in greater deviations of the D dispersion points
from the master curve than for the C points. Nevertheless,
the results shown in Figs. 3 and 4 verify both the scaling
approach and the appropriateness of the U fitting model.

In Fig. 5, a traditional log-log scaling plot involving
scaleds8 and scaled frequency is presented for all four fits
included in Table I. In addition, a curve for a mixed-alkali
material with two types of mobile ions is included.2 This
curve was scaled to agree with the present master curve at its
highest point, and it is evident that it then does not agree well
with the single-ion U response curve, particularly in the low-
frequency region where dispersion is just beginning to be
evident.

The plots in Fig. 5 of the scaled data and those in the
magnified inset show appreciable electrode-polarization de-
viations from the master curve at low frequencies for all the
data points, but note particularly the deviations appearing at
high frequencies for the A data. The slope of this curve is
increasing and reaches a value of about 0.77 at its highest
point, in full agreement with prior work on non-negligible
high-frequency electrode effects.8,36 It is thus evident that
electrode polarization can be important even at high frequen-
cies where it may sometimes be erroneously identified as
arising from nearly constant loss processes.8,36,37

In contrast, Fig. 6 shows scaled and fitted results for the
dispersive-response parts of the A, B, C, and D data sets.
Symbols of different sizes have been used to allow easy
identification of the various responses. Although, as one
would expect, the present scaling is limited only by the ac-
curacy of the estimation of the scaling parameters from the
original CNLS fits and is certainly near optimum, it is par-
ticularly gratifying that the estimated dispersive data points
fit the master curve so well, thus verifying the appropriate-
ness of the U model for these data sets. In the past, scaling

FIG. 3. Scaled log10 frequency response of scaledM9 A and B
data before and after subtraction of all nonhopping contributions
and including comparison of the latter results with the exact
U-model hopping response. In addition, the open circles show the
results of fitting the noisy subtracted B data with the U model.

FIG. 4. Scaled log10 frequency response of scaledM9 C and D
data before and after subtraction of all nonhopping contributions
and including comparison of the latter results with the exact
U-model hopping response.

FIG. 5. Log-log scaled frequency response of scaleds8 A–D
data sets, including comparison with the exact U-model hopping
response. The solid-circle points are for the mixed-alkali data iden-
tified in Table I. In addition, the low-frequency parts of the re-
sponses are shown with higher resolution in the inset graph.
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has not usually been attempted for data that involve signifi-
cant electrode polarization effects, but the present results
show that this need not be a limitation, and, as well, it is
clear that scaling is unnecessary except to allow comparison
of plots for different situations. In most cases, one only need
carry out CNLS fits of available data sets to obtain maximum
information from them.

The K0 model, through its normalized formI01svd, is at
the heart of the K1 model, as shown in Eq.s2d, and the U
model is just the K1 one withb1 fixed at the theoretically
appropriate value of 1/3. Therefore, the differences between
the frequency responses of the U model and the CK0 one are
both interesting and important both theoretically and experi-
mentally. Some of these differences are illustrated by the
synthetic-data results shown in Figs. 7–9 and indicate under
what conditions the CK0 model leads to a high-frequency-
limiting slope of 2/3 so thatb0+b1=1. Here, exact U-model
scaled data, extending to high relative frequencies, is fitted in
various ways by the CK0 model. Modulus weighting
sMWTd, only appropriate for CNLS fitting,22 led to some-
what better CNLS fits and smaller estimated parameter stan-
dard deviations here than did proportional weightingsPWTd.

Complex plane resistivity plots such as that of Fig. 7 are
particularly useful in emphasizing low-frequencysn̄ø1d re-

sponse, but do not show details of high-frequency behavior
well. As is evident, however, there are considerable low-to-
midfrequency differences between the U-model response and
that of the CK0 withb0 fixed at 2/3, ones that appear even
though their high-frequencys8 limiting responses are the
same. Figure 8 shows, as expected, that the relative residuals
for the two CNLS CK0 fits of Fig. 7 are largest in the lower-
frequency regions and those fors8 become very small at
high frequencies ass8 itself becomes very large. But a plot
like this does not indicate how the actual slopes ofs8 vary
with frequency for the various situations considered.

