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ABSTRACT: This feature article highlights work done by the author
and others since 1953 on the Poisson−Nernst−Planck (PNP)
continuum model for analyzing and fitting wide-range immittance-
spectroscopy (IS) frequency-response data for unsupported materials
with diffusing mobile charge species present. The small-signal PNP
approach, one relevant for analyzing data involving ordinary or
anomalous diffusion, is particularly important because it leads to
estimates of the values of far more physically significant parameters
than do other available IS fitting models. Unfortunately, its virtues
were not well appreciated until recently, and it has thus not been used
as widely as it should be. The present work aims at remedying this
lack by providing a thorough description of the strengths and
weaknesses of the model, its response possibilities, and its broad applicability. It deals with a neutral species that can fully or
partially dissociate into positive and negative charged species of equal concentrations but arbitrary mobilities. The full model,
including bulk, mobility, generation-recombination, electrode reaction, and adsorption parameters, is first described, and some of
its simplified response functions are presented. It is also incorporated in the free LEVMW complex-nonlinear-least-squares fitting
program, making all of its features available for analyzing experimental IS data sets. After a detailed review of relevant theoretical
and experimental published work involving the PNP approach, exact graphical responses are presented of progressively more
complicated PNP models mostly involving charge of only one sign mobile for all four IS immittance levels. Then it is shown to
what degree the various PNP-model responses can be fitted within usual experimental error limits by other more common, but
less physically germane continuum, discrete, and empirical models. The positive results of such fitting greatly expand the range of
usefulness and applicability of the PNP models. Fits of exact and noisy IS Randles-circuit data sets involving a finite-length
Warburg part are compared with those involving different PNP models, and the finite-length-Warburg complex−plane response
is discussed and compared with that of the interface part of the PNP response. Finally, some other PNP full and interface
response possibilities are discussed and illustrated, and results are presented that involve specific adsorption and adsorption-
reaction electrode processes of physical interest to such fields as biology, corrosion, and energy storage. Since a composite PNP
fitting model with charges of both signs mobile is shown to exactly fit both exact data sets derived from the ordinary Randles
circuit and ones generalized to include additional low- or high-frequency relaxation behavior, its scope and utility for fitting and
interpreting experimental data should make it the preferred alternative to most fitting circuits that involve both ordinary resistive
and capacitive parameters as well as distributed elements such as finite-length Warburg ones.

I. INTRODUCTION
This work reviews in detail previous analyses and the current
status of important physically realistic models for the fitting and
analysis of the frequency response of electrical data of liquid
and solid materials involving unsupported diffusing mobile
charges, the usual situation for solids. Although all fitting
models are necessarily approximate and Feynman rightly said
“Experiment is the sole judge of scientific truth”, one should
also consider Bohr’s statement, “Science is not a means of
obtaining absolute truth. The real test of a scientific theory is
not whether it is ‘true’ but whether it works”.
Here we are interested in models that work, in the sense that

they well describe and interpret small-signal impedance-
spectroscopy (IS) frequency-response data for a variety of
conducting materials. But as D. D. Macdonald1 cogently
pointed out in 2006, one can divide such models into two
classes: analog ones, usually instantiated as electrical equivalent

circuits that are often only required to fit the data well, and
physical ones that additionally account for the physicochemical
processes present in the material, particularly those occurring at
the interfaces between the electrodes and the material
considered. Impedance spectroscopy, or more generally
immittance spectroscopy, the field where all the fitting models
discussed herein apply, is a valuable and extensively used
technique for analysis and diagnosis in the areas of electro-
chemistry, corrosion, batteries, polymers, glasses, biological
materials, and many others.2,3 Therefore it is important to
consider physically related models such as the present diffusion-
related Poisson−Nernst−Planck (PNP) model, one whose
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virtues are not yet fully appreciated and thus not yet widely
used for IS data analysis.
All useful physically appropriate models must satisfy the

Kronig−Kramers relations, but even then ambiguity is often
present for the first class since more than one different circuit
may be found to fit the data equally well. Even the PNP model
considered herein involves some ambiguity in the interpretation
of some of its physically relevant estimated parameters; see ref
4. Many of the PNP publications cited herein are by J. R.
Macdonald or by him and coauthors, and all of these are
available for downloading from the Web site http://
jrossmacdonald.com. Because the present work includes a
considerable number of acronyms and many parameter
definitions, lists of those used here are included at the end of
this work just before the reference list. The parameter
equations included there apply for uniunivalent conditions
and equal concentrations of positive and negative charges, but
the LEVMW PNP fitting computer program used here is not so
restricted.
The distinction between the above two classes defined by D.

D. Macdonald may become blurred when a model of interest
includes not only some of the R, L, and C elements of ordinary
circuit theory but also one or more distributed circuit elements
(DCEs), such as a transmission line. They may then require an
infinite number of such nondistributed elements to fully
describe their response only with such elements. However,
useful DCEs, often the result of solution of physically relevant
differential equations, may involve such functions as power-laws
and hyperbolic tangents and so are readily expressed in simple
closed form.
Most useful IS models necessarily involve explicitly or

implicitly a bulk high-frequency-limiting real resistance, R∞ (or
resistivity, ρ∞), and a real capacitance, C∞ (or dielectric
constant, ε∞), as well as one or more DCEs. Since these high-
frequency-limiting bulk parameters are physically significant,
the physical significance of any other parameters also present,
such as those of DCEs, determines the class into which the
resulting composite model falls. For simplicity, we shall here
often use just the designation PNP to include both these
limiting elements: a resistance in series with the PNP interface
DCE and a capacitance in parallel with their combination.
The 1953 small-signal PNP model of ref 5 was the first full

solution of the Poisson−Nernst−Planck differential equations
for positive and negative mobile charges and involved their
complete blocking at identical plane-parallel electrodes
separated by a distance L. The PNP designation will often be
used here, however, as a general term that also includes (a) the
anomalous-diffusion (PNPA) model; (b) one that includes
electrode reactions with partial or no blocking (CJPNP); and
(c) an extended one including such reactions with specific
adsorption (ECJPNP). The PNP-model parameter ψA is fixed
at unity for the ordinary-diffusion PNP model, and for the
PNPA one, 0 < ψA < 1. The ψA parameter was denoted ψ in refs
6, 7, and 8 and is different from the ψ of the ordinary-diffusion,
comprehensive PNP model of ref 9, one that did not involve
such a fractional exponent.
Fitting of relevant immittance data with a PNP model is

particularly important because it can lead to estimates of more
physically relevant electrical parameters than other available
small-signal IS models. Such fitting should preferably use full
complex nonlinear least-squares (CNLS), as in the LEVMW
computer program freely available at http://jrossmacdonald.
com; see Macdonald and Potter, ref 10 and Macdonald, ref 11.

The full ECJPNPA model and all of its simplifications are
instantiated in Circuit-H of LEVMW. It is available at http://
jrossmacdonald.com for fitting experimental data or for
generating exact responses, and it was used to produce the
results described herein.
In the general binary situation, charge carriers of both signs

may be mobile with a mobility ratio, Πm ≡ μn/μp, of the
mobilities of the negative to positive species of charge, and Πm
will not always be effectively infinite or zero, the one-mobile
case. The number of Debye lengths in half the electrode
separation is M ≡ L/(2LD). In most experimental situations, M
≫ 1. Here we shall consider sinusoidal small-signal immittance
data in specific form and will deal primarily with the important
uniunivalent one-mobile situation where charges of only one
sign are mobile and M → M1.
A convenient notation for the six electrode reaction and

adsorption parameters needed to specify boundary conditions
for mobile charges of both signs follows from the expression
given in eq B38 of ref 9. Its principal parameters ρj (j = 1 or 2
for positive and negative charges, respectively) are complex
when specific adsorption is present (the ECJPNP model), but
for electrode reactions only (the CJPNP model) they may be
real and frequency independent and then ρj = ρj0, the
normalized, dimensionless reaction-rate parameters (NOT
resistivities). In past work they have been denoted by (ρ1,
ρ2) or (ρ10, ρ20), with the latter identification appropriate when
these quantities are real. Of particular importance is the (0,∞)
choice with negative charges reacting immediately at the
electrodes, a CJPNP situation, and the (0,0) completely
blocking PNP one. The one-mobile, partially blocking situation
with only negative mobile charges usually considered herein is
denoted (0, ρ20), with 0 < ρ20 < ∞.
Although the PNP model is a mean-field, conductive-system,

effective-medium, continuum one that incorporates the
diffusion of point charges inside a possibly nondispersive
dielectric medium, it nevertheless well fits many situations
involving real charges hopping or diffusing between sites
separated by random barriers, as demonstrated later. Further,
its fits can lead to estimates of a neutral-species concentration,
N0; equal concentrations of mobile positive and negative
charges, c0, arising from the partial or full dissociation of the
neutral species; mobilities and diffusion constants of mobile
species; dissociation and recombination parameters; and three
reaction and adsorption parameters for each of the two species
of mobile charge. Of course, for most fits not all of these many
parameters will be found to be simultaneously needed and
relevant.

II. SOME PNP EQUATIONS AND DIFFUSION-RELATED
PUBLICATIONS

Expressions for the full impedance of the CJPNP and ECJPNP
models are included in ref 9, and their generalization to
anomalous diffusion appears in refs 6 and 7. Because the
CJPNP model involves a neutral species that dissociates into
possibly mobile positive and negative charges of arbitrary
valence numbers, with partial dissociation (Type A) or full
dissociation (Type B), and includes CJ electrode reactions of
mobile species, its full formula is too long to include here.
However, expressions for some simpler uniunivalent situations
are worth listing. For conciseness, it is useful to define the
normalized quantities: ZTN ≡ ZT/R∞, (or ρTN ≡ ρT/ρ∞ for data
in specific form), where ZT is the total impedance of the model;
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S ≡ iΩ ≡ iωτD; τD ≡ R∞C∞ is the dielectric relaxation time; U
≡ SψA; P ≡ 1 + U ≡ p2; q ≡ M1p; and Q ≡ q−1 tanh (q). Note
that for PNP situations, where ψA = 1, U = S, and P, p, q, and Q
all will then be written with a subscript 1. Further, when ω→ 0,
Q approaches M1

−1 tanh (M1).
The following expressions are directly appropriate for

situations where charges of a single species are mobile and
neutral-species dissociation is either very small or full. Because
of an ambiguity discussed in ref 4, however, the present fully
blocking results also apply for the usually unlikely, two-mobile
case with equal mobilities, when a few parameter values are
adjusted to account for the mobilities of both charge species, as
shown in Table 3 of ref 4. Also, M1 ≡ L/(2LD1), where LD1 is
the Debye length appropriate when charge of only one sign is
mobile. These conditions avoid the presence of additional low-
frequency plateaus in the real part of the resistance for unequal
mobilities and similar one-mobile ones associated with a limited
range of reasonably large charge dissociation; see especially the
results of Figure 4 of ref 6. The PNP (full blocking, ordinary
diffusion) expression is then (eq 3 of ref 7)

= +Z S Q SP( )/TN 1 1 (1)

and that for the PNPA (full blocking, anomalous diffusion) is
(eq 6 of ref 7)

