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Dynamics of the nonassociated supercooled liquids N-methyl-ε-caprolactam (NMEC) and glycerol in the
frequency domain are investigated using full complex-nonlinear-least-squares fitting of immittance spectroscopy
data for appreciable temperature ranges above the glass transition. Such fitting, not previously used for these
materials, helps to identify physical processes responsible for the data and elements of their common behavior.
Several different fitting models were applied to find a physically plausible best-fitting one to distinguish
quantitatively between the dielectric effects of dipoles and the conductive effects of mobile ions. The utility
of many composite fitting models was investigated, and although a pure conductive-system dispersive (CSD)
fitting model led to good but physically unrealistic fits of all data sets, the dielectric-system dispersive (DSD)
Davidson-Cole model best fitted the R-dispersion part of the responses. Nevertheless, the series combination
of such a DSD model and a separate CSD model (one not associated with electrode effects) was found to
yield much better fitting of the data for both materials. Although the CSD model plays somewhat the role of
the conventional parallel DSD Johari-Goldstein �-response, it is here in series and arises from mobile impurity-
ion effects rather than from dipolar ones. Previous analyses of data of the present and other molecular materials
have often involved two DSD models in parallel, but fitting with such a composite model led here to less
physically plausible parameter values and ones with appreciably more uncertainties. Surprisingly, the series
DSD and CSD composite-model fits led to comparable estimated values of the NMEC and glycerol dielectric
strength parameters, as well as to the nearly equal small thermal activation energies of these parameters.

1. Introduction

This work is concerned with approaches for identifying the
physicochemical microscopic origins of the dispersed frequency
response observed in such liquids as N-methyl-ε-caprolactam
(NMEC), a low molecular weight nonassociating liquid involv-
ing small rigid molecules with predominant van der Waals
interactions,1-3 and glycerol, an ideal H-bonded alcohol.3-6 For
these materials, dispersive effects are particularly interesting in
the high-viscosity temperature region just above the glass
transition temperature, Tg, about 172 K in NMEC and 185 K in
glycerol. In this region, crystallization is surpressed; the material
is characterized as glass forming; and its conductivity, associated
with mobile impurity ions, is appreciable. A list of acronym
definitions and fitting model descriptions is included at the end
of this work.

In general, available dispersed immittance response data in
the frequency range 0.1 e ν < 106 Hz for the NMEC data and
from about 0.01 Hz to nearly 109 Hz in glycerol may involve
several distinct physical processes: (a) dielectric-system disper-
sion (DSD) associated with the presence of permanent and/or
induced dipoles;4-7 (b) conductive-system dispersion (CSD)
involving a distribution of resistivity relaxation times associated
with thermally activated ionic hopping;8-10 (c) both processes
present and each leading to significant dispersed response

usually dominant in different frequency regions; and (d) case
(c) plus one or more nondispersive relaxation processses. For
case (a), it is usually assumed that any observed resistivity is
frequency independent in the measured data range and may be
represented by its dc value, F0.1,11,12 Similarly, for (b), one
assumes that in this frequency range dipolar and vibratory effects
lead to a frequency-independent bulk dielectric constant, εD∞,
often denoted by just ε∞. Apparently, composite-model analysis
approaches for cases (b), (c), and (d) have not been considered
for molecular liquid data prior to the present work.

Because the meanings of the words “relaxation” and “disper-
sion” have not always been clear or adequately distinguished
for temporal and frequency response situations, it is worthwhile
to define them for the present work. Although the word
“relaxation” has often been employed to mean either dispersion
and/or single-time-constant Debye relaxation, here “relaxation”
will refer only to a process involving a single relaxation time.
In contrast, a dispersive process is one that involves either many
discrete individual relaxation times or a continuous distribution
of such times, in either case a distribution of relaxation times
(DRT). It may be modeled in the time or frequency domain by
a single response function involving a characeristic relaxation
time, and when its DRT is a ∆ function the response involves
only a single relaxation time, Debye relaxation response. It
follows from the above definitions that such designations as
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“the nonexponentiality of relaxation” necessary imply the
presence of dispersion and corresponding deviation from Debye
response.

In the time domain, Debye relaxation response is of the form
exp(-t/τ0) and leads in the frequency domain to the normalized
response I(ω) ≡ 1/[1 + iωτ0]. Here, ω ) 2πν is the radial
frequency, and τ0 is the characteristic relaxation time of the
response function and is unique for that response. Thus, Debye
relaxation is not dispersive. In the frequency domain, immittance
spectroscopy involves four related complex-quantity immittance
levels, defined as resistivity (or impedance), F(ω); electric
modulus, M(ω) ) iωεVF(ω); admittance (or conductivity), σ(ω)
) 1/F(ω); and dielectric permittivity, often called dielectric
constant (even when frequency dependent and complex), ε(ω)
) 1/M(ω) ) σ(ω)/(iωεV), where εV is the permittivity of
vacuum.

It is important to note that while any formal fitting model
may be used for fitting of data expressed at any of the four
immittance levels, definition of a model at the dielectric level
involves a distribution of dielectric relaxation times, usually
associated with dipolar effects, and definition at the resistivity
level involves a resistivity DRT, often associated with hopping
of mobile ions. Thus, for Debye dielectric relaxation, we may
write εDebD(ω) ) εD∞ + ∆ε/[1 + (iωτD0)], where ∆ε ≡ εD0 -
εD∞, involving the low and high-frequency limiting values of
εDebD(ω). Similarly for Debye conductive-system relaxation,
FDebC(ω) ) F∞ + ∆F/[1 + (iωτC0)], where ∆F ) FC0 - FC∞,
the low- and high-frequency limiting values of FDebC(ω). In the
present work, no dielectric Debye functions will be needed for
fitting, so endemic resistive Debye relaxation response will often
be denoted here by just Debye.

It is usually found that F∞ is either zero or negligible, the
situation for the present materials, but ε∞ is never negligible
for real materials. The subscripts “C” and “D” are used herein
to denote conductive or dielectric quantities and “P” or “S” for
parallel or series connections of individual models or elements.
Note that a resistance or resistivity in parallel with a capacitance
or dielectric constant element leads to conductive-system Debye
response. In the absence of F∞, it involves the quantities FCP,
εCP, and the characteristic relaxation time τCP ) εVεCPFCP.
Similarly for the series connection of FDS and εDS, one obtains
a dielectric-system Debye relaxation response of εDS/(1 + iωτDS)
with τDS ) εVεDSFDS. More general conductive-system disper-
sive response involves a weighted (i.e., a DRT) sum or integral
of resistive and dielectric elements in parallel,9 and dielectric-
system dispersive response involves a weighted sum or integral
of resistive (effective loss parameter) and dieletric elements in
series, defined at the dielectric level.

Athough electromagnetic theory precludes distinguishing
between dielectric and mobile-charge bulk effects by means of
external measurements, such as those of immittance spectros-
copy, the present materials are molecular, and thus choice (a)
is the conventional and natural one. On the other hand, ionic
motion in ion-conducting glasses has been shown to lead to
type (b) CSD response that is well modeled by a continuous-
time, random-walk hopping model associated with stretched-
exponential temporal behavior.8,13,14 Finally, if both processes
were simultaneously present as in case (c), one might expect
that each could lead to a separate but possibly unresolved
dispersion peak. Alternatively, a single dispersion process and
a relaxation (Debye) process might be present. Although all of
the above types of response could potentially play some role in
the data for the present materials, not all are necessarily
physically plausible for them.