Therefore, log-log slopes ofs8 versus scaled frequency
are presented in Fig. 9. Most noteworthy is the failure of the
CNLS CK0 modulus-weighting fit withb0 free to lead to a
value close to 2/3 even when fitting data for which the maxi-
mum value ofs8 is as large as 105. When only thes8 part of
the data is fitted, however, the results for PWT, also shown in
the K0 row of Table I, yield a limiting slope much closer to
2/3. PWT weighs all points proportionately, but unity
weighting sUWTd emphasizes the largest part most, and al-
though its largest slope value here is about 0.665, it involves

the worst estimate ofr0̄ for all the fits shown. The best
estimate of this quantity, 0.987, is that for the complex fit
with b0 free. Complex CK0 fits using PWT or UWT also
lead to estimates ofb0 much closer to 2/3 than does MWT,
but other free parameters are less well estimated. The present

FIG. 6. Log-log scaled frequency response of scaleds8 A–D
data sets fitted to the U-model master curve after subtraction of
electrode-polarization contributions.

FIG. 7. Complex-resistivity-plane plots of the exact K1 model
response withb1=1/3 sU-modeld and CK0-model fits of the K1
data in complex formsC fits with MWTd. With b0 free to vary, its
estimated value was about 0.57.

FIG. 8. Real and imaginary relative residuals vs scaled log10

scaled frequency for the two CK0 CNLS fits of Fig. 7.

FIG. 9. Scaled real-part conductivity log-log slopes vs log10

scaled frequency for the K1 data and for CK0 complexsC, MWTd
and K0 real-partsRd conductivity fits with various weightings.
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results show that CK0 fits of U-model data only lead tob0
estimates close to 2/3 when weighting is employed that em-
phasizes the high-frequency part of the data. Similar CK0
fitting of wide-range synthetic K1-model data withb1=2/3,
appropriate for one-dimensional situations, led to CK0 fits
with b0 close to 1/3, in agreement with the discussion in
Sec. II B 3 a ii.

IV. SUMMARY

The present work shows that for homogeneous materials
involving mobile ions of a single type the importantb1 shape
parameter of the K1 dispersive frequency-response model
has a unique, constant value of 1/3, resulting in the U model,
one whose high-frequency-limiting log-logs8snd slope isn
=2/3. These results are inapplicable to mixed-alkali situa-
tions or to mixed electronic and ionic conduction. For single-
ion materials, CNLS fits of frequency-response data withb1
taken as a free parameter in the K1 model have led to esti-
mates very close to 1/3. Here it is shown that on fixingb1 at
1/3, the U model leads to excellent fits of data independent
of temperature and ion-concentration variation, as expected
from several different analyses.6–9,11 Estimates ofn at high
frequencies by others25–27,38–40have led ton.2/3, indepen-
dent of temperature and ionic concentration over the limited
ranges considered, further confirmation of the appropriate-
ness of the U model within its range of applicability.

Scaling, using the U-model fit results of Table I for vari-
able concentration and temperature, was carried out forrsnd,
M9snd, ands8snd data and resulted in the complex-plane and
frequency-response plots of Figs. 1–6. Scaling was initially
unsatisfactory for all these data sets because of the influence
of nondispersive effects associated with electrode polariza-
tion and with «D`. When these effects were subtracted to
give best estimates of only the dispersive response, however,
scaling of the resulting data was successful and led to data
points close to those of the exact scaled U model. Fitting of
these data points to this model then yielded scaled parameter
values in excellent agreement with those of the model. Even
when the best available scaling parameters are used, these
results suggest that fitting with a model that takes all pro-
cesses influencing the data into account may be necessary to
yield meaningful scaling comparisons, as it certainly is in
order to obtain good estimates of hopping and dielectric pa-
rameters from most data. Finally, the results of fits using the
K0 model, a crucial precursor of the U model, to U-model
data are presented in Figs. 7–9 and show how their responses
differ.
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