= + + −Z U Q UP S U Q( )/[ ( ) ]TN 1 (2)

and the CJPNP (electrode reaction involving negative mobile
charges) expression is (eq 7 of ref 8)

ρ ρ= + + +Z S Q PQ SP P Q[( ) ]/[ ]TN 1 1 1 2 1 1
2

1 2 (3)

where ρ2 ≡ (L/2D2)k2, the real, dimensionless electrode-
reaction-rate parameter for the mobile charge, whose diffusion
coefficient is D2, and k2 is the actual rate constant. This
equation is still applicable when specific adsorption is present,
and ρ2 is then complex, as in eq 9 of Section VI-C-1.
Since we are dealing with ordinary and anomalous diffusion

here, it is worthwhile citing some relevant works involving the
diffusion of charge carriers which discuss the physics of such
motion from different standpoints. See, for example, Grass-
berger and Procaccia,12 Niklasson,13 Feldman et al.,14

Nigmatullin and Ryabov,15 and Havlin and Ben-Avraham.16

None of these works required the satisfaction of Poisson’s
equation throughout a solid or liquid medium, however, as does
the PNP approach, beginning with that of J. R. Macdonald,5

although the PNP acronym was not used there. Since the
1950s, the coupled system of Nernst−Planck and Poisson
equations has been widely studied and represents the standard
model of charge transport in electrolytes and semiconductors.17

The PNP designation was probably introduced for the first
time in a biophysical workshop by Bob Eisenberg in 1993.18 He
led the application of PNP to steady transport in selective
biological ion channels, including various molecular correc-
tions,19 which significantly modify the flux.20 Unlike the usual
situation discussed herein, where a neutral entity dissociates
into positive and negative possibly mobile species, the
biological ion-channel PNP analyses involve a separate
differential equation for each of the several mobile ionic
species present.
A valuable summary that provides much of the history of

modeling diffuse-charge dynamics in electrochemical systems is
that of Bazant, Thornton, and Ajdari.21 In contrast to the
present work focusing on small-signal PNP impedance, this

paper was the first to analyze the nonlinear PNP response to a
large voltage step. The analysis was later extended to large ac
signals by Olesen et al.22 and to porous electrodes by
Biesheuvel and Bazant.23 The PNP equations were first
modified for large transient voltages in concentrated solutions
by Kilic et al.,24 which led to extensions for induced-charge
electrokinetic phenomena25 and electrochemical kinetics26

based on nonequilibrium thermodynamics.

III. SELECTIVE HISTORY AND CRITIQUE OF PRIOR PNP
WORK

This section provides a history of the development and use of
the small-signal PNP diffusion model for the analysis of IS data
of nonbiological materials, especially emphasizing work where it
has been used in analyzing experimental impedance spectros-
copy frequency-response data. A detailed discussion of the
limitations of the Nernst−Planck equation appears in R. P.
Buck.27 Not all of them apply, however, to the CJPNP model,
and Buck concludes, “Despite its limitations, the Nernst−
Planck equation is remarkably useful. It applies to transport in
solids, liquids and gels...”. Although the PNP model is indeed
an approximation, it is useful and important for analyzing IS
data from a wide variety of materials, but it doubtless becomes
less appropriate for nanosituations where M < 1 and for high
charge concentrations, particularly because of its assumption of
point charges rather than charges of finite size. It should
nevertheless be applied in some of these situations to evaluate
the limits of its applicability there.
The Nernst−Planck and even Poisson equations have been

used to describe and analyze electrochemical response for a
century or more, and although they originally considered the
possible presence of dc applied potentials (e.g., Jaffe ́28 and Mafe ́
et al.29), they did not ensure that the Poisson equation applied
correctly everywhere. Also, the latter analysis did not refer to
the earlier PNP numerical analysis of Macdonald and
Franceschetti,30 which included dc bias and proper satisfaction
of the Poisson equation. Even the earlier no-bias, small-signal
treatment of Chang and Jaffe ́31 (CJ) did not require the
Poisson equation to apply everywhere between the electrodes.
It did, however, include boundary condition expressions for
partial blocking of mobile charges at the electrodes, the ones
first incorporated in PNP analysis by Friauf32 in 1954 and
widely used thereafter.
It was not until the publication of the 1953 Macdonald small-

signal paper5 that the Poisson equation was properly included
in what later were named the PNP equations. An extension of
this work, including dc bias, was given by Franceschetti and
Macdonald.33 Many no-bias small-signal extensions and
generalizations of ref 5 have been published by these authors,
especially Macdonald34 and Macdonald and Franceschetti.9 A
valuable summary of the applicability of PNP models for
supported and unsupported electrochemical cells was later
published by Franceschetti, Macdonald, and Buck.35

A remarkable precursor of the PNP approach was the 1899
semi-infinite Warburg diffusion impedance,36 a constant-phase
element (CPE) with a fractional-exponent parameter equal to
0.5, resulting in a slope of magnitude 0.5 in a log−log
impedance-level plot. It was later generalized to a finite-length
situation and involved a tanh response function involving the
same fractional exponent. See the discussion in Section V-F. In
turn, in 1985 a tanh expression with its exponent not restricted
to a value of 0.5 was proposed by Macdonald 37 but not
explicitly identified as involving anomalous diffusion. Later, J.
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Bisquert and A. Compte38 independently introduced such an
anomalous diffusion generalization, but it is important to
emphasize that none of these diffusion expressions required the
satisfaction of Poisson’s equation everywhere in a material
between two electrodes, and so none of them is a proper
solution of the full PNP equations for such a situation.
PNP impedance expressions for complete blocking of mobile

charges of both signs5,9,39 and blocking of mobile charge of one
sign and no blocking for the other are presented in ref 40 and
are appreciably more complicated for the one-mobile situation
than just the finite-length Warburg expression, as evident from
eq 1 above. The situation is different for two-mobile situations,
however, as discussed in Section VI.
Unfortunately, the PNP model was not often used to fit

appropriate data in the period from 1953 to 2010, even though
it was available from about 1992 onward as a fitting model in
the LEVM computer program and in its current windows
version, LEVMW, Circuit-H of the LEVMW Manual. However,
in 1982 Franceschetti and Macdonald41 presented instructive
complex−plane PNP impedance plots that included adsorption
and reaction electrode effects for electrochromic thin films, and
Klein et al.42 in 2006 published a simplified, M ≫ 1,
approximate version of the one-mobile, fully dissociated PNP
model (of actual dielectric-level Debye form: see Section V-A)
to allow estimation of mobile-ion concentrations and their
mobilities for three different polymers over a range of
temperature. These fitting results are discussed in ref 6,
where also several one-mobile full PNP models were used to fit
IS data for a hydrogel with LEVMW and theoretical PNPA and
significant generation-recombination (GR) effects were dem-
onstrated therein.
Several interesting possibilities that can lead to possibly well-

separated individual low-frequency plateaus in plots of the real
part of the resistivity vs frequency are Faradaic electrode
reactions or specific adsorption at electrodes for one or both
species of mobile charge, some GR values that effectively
mobilize the immobile species of charge, and the presence of
actual different mobilities of the two species. Results for the two
last possibilities are illustrated in Figure 4 of ref 6.
Also in ref 6 complex−plane, exact normalized dielectric-level

plots were compared with “ordinary” diffusion (finite-length
Warburg diffusion but erroneously identified in the caption of
Figure 1 there as infinite-length Warburg diffusion), with Debye
response, with the interface part of PNP response, and with full
PNP response. The Warburg and PNP interface responses are
similar but differ appreciably at low frequencies, and the full
PNP conductive-system response is almost indistinguishable
from the Debye relaxation response, matters discussed in more
detail in Sections V-A and V-F.
In ref 7, two different generalizations of the PNP model to

PNPA ones were compared, and the one discussed in ref 6 and
instantiated in the LEVMW PNPA fitting model used in that
work was shown to be superior by comparing composite-model
fits of IS data for a hydrogel, for the polymer LiTFSI, and for
single-crystal CaCu3Ti4O12(CCTO), an electronic conductor.
Various different suggested boundary conditions appropriate
for incomplete blocking of mobile charges at the electrodes and
incorporated in the PNP differential equations, were next
compared in ref 8.
The original Chang-Jaffe ́31 boundary conditions of 1952,

used in the PNP model to generalize to the CJPNP one,9,34 do
not take explicit account of the Stern inner layer of the double
layers at the electrodes as does the Butler−Volmer model.

Nevertheless, over the full frequency range for M ≫1, a
condition nearly always satisfied in the past and current PNP-
model fits of actual unbiased, unsupported experimental data,
the CJ and Butler−Volmer conditions were found to be
equivalent,43−46 now a well-accepted result. Further, in ref 46
its IS predictions were shown to be very closely comparable,
even for M = 20 and in the presence of appreciable currents
arising from applied dc bias voltages. In addition, in refs 43−45
detailed results are presented for overpotential-dependent
electrode kinetics for both unsupported and supported43

situations.
In 2005 Bazant, Chu, and Bayly47 independently considered

the M ≫1 condition, termed the Gouy−Chapman one, and its
inverse, the Helmholtz M ≪ 1 one, in detail for PNP models,
and the subject was further developed in 2009.48 These analyses
suggested that the Helmholtz condition is particularly
applicable for strongly supported situations such as those
involving high salt concentrations in water. It is interesting that
the 1978 detailed theoretical analysis of ref 45 showed that
expressions for diffuse-layer and compact (Stern) ones are
mixed in the sense that each involves some parameters from the
other layer.
Even when a Stern capacitance parameter has been added in

series with the CJPNP model, it has not been found to be
relevant for the usual unsupported, unbiased experimental data
situation considered herein. It is irrelevant because its value
could not be estimated from CJPNP fits of such data. It thus
seems likely that when a parallel RC Debye response model is
included in series with the usual CJPNP model to represent
Stern-layer behavior its contribution to low-frequency behavior
usually falls at such low frequencies that they are well below
those of the available measurement range because of the very
large capacitance of the thin Stern layer. References 47 and 48
provide more valuable results and discussions of the Stern and
diffuse layers of the double layer in the presence of nonzero dc
currents, but they are not important for the unbiased, flat-band
situation of the present PNP analyses and data fitting results. A
little known but relevant and important precursor of the later
work of Bazant and others mentioned above and that of 2001 in
ref 49 appears in ref 50 of 2000, one which independently dealt
with a Butler−Volmer reaction-rate situation including Stern
layers but point-size ions and treated some nonlinear effects
and small-signal frequency-response impedance results at a
fixed nonzero bias. It therefore has considerable communality
with the results of refs 43−49 and with the earlier numerical
analyses of refs 30, 8, and 33.
In ref 8 the response of the CJPNP model was compared