A previous detailed fitting study15 surprisingly showed that
synthetic type (a) dispersed dielectric frequency response data
with some frequency-independent conductivity (i.e., involving
no resistivity relaxation times leading to dispersed response in
the measured frequency domain) could be well fitted by a type
(b) ionic hopping model with a frequency-independent εD∞, and
vice versa. It was suggested there that some discrimination
between the two dispersion types might be possible if data for
a range of temperatures were available. The present study shows,
however, that physical considerations are necessary as well to
achieve meaningful discrimination for the present molecular
liquids.

Yet why might it matter? A reader of an earlier version of
the present work stated that “any dielectric expert” would
conclude from the NMEC data that it represents “a conventional
dipolar relaxation scenario with some ionic conductivity due
to impurity.” Note the use of the word “relaxation” here. Another
reader suggested that measurements in the time domain would
allow one to distinguish between dipolar and mobile charge bulk
effects because on the application of a step electric field the
former would store energy and the latter would dissipate energy
without limit. Because there are no ideal dielectric materials
and all show some impurity-ion conductivity, this argument is
inappropriate, and dielectric experts who reach conclusions
based just on the plotted shape of data curves, or even on
approximate fits of the data perhaps assuming simple dipolar
relaxation ab initio, may thereby be ignoring the complexity of
real data.

Section 2 defines the individual and composite fitting models
used herein, including parts that represent possible electrode
effects, dielectric dispersion, and conductive-system dispersion.
Only two different dispersive models are used, but each involves
separate dielectric and conductive forms. Section 3 summarizes
the detailed data and fit results found for the present supercooled
liquids, and section 4 lists conclusions that follow from the
fitting results and analyses.

2. Fitting Models

2.1. A General Fitting Model Transformation. Although
there are a large number of possible models that have been used
for representing bulk dispersion, for simplicity I shall be
concerned here with only a few, most of which have been widely
employed in past work and might be pertinent for the present
data sets. Several different DSD models have been used in the
past to fit the R-dispersion region of the dielectric-level
frequency response of glass-forming molecular liquids. Yet often
only the imaginary part of the data, expressed at the dielectric
level, ε′′ (ω), has been considered, and rarely is the adequacy
of several different models quantitatively compared for the same
data sets. It is also rare that complex fits of full data sets have
been carried out. Therefore, the present work involves complex
fits of all ε(ω) data for several possibly appropriate models of
DSD, CSD, and mixed character.

As already mentioned and demonstrated, a given dispersive
frequency-response model may be defined either at the resistivity
level, involving a distribution of resistivity relaxation times, or
at the complex dielectric constant level, then involving a
distribution of dielectric permittivity relaxation times. To
distinguish types of models, let the subscript k take on the values
D, for DSD models, and 0 for a comparable type of CSD model.
Next, in terms of the normalized general response function,
Ik(ω), which satisfies Ik(0) ) 1 and Ik(∞) ) 0, one may write
for DSD situations, εD(ω) ) εD∞ + ∆εDID(ω), where ∆εD ≡
ε′D(0) - ε′D(∞), the dielectric strength function, hereafter
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designated by just ∆ε, and we denote ε′D(0) and ε′D(∞) by εD0

and εD∞, respectively. Similarly, for the k ) 0 CSD situation,
FC(ω) ) FC∞ + ∆FCI0(ω), where ∆FC ≡ F′C(0) - F′C(∞), with
F′C(0) ≡ FC0 and F′C(∞) ≡ FC∞. In the usual situation of FC∞
negligible or zero, ∆FC is equal to FC0.

Besides the k ) 0 CSD type of response, another important
one exists that may be derived from such response and will be
identified by the k ) 1 choice. In 1973, it was shown separately
from both macroscopic16 and continuous-time, random-walk
microscopic13,14 considerations that for a CSD situation a new
frequency-response model, FC1(ω), could be derived from the
k ) 0 FC(ω) one. Few other important CSD fitting models
besides the present FC1(ω) one have been derived from both
microscopic and macroscopic analyses.

With FC∞ negligible, the complex modulus function associated
with FC1(ω) is MC1(ω) ≡ iωεVFC1(ω), and the transformation
from a k ) 0 model to a k ) 1 one is then given by8,9,14,16

MCl(ω)) iωεV FCO I1(ω)) [1- I01(ω)]/εC1∞ (1)

where we do not distinguish between k ) 0 and k ) 1 FC0

quantities but use the same symbol for both, with σC0 ) 1/FC0.
The 01 subscript in eq 1 indicates that, although the k ) 0 I0(ω)
function involves its usual shape parameter, the value of this
parameter is to be determined by fitting data with the FC1(ω)
model, not with the FC0(ω) ≡ FC(ω) one. Note that eq 1 shows
that εC1∞ ≡ ε′C1(∞), a high-frequency-limiting dielectric permit-
tivity contribution but one associated entirely with CSD
behavior. The eq 1 transformation from a k ) 0 model to a k )
1 one has also been shown to involve just a simple change in
the k ) 0 DRT.9,17

The important effective dielectric constant εC1∞ may be
expressed as

εC1∞ ) σC0〈τ〉01/εV ≡ (σC0τC0/εV)〈x〉01 ≡ εMa〈x〉01 (2)

where εMa ≡ σC0τC0/εV, 〈τ〉01 is the mean relaxation time of the
I01(ω) relaxation-time distribution, and x ≡ τ/τC0. For the k )
0 situation, εC0∞ is identically zero, but εC00 is just εMa〈x〉0. The
normalized mean, 〈x〉0, is unity for a conducting Debye model,
and for the more general k ) 1 FC1(ν) model, εC10 ) εMa〈x〉1.

For the mobile-ion situation with full dissociation, it has been
shown that εC1∞ is proportional to the ionic number density and
to 1/T, where T is the absolute temperature.8,9,14 Thus, εC1∞ goes
to zero as the ionic concentration approaches zero, and eq 2
clearly shows that it is entirely associated with mobile charge,
not dipolar effects, contrary to the statement of a reader that
such a quantity cannot “arise entirely from mobile ions”. Of
course, even for pure CSD situations, the bulk dipolar quantity
εD∞ is always present and greater than 1 in value. Thus, when
εC1∞ is nonzero, the full high-frequency-limiting dielectric
constant is ε∞ ) εC1∞ + εD∞ and is never zero. In general, Ik(∞)
) 0 for k ) D and 0, and so both ε′DS(∞) and ε′0P(∞) are both
identically zero, while for k ) 1 ε′1p(∞) ) εC1∞, not zero for
mobile ion situations.

Interestingly, a reader suggested that a dielectric permittivity
such as ε′0P(∞) cannot be zero. Such conclusions arise from
confusing model results with real data ones. As described above
for Debye situations and elsewhere in general,8,9 such zero
values are both appropriate and necessary because a full fitting
model requires the addition of the endemic nonzero frequency-
independent dipolar quantity εD∞ or ε∞ in parallel with the main
dispersive model for k ) D and 0 situations. Thus, a free
capacitative parameter, C, representing ε∞ is required in these
cases for proper fitting of all dynamic processes present. Because
an εC1∞ estimate may be calculated directly from estimates of

the other parameters present in eq 2, the necessary free parallel
fitting quantity in the k ) 1 case is just εD∞. See ref 18 for
further discussion of these matters.