with a somewhat different model, the GPNP one, that accounts
for partial or no blocking by the addition of a real dc
conductance G or conductivity, σp ≡ σ(0), in parallel with the
PNP model. The GPNP model fits exact CJPNP data perfectly,
but it leads to different estimates of the PNP parameters than
the CJPNP ones. However, the σp value estimated from a
GPNP fit may be used with the value of ρ∞ to accurately
estimate the value of the CJPNP dimensionless reaction-rate
parameter, denoted in earlier work by the symbol ρ2 for one-
mobile situations involving mobile negative charges and by k2 in
its dimensional form. These matters are further discussed in ref
8, and the results of CJPNPA one-mobile fits of CCTO data at
80 and 140 K (Krohns et al.51) were compared there to
investigate possible temperature dependence of the reaction
rate.
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The paper by L. R. Evangelista et al.52 considered further
PNPA extensions, including memory effects associated with the
fractional-time diffusion equation of distributed order, leading
to suggestive results which, however, have not been used so far
for analysis of actual experimental data. Contemporaneously,
Barbero53 discussed one- and two-mobile, fully dissociated PNP
situations in detail and presented expressions for the values of
the two real-impedance plateaus that may appear in the two-
mobile case, as well as expressions for the frequencies
associated with these plateaus.
Then in ref 4 the Barbero work was further discussed, and

epsilon-level, rho-level, and sigma-level immittance results for
log10(Πm) mobility-ratio values of 0, 5, and 38 were presented.
This paper also identified an ambiguity that can appear in the
interpretation of the results of all model fitting of IS data, as
well as several other ambiguities specific to PNP models
because of their ability to estimate more physically significant
parameters than others. One of the latter arises because one-
mobile situations and equal-mobility log10(Πm) = 0 two-mobile
ones with full blocking lead to the same response shapes but
with a few parameter values different by small factors, so their
fit results cannot be distinguished without external knowledge.
Examples of this ambiguity are presented for the log10(Πm)
values of 0 and 38 for the real-epsilon and the real-rho
responses of Figures 1a and 3a of ref 4.
In actuality, there are no real physical one-mobile PNP

situations because potential wells and barriers that restrict the
free motion of the less mobile of the two charge species present
are never infinite, and eventually some of these charges become
unbound and free to diffuse/hop. However, the fixed log10(Πm)
= 38 choice used here is a good proxy for actual one-mobile
behavior because the effects of the resulting small but nonzero
mobility of the less mobile species appear at such low
frequencies and long times that they fall very far outside the
practical range of measurement.
J. L. de Paula et al.54 recently presented a theoretical PNP

treatment of adsorption, generation, and recombination of ions.
The adsorption part of the analysis was based on a Langmuir
approximation and was said to involve a set of equations
different from those appearing in ref 9 and other related work
[refs 55, 56, 57, 58, 30, and 59] that involved complex electrode
rate constants that generalized the original Chang−Jaffe ́
boundary conditions to account for the simultaneous presence
of either or both Faradaic reactions and Langmuir-type specific
adsorption, the ECJPNPA model. These general small-signal
boundary conditions are designated here as ECJ ones, and
some of their consequences are presented later in the present
work. The authors of the de Paula paper concluded with the
hope that their results would be useful because they showed
general response results for “a set of fundamental equations
characterizing a continuum diffusional model”.
Although the de Paula adsorption boundary equations were

overtly different from those in ref 9, eq B38, which also
included both reaction and specific adsorption effects, they have
been shown, as discussed below, to lead to identical adsorption
results. Because the ECJ boundary conditions of eq B38 agree
with the basic Butler−Volmer ones in the absence of specific
adsorption and for adsorption have been shown to encompass
Langmuir behavior as well, possible agreement or disagreement
between theoretical ECJ analysis and its adsorption predictions
and the adsorption analysis and results of the de Paula work
seemed worth pursuing. Therefore, the exact numerical results
calculated from the latter approach and presented in its graphs

were sent by the corresponding author of that work, Professor
L. R. Evangelista, to the present author. They were all then
fitted to the PNP model using the LEVMW program with
proportional weighting, and “exact” agreement to about
thirteen decimal places resulted. Thus, all of the de Paula
results are fully consistent with those predicted by the earlier
theory, but the work does usefully show some response
behaviors not previously depicted. Finally, these results were
theoretically reconciled in a subsequent publication.60 It
contains an expression for the PNP impedance of a fully
dissociated, two-mobile specific adsorption situation with equal
mobilities, one entirely consistent with the LEVMW ECJPNP-
model result for such a situation.
The generation-recombination part of the de Paula et al.54

analysis is consonant with that in refs 5 and 9, but it did not
refer to the detailed PNP GR results of ref 6. Those GR results
in the de Paula work that did not include adsorption: for
example, the data for the red lines in Figures 1 and 2 were also
fitted exactly using the log10(Πm) = 38 one-mobile PNP model.
However, an additional fit of the same data with the mobility
ratio free to vary led to a two-mobile estimate of Πm ≅ 742 ±
12, with a small value of the relative standard deviation of the fit
residuals, SF, of about 0.002. In addition, the GR parameter
values and that of N0 were quite different from the one-mobile
fit ones.
Although this two-mobile fit was not exact, it was sufficiently

good that, had it and the one-mobile one been used with
experimental data containing some random errors (real-life
situations where SF is usually no smaller than 0.01), it would
have been impossible to choose between the two fits without
additional knowledge of the material involved. As one might
expect, PNP model fitting evidently does not always allow one
to well discriminate between effective motion of an otherwise
immobile charged species associated with GR or actual mobility
of that species. In fact, for the present two-mobile fit situation,
both mechanisms contribute to the response since a second
plateau still appears when the two-mobile GR parameter values
are used even with the one-mobile Πm condition.
Diffusion-related studies published by others before 2010 did

not usually require satisfaction of the Poisson equation,
evidently because of unawareness of the earlier PNP work in
the field. In addition, these theoretical results were often not
compared with experiment and were not full PNP treatments.
However, the de Paula54 paper discussed above and the Santoro
et al.,61 Lenzi et al.,62 Ciuchi et al.,63 de Paula et al.,64 and
Duarte et al.65 ones all dealt with some aspects of anomalous
adsorption and do satisfy the Poisson requirement. The first of
these three did not include experimental data fitting, introduced
an undefined parameter N, and assumed equal values of the
diffusion coefficients of positive and negative ions, most
unlikely in practice except as a proxy for one-mobile behavior,
as discussed in ref 4 and earlier herein.
The 2012 Santoro61 work provided some plots of the real

and imaginary parts of the impedance calculated from a
fractional anomalous-diffusion equation, and although it does
not mention the limitations of this approach, as discussed in ref
7 and above, it provides useful references to anomalous
diffusion work not involving satisfaction of the Poisson
equation. The parameter N is evidently the present N0 with
the unstated assumption of full dissociation, so it also denotes
the equal concentrations of the mobile ions. The same
impedance equation was used in the Ciuchi paper to fit some
data for nematic liquid-crystalline electrochemical cells. Its fit
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results are significantly different, however, from those for the
smectic liquid crystal material included in Table 1 of the slightly
earlier4 publication. The 2011 Lenzi paper62 usefully cites many
references to ordinary or anomalous diffusion in many different
materials and uses a fractional diffusion type of PNPA model to
analyze IS data for deionized water with electrode boundary
condition stated to encompass adsorption and reaction. It did,
not, however, cite the earlier results of ref 9 that also do so. It
involves complete dissociation of the unidentified mobile ions
(of equal assumed mobility) present in the water, and it led to
estimated values of both N and diffusion coefficients for two
different electrode materials.
The work of ref 65 was also devoted to an IS analysis of pure

water data using a generalized ordinary-diffusion PNP-type
model involving two groups of fully dissociated positive and
negative charges of equal mobilities within each group but with
different mobilities for the charges of the two groups. This
analysis, which involved no electrode-reaction parameters, led
to poorer fits than those of Lenzi, and its fits were also inferior
to those of an unpublished separate one-mobile CJPNPA σ-
level fit of the ref 65 data by the present author, one that also
took account of the increase in σ′ data values at the highest few
frequencies. Nevertheless, when two groups of different mobile
ions are present in a material of interest, the approach of ref 65,
further generalized to involve the possibility of free and possibly
unequal mobilities of all four charges, would be appropriate.
Another generalization, suggested in a private communication
from Professor G. Barbero, is the possible need to consider
frequency-dependent mobilities in such structured materials as
gels. All these possibilities could be incorporated in future PNP
models, and data fitting with them might substantiate the need
for such extensions.
The later de Paula et al.64 paper presents theoretical results

that take into account both adsorption and generation-
recombination effects with a kind of CJPNPA model. While
it does mention the earlier extended Chang−Jaffe ́ adsorption
work of ref 9, it does not cite the relevant GR work of ref 6.
This second de Paula paper involves a model that differs
somewhat from the usual CJPNPA model instantiated in
LEVMW, and it does not refer to the two-mobile and
anomalous diffusion data fits and graphs presented in earlier
work4,6−8,52 using that model. It does, however, show graphical
theoretical results very similar to the earlier ones, including
some for different mobilities of the positive and negative
charge, and it seems likely that, as with the first de Paula paper,
much or all of its theoretical and experimental results could be
well fitted by the standard model. In its fit of data from a
nematic liquid crystal it does not, however, use its model to
investigate whether the positive and negative charges had
different mobilities but made the usual two-mobile assumption
with equal mobilities.
All three of the above publications and most earlier

theoretical, diffusion-related ones include plots of the real and
imaginary parts of the impedance but do not usually show
corresponding results for the admittance and dielectric levels.
This is unfortunate since real-part impedance plots may involve
two, or possibly even three, low-frequency plateaus. However, it
is only at the admittance or conductivity level that one may
unambiguously identify an approach to dc response if mobile
charges are present and react at the electrodes and if the data
extend to sufficiently low frequencies. Even dispersive pure
dielectric materials inherently involve a low-frequency real-part
impedance plateau,66 e.g., eq 7 therein.

Therefore, although some of the power-law increases that
appear for the real part of the impedance of experimental data
at frequencies below those of the ordinary bulk plateau may be
associated with anomalous diffusion effects, the presence of
actual second or third final low-frequency plateau values usually
requires the presence of unequal mobilities, or GR effects, and/
or adsorption or reaction processes. Thus, the frequent
assumptions of equal mobilities and full dissociation when
fitting data with the PNPA model should be avoided. Instead,
full ECJPNPA fits with free GR parameters and with a possibly
free mobility-ratio parameter are generally needed in general to
identify and characterize the one or two lower frequency real-
impedance plateau processes that may appear in principle and
sometimes in practice.
Unfortunately, none of the 2011−2013 papers mentioned

above carried out such full fits of experimental data, and so they
did not lead to unambiguous identifications of all the processes
leading to their experimental results. A virtue of dealing, as
herein, with experimental data transformed to specific form
rather than with raw data is that it is then simple to show
specific results for all four immittance levels that may allow
separate identification of bulk and interface (sometimes called
electrode) effects. The results discussed in the next sections
further clarify these matters.

IV. EXACT PNP RESPONSES AT ALL FOUR
IMMITTANCE LEVELS

In ref 4, two separate types of PNP response are defined: Type
A is that with small dissociation, so c0 ≪ N0, while these
concentrations are equal for type B, the full dissociation case.
Although type-A response is common for solids, type B may be
found for low-concentration mobile impurity ions in a dielectric
material. In this section, we progressively show how exact type-
A one-mobile PNP responses at all four immittance levels
change as more and more physical processes and parameters
are added to the model. Thus, we compare by pairs PNP and
PNPA, PNPA and CJPNPA, and CJPNPA and DCDCJPNPA.
Here the composite DCDCJPNPA model is that of a dielectric-
level Davidson−Cole one, the DCD, in parallel with the
CJPNPA. Although the DCD model was derived empirically, it
has been shown15 that its response may be explained on a
physical basis as a discontinuous self-similar process. Further
justification for its use in the above combination is discussed
below.
The Circuit-H general PNP model available in LEVMW and

used to calculate the present one-mobile results includes the
following possibly free parameters: N0, L, Πm, kgr, ξ, R1, C1, ρ20,
and ψA. For the full CJPNPA model, several other possibly free
reaction and adsorption parameters are also available. Here, the
kgr and ξ parameters are GR related, with kgr ≡ kg/kr and ξ ≡
τGR/τD, where kg and kr are the generation and recombination
parameters of papers refs 6 and 9. Further, τGR and τD are the
recombination reaction time and the Debye relaxation time,
respectively, and ρ20 is the dimensionless reaction rate for the
mobile negative charge species, named ρ2 in published work
not including specific adsorption. Although ξ is best estimated
from a data fit, it often is found to be large. Then it is useful to
hold it fixed at a very large value, thus eliminating a free
parameter in the fitting.
For the present results, all in specific form, the Circuit-H

parameters are R1 = ρ∞, C1 = εVε∞, and τD = R1C1, where εV is
the permittivity of vacuum, 8.8542 × 10−14 F/cm. Parameters
held fixed are T, the absolute temperature, A, and ΠZ, where A
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is the area of an electrode and ΠZ, here unity, is the ratio of the
valence numbers of the negative to positive charges, both of
concentration c0. From the values of the fixed and estimated
parameters of a fit, LEVMW also calculates values of the
indirect quantities defined above, as well as ε∞, M, mobilities
and diffusion coefficients, and the Debye length. Note that, for
example, in the present one-mobile case with univalent negative
charges mobile σ∞ ≡ (1/ρ∞) ≡ (eμnc0)(1 + Πm

−1). Although the
full frequency-response expression for the CJPNPA model
instantiated in LEVMW is too long to list here, the one-mobile
CJPNP response formula, eq 3 of Section II, appears in eq 7 of
ref 8 for small dissociation conditions. In the zero-frequency
limit it leads to ρ′(0)/ρ∞ = 1 + (ρ20)

−1. Expressions for all
CJPNP situations are listed and discussed in ref 9.
To obtain type-A DCDCJPNPA composite model parame-

ters of experimental relevance, I combined and modified
unpublished fit results for a smectic liquid crystal which showed
both dielectric dispersion, represented by the DCD part of the
model, and mobile charge associated with small dissociation of
a neutral center, somewhat similar to that found from PNPA
fits of CCTO material in refs 7, 8, and 4. Some values found for
the latter were modified to yield much smaller diffusion
coefficients than those for CCTO to represent the motion of
mobile ions rather than that of electrons. Fixed values of T =
305.6 K and L = 0.01 cm were used, as well as Πm = 1038. Other
PNP and CJPNPA rounded parameter values were N0 = 4.305
× 1021 cm−3, kgr = 4.305 × 105 cm−3, ξ = 1035 fixed, R1 = 5.925
× 107 ohm-cm, C1 = 2.877 × 10−13 F/cm, ρ20 = 0.01, and ψA =
1 or 0.9. Relevant rounded calculated values were c0 = 4.305 ×
1013 cm−3, ε∞ = 3.25, M1 = 151, kg = 5.87 × 10−39 s−1, kr = 1.36
× 10−44 cm3/s, τD = 1.70 × 10−5 s, τGR = 1.70 × 1030 s, μn =
2.45 × 10−3 cm2/(V s), Dn = 6.44 × 10−5 cm2/s, with LD = 2.34
× 10−5 cm for the two-mobile case and 3.31 × 10−5 cm for the
present one-mobile one. Here the value of the reaction rate, k2,
calculated from ρ20, was 1.29 × 10−4 cm/s. For the DCD model
the parameter values were ΔεD ≡ ε0 − ε∞ = 11.09, τDCD = 4.03
× 10−8 S, and γDCD = 0.963. The very large value of τGR used
here ensures that Type-A behavior remains relevant even at the
lowest applied frequencies.
The low-frequency-limiting PNP plateau value of ε0 = ε′(0)

is ε∞M1 = 490.2, and so ΔεD = (M1 − 1)ε∞. Therefore, ρ∞ =
(τD/εVε∞) = (M1τD/εVε0), the value of the low-frequency ρ′
plateau. The often-used empirical Barton−Nakajima−Namika-
wa (BNN) equation, involving a parameter p with a value
usually near unity, has been discussed for several different
conductive-system fitting models in ref 67. It may be written as
σ0 = pεVΔεωp, where ωp ≡ 2πνp is the angular frequency of the
peak of the |ε″(ω)| loss curve. Although the PNP model
without electrode reactions involves complete blocking and so
its σ0 is zero, to obtain an ef fective estimate of p for the PNP
model let us replace σ0 in the BNN relation by 1/ρ∞, write the
result as an equation for ρ∞, and set it equal to the above PNP
expression for ρ∞. Then solving for p yields p = (ε0/Δε)/
(M1τDωp). Finally, define ωPNP ≡ 2πνPNP ≡ 1/M1τD; then it
follows that p = {M1/(M1 − 1)}(νPNP/νP). For the present
PNP data the first quotient is 1.00662, and the second is
(61.8926/62.0995) = 0.99667. Thus the effective BNN value
calculated in this way for the PNP model is here about 1.003,
indistinguishable from unity in experimental situations.
Figure 1 shows how PNP responses change to PNPA ones at

all four immittance levels when the value of ψA is reduced from
1 to 0.9. We see that the major changes occur in the low-
frequency responses of ρ′ and σ′ with the appearance of CPE-

like, anomalous diffusion behavior. This behavior, per se, is
actually unrealistic since it continues unabated with no
approach to plateaus in the low-frequency limit. In actuality,
however, any of four different processes mentioned in the last
section lead to such plateaus, and for real data one or more of
them is always present even when their effects occur at
frequencies below the range of measurement. For both the
PNP and PNPA models, σ∞ = 1/ρ∞, and ρ∞ is the value of the
low-frequency plateau in the PNP ρ′(ν) and of the
midfrequency one in the PNPA response.
Figure 2 demonstrates the change from PNPA responses to

CJPNPA ones. It illustrates the transformation of low-

frequency, real-part PNPA complete-blocking behavior to
CJPNPA partial blocking involving Chang−Jaffe ́ boundary
conditions. Note, however, that no approach to a plateau in ε′
is evident. It is particularly important that for the four
immittance levels it is only the presence of partial or no
blocking of charges at the electrode interface that leads to a
final low-frequency-limiting dc plateau in σ′. It is this behavior,
not necessarily the presence of a limiting low-frequency plateau
in ρ′(ν), that is characteristic of dc behavior.

Figure 1. Comparison of log−log PNP and PNPA responses at the (a)
σ; (b) ε; (c) ρ; and (d) M immittance levels. Here and elsewhere σn =
1 S/cm, ρn = 1 Ω cm, and νn = 1 Hz. Since ε″ values are negative, they
are conventionally shown here and in subsequent figures as positive.

Figure 2. Comparison of log−log PNPA and CJPNPA responses at
the (a) σ; (b) ε; (c) ρ; and (d) M immittance levels.
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The dielectric-level Davidson−Cole model, the DCD, has
been found useful for fitting the IS data for a variety of
materials; however, as mentioned in Gulich et al.,68 it is often
more appropriate for the higher-frequency parts of the
response, and another model needs to be used to represent
electrode effects. Here we use the CJPNPA model to account
for such interfacial effects. It is interesting, however, that in the
absence of anomalous diffusion the ε0 values for the PNP,
CJPNP, and DCDCJPNP models are about 490.2, 480.6, and
491.7, respectively, with the difference between the last two
values being just that of ΔεD.
The inclusion of the DCD as part of the full composite

model produces further important changes above 104 Hz as
shown in Figure 3.

Neither the PNPA nor the CJPNPA model leads to any high-
frequency increase in σ′ above the usual σ∞ plateau, but most
experimental IS results for conductive-system situations show a
transition from that plateau to a CPE-like increase,68,69

sometimes identified as nearly constant loss. At GHz or THz
high frequencies, this response in turn may lead to a final high-
frequency (boson) peak or plateau associated with pure
vibrational effects.69 Here, for convenience, we have chosen a
τDCD value that causes the intrinsic final DCD plateau to appear
at lower frequencies.

V. RESULTS OF FITTING EXACT COMPOSITE
PNP-MODEL RESPONSE DATA SETS WITH
EMPIRICAL MODELS
A. Fits of PNP Data: Dielectric Models. We start by

considering the simple PNP model alone, always involving the
one-mobile situation. Although it involves the diffusion of
charges and is thus a conductive-system model with fully
blocking electrodes, it leads very closely to a semicircular
complex−plane plot at the dielectric level, a signature of Debye
dielectric behavior, that of the DebD model, a dielectric-system
one involving dipoles. This is an example of the Maxwell
ambiguity discussed, for example, in ref 4. As shown by Klein et
al.,42 when M1 ≫ 1 a DebD expression approximating one-
mobile PNP response is

ε ε ωτ= + − +∞ M iM/ 1 ( 1)/(1 )1 1 D (4)

where τD is the PNP characteristic relaxation-time parameter.
This is a Debye simplification of the usual DCD model

ε ω ε ε ωτ= + Δ + γ
∞ i( ) /(1 )D DCD

DCD (5)

when γDCD = 1.
With this choice, a DebD fit of eq 5 to the present PNP data

yielded the estimates ε∞ = 3.249, ΔεD = 487.2, and τDCD =
2.561 × 10−3 S, with SF = 9.5 × 10−4 and a value of PDRMS,
the RMS average of the relative standard deviations of the free
parameter estimates, of 7.1 × 10−5. For such exceptionally small
goodness-of-fit values, it is impossible to distinguish between
data and fit values in log−log plots or even in the more
sensitive dielectric complex−plane plots. The above fit values
agree within three significant figures with those calculated using
the PNP M1 and τD values, as in eq 1 of Section II. With γDCD
free to vary, however, the resulting DCD fit led to the results:
ε∞ = 3.249, ΔεD = 486.9, τDCD = 2.564 × 10−3 S, and γDCD =
0.99974, with SF = 4.2 × 10−4 and PDRMS = 3.1 × 10−5, a
substantially better fit.
Although we cannot readily distinguish between the data and

the model fit values, something useful can be learned from the
relative residuals of the epsilon-level fits. Define εd as that of the
data and εf as the fit values. Then the relative residual may be
defined as rε ≡ (εd − εf)/εf. It is one of the LEVMW fit outputs,
and its real and imaginary parts are shown in Figure 4.