2.2. Specific DCD, DC0, DC1 and KD, K0, K1 Dispersive
Models. 2.2.1. The Three DaWidson-Cole Models. As shown
in the previous section, given a dispersive model, it can often
be expressed as a k ) D dielectric-response model or as a k )
0 or k ) 1 CSD one. The empirical Havriliak-Negami model19

has been frequently used, especially for DSD data fitting.1,20

Its normalized form is

IHN(ω) ≡ [1+ (iωτHN)γCC]-γDC (3)

and it reduces to Debye behavior when both shape exponents
are fixed at unity, to Cole-Cole (CC) DSD response when γCC

is a free variable and γDC ) 1, and to Davidson-Cole (DC)
response21,22 when γCC ) 1 and γDC is free to vary.

Both the Havriliak-Negami and the Cole-Cole models lead
to nonphysical behavior as the frequency tends to zero, however,
and so the k ) 0 form of neither can properly be transformed
by eq 1 to k ) 1 form. Thus, only the three DC models will be
considered here. The dielectric-level DC model was originally
derived from plausible physical considerations,21 and such
response has also recently been shown to arise from a self-
similar fractal assumption, and it is suggested there that the same
general type of model derivation should be applicable to ionic
hoping as well as to dispersed dipolar rotation.22 Because the
DC model may be used for either DSD or CSD situations, define
it as DCD for dielectric response or DC0 or DC1 for conductive-
system response. Next, for applications for which FC∞ ) 0,
FDCk(ω) ) FC0IDCk(ω), with k ) 0 or 1, and the τHN of eq 3 is
replaced by τC0. Similarly, its DSD form at the complex
dielectric level may be written as εDCD(ω) ) ∆εDCDIDCD(ω),
and we shall refer to ∆εDCD as just ∆ε.

Although up to the present, the eq 1 transformation has only
been used for the stretched-exponential Kohlrausch-model
situation discussed below, it may be applied to generate a new
CSD fitting model, starting from the IDC0(ω) simplification of
eq 3, to obtain a closed-form expression for the DC1-model
quantity IDC1(ω). The three DC-model shape parameters will
be denoted γDCD, γDC0, and γDC1. We then find for γDCk values
of 1, 1/3, or 1/6 that εC00/εMa, εC1∞/εMa, and εC10/εMa 〈x〉k results
are 1, 1/3, or 1/6; 1, 1/3, or 1/6; and 1, 2/3, or 7/12, respectively.
The first two series are just the values of γDC0 or γDC1, while
the last ones are given by (1 + γDC1)/2. The corresponding k )
D DSD values of εDD0/εMa are the same as those of εC00/εMa.

2.2.2. The Three Kohlrausch Stretched-Exponential Mod-
els. Because no general closed-form analytic expressions are
available for the frequency response of these models, one must
calculate such response by starting with a known temporal decay
or correlation function, φ(t), and Fourier transforming its
negative derivative, -dφ(t)/dt, to the frequency domain. Thus,
here one sets φ(t) equal to Kohlrausch stretched exponential
response, exp[-(t/τk)�k],8-10,16where k is either D or 0; the shape
parameters �D and �0 satisfy 0 < �k e 1; and τk is the
characteristic stretched-exponential relaxation time. For these
two k choices, one formally obtains specific Ik(ω) response
functions, the same except for the immittance level to which
they apply.9 The resulting εD(ω) DSD response, often just
identified as the Williams-Watts (WW)23 or KWW model, is
here named the KD model, and the corresponding CSD FC0(ω)
one is designated the K0 model.

The eq 1 transform of K0 I0(ω) response leads to specific
FC1(ω) CSD response, called the K1 model, and involves a �1

shape parameter with 0 < �1 e 1.8,9,14 Although no closed-
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form expressions are available for the Kk functions except for
a few fractional values of �k, such as 1/3, 1/2, and 1, they can
be calculated very accurately for both simulating and fitting data
using the free LEVMW complex-nonlinear-least-squares com-
puter program.24 It is worth emphasizing that because the K1
model is only indirectly derived from a stretched-exponential
Fourier transform, its temporal response, unlike that of the KD
and K0 models, is not of stretched exponential form and only
reaches it in the limit of long times.9,14

For the k ) 0 and 1 CSD choices, the K0 and K1 models
lead to the results 〈x〉0 ) �0

-1Γ(�0
-1) and 〈x〉01 ) �1

-1Γ(�1
-1), where

Γ is the Euler gamma function. Given values of �k and εMa,
one can then calculate those of εC00 and εC1∞ using the
expressions given in section 2.1. In addition, it is found that
εC10 ) εMaΓ(2�1

-1)/Γ(�1
-1). When �1 ) 1, 1/3, or 1/6, these

results lead to values of εC1∞/εMa (equal to εC00/εMa values for
the same � choices) and εC10/εMa of 1, 6, and 720 and 1, 60,
and 332 640, respectively.

Thus, for small �1 values, the K1 model can lead to
exceptionally large effective dielectric constants associated
entirely with mobile charge, ones that are much larger than those
associated with the DC1 model discussed in section 2.2.1. The
K1 �1 ) 1/3 value is particularly important because for a
microscopically homogeneous material whose structure is also
temperature independent this value is theoretically predicted to
be independent of both temperature and charge-carrier concen-
tration, leading to a semiuniversal response model experimen-
tally found to best fit a wide variety of CSD data.8,9

2.3. Composite Fitting Models. A single bulk dispersion
model is usually found to be inadequate for good fitting of full
immittance data sets because they usually involve more than
one physical process, and so a composite model is needed. Such
models may include responses in parallel with and/or in series
with that of the bulk DSD or CSD model. For easy identification,
the designation of such a composite model will be given in the
form PB ·S, where P includes all elements in parallel with a
bulk dispersion model B, and S all the ones in series. For the
present work, I shall consider only DCD, KD, K0, and K1 bulk
models. For adequate fitting, they all require a specific frequency-
independent capacitance in parallel with the model. This
capacitance is designated here by C, but its value at the ε level
is ε∞ for the KD, K0, and DCD models, and is εD∞ for the K1
and DC1 one, as discussed above.8,9,18 For the K1 situation,
such a composite parallel model is therefore denoted by CK1.

It is often necessary for adequate fitting to include a resistance
(resistivity) R in parallel or series with the bulk model. Here,
series models of the following types will be used: Debye
(abbreviated Deb), DC0, DC1, R, and CS. CS represents a series
specific capacitance, written as εS at the dielectric level. As an
example, the RCKD ·Deb composite-model name involves the
KD bulk response model with R and C (a Debye combination)
in parallel with it and with ordinary resistive-level Debye
response in series with the parallel combination of all of the
other elements.

For a composite model such as RCDCD ·DC0, the DCD part
is the main DSD bulk model and the CSD DC0 part is in series
with it and with the parallel R and C elements. The (R ·Deb)-
CKD model involves a resistance R and a resistive Debye model
in series, with the result in parallel with CKD. Rather than using
DSD and CSD elements in series, previous work has often
involved a composite model involving two DSD ones in parallel,
which may be represented for DCD models by (DCDDCD) ·Deb,
with the parentheses here enclosing parallel parts. All bulk and

composite models discussed here are instantiated in the freely
available LEVMW computer program.24

3. NMEC and Glycerol Data and Fit Results

3.1. Representation of NMEC Data and Fit Points. Seven
NMEC data sets, kindly supplied by Dr. Ranko Richert, spanned
the temperature range from T ) 174.3 to 186.3 K, and each
involved about N ) 71 data points. No data sets for a wider
temperature range were available, but because of the presence
of large activation energies, substantial variation in response
appeared over the available range. For all seven available NMEC
data sets, composite fitting models, including a series response
model, were needed to obtain adequate fits of the full complex
data. Although plots of the individual real or imaginary parts
of full complex data will be shown, all results involved complex
nonlinear least-squares fitting,24 usually at the ε(ν) level, with
closely comparable ones found for fits with the same model
with the data expressed at other immittance levels.

Figure 1 illustrates a powerful approach for depicting data
and fit results. The peaked ε′′ (ν) curves of Figure 1 are usually
designated as R-relaxation ones associated with dipolar disper-
sion. Lines are plotted conventionally here by connecting all
available data points, but a special procedure is employed to
provide information about the adequacy of the fits of individual
points to the data. Because this procedure is unconventional
for DSD situations, it is described in detail below.

All fits of each data set to a model involved all N data points
of the set and led to values of the relative standard deviation of
the residuals of a fit, SF, a global measure of fit. In addition, a
measure of the overall uncertainty of parameter estimates, the
root-mean-square of the estimated relative standard deviations

Figure 1. Frequency dependence of NMEC M′′ (ω) and ε′′ (ω) data
and fits for various temperatures. To avoid overlap and add to clarity,
only one out of every six data and fit points are shown, as discussed in
section 3.1. The 186.3 and 182.3 K fits involved the composite model
CK1 ·Deb results of rows 2 and 13 of Table 1, while the 178.3 K ones
used the CK1 ·Cs one. Here and elsewhere, νn is 1 Hz.
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of all free parameters, PDRMS, is also calculated and presented.
Although values of these quantities are listed herein, a more
detailed and discrete graphical measure will also be employed.
Thus, for each data set, only M ≡ N/RF points are shown, with
the value of RF selected to avoid too close crowding together
of plotted individual data points and of their fit estimates. For
the NMEC data, a value of RF of six was employed, allowing
about M ) 12 of the total number of points to appear for each
set.

In Figure 1, the M data points shown are plotted as small
solid circles connected by lines using all of the data, while the
M fit points are shown by open symbols. The size of the open
symbols is unrelated to the uncertainty of their fit estimates.
For good fits, the centers of the open symbols should fall close
to those of the corresponding data ones, avoiding any ambiguity
in their placement. In addition, for perfect fits, the open symbols
should enclose the solid data points entirely symmetrically,
nearly the case for most of those of Figure 1.

Yet consider, for example, the open circle 178 K points of
both parts of Figure 1. We see that the centers of the ones at

x-axis values of 5 or more fall a significant amount below the
centers of their corresponding solid-data points, indicating an
imperfect fit for these points. For the two higher-temperature
fits, however, the very close agreement between individual data
and fit points indicates excellent fits over the entire frequency
range shown. The present procedure, which avoids the need
for separate residual plots, is much more sensitive and provides
more resolution than do the conventional procedures that show
the data by solid lines and the fit by either broken lines or by
symbols alone. For the present 182 and 186 K cases, such solid
and dotted or dashed lines would overlap so closely that they
would be indistinguishable.

A reader of an earlier version of the present work character-
ized the above procedure as confusing and stated that when it
is used “some information on the quality of the fits is lost”. In
fact, because the open fit symbols can appear at any position
relative to their corresponding data points, they provide detailed
information about the accuracy of both the frequency value and
the vertical position of the actual fit estimates, unlike conven-
tional approaches. This reader’s further suggestion to use “the

TABLE 1: Results of Fitting Complex ε(ω) NMEC Data for a Range of Temperaturesa

row no. and
temp (K)

model
LowF

High F
100SF and
PDRMS FC0 (Ω cm)

τC0 or
τD0 (s)

�k or
γDCD ∆ε ε∞

[F0S] or
F0P (Ω cm)

τ0S or
τ0P (s) γDCk

εS or
εD0

1
186.3

CK0 ·Deb 2.16
0.011

9.15 × 107 1.06 × 10-4 0.533 3.91 [4.15 × 1012] 23.2 1 F 63.21

2
186.3

CK1 ·Deb 0.791
0.042

9.42 × 107 1.48 × 10-7* 0.228 3.52 [4.17 × 1012] 23.2 1 F 63.01

3
186.3

RCDCD 4.64
0.012

1.05 × 10-3 0.544 58.43 3.84 4.17 × 1012 62.26

4
186.3

RCKD ·Deb
L/H

1.44
0.134

9.47 × 107 2.38 × 10-3/ 0.439 59.67* 3.84 [4.17 × 1012] 23.3 1 F 63.11

5
186.3

(R ·Deb)CKD 2.75
0.020

1.85 × 108 2.68 × 10-4 0.484 25.16 3.70 4.18 × 1012 12.6 1 F 63.02

6
186.3

RCDCD ·Deb
L/H

0.846
0.024

9.29 × 107 7.47 × 10-4 0.418 27.92 3.80 [4.16 × 1012] 23.2 1 F 63.08

7
186.3

DC0DCD ·Deb
L/H

0.512
0.013

9.29 × 107 5.68 × 10-4 0.454 26.20 [4.16 × 1012] 23.2 0.984 63.06

8
186.3

RCDCD ·DC0
H/L

0.635
0.014

8.40 × 106 9.60 × 10-4 0.530 58.35 4.74 4.15 × 1012 3.91 × 10-5 0.846 63.09

9
184.3

CK1 ·Deb 1.05
0.050

3.18 × 108 5.81 × 10-7* 0.230 3.52 [1.24 × 1013] 70.6 1 F 64.09

10
184.3

RCDCD ·Deb
L/H

1.64
0.054

3.12 × 108 3.29 × 10-3 0.404 30.74 3.75 [1.24 × 1013] 70.3 1 F 64.21

11
184.3

DC0DCD ·Deb
L/H

0.879
0.020

3.13 × 108 2.12 × 10-3 0.454 28.23 [1.24 × 1013] 70.3 0.983 64.15

12
184.3

RCDCD ·DC0
H/L

1.07
0.016

3.25 × 107 3.39 × 10-3 0.507 59.44 4.71 1.24 × 1013 1.22 × 10-4 0.882 64.15

13
182.3

CK1 ·Deb 1.20
0.012

1.24 × 109 4.00 × 10-6 0.242 3.52 [4.82 × 1013] 278 1 F 65.25

14
182.3

RCDCD ·DC0
H/L

1.56
0.017

1.44 × 108 1.39 × 10-2 0.484 60.55 4.72 4.34 × 1013 4.47 × 10-4 0.907 65.26

15
180.3

CK1 ·CS 2.48
0.137

5.52 × 109 1.77 × 10-5/ 0.239 3.51 66.33

16
180.3

RCDCD ·DC0
H/L

2.06
0.017

7.25 × 108 6.28 × 10-2 0.462 62.77 4.79 1.425 × 1014F 1.80 × 10-3 0.929 67.56

17
178.3

CK1 ·CS 4.92
0.308

2.94 × 1010 6.79 × 10-5/ 0.230 3.49/ 67.12

18
178.3

CDCD ·DC0 3.15
0.020

4.28 × 109 3.36 × 10-1 0.435 62.48 4.91 8.38 × 10-3 0.947 67.35

19
176.3

CDCD ·DC0 4.54
0.051

2.69 × 1010 2.92 0.398 69.87 5.18 3.87 × 10-2 0.963 75.04

a Here, model identifies the type of bulk conductive or dielectric fitting model used. The various composite fitting models, defined in section
2.3, include elements in parallel and/or in series with the bulk models. The S subscript identifies series-model parameters, and series resistivity
quantities are enclosed in brackets here to distinguish them from the parallel ones, denoted by R in the model name and by F0S (series fit) or
F0P (parallel fit) in the table. Values followed by an F are fixed, not free to vary. Fit models including a series Debye part led to the estimates
of εS shown, and for DCD fits εD0 ≡ ε∞ + ∆ε. All complex-data fit results shown in Tables 1 and 2 used proportional weighting. The presence
of “*” indicates that the relative standard deviation of a quantity is poor and greater than 0.1.
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standard way of plotting the experimental data as lines and the
fits as points” thus provides less, not more, comparative
information about the fit.