These plots show that the very small change from the fixed
value of γDCD = 1 in (a) to the free value of γDCD = 0.99974 in
(b) leads to remarkable changes in the relative residuals of the
fits. It is evident that the differences inherent in the DebD eq 4
approximation of the PNP model of eq 1 are very small in the
low-frequency region below about 10 Hz but that the
approximation is somewhat less adequate, especially its real-
part fit in the mid-frequency range, even when it is generalized
to DCD response, as in eq 5.

B. Fits of PNP Data: Conductive Models. Because the
basic PNP model involves complete blocking, fits of its data
with another conducting-system model require the inclusion of

Figure 3. Comparison of log−log CJPNPA and DCDCJPNPA
responses at the (a) σ; (b) ε; (c) ρ; and (d) M immittance levels.

Figure 4. Real-part and imaginary-part relative residuals for (a) the
DebD fit of the PNP data (see Figure 1b) and (b) the DCD fit of the
data. Note the difference in the two y-axis scales.
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a series capacitance, C0. One possibility for such a model is the
empirical Havriliak−Negami model (the HNC), which is
expressed at the complex resistivity level as

ρ ω ρ ωτ= + α γi( ) /[1 ( ) ]0 C
C C (6)

When αC is set to 1, the HNC model reduces to the
conductive-level Davidson−Cole (DCC) one, and when both
exponents are fixed at 1, it becomes the conductive-level Debye
(DebC) expression. The designation of the HNC with a
capacitance C0 in series with it is HNC·C0. Note that empirical
conducting-system models involve a resistance or resistivity
parameter usually associated with a Faradaic electrode reaction
of the mobile charge or charges, and they do not allow one to
discriminate between one-mobile and two-mobile, equal-
mobility, conduction situations. Of course, when a model
such as the HNC is used to fit data involving complete blocking
(ideal polarization) such as that from the PNP and dielectric
situations, its nonzero resistance or resistivity parameter does
not represent dc behavior.
A DebC·C0 fit of the PNP data led to the following estimated

values: ρ0 = 5.858 × 107 Ω cm, τC = 3.271 s, and C0 = 4.340 ×
10−11 F/cm, with SF = 9.5 × 10−4 and PDRMS = 7.2 × 10−5.
The first and third parameter values are close to the
corresponding PNP ones. This fit leads to an estimate of the
BNN p parameter of about 0.988. In contrast, an HNC·C0 fit
yielded the estimates: ρ0 = 5.866 × 107 Ω cm, τC = 3.271 s, C0
= 4.340 × 10−11 F/cm, αC = 0.9996, γC = 1.0004, with SF = 2.3
× 10−4 and PDRMS = 2.3 × 10−5. This is still nearly a DebC·C0
result but a much better fit and a BNN p estimate of 0.989.
C. Fits of PNPA Data: Conductive Models. 1. Empirical

Models. Here a HNC·C0 model alone is inapplicable because it
cannot account for the low-frequency rise above the mid-to-
low-frequency ρ′ plateau shown in Figure 2(a). The simplest
composite model found that fits the PNPA data well may be
written C∞HNC·CPE, where C∞ represents the high-
frequency-limiting dielectric constant ε∞ and is in parallel
with the HNC. The series CPE response function is ρCPE(ω) ≡
1/[QCPE(iω)

β]. Its exponent satisfies 0 < β ≤ 1, and QCPE is a
specific capacitance only when β = 1.
The composite model fit to the PNPA data led to the

estimates: ρ0 = 5.864 × 107 Ω cm, τC = 0.0337 s, ε∞ = 3.254, αC
= 1.102, γC = 1.0018, QCPE = 1.296 × 10−10, β = 0.9001, with SF
= 0.0036 and PDRMS = 4.1 × 10−4. The ρ0, ε∞, and β
estimates are comparable to the corresponding PNPA
parameter values. The almost exact agreement between the β
and ψA values confirms that the difference between PNP and
PNPA behavior is of CPE power-law character. When γC was
fixed at unity, thus changing the HNC part of the composite
model to the conductive-level Cole−Cole model (CCC), SF
increased slightly to 3.6 × 10−3 with very minor changes to the
remaining free parameters. On the other hand, changing to the
DCC model led to SF = 0.069 and to β = 0.906. With both
exponents fixed at unity, the DebC model, no good fit was
possible, and the PNPA anomalous diffusion behavior was not
fitted since the resulting β estimate was the well-determined
value 0.9995.
2. Full PNP Model Fit. Finally, it is worth investigating how

well the full PNP model, the ECJPNP, is able to fit the present
PNPA data in specific form. At least an approximate fit should
be possible since, as already mentioned, several different
processes can lead to a progressive increase in ρ′ as the applied
frequency decreases below its midfrequency plateau. The model
includes not only arbitrary mobilities but also GR effects and

electrode adsorption and reaction ones only for the most
mobile charge. We fix ψA at 1 and keep the other originally fixed
PNPA parameter values the same. The best fit led to the
following estimates of those parameter values allowed to be
free: Πm = 2.10 × 103, kgr = 4.96 × 106, ξ = 1.25 × 104, R1 =
5.941 × 107 Ω cm, C1 = 2.906 × 10−13 F/cm, ρ20 = 1.08 × 10−4,
ρ2∞ = 1.68 × 10−3, and ξ2a = 8.65 × 104. Here ρ2∞ and ξ2a ≡
τ2a/τD are the dimensionless specific-adsorption parameters of
eq B38 of ref 9, discussed later for the one-mobile case in eq 9.
The goodness-of-fit parameter values for the above two-

mobile PNP fit were SF = 0.052 and PDRMS = 0.064,
indicating an adequate but not excellent fit. Although one could
not distinguish between the data and fit points for the usual
resistivity-level log−log plot, differences were evident, partic-
ularly at low frequencies for the more sensitive dielectric-level
complex- plane plot. Further, the relative standard deviation of
the Πm mobility ratio was about 0.3, a poorly determined
parameter. When this ratio was fixed at the usual one-mobile
value of 1038, SF = 0.056 and PDRMS = 0.028, making it clear
that a one-mobile fit was somewhat superior to a two-mobile
one. Further, when the reaction rate parameter ρ20 was also
fixed at zero, the fit-quality values changed to 0.082 and 0.033,
respectively, indicating that the presence of a nonzero reaction
rate improved the fit somewhat. The estimated value of the
concentration of the mobile charge was c0 = 1.42 × 1014 cm−3,
somewhat larger than that of the original PNPA model.

D. Fits of CJPNP and CJPNPA Data Sets: Conductive
Models. The DebC·C0 of the PNP data discussed above in
Section V-B needs replacement of the series C0 parameter by a
series resistivity element, ρ0S, and the addition of a parallel
capacitance, CP, representing ε∞ to make it appropriate for the
CJPNP situation. The resulting model may be written as
CPDebC·Ros. The fit results using this model are, however,
somewhat surprising. They are ρ0S = 5.936 × 107 Ω cm, ρ0C =
5.925 × 109 Ω cm, τC = 477.5 s, and ε∞ = 3.249, with SF = 9.4
× 10−4 and PDRMS = 9.7 × 10−5. We see that the estimated
value of the series ρ0S is nearly identical to the value of the PNP
DebC ρ0 parameter, and here the DebC resistivity parameter
ρ0C is about 100 times larger and takes proper account of the
original PNP dimensionless reaction-rate parameter ρ20 = 0.01.
Using the HNC model in place of the DebC one led to results
nearly identical to those of the DebC. Although one might have
expected the values of the two resistivities to be reversed, the
present fit of the CJPNP data requires that the DebC part of
the model represents the reaction relaxation process, and no
good fit was found with a reversal.
This same behavior was also found when an alternate

composite model, consisting of a resistivity in series with a
HNC, the CPHNC·Ros, was used to fit the CJPNPA data. The
fit of this composite model led to ρ0S = 5.937 × 107 Ω cm, ρ0C
= 5.924 × 109, τC = 1390 s, αC = 0.9002, γC = 0.9998, and ε∞ =
3.249, with SF = 9.3 × 10−4 and PDRMS = 1.5 × 10−4. This
differs from the above fit of the CJPNP data by the presence of
a larger τC value and by an αC value nearly identical to the
CJPNPA ψA = 0.9 value. The addition of a series CPE function
to the composite model yields a comparable value of SF but a
very poorly defined estimate of the QCPE parameter.

E. Fits of the DCDCJPNPA Data. Here it is reasonable to
start with a DCDCPHNC·Ros fitting model. Its results were ρ0S
= 5.944 × 107 Ω cm, ρ0C = 5.925 × 109 Ω cm, τC = 1389 s, αC =
0.9000, γC = 0.9999, ε∞ = 3.249, ΔεD = 11.10, τDCD = 4.03 ×
10−8 S, and γDCD = 0.963 with SF = 1.8 × 10−4 and PDRMS =
3.1 × 10−5. Clearly the DCDCPCCC·Ros model is appropriate,
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and the DCD values are the same as those in the data. The
fractional αC Cole−Cole exponent estimate is exactly that of
the PNPA. The DCDCJPNPA LEVMW input file has been
added to the LEVMW fitting model as part of its FITTESTS
CKT-H file in the Manual. It or any part of it can then be used
by anyone to fit appropriate experimental data in specific form.
Although its responses are shown in Section IV only for the
one-mobile situation, it may also be used with the two-mobile
one with equal or different mobilities.
Alternatively, changing the parallel DCD model to a series

DCC one yields the all-conductive model, the CPHNC·Ros·
DCC. The DCC part is that of eq 3 with αC = 1 fixed. Fitting
led to ρ0S = 5.940 × 107 Ω cm, ρ0C = 5.925 × 109 Ω cm, τC =
1389 s, αC = 0.9000, γC = 1.0001, ε0 = 14.385, ρ0 = 2.33 × 104

Ω cm, τDCC = 9.19 × 10−9 S, and γDCC = 0.943, with SF = 4.7 ×
10−3 and PDRMS = 9.0 × 10−4, a good but much poorer fit
than the DCD one. Note also that here the parallel capacitance
parameter led to an estimate of the zero-frequency value of the
dielectric constant rather than to its high-frequency limit.
F. Fit Summary and One-Mobile Randles Circuit Fits.