For both the NMEC and the glycerol data sets, best fits with
the CSD CK0 and CK1 models, as in rows 1 and 2 of Table 1,
require the series addition of a Debye-response model to take
proper account of the low-frequency spur most apparent in the
186.3 K curves of Figure 1. For the bulk k ) 1 CK1 model, the
series composite-model combination is denoted by CK1 ·Deb,
and it is most appropriate to separate its effects at the resistivity
level, as shown in Figure 2. The inset, showing extrapolation
of the Debye response to lower frequencies, indicates that the
lower frequency limit of the data would have had to extend
nearly two more decades to show the peak of the -F′′ Debye
curve. For temperatures below 182.3 K, the Debye F0S quantity
becomes too large to estimate adequately within the available
fixed-frequency data window, and only the much smaller FC0

resistivity remains, an intrinsic part of dispersed CSD response.
3.2. Further Graphical and Tabular NMEC Fitting Re-

sults. Reference 1 deals primarily with the dielectric behavior
of NMEC when confined in the pores of a glass, while the
present work involves only bulk NMEC response. Although ref
1 does show some graphical results for the bulk material, no
fitting ones are included. Thus, detailed fitting of data for the
bulk material is needed and is carried out here.

Figure 1 shows data and fit results for three temperatures,
allowing comparison of corresponding M′′ (ν) and ε′′ (ν) re-
sponses and fits. The first type of plot is usually employed for
CSD data and the latter for DSD data. The fit results shown in
the figure all used CSD models, but DSD ones have also been
employed and are further discussed below. Composite-model
parameter estimates for the six largest temperatures are presented
in Table 1 and allow direct comparison between fit results for
the various CSD and DSD models. In the table, the main
dispersive bulk-model parameters for both CSD and DSD
models are those listed in columns 4-7. Note that when the
γDCk exponent values of column 11 are set to unity, the DCk
model response with k ) 0 or 1 reduces to Debye response.

In Tables 1 and 2, the quantity 100SF is the percent value of
the relative standard deviation of the residuals of a fit and so is
an important measure of the adequacy of the fit. Values of three
or so are adequate, and those of one or less are excellent. The
overall measure of parameter uncertainties, PDRMS, indicates
the presence of one or more poorly estimated parameters when
it exceeds about 0.05. One should take the values of both of
these quality measures into account when evaluating the
adequacy and usefulness of a fit.

Fitting results for many different simple and composite
models were carried out, and Table 1 shows results for some
poor models as well as for more appropriate ones. The row 1,
3, 4, and 5 model fit results were consistently worse than the
others at all temperatures and so are not included for the lower
temperatures. The (R ·Deb) notation in the model designation
of row 5 indicates that these quantities are in series and their
result in parallel with CKD, and it is interesting that when the
R quantity is instead taken in series with the parallel combination
of the Deb, C, and KD quantities, the 100SF value increases to
6.2. Although the RCDCD ·DC1 model led to most fits as good
as or slightly better than the RCDCD ·DC0 ones, its results were
irregular and thus are not included in the table.

A low-frequency spur, such as that apparent for the two higher
temperatures in Figure 1, always appears for partly conducting
molecular liquids at frequencies sufficiently below that of the
main dispersive response and is usually ascribed to the dc
conduction of impurity ions [e.g., refs 2, 25, 26]. As demon-
strated by the table results, its effects can be well represented
by a resistive Debye-response contribution to the full model in
parallel or in series with the bulk response. Yet while inclusion
of a single Debye model is sufficient for composite CSD models
such as that of row 2, comparison of the row 3 and row 6 100SF

values shows that also for DSD situations a series Debye
addition leads to greatly improved fits. Thus, a DSD KD or
DCD model alone is inadequate, and both a parallel and a series
element need to be added to obtain good fits of data of the
present type. The conventional alternative of using two DSD
models in parallel is discussed at the end of this section.

Table 1 includes columns with headings identifying two pairs
of F, τ quantities, the first one for model values as discussed
below, and the second for high-resistivity dc conduction
processes. For column 4, FC0 is the resistivity of a dispersion
or relaxation fitting model, such as those in rows 1, 2, and 4,
while the τC0 or τD0 quantities of column 5 represent the
corresponding relaxation time of the model. For DSD models,
such as those in rows 5-7, however, one must distinguish
between the parallel and series CSD additions to the basic DSD
model, here the DCD. These additions may be of either
relaxation (RC, Deb) or dispersive (DC0) character, and they
may involve either low-value (relaxation or dispersion) or high-
value (relaxation only) resistivities. In column 2 of the table,
the designations L and H have thus been used to indicate the
character of the additional parallel and series parts of a
composite model name, reading from left to right.

In column 9, F0S and F0P represent the high resistivity when
it is modeled in series or when it is in parallel. The series Debye
responses involve F0S in parallel with a specific capacitance,
CS, whose effective dielectric constant is denoted by εS and is
given by εS ) τ0S/(εVF0S). For parallel Debye response, the
dielectric constant corresponding to the capacitance C is just
ε∞. Thus, for the CK1 ·Deb CSD model, Deb involves F0S and
τ0S; the parallel C represents εD∞, and ε∞ ) εC1∞ + εD∞, but for
simplicity, only values of ε∞ are shown in the tables; and the
K1 free parameters are FC0, τC0, and �1.

Figure 2. Log-log frequency-response plots of NMEC F′ and F′′
186.3 K data and CK1 ·Deb-model fits. Also included are the separate
CK1 and Debye responses calculated from the model fit parameters,
as are low-frequency extrapolated results. The inset shows the calculated
full Debye responses at lower frequencies. Here, Fn is 1 Ω cm.
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Parameter identification is somewhat different for DSD
models such as those in rows 6-8. For all three, the DCD part
of the full model involves the ∆ε, τD0, and γDCD parameters.
For rows 6 and 7, Deb again involves F0S and τ0S, while for
row 8 RC designates Debye response with R and C represented
by F0P and ε∞, respectively. The row 7 parallel DC0 involves
FC0, γDC0, and a τC0 whose value is not shown in the table but
which would lead to an ε∞ value of about 4.3 were γDC0 ) 1.
The row 8 series DC0 model also involves FC0, γDC0, and τC0,
but with its τC0 value actually shown in column 10 in the
position of τ0S to save space in the table.

What conclusions follow from the Table 1 results? First, the
fits become poorer as the temperature decreases, and for 180.3
K and below no meaningful estimate of F0S could be obtained.
Its fixed value for row 16 was obtained by extrapolation from
higher temperature results, and no reasonable CK1 ·CS fits were
found for 176.3 K and below. Second, although the CSD CK1-
model fit results are of comparable quality to the DSD ones,
most of them involve poorly defined estimates of τC0 because
the correlation coefficient between τC0 and �1 is very close to
unity, although with the fitting estimate of τC0 taken fixed in a
new fit, PDRMS values for such CK1 ·Deb fits were then
comparable to those for the RCDCD ·DC0 model.