The fitting results presented above in the present Section V
make it clear that the full PNP model with an additional parallel
or series element included when necessary can fit virtually all
prior experimental IS data previously analyzed with empirical or
semiempirical models. These fits, using exact PNP data, are
appreciably better than are any fits of experimental data found
in the past. Therefore, the choice of which to use for
experimental data analyses might be considered unimportant
except that the PNP one yields estimates of not only the usual
parameters appearing in empirical models but also more
physically important ones not involved in such models. The
parameters present in the fits discussed above involved only
exact PNP data sets restricted to the important one-mobile
charge situation because situations where positive and negative
charges with unequal mobilities are present are not differ-
entiated in the empirical-model fits. Nevertheless, one may
conclude that the full PNP model, including the two-mobile
possibility where the above limitation no longer applies, will
also be able to well fit much two-mobile experimental data.
Although we have investigated fitting of PNP data by

empirical models, one would expect that the conclusions above
might well apply to the reverse situation. An important circuit
model involving semiempirical parameters is the 1947 Randles
one. It originally involved a semi-infinite Warburg element, but
soon thereafter that element was replaced by the often more
appropriate finite-length Warburg (FLW) one. A general FLW
expression is included under “FLW” in the Acronym list. Figure
4.5.7 in the 2005 Impedance Spectroscopy book2 shows a
Randles circuit involving a resistance Rs in series with the
parallel combination of a capacitance CP and a resistance Rws in
series with a FLW function involving a resistance RW and a
relaxation time τW. Sometimes, τW is itself expressed as d2/D,
where d is an effective diffusion thickness and D is a diffusion
coefficient parameter, but τW is different for one-mobile
unsupported situations, one-mobile supported ones, and two-
mobile unsupported ones.35

Professor Andrzej Lasia kindly sent me in a private
communication a data set calculated exactly from the Randles
circuit with arbitrarily selected parameter values but with
random errors added. These errors were Gaussian distributed
of 1-percent size, proportional to the impedance modulus.
Here, however, for generality the FLW element is replaced by
an extended finite-length one,37 whose impedance is ZW ≡ RW

tanh[(iωτW)
ψW/2]/(iωτW)

ψW/2, a model instantiated in LEVMW
which reduces to the FLW form when ψW = 1.
A CNLS fit of the noisy Lasia data set using the Randles

circuit model in Circuit-B of the LEVMW fitting program (file
RANDLESwithRanErr, available in the LEVMW FITTESTS
folder of the Manual for running in LEVMW) led to estimates
of the values of the originally unknown six parameters of the
full Randles circuit involving this extended Warburg-type
element and to SF = 0.034 and PDRMS = 0.011, a reasonably
good fit. The rounded values of these Rs, CP, Rws, RW, τW, and
ψW estimates suggested that their original values were close to 5
Ω, 20 μF, 50 Ω, 40 Ω, 10 s, and 1, respectively. All these
rounded values were indeed the same as those used to generate
the data from the circuit. The actual estimate of ψW was about
1.001 ± 0.02. The R′(ν) curve of the Lasia data set is somewhat
similar in shape to the CJPNPA one of Figure 3c, but it differs
in exhibiting a nonzero high-frequency limiting value of Rs = 5
Ω, a midfrequency plateau value of about 55 Ω, and a low-
frequency limiting value of about 95 Ω, in agreement with the
above estimates.
Next, the unrounded estimates of the fit parameters of the

circuit were used to generate an exact data set. Finally, this data
set and the original noisy one were each then fitted with the
composite Rs·ECJPNPA model with the usual one-mobile
choice. It thus included both reaction rate and specific
adsorption parameters. Results for the fit of the exact set
were SF = 0.023 and PDRMS = 0.046, with a fairly large value
of the relative standard deviation of the kgr GR parameter of
0.12. It led to an almost exact estimate of Rs of 5.00 Ω and one
of Rws of about 52 Ω, the PNP resistance, and an estimate of ψA
of 0.966. Its M1 estimate was about 980; its k2 electrode
reaction rate constant was about 2.4 × 10−4cm/s; its diffusion
constant estimate was 3.1 × 10−5 cm2/s; and its N0 and c0
estimates were 5.57 × 1021 cm−3 and 1.03 × 1020 cm−3,
respectively, fairly close to complete dissociation. When the two
adsorption parameters of the fit were not included, the fit was
much worse and led to the results SF = 0.078 and PDRMS =
0.122.
A full Rs·ECJPNPA fit of the noisy data was much poorer: SF

= 0.28 and PDRMS = 0.61. Here the kgr parameter could not be
estimated, and the estimated uncertainties of the two
adsorption parameters were very large. These results show
that for the one-mobile PNP model even good Randles circuit
data could only be adequately fitted with the inclusion of ECJ
specific adsorption parameters, not physically present as part of
the data, and that the noisy data set could not be adequately
fitted at all. These conclusions are not surprising, however,
since one-mobile PNP response is different from finite-length
Warburg response for unsupported situations. The situation is
even more different, however, when it is assumed that charges
of both signs are mobile and at least one of them reacts at the
electrodes. See the later discussion and comparison in Sections
VI-C-2 and VI-D.
The above difference is particularly obvious when one

compares complex−plane FLW and relevant one-mobile PNP
responses. The characteristic FLW shape appears in a Z-level
plot, but this should be compared here to a dielectric-level PNP
one, not, however, to full PNP response which is very close to a
Debye semicircle, as shown in Section V-A, but to PNP
interface dielectric response. For data and model expressions in
specific form the normalized interface conductivity, σiN(ω) ≡
σi(ω)/σ∞, is given for the one-mobile case by eq 40 in ref 9. Its
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inverse, ρiN, may be related to the total PNP complex resistivity,
ρTN(ω), through

ρ ρ ω ρ ω= + − −S S[(1 ) ( ) 1]/[1 ( )]iN TN TN (7)

where as usual S ≡ iωτD. The result is, for complete or small
blocking and full or small dissociation

σ ρ≡ = −S Q P1/ ( 1)/iN iN 1 1 (8)

where Q1 ≡ tanh[M1(1 + iωτD)
1/2]/[M1(1 + iωτD)

1/2]; P1 ≡ 1
+ S; and σiN only reduces to an approximate FLW function at
the epsilon level when |S| ≫ 1and usually M1 ≫ 1.
The shape of the dielectric-level PNP high-frequency

interface response is the same for the PNP or for the CJPNP
model with a small or zero reaction rate, and a normalized
shape comparison is provided here in Figure 5. Although the

high-frequency limiting slope is the same for both the FLW and
the PNP interface function, the midfrequency behaviors are
appreciably different, as expected from eq 8. More interface
responses are presented in the next section.
An unsupported data comparison between a FLW

impedance-level formula and a two-mobile PNP one9 with
arbitrary positive and negative charge mobilities was presented
in ref 35 and led to their full agreement. The PNP impedance
expression used there did not, however, directly include the
exact one-mobile limiting situation where the mobility of one
charge is zero and that of the other is nonzero or the exact two-
mobile situation where charge of one or both signs reacts at the
electrodes, and the reaction rate of one of them may be
essentially infinite. These possibilities are further discussed in
Section VI for full ECJPNP models. They show that Warburg-
like impedance-level behavior can appear in two-mobile PNP
situations when one charge species is fully blocked and the
other is not blocked or only partially blocked, in agreement
with earlier results of Figures 1b and 2 of ref 40.
Only part of the full fit parameter results are listed here

because full LEVMW input-fit files for the two Randles circuit
data fits are now included in the LEVMW FITTESTS CKT-B
file of the LEVMW manual, and the two one-mobile Rs·
ECJPNPA ones are included in the corresponding CKT-H file.
These files may also be used with other experimental data sets
to readily make comparisons of the present type and to thus
discover which type of model is the more appropriate for the
data explored.

VI. VARIOUS PNP-RELATED RESPONSES

A. Interface Responses. Interface response, as calculated
from the total response of a PNP model using eq 7, a built-in
process in LEVMW, is the part that involves diffusion near the
electrodes, and it is thus a crucial element of the full response.
Although the epsilon-level PNP complex−plane interface
response of eq 8 is presented in Figure 5, more general
CJPNP behavior as a function of frequency has not been
explicitly included in the earlier plots. Therefore, Figure 6
compares full one-mobile CJPNP behaviors with their interface
parts for the four immittance levels.

As Figure 6 shows, the full and interface responses are almost
the same at the lowest frequencies as expected, but the high-
frequency limiting interface responses converge to power-law
CPE behavior with a fractional exponent of ±0.5, semi-infinite
Warburg behavior for large M1, as is the case here.

B. M1 Dependences and Other Subjects. The zero-
frequency value of εTN ≡ εT/ε∞ and εiN ≡ εi/ε∞ for M1 ≫ 1
are, as in Figure 6, just M1 and M1 − 1. However, for any value
of M1, the limiting expressions are M1ctnh(M1) and M1ctnh-
(M1) − 1. For M1 ≪ 1, therefore, they approach the first term
of their series expansions, leading to values of 1 and M1

2/3,
respectively. Although the shape of the εiN(ν) response remains
the same as that shown in Figure 5, the magnitude of the
interface response becomes a smaller and smaller part of the full
response as the electrode separation L decreases enough to lead
to M1 ≪ 1. However, one should expect that reducing M1 at
constant L by alternatively increasing the mobile charge
concentration will lead, for sufficiently small M1, to
inappropriate results. This will happen because the PNP
model’s use of point charges does not take proper account of
charge-crowding effects at high concentrations.
PNP responses with different M1 values are readily calculated

with LEVMW by varying the electrode separation, L, and
probably become progressively less appropriate for M1 ≪ 1.
Nevertheless, it is worth mentioning results in Figures 5 and 6
of ref 70, an equal-mobility (0,0) situation that involved the
original precursor of the LEVM/LEVMW CNLS program.
There normalized total impedance and admittance complex−
plane plots are presented for several M values in the range 3 ≤
M < ∞. They show that only for M values of the order of 100

Figure 5. Magnitudes of the complex−plane responses for finite-
length Warburg and one-mobile PNP interface functions scaled to
real-part maximas of unity.

Figure 6. Comparison of full log−log CJPNP responses with their
interface (INFC) parts at the (a) ρ, (b)M, (c) σ, and (d) ε immittance
levels. Here M1 ≃ 150.9.
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or more are the low- and high-frequency real-part limiting
values good estimates of the normalization quantities. There-
fore, in small-M situations R∞ and its inverse should be
estimated by fitting the data with a PNP model rather than
from the location where the full-blocking spike appears. Earlier,
small and large M results, new finite-length Warburg-like
behavior, and discussion of earlier diffusion models published
by others that do not require satisfaction of Poisson’s equation
also appear for (0,0) and (0,∞) equal-mobility situations in the
detailed work of ref 55.
Grain-boundary effects are discussed in Chapter 4.1 of the

2005 IS book2 and for mixed, supported conductors in ref 71,
but they will not be discussed here except to suggest that in
unsupported cases composite fitting models involving PNP
ones might be useful. In a valuable discussion of stimulated
dissociation arising from an external source of energy, one that
does not, however, ensure that Poisson’s equation applies
everywhere between the electrodes, Bisquert72 treats solar-cell
situations of practical importance. A full PNP analysis of this
situation might well be worthwhile.
C. ECJPNP Reaction and Adsorption/Reaction Re-

sponses for One- and Two-Mobile Situations. 1. General
Situation. In Chapter 4.4 of the IS book2 and in ref 1, D. D.
Macdonald shows many complex−plane impedance plots that
involve a change of sign of the real and possibly imaginary parts
of the impedance as a function of applied dc bias. An important
paper by Sadkowki73 demonstrates that for nonminimum-phase
situations of this kind Kronig−Kramers transformation to
validate the data may fail when a data set is expressed at the
impedance level rather than at the admittance one. Here I
consider only small-signal unbiased ECJPNP responses of this
type that may be possibly represented by an equivalent circuit
with inductive or negative capacitance and negative differential
resistance elements, as discussed in detail in ref 58. In Table 2
of that work these elements are related to reaction rate and
specific adsorption parameters, ones more physically realistic
than are negative resistances and capacitances.
Adsorption/reaction processes can lead to a wide variety of

responses, far too many to present here, although some are
shown in Figure 3 of ref 43. Thus, we consider here just the
three-parameter, Type-B, one-mobile case and the equal-
mobility, two-mobile one. In the two-mobile situation, charge
of one sign is fully blocked, and the other, here the negative
one, may react and possibly adsorb at the electrodes. Then the
complex ECJ response expression, eq B38 of ref 9, reduces for
the (0, ρ20) situation to

ρ ρ ξ ρ ξ= + Ω + Ω∞i i[ ]/[1 ]a a2 20 2 2 2 (9)

where Ω ≡ ωτD, and thus Ωξ2a ≡ (ωτD)(τ2a/τD) = ωτ2a. Note
that an electrode reaction may occur with ξ2a either zero or
nonzero even when the adsorption parameter ρ2∞ = 0. ξ2a is a
normalized relaxation time that can affect the separation
between reaction and specific adsorption processes. As usual,
the subscript 2 denotes the involvement of a negative charge,
and τ2a is its adsorption time constant. Here ρ20 and ρ2∞ are
dimensionless reaction and specific adsorption rate constants
and are not resistivities. An important quantity is ρnm ≡ ρ2∞ −
ρ20.
For the one-mobile situation, eqs 1 and 5 involve the FLW-

like quantity Q1 defined below eq 8. However, matters are more
complicated for two-mobile situations with equal mobilities.
Then two such quantities appear9,40,55 which we designate here
as Q2L ≡ tanh[M2(iωτD)

1/2]/[M2(iωτD)
1/2] and Q2H ≡

tanh[M2(1 + iωτD)
1/2]/[M2(1 + iωτD)

1/2], ones that become
significant at lower and higher frequencies, respectively. A ZTN
expression for the (0,∞) situation, one of the choices presented
below, appears in eq 2 of ref 40 and is discussed in detail in ref
55 where an equivalent circuit, Figure 18-a (also Figure 1-b in
ref 40), is shown to be different from and possibly more
appropriate for this situation than is the Randles circuit
involving an ordinary FLW element, already discussed in
Section V-F. It is also mentioned in ref 55 that the effects of the
Q2H term were too small to observe in the high-frequency
Warburg-like tail of a dielectric-level normalized complex−
plane plot. See the further two-mobile discussion below.
Figure 7 shows results for both one-mobile and two-mobile

Type-B ECJPNP (0, ρ20) situations, with their details discussed

in the following two subsections. Their frequency range extends
from 10−3 to 108 Hz. Although the plots are presented at the
ρ(ν) level, they involve a value of the specific capacitance of the
measuring cell of about 1.4 × 10−10 F/cm, rather than the
permittivity of vacuum, to make the transition at ρ′ = 106 Ω cm
between the left and the next semicircle approach the imaginary
axis closely. The only differences between the results in the (a)
and (b) parts of Figure 7 arise from their different choices of
the values of the parameters ρ20, ρ2∞, ξ2a, and Πm. Other
parameters were held fixed when the values of any of those
listed here were changed, and all their values are provided in
the LEVMW input file ECJPNP1M1 included in the Circuit-H
FITTESTS file of the LEVMW manual. It was the one used to
produce the curve-1 result of Figure 7-a showing three
semicircles, and it may be used to generate all of the present
results, frequency responses, and other ECJ ones of interest as
well.
The value of ρ∞ for all Figure 7 results was 106 Ω cm, and

thus the shape of the bulk semicircle at the left does not change
when any of the other above-listed parameter values are altered.
The ξ2a parameter is only used when ρ2∞ is nonzero. Its value
for the one-mobile case was 2 × 106, and it is only used in the
two-mobile results for line 2 where its value was 106, almost
negligibly different when 2 × 106 was used instead.

Figure 7. Three complex−plane, specific-impedance ECJPNP
responses for (a) one-mobile and (b) two-mobile situations. Arrows
show the direction of increasing frequency, and the legends list, for
each of the three curves, the values of ρ20, ρ2∞, and ρnm, respectively.

The Journal of Physical Chemistry C Feature Article

dx.doi.org/10.1021/jp403510y | J. Phys. Chem. C 2013, 117, 23433−2345023444



2. One-Mobile Behavior. The three semicircles of line-1 of
Figure 7-a show bulk, reaction, and adsorption/reaction
behavior where the relevant parameter values have been
selected to make the semicircles of nearly equal sizes. For
lines 2 and 3, where ρnm < 0, both the real and imaginary parts
change signs. Although interesting curves result when the
values of either ρ20 or ρ2∞ are negative, their physical
realizability and significance are dubious.
When the value of ξ2a is much larger than that here, the line-

1 R and A/R semicircles merge into a single A/R one spanning
the region from 106 to 3 × 106 Ω cm, and when ξ2a approaches
zero only the B one remains within the available frequency
range. In contrast, when ρ2∞ is larger than 1, the R semicircle
becomes smaller and the A/R one bigger, but still within the
maximum of ρ′ not exceeding 3 × 106 Ω cm, and vice versa for
smaller values of ρ2∞. Finally, when ρ20 < 0.5, the A/R
semicircle becomes larger, and vice versa for larger values. It
disappears when ρ20 = 1 and ρnm is zero.
3. Two-Mobile Behavior with Equal Mobilities. It is

noteworthy that although no FLW behavior appears for these
one-mobile responses it does do so in two-mobile situations.
Here line-1 of Figure 7-b also involves three sections, but line-3
exhibits two-section finite-length Warburg-like behavior. When
the value of ρ20 is greater or less than 2, the middle reaction
semicircle becomes smaller or larger than otherwise, as
expected, and the size of the third section remains the same.
Thus, the reaction semicircle disappears, as in line-3, where the
actual value of ρ20 was 1035, an excellent approximation to
(0,∞) behavior. The sizes of the two responses of line-1
adjoining the bulk one both become smaller when the mobility
ratio is greater than 1 and larger when it is smaller. The same
behavior results for the remaining finite-length Warburg-like
response of line-3.
Line-2 shows the effect of combined A/R processes. When

the value of ρ2∞ was reduced to 1.5, the third section no longer
shows FLW behavior but instead reduces to an approximate
semicircle with a small loop in the region of the transition from
the second to third section that extends below zero of the y-
axis, as often observed.1 When the value of ξ2a is larger than
that of line-2, the resulting right-most circle becomes smaller,
and its center moves to the right. When ξ2a is much smaller, the
line-2 behavior approaches and reaches that of line-1 when ξ2a
becomes zero. As expected, when the mobility ratio is greater or
smaller than 1, the right response is smaller or larger; however,
for a value of 0.5, for example, there is an appreciable loop
below the y-axis and the positive part of the resulting
approximate semicircle extends beyond the present ρ′ = 3 ×
106 Ω cm boundary.
It is noteworthy that the two-section line-3 behavior is of the

same general shape as that of Figure 1 of the PNP work of ref
35 and the (0,∞) plot in Figure 2 of ref 40. Except for different
normalization, the latter response appears to be essentially the
same as that appearing in Figure 2 of ref 74, a 2009 paper
involving independent solution of the PNP equations and
dealing primarily with electrodiffusion time scales for an equal-
mobility, (0,∞), small-signal situation. In that paper the left and
right part responses were identified as bulk and Warburg ones,
in agreement with their eq 28. Unfortunately, the authors of
this work were unfamiliar with the much earlier PNP analyses
of refs 5, 55, 40, 34, 9, and 35. In these works, FLW-like
behavior was not identified as that of ordinary finite-length-
Warburg response and was shown to be more complicated than
that in general.

It is easy to fit the exact interface impedance-level (0,∞)
CJPNP response of line-3 of Figure 7-b to an actual two-
parameter FLW function using the LEVMW CNLS computer
program with proportionate weighting. As might be expected
from the above discussion, a poor fit was obtained. The
impedance-level complex−plane comparison of the exact and fit
curves showed close but not exact agreement over a wider high-
frequency range than that in Figure 5, but the fitted Warburg
part was appreciably smaller at lower frequencies than was the
PNP one.
In contrast, it is useful to provide an example where a PNP

model involves an interface part that can be well fitted by a
FLW function. An input file, CJPNP2MEQ, involving exact
data for the equal-mobility, two-mobile situation has now been
included in the H-circuit FITTESTS part of the LEVMW
program manual, and the fit of its interface part,
CJPNPINTFLWFIT, is now also included in the FITTESTS
B-Circuit. That two-parameter FLW fit led to values of SF = 3.9
× 10−3 and PDRMS = 1.9 × 10−4, good enough that data and
fit were indistinguishable in an impedance-level complex−plane
graph. However, more helpful results are provided below for
the general two-mobile situation with arbitrary mobilities.

D. Extended Randles-Type Circuit Fits: Decoding and
Interpretation of Parameters. The Randles impedance-level
circuit data set that was analyzed in Section V-F for one-mobile
conditions led only to a fair fit and required a nonphysical Rs·
ECJPNPA model. It is thus worthwhile to fit the Randles data
discussed there with the (0, ρ20) or (0,∞) two-mobile Rs·
CJPNP model with arbitrary mobilities. As shown in Figure 2b
of ref 9, an appropriate circuit representing the CJPNP model is
just a Randles-type one with its FLW element replaced by the
CJPNP interface-response model. In this case, the Randles bulk
parameters CP and resistance Rws are identified as C∞ and R∞,
but fitting of experimental IS data has shown that sometimes
the addition of a Debye or Davidson−Cole dielectric model in
parallel with a CJPNP or CJPNPA one is needed to adequately
fit and interpret the data: for example the DebDCJPNPA or
DCDCJPNPA composite models. Therefore, we shall here also
fit a Randles exact data set with such composite models as the
Rs·DebDCJPNP or Rs·DCDCJPNP models. Note that the
DebD part may also be reduced to just a parallel capacitance,
CD.
We start with the six-parameter EXRANONORCLD

LEVMW Randles input run file available in the FITTESTS
Circuit-O folder of the free LEVMW computer program
manual. It spans the frequency region 10−6 ≤ ν ≤108 Hz,
involves 20 points per decade, and incorporates the exact
Randles circuit data of Section V-F, but the parallel capacitance
CP value used there of 20 μF has been changed to 10 μF. This
change was made on the assumption that the Lasia data
possibly referred to a half-cell, while here we consider a cell
with two identical electrodes at which charge of one sign is
completely blocked and that of the other sign, here arbitrarily
taken negative, undergoes a fast reaction. Thus, the present
value of CP is the result of two 20 μF capacitors in series. The
relevant parameters and their values are thus Rs = 5 Ω, CP = 10
μF, Rws = 50 Ω, RW = 40 Ω, τW = 10 s, and ψW = 1. With
proportional weighting the fit was exact with both SF and
PDRMS about 10−13, the minimum possible value for the
LEVMW program. Figure 8, solid line, shows the Randles data
in a complex−plane impedance plot.
The first fit of the present exact data set employed the Rs·