Third, the CSD εS values in column 12 are virtually identical
to the εD0 ) ε∞ + ∆ε ones for the RCDCD ·DC0 and
DC0DCD ·Deb fits. As expected, the estimates of the series and
parallel F0S and F0P dc resistivities were also essentially equal
in the temperature range where they could be well estimated.
Further, notice that the RCDCD ·Deb fit results are inferior to
the RCDCD ·DC0 ones, and that the RCDCD ·DC0 and
DC0DCD ·Deb fits are comparable. Yet a significant difference
between these two is that for the former the DCD equation εD0

≡ ε∞ + ∆ε, the low-frequency limit of the dispersive-model
response εD(ω) ) εD∞ + ∆εIDCD(ω), leads to values of εD0 in
agreement with those of εS. This is also the case for the row 3
RCDCD fit, but not for the DC0DCD ·Deb one, and its estimates
of εS actually listed in the table follow instead from the series
CSD Deb part of its fits. This behavior suggests that, from a
physicochemical viewpoint, the RCDCD ·DC0 model is the

better one to choose, and so only its results are included for the
five lower temperatures.

For CK1 ·Deb fits, the dispersive response is of CSD
character, and one finds that its εC0 values disagree with the εS

ones associated with these fits. This is strong evidence that even
for such CSD fits εS values must arise from a DSD dispersive
process such as that involving the DCD model, and it thus
explains the agreement found with the εD0 estimates obtained
from such fits. It is also worth noting that the temperature
dependence of the quantities listed in column 12 is quite
different from that expected for double-layer capacitative
response. If the RCDCD ·DC0 choice is indeed the most
appropriate one for the present data, it follows that its main
dispersive response is of DSD, not CSD, character, just as one
would expect from the molecular nature of the material.
Nevertheless, the need for complicated DSD composite models
for good fitting shows that such fitting requires more than just
a single DSD model such as that of row 3.

Of the two Debye-type elements needed in the row 7 and
row 8 fitting models, one is in series with the DSD DCD one
and one in parallel with it. For both, the Debye-relaxation part
(RC or Deb) takes account of the high-resistivity dc response
and is necessary, reasonable, and unexceptionable. Yet how can
one explain the need for the other DC0 CSD element, one
involving dispersed response? First, as discussed above, its
presence in series (row 8) seems much more plausible than in
parallel (row 7), and it is then always in series with the high-
resistivity limiting dc response.

Second, it is interesting that if we replace the DC0-model
part of the row 8 composite one by a K1, one obtains a good fit
with 100SF and PDRMS values of 0.787 and 0.012, respectively.
The K1 parameter estimates are comparable to those in the row
2 CK1 ·Deb model with a slightly larger value of �1 of 0.248.
Further, the very poorly determined τC0 value in the row 2 fit is
now exceptionally well determined. Comparison of these results
and those of rows 2, 3, and 8 indicates that while a CSD
CK1 ·Deb model alone is inadequate and physically implausible,
the addition of a dispersed CSD model in series with a bulk
DSD model, as in that of row 8, is the most appropriate model

TABLE 2: Results of Fitting Complex ε(ω) Glycerol Data for Temperatures above Tg = 185 Ka

row no.
and temp (K) model

100SF

and PDRMS FC0 (Ω cm) τC0 or τD0 (s)
�1 or
γDCD ∆ε ε∞

[F0S] or
F0P (Ω cm) τ0S or τ0P (s) γDCk εS or εD0

1
234

CK1 ·Deb 2.08
0.134

7.83 × 105 1.54 × 10-11* 0.168 4.00 [1.22 × 1010] 0.0599 1 F 55.63

2
234

RCKD ·DC1 1.57
0.038

2.10 × 105 2.13 × 10-6 0.624 49.39 6.26 1.05 × 1010 9.59 × 10-7 0.169 55.65

3
234

RCDCD ·DC0 1.83
0.054

5.92 × 104* 6.47 × 10-6 0.570 51.18 4.58 9.09 × 109 3.27 × 10-7 0.904 55.76

4
223

CK1 ·Deb 1.29
0.071

9.13 × 106 1.28 × 10-10* 0.163 3.90 [1.53 × 1011] 0.815 1 F 60.20

5
223

RCDCD ·DC0 1.41
0.033

8.10 × 105 8.62 × 10-5 0.520 55.45 4.75 8.82 × 1010 2.36 × 10-6 0.945 60.20

6
213

CK1 ·Deb 1.65
0.087

1.38 × 108 2.29 × 10-9* 0.163 3.88 [2.05 × 1012] 11.74 1 F 64.61

7
213

RCDCD ·DC0 2.56
0.041

1.36 × 107 4.20 × 10-4 0.482 59.68 4.77 1.36 × 1012 3.20 × 10-5 0.968 64.45

8
204

CK1 ·Deb 1.66
0.091

2.86 × 109 1.52 × 10-7* 0.173 3.84 [3.05 × 1013] 186.1 1 F 69.01

9
204

RCDCD ·DC0 2.53
0.062

2.72 × 108 3.51 × 10-2 0.465 63.68 4.77 2.08 × 1013* 6.12 × 10-4 0.963 68.59

10
195

CK1 ·Deb 1.88
0.188

1.25 × 1011* 8.76 × 10-6 0.175 3.87 [1.72 × 1015]* 1.11 × 104* 1 F 73.16

11
195

RCDCD ·DC0 1.82
0.053

9.21 × 109 1.52 × 10 ° 0.486 67.99 4.98 7.59 × 1014* 2.85 × 10-2 0.932 72.97

a See the caption of Table 1 for further relevant information.
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choice. We may then interpret the series CSD model as
representing the dispersed behavior of bulk mobile impurity ions,
of probably a single type, dominant in the mid- to high-
frequency range, and the separate very-high-resistivity series
response as then arising from partial blocking of these mobile
ions at the electrodes.

Figure 3 compares the 186.3 K data with responses calculated
from several series and parallel composite-model fits of the full
complex ε(ω) data. No fit points for the full data sets are shown
because in these log-log plots they are indistinguishable from
the data points, and, for simplicity, only every sixth data point
is shown. The parallel specific capacitance parts of CK1 and
CKD models have no effect on ε′′ (ω) response, but their
designations are still included here. The estimated fit parameters
of the fits were used to calculate the CK1, CK1-FC0, CKD,
and Debye individual responses shown. The CK1-FC0 response
was calculated by subtracting the effects of FC0 from that of
the CK1 model. Notice especially the close agreement in Figure
3b of the CDCD parts of the row 8 response with the full data
at frequencies above about 10 Hz, results much superior to those

of the Figure 3a CK1-FC0 response, a further indication of the
appropriateness of a composite DSD model.

The important equality between εS and εD0 needs further
discussion because εS is frequency independent and εD0 is just
the low-frequency limit of - ε′D(ω). The Debye response line
in Figure 3a shows, however, that its magnitude becomes
entirely negligible before the ε′(ω) data and its RCDCD ·DC0
fit line of Figure 3b begins to decrease from the zero-frequency
εD0 limiting value. Thus, the εS and εD0 quantities are indeed
properly comparable.

We have seen that the addition of a series CSD model, such
as the CD0, to the RCDCD model of row 3, as in row 8, leads
to greatly improved fits, although at the ε′′ level the C ·DC0
part of the full response, as shown in Figure 3a, is much smaller
over the entire frequency window of the data than is the CDCD
ε′′ response of Figure 3b. This small effect is consistent with
the usual choice of just DSD-model fitting of data where an
approximate fit with a single model4 has often been deemed
acceptable, but until the present analysis the possibility of
including a series CSD part in the full model has remained
unrecognized, and sometimes even three Havriliak-Negami
DSD-only fitting functions have been used.20 It is important to
emphasize that, although the C parameter is in parallel with
the DCD model for the CDCD composite model, it is in series
with the DC0 part of the C ·DC0 model. Its effect is thus large
for this composite model, and its series addition greatly reduces
the size of the C ·DC0 ε′′ response as compared to that of the
DC0 response alone.