CJPNP Type-A model with L fixed at 0.1 cm (fit-file
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RanDatRSserCJPNP, available in the FITTESTS H-circuit
folder of the LEVMW Manual) and led, with five free
parameters, to SF = 1.94 × 10−3 and PDRMS = 3.06 × 10−4,
with either of the values of N0 or kgr fixed, but the model was
inadequate to allow them both to be free at the same time for
this data set. The fit led to estimates of Πm and R∞ of 1.26 and
50.3 Ω, respectively. As expected, the C∞ estimate was very
close to 10 μF, but it is unsatisfactory because it leads to an
unrealistic estimate of ε∞ of the order of 108!
The second fit therefore used the Rs·DebDCJPNP with its

τDeb relaxation time set so small that the model becomes a Rs·
CDCJPNP one and the CD capacitance then fits the parallel CP
of the original Randles circuit. Here and in the above fit ρ2 was
fixed at 1034, a good approximation to ∞, and again L was fixed
at 0.1 cm. The fit then led to SF = 1.8 × 10−11 and PDRMS =
4.5 × 10−9 (fit-file EXRANHNORCDeb, also available in the
FITTESTS H-circuit file), an essentially exact fit of the seven
free parameters except for N0, kgr and C∞, whose relative
uncertainties were about 8.1 × 10−9, 8.1 × 10−9, and 3.4 × 10−9,
respectively, rather than about 10−11. The estimate of C∞ was
about 3.59 × 10−14 F. The estimates of N0 and c0 were about
1.95 × 1028 and 6.34 × 1018 cm−3, indeed a type-A situation.
When τDeb was taken as a free parameter, its estimate was 2.06
× 10−11 s with a relative standard deviation of about 0.002, and
the fit was about an order of magnitude worse.
In the present situation, the values of A, L, and ε∞ are all

unknown. However, the work of ref 35 leads to the two-mobile
Warburg relations R∞/RW = Πm and τW = L2/(4Da), where Da
is the ambipolar diffusion constant. It immediately follows from
the Randles data values listed earlier that Πm = 1.25, the value
also obtained from the nearly exact Rs·CDCJPNP fit discussed
above. This important result, not emphasized or explicitly
discussed in ref 35, allows the estimation of a Πm mobility ratio
value without the need for fitting to a model whenever
unsupported data lead to bulk and Warburg responses such as
those in Figure 8, ones widely observed for such conditions.
Using the definitions of Da and R∞ in the parameter list

below, when values of A and L are known, as is generally the
case in IS measurements, one can then calculate values of the
concentration c0 and the diffusion coefficients using just the
Randles parameter values. In the present fit with fixed L = 0.1
cm, the results are consistent with this value and lead to a value
of A of 0.1 cm2, so A and L are numerically equal. Fitting of the
Randles data with a larger value of L leads to the same equality,
and with L = 1.25 cm, for example, the estimated value of ε∞
was at least slightly larger than unity. Usually in IS

measurements, the numerical value of A/L is appreciably larger
than unity, so evidently the choices of parameters made in the
original Lasia data do not lead to a very reasonable value of this
ratio; however, the data nevertheless are more than adequate to
demonstrate how such Randles responses may be analyzed
without and with model fitting.
Sometimes a RC DebD circuit is added in series with a

Randles one, as in Figure 4.5.8 of ref 2. There it is added to
represent the low-frequency effects of a passivating layer on the
electrodes, but it can also model the effect of a Stern inner
layer. Alternatively, a DebC or DCC circuit may be included to
represent the often observed rise in the real part of the
admittance at high frequencies, as discussed in refs 68, 69, and
75. These low- and high-frequency response additions are
included in Figure 8. The resistance value used in both was 20
Ω, and the high-frequency one involved a relaxation rate
parameter value of 10−6 s, while it was set at 1000 s for the low-
frequency one. The additional low-frequency RC behavior is
thus present below 10−3 Hz and the high-frequency one above
105 Hz. Since most experimental IS data do not extend much
below 10−3 Hz, passivating effects may indeed be present in this
range; however, much lower frequencies would be required to
observe Stern-layer capacitive ones, and none has been required
in usual IS experimental data set analyses.

VII. SUMMARY AND FUTURE POSSIBILITIES
Many papers using the PNP model to fit relevant experimental
data have been reviewed and compared herein, but more such
fitting should be carried out. The importance and breadth of
application of the general PNP charge-diffusion model have
been demonstrated by showing that even with its simplification
to charges of a single sign mobile it can fit data generated by a
wide range of widely used empirical models previously
employed to fit an extensive variety of experimental
immittance-spectroscopy data sets. As shown here, however, a
composite model including both the PNP and an additional
high-frequency response one is needed for analyzing data
including CPE-like behavior at high frequencies since the PNP
alone includes just bulk response and interface response
involving ordinary or anomalous diffusion.
Full and interface responses have been compared for all four

immittance levels, as well as some electrode reaction and
combined specific adsorption and reaction ones. Fitting results
using the ECJPNP model lead to estimates of the values of
many more physically significant parameters describing small-
signal, unsupported, experimental data than do other models.
Further, the two-mobile behavior with arbitrary mobilities
includes impedance-level, finite-length, ordinary, or generalized
Warburg-like response, especially when charge of at least one
sign is not fully blocked at the electrodes.
The complete PNP fitting model is freely available and

includes situations where charge species of both signs may be
mobile, may involve different valences, and can react and
adsorb at the electrodes. Its use can thus show whether charges
of both signs or those of only a single sign are mobile, as well as
quantifying mobility values. It also allows discrimination
between effective charge mobility arising from generation-
recombination hopping effects and actual continuum charge
mobility. Interestingly, a composite two-mobile PNP model has
been shown to lead to an exact fit of data calculated from a
Randles circuit involving a FLW dispersive element. Further, its
results demonstrate that a complex−plane impedance-level plot
of such unsupported experimental data, which shows both a

Figure 8. Complex-impedance-plane results for three situations. Solid
line: exact Randles circuit data. Long-dash line: Randles response with
high-frequency Debye relaxation response in series. Short-dash line:
Randles response with low-frequency Debye relaxation response in
series.
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resistive semicircle and a FLW response as in Figure 8, allows
one to accurately estimate the mobility ratio Πm without the
need for any fitting whatsoever.
Future PNP models should involve at least two separate

groups of positive and negative charges of arbitrary mobilities
and valences to explore and quantify the need for such added
complexity and to allow comparison with the alternative of a
single PNP model and another conductive-system one in
parallel, such as the DCC, to take account of the effects of
mobile impurity ions. Finally, it may be appropriate to
generalize PNP models to include the possibility for some
materials of frequency-dependent mobilities. Much work still
remains to be done to continue to show that even an
approximate continuum IS model such as the PNP can be more
useful than many other hopping and other models at
representing experimental IS data and leading to parameter
value estimates of physical significance.
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■ ACRONYMS AND ABBREVIATIONS

BNN Barton−Nakajima−Namikawa conductive-sys-
tem empirical relation

CCC Cole−Cole dispersive model: conductive level
CCD Cole−Cole dispersive model: dielectric level
CDCJPNPA Composite model: capacitance CD and

CJPNPA in parallel
CELCAP Capacitance in Farads of the empty measuring

cell
CJ Chang-Jaffe ́
CJPNP Poisson−Nernst−Planck model with CJ boun-

dary conditions
CJPNPA Poisson−Nernst−Planck anomalous-diffusion

model with C−J boundary conditions
CNLS Complex nonlinear least-squares
CPE Constant-phase DCE element
DCC Davidson−Cole dispersive model: conductive

level
DCD Davidson−Cole dispersive model: dielectric

level, eq 5
DCDCJPNPA Composite model: DCD and CJPNPA in

parallel
DCE Distributed circuit element
DebC Debye relaxation model defined at a conductive

IS level (one relaxation time)
DebD Debye relaxation model defined at the

dielectric IS level (one relaxation time)
ECJPNP Extended Poisson−Nernst−Plank diffusion

model with electrode reaction and adsorption
boundary conditions

FLW Finite-length-Warburg response function:
ZW(ω) ≡ RW[{tanh(iωτW)

0.5}/(iωτW)
0.5]

GPNP Composite PNP model including a parallel
conductance or conductivity

GR Generation-recombination; kgr ≡ kg/kr; see
Section IV

HNC Havriliak−Negami empirical dispersive model:
conductive level, eq 6

HND Havriliak−Negami empirical dispersive model:
dielectric level

INFC Interface part of a PNP model
IS Immittance or impedance spectroscopy. Im-

mittance denotes all or any of the four levels of
raw data (or specific data): impedance, Z;
electrical modulus, M; admittance, Y; and
complex dielectric constant, ε

LEVMW Windows version of the original CNLS fitting
program LEVM

PDRMS The root-mean-square value of the relative
standard deviations of the estimated values of
the free model parameters of a CNLS fit
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PNP Poisson−Nernst−Planck ordinary-diffusion
model

PNPA Poisson−Nernst−Planck anomalous-diffusion
model

Type A PNP response model with small dissociation of
a neutral species: c0 ≪ N0

Type B PNP response model with full dissociation: c0 =
N0

Definition of Principal Parameters
A Area in cm2 of each of the identical electrodes
CELCAP (A/L)εV, in Farads
c0 Concentration of mobile positive and negative

charges, in cm−3

C∞ High-frequency-limiting bulk capacitance of meas-
ured material, (A/L)ε∞εV

Di Diffusion coefficients: positive mobile charges D1 =
Dp; negative mobile charges D2 = Dn

Da Ambipolar diffusion coefficient: 2DnDp/(Dn + Dp),
in cm2/s

εV The permittivity of vacuum, 8.8542 × 10−14 F/cm
ε∞ The high-frequency-limiting dielectric constant of

the measuring cell material
L Separation in cm of the identical electrodes
LDj Debye length in cm; j = 1, one-mobile; j = 2, two

mobile: [ε∞KBT/(je
2c0)]

0.5

Mj (L/2LDj): one- and two-mobile dielectric-ratio
quantities

N0 Concentration in cm−3 of a neutral species that
partly or fully dissociates into positive and negative
species of equal concentration

P,Q,S,U Normalized dimensionless parameters: defined in
Section II

Πm ≡ D2/D1 ≡ μ2/μ1
QCPE Argument of the constant phase element function
R∞ High-frequency-limiting resistance in ohms of the

measuring cell materials; (L/A)/[ec0(μn + μp)]
ρ2 Normalized, dimensionless reaction rate for negative

charges; ρ2 ≡ (L/2D2)k2, where k2 is the reaction
rate in cm/s. See eq 9 for specific adsorption
complex form

ρ∞ Specific high-frequency limiting resistivity: (A/L)R∞
(Ω cm)

SF Standard deviation of the relative residuals of a
CNLS fit

σ∞ Specific conductivity: (1/ρ∞) ≡ (eμnc0)(1 + Πm
−1) in

S/cm
T Absolute temperature (K)
μi Mobilities: positive mobile charges μ1 = μp; negative

mobile charges μ2 = μn, in cm2/(V s)
ZT Total impedance of a model; often expressed per

unit electrode area
ZiN Normalized interface impedance: Zi/R∞ ≡ ρi/ρ∞
ZTN Normalized total impedance: ZT/R∞ ≡ ρT/ρ∞
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