The KD model alone has often been used to fit dielectric
data, and so for comparison with the present fitting approaches,
it was used to fit 26 points around the peak of the ε′′ (ν) data,
and its estimated parameters were then used to produce the
extrapolated KD lines shown in Figure 3b. Both unity and
proportional weighting fits led to an estimate of 0.74 for �D,
comparable to but probably more accurate than the value of
0.76 listed by Ngai for this material using the Fourier transform
KD calculation approach,27 one apparently not involving a least-
squares fitting procedure.

As the figure shows, the KD model by itself fails to fit the
higher frequency part of the data, an effect invariably character-
ized as the appearance of an excess wing. Ngai states that the
“high-frequency wing is a part of the Johari-Goldstein’s
�-relaxation hidden under the more prominent R-relaxation.”
He has also stated that “the presence of the �-relaxation as a
peak or shoulder in the loss spectrum preempts an accurate
determination of the dispersion of the R-relaxation at higher
frequencies and shorter times.”5

These statements are consistent with probably the most
complete previously published description of fitting the frequency-
response data for glycerol and other such molecular glass
formers,28 one that involves the use of an all-parallel DSD
composite model involving a KD R-response model and a
Cole-Cole part to account for excess wing behavior. In contrast,
the present composite DSD and series CSD models fit the full
range of the NMEC and glycerol data sets excellently without
the appearance of an excess wing, and the RCKD ·DC0 and
RCKD ·Deb models yield much smaller �D values than the KD
model alone mentioned above for NMEC,27 and those for
glycerol mentioned in the next section, and those presented in
ref 28. Nevertheless, as discussed below, a composite model
involving a DSD bulk part has been found somewhat superior
for fitting the present data sets than one involving a KD rather
than a DSD part.

Figure 3. Log-log frequency-response plots of 186.3 K NMEC data
and responses of individual parts of the Table 1, row 2 and row 8,
composite-model fits. All results shown are for ε′′ situations except
that identified as ε′ in part (b). (a) ε′′ CSD responses calculated from
the fit-parameter values of the CK1, CK-FC0, Debye, and R ·Cs parts
of full fits, and RC ·DC0 and C ·DC0 part responses of the full row 8
RCDCD ·DC0 fit. (b) DSD responses of the parts of row 4 series
RCKD ·Deb model and row 5 parallel (R ·Deb)CKD-model fits of ε′
and ε′′ data, and a separate KD-model fit of the peak part of the ε′′
response using unity weighting. Its extrapolated low- and high-
frequency results are also included. In the figure, the bulk-model DSD
parts of the series RCKD ·Deb and parallel (R ·Deb)CKD fits are
denoted by (CKD)s and (CKD)p, respectively. In addition, the CDCD
parts of the response of the full RCDCD ·DC0 fit are also included.
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Although their results are not shown in Tables 1 and 2, many
fits involving two DSD models (involving DCD, KD, CC, and
Havriliak-Negami model choices) in parallel and the result in
series with a Deb one have been carried out for both the NMEC
and the glycerol data with similar results for both. For example,
for the 186.3 K NMEC data, a RCDCDDCD model, which adds
a parallel DCD function to the model of row 3, did not improve
the fit, and all three of the additional DCD free parameters were
completely uncertain.

On the other hand, fitting with a CDCDDCD ·Deb model
leads to a 100SF value of 0.50 and to a PDRMS value of 0.053.
Even with one more free fitting parameter, this PDRMS value
is about 4 times larger than that of the row 8 RCDCD ·DC0
model. More importantly, the parameter estimates of this model
are inconsistent with all others in rows 5-8, and they lead to
an estimate of εS much larger than 63. These and similar results
show that the conventional choice of fitting with two or more
DSD models in parallel can lead to excellent fits that take
account of excess wing behavior but to poorly defined and less
meaningful parameter estimates as compared to composite
models such as the RCDCD ·DC0 one.

Finally, the R ·Cs curve of Figure 3a is the Debye relaxation
response following from just the FC0 resistivity and the εS

specific capacitance elements in series. It is remarkable how
well it approximates the full response (in the absence of the
low-frequency Debye response involving F0S) up to 1000 Hz.
Nevertheless, it is clear that a composite model involving both
dispersed DSD and CSD in series is required to well represent
the data and lead to well-defined, plausible, and consistent
parameter estimates.

3.3. Glycerol Data and Fitting Results. Adding a dispersive
CSD fitting model in series with a DSD one led to over a factor
of 7 reduction in the relative standard deviations of the fits for
the NMEC results of rows 3 and 8 of Table 1. It is thus
important to investigate whether this result is unique for this
material or is more general for supercooled glasses. Here,
glycerol data sets for five temperatures from 195 to 234 K,
kindly provided by Dr. Peter Lunkenheimer, are analyzed. The
full complex ε(ω) data set responses shown in Figure 2 of ref
4 include very-high-frequency regions of nearly constant loss
followed by Boson peaks, but here only regions below the onset
of nearly constant loss are included and analyzed. In ref 10, it
is shown that similar very wide range CKN data, including the
approach to Boson peaks, can be fitted very well, and the models
and fit parameters then predict the existence of such peaks, but
such added complexity is not needed here.

The Table 2 glycerol fit models are the same as the main
NMEC ones of Table 1; the results are mostly similar to the
NMEC ones as well; and the quality of the fits decreases as the
temperature decreases, although the present data sets are
appreciably noisier than the NMEC ones. For the present data,
RCKD ·DC1 fits were found comparable to and sometimes
slightly better than RCDCD ·DC0 ones, but except for that of
row 2, the latter are presented here to allow direct comparison
with those of Table 1. A fit with just the CKD ·DC1 composite
model led to a 100SF value of 3.44, demonstrating the
importance of including the parallel R parameter in the fit model.

As before, we see that most of the CK1 ·Deb-model τC0

parameter value estimates are poorly determined, and conse-
quently most of the PDRMS CK1 ·Deb values are larger than
those for the RCDCD ·DC0 fits. In addition, the estimates of
the important εS and εD0 quantities are again equal within their
uncertainties. Further, the CSD and DSD fit estimates of the
FC0 quantity of column 4 differ appreciably, as they also do for

the NMEC results. Thus, the present glycerol results confirm
the superiority of the RCDCD ·DC0 model to the all-CSD
CK1 ·Deb one or to two DSD dispersive models in parallel.

Because the fit results summarized in the present Table 2
are virtually indistinguishable from the data on log-log plots
and do not show the excess-wings apparent in Figure 2 of ref
4 or that of Figure 8 of ref 27, in Figure 4 I present only ε(ω)
data and fit dissections for the 234 K glycerol data set. Here,
although the lines connect all data points, for simplicity only
every fourth data point is shown and no fit points are included.
Except for a shift of the frequency window to higher frequencies,
the results are closely comparable to those in Figure 3,
demonstrating that the appropriateness of a series combination
of a DSD and CSD fitting model is not an isolated phenomenon.
In addition, Figure 4b shows the KD-fit curve and its extrapola-
tions obtained by unity-weight fitting of the top part of the ε′′ (ω)
data with this model. This fit led to an excess wing and an
estimate of �D = 0.747, larger than the less accurate Ngai one
of 0.71.27

3.4. Activation Energy Estimates and Relation between
τD0 and γDCD Results. Thermal-activation-energy values for
most of the RCDCD ·DC0-model free parameter estimates,
obtained from Arrhenius fits of the values listed in Tables 1
and 2, are presented in Table 3. These fits used from three to

Figure 4. Log-log frequency-response plots of 234 K glycerol data
and responses of individual parts of the Table 2, row 1 and row 3,
composite-model fits. (a) ε′′ CSD responses calculated from the fit-
parameter values of the CK1 and CK1-FC0 parts of the CK1 ·Deb fit,
and RC ·DC0 and C ·DC0 part responses of the RCDCD ·DC0 fit. (b)
DSD response of the CDCD part of the row 3 fit of the data, and a
separate KD-model fit of the peak part of the ε′′ response using unity
weighting. Its extrapolated low- and high-frequency results are also
included.
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six values depending on the uncertainties and regularity of the
available estimates. Alternative fits of the ∆ε values to A +
BT and A + B/T showed that the second function led to
appreciably better results than the first but both were worse than
the Arrhenius activation-energy fit and estimates listed in the
table. This was also the case for ε∞ fits. Because the CSD DC0
model results involve dispersed CSD behavior, activation-energy
estimates are provided for FC0/T rather than just for FC0, less
appropriate for this situation.

Although the glycerol FC0/T and τC0 activation energy
estimates agree, as expected, within one of their standard
deviations, this is not the case for the NMEC estimates for
unknown reasons. Note that the activation energy estimates for
FC0/T and F0P differ sufficiently for both materials to make it
highly improbable that they involve the same process even
though both almost certainly entail mobile charges. This is not
surprising because the former is associated with dispersed high-
frequency response and the latter with charges that are nearly
blocked at the electrodes.

It is interesting and probably significant that both the well-
defined DSD ∆ε activation energy estimates, and the ∆ε
estimates themselves, are comparable for NMEC and glyc-
erol. In addition, their γDCD estimates are also comparable.
Unlike the γDC0 estimates of column 11, however, the γDCD

values diminish as the temperature decreases, representing
greater dispersion. Finally, the glycerol τD0 activation energy
estimate listed in Table 3 is poorly defined because the
individual τD0 estimated values were somewhat irregular,
suggesting possible non-Arrhenius response. Data for more
temperature values would be required to resolve this matter
using the present parallel-series composite model, but it is
significant that fits of glycerol data over a much wider
temperature range using two DSD models in parallel show
strong non-Arrhenius behavior for the relaxation-time pa-
rameter of the KD model used to represent the R relaxation
(dispersion) response.28

Particularly interesting is the near identity of the activation
energy estimates of the dielectric strength parameter, ∆ε, for
NMEC and glycerol. Both materials are good glass formers,
and the close agreement of these dielectric-strength activation
energy estimates may also be related to their comparable Tg

values. In addition, recent theoretical work on supercooled glass-
forming liquids is based on a theory of the glass transition29

involving shear stress and its relaxation, an approach possibly
relevant to the above near identity.

This theory predicts a linear relation between the logarithm
of τP, the value corresponding to the frequency at the peak of
the dielectric loss curve, and the 1/�D quantity of the KD-model,
with �D calculated from the width of the loss peak.16 In this
work,29 data for many glass formers were shown to lead to
approximately linear relations with a rather abrupt increase in
slope as the temperature decreased. All such results were
evidently calculated using only three data points and assumed
KD response.

It is therefore worthwhile to present somewhat similar
results for NMEC and glycerol based on the present full data
fits using the RCDCD ·DC0 model with γDCD estimates in
place of �D ones and τC0 estimates rather than τP ones. Results
are presented in Figure 5 and indeed show appreciable nearly

linear regions for both materials, thus generalizing the
prediction of ref 29. The glycerol result includes a large
increase of slope for its lowest temperature point shown, but
the NMEC one appears close to linear over its full range.
The data fits become appreciably worse for the two bigger
1/γDCD NMEC points, and so error measures are included
for them. It appears probable that the NMEC line is actually
linear over its full range and that the higher-temperature parts
of the lines have nearly the same slope for both materials.

4. Conclusions

It has been shown that good fitting of NMEC and glycerol
data sets requires composite models even when the low-
frequency Debye-response spur is separately accounted for, and
the present results demonstrate that the combination of a bulk
DSD dispersive model and a CSD dispersive response function
in series yields much better determined parameter estimates for
both materials than do two DSD models in parallel. The DSD
DCD model here represents the primary dielectric R-dispersion,
while a CSD DC0 model in series has been found appropriate
to represent high-frequency ionic behavior exhibiting small
dispersion and taking the place of what has previously been
identified as a parallel DSD Johari-Goldstein �-relaxation
hidden under the DSD response, as is well displayed in Figures
3a and 4a. Thus, the presence of such a parallel process in the
present data sets seems unlikely.

The equality found between the CSD εS estimated values and
those of the DSD εD0 ones is convincing evidence that the CSD-
only CK1 ·Deb model is inappropriate and does not properly
capture the full dispersive behavior of the data. In contrast, the
RCDCD ·DC0 model fits the data better and demonstrates the
need to account for both DSD dispersive response and CSD
dispersive response in series. Comparison of fit results for
isothermal data of the present type and that for the same material

TABLE 3: Estimated Activation Energies in eV for the RCDCD ·DC0-Model Fit Quantities Listed in Tables 1 and 2

model FC0/T τC0 ∆ε τD0 F0P εD0

NMEC 2.31 ( 0.05 1.97 ( 0.04 0.024 ( 0.001 2.21 ( 0.10 1.72 ( 0.06 0.023 ( 0.001
glycerol 1.20 ( 0.03 1.15 ( 0.05 0.029 ( 0.001 0.9 ( 0.1 1.07 ( 0.04 0.027 ( 0.001

Figure 5. Plots of log (τD0/τn) vs 1/γDC0 for NMEC (b) and glycerol
(∆) using the RCDCD ·DC0 and CDCD ·DC0 fit results in Tables 1
and 2. The lines are guides for the eye, and the normalization factor τn

is 1 s. The + symbols for the two most uncertain NMEC points were
calculated using the standard deviation estimates of each of the relevant
two fit parameters and define diagonal corners of the rectangular one-
standard-deviation error box.
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with less ionic impurities should help make entirely clear
whether the series CSD response model required here is
associated with mobile ions or not. Finally, the near equality
found for the small ∆ε NMEC and glycerol activation energies
suggests significant similarities in their dipolar-dispersion
distribution of relaxation times.

Acronyms
C, Cs Capacitances in parallel or series (Cs) in a

composite model
CK1 ·Deb K1 model with a capacitance C (representing

εD∞) in parallel with it and a resistive
Debye model in series with the combina-
tion

CSD Conductive-system dispersion involving mo-
bile charges

(DCDDCD) ·Deb Composite model with two DCD models in
parallel and the result in series with a
resistive Debye model

DCk Davidson–Cole models for k ) D, 0, and 1
Deb Abbreviation for Debye relaxation model
DRT Distribution of relaxation times;
DSD Dielectric system dispersion involving dipoles;
k k ) D, DSD model; k ) 0, usual CSD

model; k ) 1, transformed CSD model
Kk Kohlrausch stretched-exponential fitting mod-

els for k ) D, 0, and 1
LEVM The name of a complex nonlinear least-

squares fitting program (ref 24);
NMEC N-methyl-ε-caprolactam;
RC A resistor, R, in parallel with a capacitor, C;
RCDCD ·DC0 Composite model with R and C in parallel

with the DSD DCD model and the result
in series with the CSD DC0 model.
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